xref: /netbsd-src/sys/opencrypto/cryptosoft.c (revision ee55792f151450e8c80b0c52d56963c8c4df0e64)
1 /*	$NetBSD: cryptosoft.c,v 1.64 2022/05/22 11:39:27 riastradh Exp $ */
2 /*	$FreeBSD: src/sys/opencrypto/cryptosoft.c,v 1.2.2.1 2002/11/21 23:34:23 sam Exp $	*/
3 /*	$OpenBSD: cryptosoft.c,v 1.35 2002/04/26 08:43:50 deraadt Exp $	*/
4 
5 /*
6  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
7  *
8  * This code was written by Angelos D. Keromytis in Athens, Greece, in
9  * February 2000. Network Security Technologies Inc. (NSTI) kindly
10  * supported the development of this code.
11  *
12  * Copyright (c) 2000, 2001 Angelos D. Keromytis
13  *
14  * Permission to use, copy, and modify this software with or without fee
15  * is hereby granted, provided that this entire notice is included in
16  * all source code copies of any software which is or includes a copy or
17  * modification of this software.
18  *
19  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
20  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
21  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
22  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
23  * PURPOSE.
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: cryptosoft.c,v 1.64 2022/05/22 11:39:27 riastradh Exp $");
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/kmem.h>
32 #include <sys/mbuf.h>
33 #include <sys/sysctl.h>
34 #include <sys/errno.h>
35 #include <sys/cprng.h>
36 #include <sys/module.h>
37 #include <sys/device.h>
38 
39 #ifdef _KERNEL_OPT
40 #include "opt_ocf.h"
41 #endif
42 
43 #include <opencrypto/cryptodev.h>
44 #include <opencrypto/cryptosoft.h>
45 #include <opencrypto/xform.h>
46 
47 #include <opencrypto/cryptosoft_xform.c>
48 
49 #include "ioconf.h"
50 
51 union authctx {
52 	MD5_CTX md5ctx;
53 	SHA1_CTX sha1ctx;
54 	RMD160_CTX rmd160ctx;
55 	SHA256_CTX sha256ctx;
56 	SHA384_CTX sha384ctx;
57 	SHA512_CTX sha512ctx;
58 	aesxcbc_ctx aesxcbcctx;
59 	AES_GMAC_CTX aesgmacctx;
60 };
61 
62 struct swcr_data **swcr_sessions = NULL;
63 u_int32_t swcr_sesnum = 0;
64 int32_t swcr_id = -1;
65 
66 #define COPYBACK(x, a, b, c, d) \
67 	(x) == CRYPTO_BUF_MBUF ? m_copyback((struct mbuf *)a,b,c,d) \
68 	: cuio_copyback((struct uio *)a,b,c,d)
69 #define COPYDATA(x, a, b, c, d) \
70 	(x) == CRYPTO_BUF_MBUF ? m_copydata((struct mbuf *)a,b,c,d) \
71 	: cuio_copydata((struct uio *)a,b,c,d)
72 
73 static	int swcr_encdec(struct cryptodesc *, const struct swcr_data *, void *, int);
74 static	int swcr_compdec(struct cryptodesc *, const struct swcr_data *, void *, int, int *);
75 static	int swcr_combined(struct cryptop *, int);
76 static	int swcr_process(void *, struct cryptop *, int);
77 static	int swcr_newsession(void *, u_int32_t *, struct cryptoini *);
78 static void swcr_freesession(void *, u_int64_t);
79 static void swcr_freesession_internal(struct swcr_data *);
80 
81 static	int swcryptoattach_internal(void);
82 
83 /*
84  * Apply a symmetric encryption/decryption algorithm.
85  */
86 static int
swcr_encdec(struct cryptodesc * crd,const struct swcr_data * sw,void * bufv,int outtype)87 swcr_encdec(struct cryptodesc *crd, const struct swcr_data *sw, void *bufv,
88     int outtype)
89 {
90 	char *buf = bufv;
91 	unsigned char iv[EALG_MAX_BLOCK_LEN], blk[EALG_MAX_BLOCK_LEN], *idat;
92 	unsigned char *ivp, piv[EALG_MAX_BLOCK_LEN];
93 	const struct swcr_enc_xform *exf;
94 	int i, k, j, blks, ivlen;
95 	int count, ind;
96 
97 	exf = sw->sw_exf;
98 	blks = exf->enc_xform->blocksize;
99 	ivlen = exf->enc_xform->ivsize;
100 	KASSERT(exf->reinit ? ivlen <= blks : ivlen == blks);
101 
102 	/* Check for non-padded data */
103 	if (crd->crd_len % blks)
104 		return EINVAL;
105 
106 	/* Initialize the IV */
107 	if (crd->crd_flags & CRD_F_ENCRYPT) {
108 		/* IV explicitly provided ? */
109 		if (crd->crd_flags & CRD_F_IV_EXPLICIT) {
110 			memcpy(iv, crd->crd_iv, ivlen);
111 			if (exf->reinit)
112 				exf->reinit(sw->sw_kschedule, iv, 0);
113 		} else if (exf->reinit) {
114 			exf->reinit(sw->sw_kschedule, 0, iv);
115 		} else {
116 			cprng_fast(iv, EALG_MAX_BLOCK_LEN);
117 		}
118 
119 		/* Do we need to write the IV */
120 		if (!(crd->crd_flags & CRD_F_IV_PRESENT)) {
121 			COPYBACK(outtype, buf, crd->crd_inject, ivlen, iv);
122 		}
123 
124 	} else {	/* Decryption */
125 			/* IV explicitly provided ? */
126 		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
127 			memcpy(iv, crd->crd_iv, ivlen);
128 		else {
129 			/* Get IV off buf */
130 			COPYDATA(outtype, buf, crd->crd_inject, ivlen, iv);
131 		}
132 		if (exf->reinit)
133 			exf->reinit(sw->sw_kschedule, iv, 0);
134 	}
135 
136 	ivp = iv;
137 
138 	if (outtype == CRYPTO_BUF_CONTIG) {
139 		if (exf->reinit) {
140 			for (i = crd->crd_skip;
141 			     i < crd->crd_skip + crd->crd_len; i += blks) {
142 				if (crd->crd_flags & CRD_F_ENCRYPT) {
143 					exf->encrypt(sw->sw_kschedule, buf + i);
144 				} else {
145 					exf->decrypt(sw->sw_kschedule, buf + i);
146 				}
147 			}
148 		} else if (crd->crd_flags & CRD_F_ENCRYPT) {
149 			for (i = crd->crd_skip;
150 			    i < crd->crd_skip + crd->crd_len; i += blks) {
151 				/* XOR with the IV/previous block, as appropriate. */
152 				if (i == crd->crd_skip)
153 					for (k = 0; k < blks; k++)
154 						buf[i + k] ^= ivp[k];
155 				else
156 					for (k = 0; k < blks; k++)
157 						buf[i + k] ^= buf[i + k - blks];
158 				exf->encrypt(sw->sw_kschedule, buf + i);
159 			}
160 		} else {		/* Decrypt */
161 			/*
162 			 * Start at the end, so we don't need to keep the encrypted
163 			 * block as the IV for the next block.
164 			 */
165 			for (i = crd->crd_skip + crd->crd_len - blks;
166 			    i >= crd->crd_skip; i -= blks) {
167 				exf->decrypt(sw->sw_kschedule, buf + i);
168 
169 				/* XOR with the IV/previous block, as appropriate */
170 				if (i == crd->crd_skip)
171 					for (k = 0; k < blks; k++)
172 						buf[i + k] ^= ivp[k];
173 				else
174 					for (k = 0; k < blks; k++)
175 						buf[i + k] ^= buf[i + k - blks];
176 			}
177 		}
178 
179 		return 0;
180 	} else if (outtype == CRYPTO_BUF_MBUF) {
181 		struct mbuf *m = (struct mbuf *) buf;
182 
183 		/* Find beginning of data */
184 		m = m_getptr(m, crd->crd_skip, &k);
185 		if (m == NULL)
186 			return EINVAL;
187 
188 		i = crd->crd_len;
189 
190 		while (i > 0) {
191 			/*
192 			 * If there's insufficient data at the end of
193 			 * an mbuf, we have to do some copying.
194 			 */
195 			if (m->m_len < k + blks && m->m_len != k) {
196 				m_copydata(m, k, blks, blk);
197 
198 				/* Actual encryption/decryption */
199 				if (exf->reinit) {
200 					if (crd->crd_flags & CRD_F_ENCRYPT) {
201 						exf->encrypt(sw->sw_kschedule,
202 							     blk);
203 					} else {
204 						exf->decrypt(sw->sw_kschedule,
205 							     blk);
206 					}
207 				} else if (crd->crd_flags & CRD_F_ENCRYPT) {
208 					/* XOR with previous block */
209 					for (j = 0; j < blks; j++)
210 						blk[j] ^= ivp[j];
211 
212 					exf->encrypt(sw->sw_kschedule, blk);
213 
214 					/*
215 					 * Keep encrypted block for XOR'ing
216 					 * with next block
217 					 */
218 					memcpy(iv, blk, blks);
219 					ivp = iv;
220 				} else {	/* decrypt */
221 					/*
222 					 * Keep encrypted block for XOR'ing
223 					 * with next block
224 					 */
225 					if (ivp == iv)
226 						memcpy(piv, blk, blks);
227 					else
228 						memcpy(iv, blk, blks);
229 
230 					exf->decrypt(sw->sw_kschedule, blk);
231 
232 					/* XOR with previous block */
233 					for (j = 0; j < blks; j++)
234 						blk[j] ^= ivp[j];
235 
236 					if (ivp == iv)
237 						memcpy(iv, piv, blks);
238 					else
239 						ivp = iv;
240 				}
241 
242 				/* Copy back decrypted block */
243 				m_copyback(m, k, blks, blk);
244 
245 				/* Advance pointer */
246 				m = m_getptr(m, k + blks, &k);
247 				if (m == NULL)
248 					return EINVAL;
249 
250 				i -= blks;
251 
252 				/* Could be done... */
253 				if (i == 0)
254 					break;
255 			}
256 
257 			/* Skip possibly empty mbufs */
258 			if (k == m->m_len) {
259 				for (m = m->m_next; m && m->m_len == 0;
260 				    m = m->m_next)
261 					;
262 				k = 0;
263 			}
264 
265 			/* Sanity check */
266 			if (m == NULL)
267 				return EINVAL;
268 
269 			/*
270 			 * Warning: idat may point to garbage here, but
271 			 * we only use it in the while() loop, only if
272 			 * there are indeed enough data.
273 			 */
274 			idat = mtod(m, unsigned char *) + k;
275 
276 			while (m->m_len >= k + blks && i > 0) {
277 				if (exf->reinit) {
278 					if (crd->crd_flags & CRD_F_ENCRYPT) {
279 						exf->encrypt(sw->sw_kschedule,
280 							     idat);
281 					} else {
282 						exf->decrypt(sw->sw_kschedule,
283 							     idat);
284 					}
285 				} else if (crd->crd_flags & CRD_F_ENCRYPT) {
286 					/* XOR with previous block/IV */
287 					for (j = 0; j < blks; j++)
288 						idat[j] ^= ivp[j];
289 
290 					exf->encrypt(sw->sw_kschedule, idat);
291 					ivp = idat;
292 				} else {	/* decrypt */
293 					/*
294 					 * Keep encrypted block to be used
295 					 * in next block's processing.
296 					 */
297 					if (ivp == iv)
298 						memcpy(piv, idat, blks);
299 					else
300 						memcpy(iv, idat, blks);
301 
302 					exf->decrypt(sw->sw_kschedule, idat);
303 
304 					/* XOR with previous block/IV */
305 					for (j = 0; j < blks; j++)
306 						idat[j] ^= ivp[j];
307 
308 					if (ivp == iv)
309 						memcpy(iv, piv, blks);
310 					else
311 						ivp = iv;
312 				}
313 
314 				idat += blks;
315 				k += blks;
316 				i -= blks;
317 			}
318 		}
319 
320 		return 0; /* Done with mbuf encryption/decryption */
321 	} else if (outtype == CRYPTO_BUF_IOV) {
322 		struct uio *uio = (struct uio *) buf;
323 
324 		/* Find beginning of data */
325 		count = crd->crd_skip;
326 		ind = cuio_getptr(uio, count, &k);
327 		if (ind == -1)
328 			return EINVAL;
329 
330 		i = crd->crd_len;
331 
332 		while (i > 0) {
333 			/*
334 			 * If there's insufficient data at the end,
335 			 * we have to do some copying.
336 			 */
337 			if (uio->uio_iov[ind].iov_len < k + blks &&
338 			    uio->uio_iov[ind].iov_len != k) {
339 				cuio_copydata(uio, k, blks, blk);
340 
341 				/* Actual encryption/decryption */
342 				if (exf->reinit) {
343 					if (crd->crd_flags & CRD_F_ENCRYPT) {
344 						exf->encrypt(sw->sw_kschedule,
345 							     blk);
346 					} else {
347 						exf->decrypt(sw->sw_kschedule,
348 							     blk);
349 					}
350 				} else if (crd->crd_flags & CRD_F_ENCRYPT) {
351 					/* XOR with previous block */
352 					for (j = 0; j < blks; j++)
353 						blk[j] ^= ivp[j];
354 
355 					exf->encrypt(sw->sw_kschedule, blk);
356 
357 					/*
358 					 * Keep encrypted block for XOR'ing
359 					 * with next block
360 					 */
361 					memcpy(iv, blk, blks);
362 					ivp = iv;
363 				} else {	/* decrypt */
364 					/*
365 					 * Keep encrypted block for XOR'ing
366 					 * with next block
367 					 */
368 					if (ivp == iv)
369 						memcpy(piv, blk, blks);
370 					else
371 						memcpy(iv, blk, blks);
372 
373 					exf->decrypt(sw->sw_kschedule, blk);
374 
375 					/* XOR with previous block */
376 					for (j = 0; j < blks; j++)
377 						blk[j] ^= ivp[j];
378 
379 					if (ivp == iv)
380 						memcpy(iv, piv, blks);
381 					else
382 						ivp = iv;
383 				}
384 
385 				/* Copy back decrypted block */
386 				cuio_copyback(uio, k, blks, blk);
387 
388 				count += blks;
389 
390 				/* Advance pointer */
391 				ind = cuio_getptr(uio, count, &k);
392 				if (ind == -1)
393 					return (EINVAL);
394 
395 				i -= blks;
396 
397 				/* Could be done... */
398 				if (i == 0)
399 					break;
400 			}
401 
402 			/*
403 			 * Warning: idat may point to garbage here, but
404 			 * we only use it in the while() loop, only if
405 			 * there are indeed enough data.
406 			 */
407 			idat = ((char *)uio->uio_iov[ind].iov_base) + k;
408 
409 			while (uio->uio_iov[ind].iov_len >= k + blks &&
410 			    i > 0) {
411 				if (exf->reinit) {
412 					if (crd->crd_flags & CRD_F_ENCRYPT) {
413 						exf->encrypt(sw->sw_kschedule,
414 							    idat);
415 					} else {
416 						exf->decrypt(sw->sw_kschedule,
417 							    idat);
418 					}
419 				} else if (crd->crd_flags & CRD_F_ENCRYPT) {
420 					/* XOR with previous block/IV */
421 					for (j = 0; j < blks; j++)
422 						idat[j] ^= ivp[j];
423 
424 					exf->encrypt(sw->sw_kschedule, idat);
425 					ivp = idat;
426 				} else {	/* decrypt */
427 					/*
428 					 * Keep encrypted block to be used
429 					 * in next block's processing.
430 					 */
431 					if (ivp == iv)
432 						memcpy(piv, idat, blks);
433 					else
434 						memcpy(iv, idat, blks);
435 
436 					exf->decrypt(sw->sw_kschedule, idat);
437 
438 					/* XOR with previous block/IV */
439 					for (j = 0; j < blks; j++)
440 						idat[j] ^= ivp[j];
441 
442 					if (ivp == iv)
443 						memcpy(iv, piv, blks);
444 					else
445 						ivp = iv;
446 				}
447 
448 				idat += blks;
449 				count += blks;
450 				k += blks;
451 				i -= blks;
452 			}
453 		}
454 		return 0; /* Done with mbuf encryption/decryption */
455 	}
456 
457 	/* Unreachable */
458 	return EINVAL;
459 }
460 
461 /*
462  * Compute keyed-hash authenticator.
463  */
464 int
swcr_authcompute(struct cryptop * crp,struct cryptodesc * crd,const struct swcr_data * sw,void * buf,int outtype)465 swcr_authcompute(struct cryptop *crp, struct cryptodesc *crd,
466     const struct swcr_data *sw, void *buf, int outtype)
467 {
468 	unsigned char aalg[AALG_MAX_RESULT_LEN];
469 	const struct swcr_auth_hash *axf;
470 	union authctx ctx;
471 	int err;
472 
473 	if (sw->sw_ictx == 0)
474 		return EINVAL;
475 
476 	axf = sw->sw_axf;
477 
478 	memcpy(&ctx, sw->sw_ictx, axf->ctxsize);
479 
480 	switch (outtype) {
481 	case CRYPTO_BUF_CONTIG:
482 		axf->Update(&ctx, (char *)buf + crd->crd_skip, crd->crd_len);
483 		break;
484 	case CRYPTO_BUF_MBUF:
485 		err = m_apply((struct mbuf *) buf, crd->crd_skip, crd->crd_len,
486 		    (int (*)(void*, void *, unsigned int))(void *)axf->Update,
487 		    (void *) &ctx);
488 		if (err)
489 			return err;
490 		break;
491 	case CRYPTO_BUF_IOV:
492 		err = cuio_apply((struct uio *) buf, crd->crd_skip,
493 		    crd->crd_len,
494 		    (int (*)(void *, void *, unsigned int))(void *)axf->Update,
495 		    (void *) &ctx);
496 		if (err) {
497 			return err;
498 		}
499 		break;
500 	default:
501 		return EINVAL;
502 	}
503 
504 	switch (sw->sw_alg) {
505 	case CRYPTO_MD5_HMAC:
506 	case CRYPTO_MD5_HMAC_96:
507 	case CRYPTO_SHA1_HMAC:
508 	case CRYPTO_SHA1_HMAC_96:
509 	case CRYPTO_SHA2_256_HMAC:
510 	case CRYPTO_SHA2_384_HMAC:
511 	case CRYPTO_SHA2_512_HMAC:
512 	case CRYPTO_RIPEMD160_HMAC:
513 	case CRYPTO_RIPEMD160_HMAC_96:
514 		if (sw->sw_octx == NULL)
515 			return EINVAL;
516 
517 		axf->Final(aalg, &ctx);
518 		memcpy(&ctx, sw->sw_octx, axf->ctxsize);
519 		axf->Update(&ctx, aalg, axf->auth_hash->hashsize);
520 		axf->Final(aalg, &ctx);
521 		break;
522 
523 	case CRYPTO_MD5_KPDK:
524 	case CRYPTO_SHA1_KPDK:
525 		if (sw->sw_octx == NULL)
526 			return EINVAL;
527 
528 		axf->Update(&ctx, sw->sw_octx, sw->sw_klen);
529 		axf->Final(aalg, &ctx);
530 		break;
531 
532 	case CRYPTO_NULL_HMAC:
533 	case CRYPTO_MD5:
534 	case CRYPTO_SHA1:
535 	case CRYPTO_AES_XCBC_MAC_96:
536 		axf->Final(aalg, &ctx);
537 		break;
538 	}
539 
540 	/* Inject the authentication data */
541 	switch (outtype) {
542 	case CRYPTO_BUF_CONTIG:
543 		(void)memcpy((char *)buf + crd->crd_inject, aalg,
544 		    axf->auth_hash->authsize);
545 		break;
546 	case CRYPTO_BUF_MBUF:
547 		m_copyback((struct mbuf *) buf, crd->crd_inject,
548 		    axf->auth_hash->authsize, aalg);
549 		break;
550 	case CRYPTO_BUF_IOV:
551 		memcpy(crp->crp_mac, aalg, axf->auth_hash->authsize);
552 		break;
553 	default:
554 		return EINVAL;
555 	}
556 	return 0;
557 }
558 
559 /*
560  * Apply a combined encryption-authentication transformation
561  */
562 static int
swcr_combined(struct cryptop * crp,int outtype)563 swcr_combined(struct cryptop *crp, int outtype)
564 {
565 	uint32_t blkbuf[howmany(EALG_MAX_BLOCK_LEN, sizeof(uint32_t))];
566 	u_char *blk = (u_char *)blkbuf;
567 	u_char aalg[AALG_MAX_RESULT_LEN];
568 	u_char iv[EALG_MAX_BLOCK_LEN];
569 	union authctx ctx;
570 	struct cryptodesc *crd, *crda = NULL, *crde = NULL;
571 	struct swcr_data *sw, *swa, *swe = NULL;
572 	const struct swcr_auth_hash *axf = NULL;
573 	const struct swcr_enc_xform *exf = NULL;
574 	void *buf = (void *)crp->crp_buf;
575 	uint32_t *blkp;
576 	int i, blksz = 0, ivlen = 0, len;
577 
578 	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
579 		for (sw = swcr_sessions[crp->crp_sid & 0xffffffff];
580 		     sw && sw->sw_alg != crd->crd_alg;
581 		     sw = sw->sw_next)
582 			;
583 		if (sw == NULL)
584 			return (EINVAL);
585 
586 		switch (sw->sw_alg) {
587 		case CRYPTO_AES_GCM_16:
588 		case CRYPTO_AES_GMAC:
589 			swe = sw;
590 			crde = crd;
591 			exf = swe->sw_exf;
592 			ivlen = exf->enc_xform->ivsize;
593 			break;
594 		case CRYPTO_AES_128_GMAC:
595 		case CRYPTO_AES_192_GMAC:
596 		case CRYPTO_AES_256_GMAC:
597 			swa = sw;
598 			crda = crd;
599 			axf = swa->sw_axf;
600 			if (swa->sw_ictx == 0)
601 				return (EINVAL);
602 			memcpy(&ctx, swa->sw_ictx, axf->ctxsize);
603 			blksz = axf->auth_hash->blocksize;
604 			break;
605 		default:
606 			return (EINVAL);
607 		}
608 	}
609 	if (crde == NULL || crda == NULL)
610 		return (EINVAL);
611 	if (outtype == CRYPTO_BUF_CONTIG)
612 		return (EINVAL);
613 
614 	/* Initialize the IV */
615 	if (crde->crd_flags & CRD_F_ENCRYPT) {
616 		/* IV explicitly provided ? */
617 		if (crde->crd_flags & CRD_F_IV_EXPLICIT) {
618 			memcpy(iv, crde->crd_iv, ivlen);
619 			if (exf->reinit)
620 				exf->reinit(swe->sw_kschedule, iv, 0);
621 		} else if (exf->reinit)
622 			exf->reinit(swe->sw_kschedule, 0, iv);
623 		else
624 			cprng_fast(iv, ivlen);
625 
626 		/* Do we need to write the IV */
627 		if (!(crde->crd_flags & CRD_F_IV_PRESENT))
628 			COPYBACK(outtype, buf, crde->crd_inject, ivlen, iv);
629 
630 	} else {	/* Decryption */
631 			/* IV explicitly provided ? */
632 		if (crde->crd_flags & CRD_F_IV_EXPLICIT)
633 			memcpy(iv, crde->crd_iv, ivlen);
634 		else {
635 			/* Get IV off buf */
636 			COPYDATA(outtype, buf, crde->crd_inject, ivlen, iv);
637 		}
638 		if (exf->reinit)
639 			exf->reinit(swe->sw_kschedule, iv, 0);
640 	}
641 
642 	/* Supply MAC with IV */
643 	if (axf->Reinit)
644 		axf->Reinit(&ctx, iv, ivlen);
645 
646 	/* Supply MAC with AAD */
647 	for (i = 0; i < crda->crd_len; i += blksz) {
648 		len = MIN(crda->crd_len - i, blksz);
649 		COPYDATA(outtype, buf, crda->crd_skip + i, len, blk);
650 		axf->Update(&ctx, blk, len);
651 	}
652 
653 	/* Do encryption/decryption with MAC */
654 	for (i = 0; i < crde->crd_len; i += blksz) {
655 		len = MIN(crde->crd_len - i, blksz);
656 		if (len < blksz)
657 			memset(blk, 0, blksz);
658 		COPYDATA(outtype, buf, crde->crd_skip + i, len, blk);
659 		if (crde->crd_flags & CRD_F_ENCRYPT) {
660 			exf->encrypt(swe->sw_kschedule, blk);
661 			axf->Update(&ctx, blk, len);
662 		} else {
663 			axf->Update(&ctx, blk, len);
664 			exf->decrypt(swe->sw_kschedule, blk);
665 		}
666 		COPYBACK(outtype, buf, crde->crd_skip + i, len, blk);
667 	}
668 
669 	/* Do any required special finalization */
670 	switch (crda->crd_alg) {
671 		case CRYPTO_AES_128_GMAC:
672 		case CRYPTO_AES_192_GMAC:
673 		case CRYPTO_AES_256_GMAC:
674 			/* length block */
675 			memset(blk, 0, blksz);
676 			blkp = (uint32_t *)blk + 1;
677 			*blkp = htobe32(crda->crd_len * 8);
678 			blkp = (uint32_t *)blk + 3;
679 			*blkp = htobe32(crde->crd_len * 8);
680 			axf->Update(&ctx, blk, blksz);
681 			break;
682 	}
683 
684 	/* Finalize MAC */
685 	axf->Final(aalg, &ctx);
686 
687 	/* Inject the authentication data */
688 	if (outtype == CRYPTO_BUF_MBUF)
689 		COPYBACK(outtype, buf, crda->crd_inject, axf->auth_hash->authsize, aalg);
690 	else
691 		memcpy(crp->crp_mac, aalg, axf->auth_hash->authsize);
692 
693 	return (0);
694 }
695 
696 /*
697  * Apply a compression/decompression algorithm
698  */
699 static int
swcr_compdec(struct cryptodesc * crd,const struct swcr_data * sw,void * buf,int outtype,int * res_size)700 swcr_compdec(struct cryptodesc *crd, const struct swcr_data *sw,
701     void *buf, int outtype, int *res_size)
702 {
703 	u_int8_t *data, *out;
704 	const struct swcr_comp_algo *cxf;
705 	int adj;
706 	u_int32_t result;
707 
708 	cxf = sw->sw_cxf;
709 
710 	/* We must handle the whole buffer of data in one time
711 	 * then if there is not all the data in the mbuf, we must
712 	 * copy in a buffer.
713 	 */
714 
715 	data = malloc(crd->crd_len, M_CRYPTO_DATA, M_NOWAIT);
716 	if (data == NULL)
717 		return (EINVAL);
718 	COPYDATA(outtype, buf, crd->crd_skip, crd->crd_len, data);
719 
720 	if (crd->crd_flags & CRD_F_COMP)
721 		result = cxf->compress(data, crd->crd_len, &out);
722 	else
723 		result = cxf->decompress(data, crd->crd_len, &out,
724 					 *res_size);
725 
726 	free(data, M_CRYPTO_DATA);
727 	if (result == 0)
728 		return EINVAL;
729 
730 	/* Copy back the (de)compressed data. m_copyback is
731 	 * extending the mbuf as necessary.
732 	 */
733 	*res_size = (int)result;
734 	/* Check the compressed size when doing compression */
735 	if (crd->crd_flags & CRD_F_COMP &&
736 	    sw->sw_alg == CRYPTO_DEFLATE_COMP_NOGROW &&
737 	    result >= crd->crd_len) {
738 			/* Compression was useless, we lost time */
739 			free(out, M_CRYPTO_DATA);
740 			return 0;
741 	}
742 
743 	COPYBACK(outtype, buf, crd->crd_skip, result, out);
744 	if (result < crd->crd_len) {
745 		adj = result - crd->crd_len;
746 		if (outtype == CRYPTO_BUF_MBUF) {
747 			m_adj((struct mbuf *)buf, adj);
748 		}
749 		/* Don't adjust the iov_len, it breaks the kmem_free */
750 	}
751 	free(out, M_CRYPTO_DATA);
752 	return 0;
753 }
754 
755 /*
756  * Generate a new software session.
757  */
758 static int
swcr_newsession(void * arg,u_int32_t * sid,struct cryptoini * cri)759 swcr_newsession(void *arg, u_int32_t *sid, struct cryptoini *cri)
760 {
761 	struct swcr_data **swd;
762 	struct swcr_data *first, *tmp;
763 	const struct swcr_auth_hash *axf;
764 	const struct swcr_enc_xform *txf;
765 	const struct swcr_comp_algo *cxf;
766 	u_int32_t i;
767 	int k, error;
768 
769 	if (swcr_sessions) {
770 		for (i = 1; i < swcr_sesnum; i++)
771 			if (swcr_sessions[i] == NULL)
772 				break;
773 	} else
774 		i = 1;		/* NB: to silence compiler warning */
775 
776 	if (swcr_sessions == NULL || i == swcr_sesnum) {
777 		u_int32_t newnum;
778 		struct swcr_data **newsessions;
779 
780 		if (swcr_sessions == NULL) {
781 			i = 1; /* We leave swcr_sessions[0] empty */
782 			newnum = CRYPTO_SW_SESSIONS;
783 		} else
784 			newnum = swcr_sesnum *= 2;
785 
786 		newsessions = kmem_zalloc(newnum * sizeof(struct swcr_data *),
787 		    KM_NOSLEEP);
788 		if (newsessions == NULL) {
789 			return ENOBUFS;
790 		}
791 
792 		/* Copy existing sessions */
793 		if (swcr_sessions) {
794 			memcpy(newsessions, swcr_sessions,
795 			    swcr_sesnum * sizeof(struct swcr_data *));
796 			kmem_free(swcr_sessions,
797 			    swcr_sesnum * sizeof(struct swcr_data *));
798 		}
799 
800 		swcr_sesnum = newnum;
801 		swcr_sessions = newsessions;
802 	}
803 
804 	first = NULL;
805 	swd = &tmp;
806 	while (cri) {
807 		*swd = kmem_zalloc(sizeof **swd, KM_NOSLEEP);
808 		if (*swd == NULL) {
809 			if (first != NULL)
810 				swcr_freesession_internal(first);
811 			return ENOBUFS;
812 		} else if (first == NULL)
813 			first = *swd;
814 
815 		switch (cri->cri_alg) {
816 		case CRYPTO_DES_CBC:
817 			txf = &swcr_enc_xform_des;
818 			goto enccommon;
819 		case CRYPTO_3DES_CBC:
820 			txf = &swcr_enc_xform_3des;
821 			goto enccommon;
822 		case CRYPTO_BLF_CBC:
823 			txf = &swcr_enc_xform_blf;
824 			goto enccommon;
825 		case CRYPTO_CAST_CBC:
826 			txf = &swcr_enc_xform_cast5;
827 			goto enccommon;
828 		case CRYPTO_SKIPJACK_CBC:
829 			txf = &swcr_enc_xform_skipjack;
830 			goto enccommon;
831 		case CRYPTO_AES_CBC:
832 			txf = &swcr_enc_xform_aes;
833 			goto enccommon;
834 		case CRYPTO_CAMELLIA_CBC:
835 			txf = &swcr_enc_xform_camellia;
836 			goto enccommon;
837 		case CRYPTO_AES_CTR:
838 			txf = &swcr_enc_xform_aes_ctr;
839 			goto enccommon;
840 		case CRYPTO_AES_GCM_16:
841 			txf = &swcr_enc_xform_aes_gcm;
842 			goto enccommon;
843 		case CRYPTO_AES_GMAC:
844 			txf = &swcr_enc_xform_aes_gmac;
845 			goto enccommon;
846 		case CRYPTO_NULL_CBC:
847 			txf = &swcr_enc_xform_null;
848 			goto enccommon;
849 		enccommon:
850 			error = txf->setkey(&((*swd)->sw_kschedule),
851 					cri->cri_key, cri->cri_klen / 8);
852 			if (error) {
853 				swcr_freesession_internal(first);
854 				return error;
855 			}
856 			(*swd)->sw_exf = txf;
857 			break;
858 
859 		case CRYPTO_MD5_HMAC:
860 			axf = &swcr_auth_hash_hmac_md5;
861 			goto authcommon;
862 		case CRYPTO_MD5_HMAC_96:
863 			axf = &swcr_auth_hash_hmac_md5_96;
864 			goto authcommon;
865 		case CRYPTO_SHA1_HMAC:
866 			axf = &swcr_auth_hash_hmac_sha1;
867 			goto authcommon;
868 		case CRYPTO_SHA1_HMAC_96:
869 			axf = &swcr_auth_hash_hmac_sha1_96;
870 			goto authcommon;
871 		case CRYPTO_SHA2_256_HMAC:
872 			axf = &swcr_auth_hash_hmac_sha2_256;
873 			goto authcommon;
874 		case CRYPTO_SHA2_384_HMAC:
875 			axf = &swcr_auth_hash_hmac_sha2_384;
876 			goto authcommon;
877 		case CRYPTO_SHA2_512_HMAC:
878 			axf = &swcr_auth_hash_hmac_sha2_512;
879 			goto authcommon;
880 		case CRYPTO_NULL_HMAC:
881 			axf = &swcr_auth_hash_null;
882 			goto authcommon;
883 		case CRYPTO_RIPEMD160_HMAC:
884 			axf = &swcr_auth_hash_hmac_ripemd_160;
885 			goto authcommon;
886 		case CRYPTO_RIPEMD160_HMAC_96:
887 			axf = &swcr_auth_hash_hmac_ripemd_160_96;
888 			goto authcommon;	/* leave this for safety */
889 		authcommon:
890 			(*swd)->sw_ictx = kmem_alloc(axf->ctxsize, KM_NOSLEEP);
891 			if ((*swd)->sw_ictx == NULL) {
892 				swcr_freesession_internal(first);
893 				return ENOBUFS;
894 			}
895 
896 			(*swd)->sw_octx = kmem_alloc(axf->ctxsize, KM_NOSLEEP);
897 			if ((*swd)->sw_octx == NULL) {
898 				swcr_freesession_internal(first);
899 				return ENOBUFS;
900 			}
901 
902 			for (k = 0; k < cri->cri_klen / 8; k++)
903 				cri->cri_key[k] ^= HMAC_IPAD_VAL;
904 
905 			axf->Init((*swd)->sw_ictx);
906 			axf->Update((*swd)->sw_ictx, cri->cri_key,
907 			    cri->cri_klen / 8);
908 			axf->Update((*swd)->sw_ictx, hmac_ipad_buffer,
909 			    axf->auth_hash->blocksize - (cri->cri_klen / 8));
910 
911 			for (k = 0; k < cri->cri_klen / 8; k++)
912 				cri->cri_key[k] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
913 
914 			axf->Init((*swd)->sw_octx);
915 			axf->Update((*swd)->sw_octx, cri->cri_key,
916 			    cri->cri_klen / 8);
917 			axf->Update((*swd)->sw_octx, hmac_opad_buffer,
918 			    axf->auth_hash->blocksize - (cri->cri_klen / 8));
919 
920 			for (k = 0; k < cri->cri_klen / 8; k++)
921 				cri->cri_key[k] ^= HMAC_OPAD_VAL;
922 			(*swd)->sw_axf = axf;
923 			break;
924 
925 		case CRYPTO_MD5_KPDK:
926 			axf = &swcr_auth_hash_key_md5;
927 			goto auth2common;
928 
929 		case CRYPTO_SHA1_KPDK: {
930 			unsigned char digest[SHA1_DIGEST_LENGTH];
931 			CTASSERT(SHA1_DIGEST_LENGTH >= MD5_DIGEST_LENGTH);
932 			axf = &swcr_auth_hash_key_sha1;
933 		auth2common:
934 			(*swd)->sw_ictx = kmem_alloc(axf->ctxsize, KM_NOSLEEP);
935 			if ((*swd)->sw_ictx == NULL) {
936 				swcr_freesession_internal(first);
937 				return ENOBUFS;
938 			}
939 
940 			/* Store the key so we can "append" it to the payload */
941 			(*swd)->sw_octx = kmem_alloc(cri->cri_klen / 8,
942 			    KM_NOSLEEP);
943 			if ((*swd)->sw_octx == NULL) {
944 				swcr_freesession_internal(first);
945 				return ENOBUFS;
946 			}
947 
948 			(*swd)->sw_klen = cri->cri_klen / 8;
949 			memcpy((*swd)->sw_octx, cri->cri_key, cri->cri_klen / 8);
950 			axf->Init((*swd)->sw_ictx);
951 			axf->Update((*swd)->sw_ictx, cri->cri_key,
952 			    cri->cri_klen / 8);
953 			axf->Final(digest, (*swd)->sw_ictx);
954 			(*swd)->sw_axf = axf;
955 			break;
956 		    }
957 
958 		case CRYPTO_MD5:
959 			axf = &swcr_auth_hash_md5;
960 			goto auth3common;
961 
962 		case CRYPTO_SHA1:
963 			axf = &swcr_auth_hash_sha1;
964 		auth3common:
965 			(*swd)->sw_ictx = kmem_alloc(axf->ctxsize, KM_NOSLEEP);
966 			if ((*swd)->sw_ictx == NULL) {
967 				swcr_freesession_internal(first);
968 				return ENOBUFS;
969 			}
970 
971 			axf->Init((*swd)->sw_ictx);
972 			(*swd)->sw_axf = axf;
973 			break;
974 
975 		case CRYPTO_AES_XCBC_MAC_96:
976 			axf = &swcr_auth_hash_aes_xcbc_mac;
977 			goto auth4common;
978 		case CRYPTO_AES_128_GMAC:
979 			axf = &swcr_auth_hash_gmac_aes_128;
980 			goto auth4common;
981 		case CRYPTO_AES_192_GMAC:
982 			axf = &swcr_auth_hash_gmac_aes_192;
983 			goto auth4common;
984 		case CRYPTO_AES_256_GMAC:
985 			axf = &swcr_auth_hash_gmac_aes_256;
986 		auth4common:
987 			(*swd)->sw_ictx = kmem_alloc(axf->ctxsize, KM_NOSLEEP);
988 			if ((*swd)->sw_ictx == NULL) {
989 				swcr_freesession_internal(first);
990 				return ENOBUFS;
991 			}
992 			axf->Init((*swd)->sw_ictx);
993 			axf->Setkey((*swd)->sw_ictx,
994 				cri->cri_key, cri->cri_klen / 8);
995 			(*swd)->sw_axf = axf;
996 			break;
997 
998 		case CRYPTO_DEFLATE_COMP:
999 			cxf = &swcr_comp_algo_deflate;
1000 			(*swd)->sw_cxf = cxf;
1001 			break;
1002 
1003 		case CRYPTO_DEFLATE_COMP_NOGROW:
1004 			cxf = &swcr_comp_algo_deflate_nogrow;
1005 			(*swd)->sw_cxf = cxf;
1006 			break;
1007 
1008 		case CRYPTO_GZIP_COMP:
1009 			cxf = &swcr_comp_algo_gzip;
1010 			(*swd)->sw_cxf = cxf;
1011 			break;
1012 		default:
1013 			swcr_freesession_internal(first);
1014 			return EINVAL;
1015 		}
1016 
1017 		(*swd)->sw_alg = cri->cri_alg;
1018 		cri = cri->cri_next;
1019 		swd = &((*swd)->sw_next);
1020 	}
1021 
1022 	swcr_sessions[i] = first;
1023 	*sid = i;
1024 	return 0;
1025 }
1026 
1027 static void
swcr_freesession_internal(struct swcr_data * arg)1028 swcr_freesession_internal(struct swcr_data *arg)
1029 {
1030 	struct swcr_data *swd, *swd0;
1031 	const struct swcr_enc_xform *txf;
1032 	const struct swcr_auth_hash *axf;
1033 
1034 	if (arg == NULL)
1035 		return;
1036 
1037 	swd0 = arg;
1038 	while ((swd = swd0) != NULL) {
1039 		swd0 = swd->sw_next;
1040 
1041 		switch (swd->sw_alg) {
1042 		case CRYPTO_DES_CBC:
1043 		case CRYPTO_3DES_CBC:
1044 		case CRYPTO_BLF_CBC:
1045 		case CRYPTO_CAST_CBC:
1046 		case CRYPTO_SKIPJACK_CBC:
1047 		case CRYPTO_AES_CBC:
1048 		case CRYPTO_CAMELLIA_CBC:
1049 		case CRYPTO_AES_CTR:
1050 		case CRYPTO_AES_GCM_16:
1051 		case CRYPTO_AES_GMAC:
1052 		case CRYPTO_NULL_CBC:
1053 			txf = swd->sw_exf;
1054 
1055 			if (swd->sw_kschedule)
1056 				txf->zerokey(&(swd->sw_kschedule));
1057 			break;
1058 
1059 		case CRYPTO_MD5_HMAC:
1060 		case CRYPTO_MD5_HMAC_96:
1061 		case CRYPTO_SHA1_HMAC:
1062 		case CRYPTO_SHA1_HMAC_96:
1063 		case CRYPTO_SHA2_256_HMAC:
1064 		case CRYPTO_SHA2_384_HMAC:
1065 		case CRYPTO_SHA2_512_HMAC:
1066 		case CRYPTO_RIPEMD160_HMAC:
1067 		case CRYPTO_RIPEMD160_HMAC_96:
1068 		case CRYPTO_NULL_HMAC:
1069 			axf = swd->sw_axf;
1070 
1071 			if (swd->sw_ictx) {
1072 				explicit_memset(swd->sw_ictx, 0, axf->ctxsize);
1073 				kmem_free(swd->sw_ictx, axf->ctxsize);
1074 			}
1075 			if (swd->sw_octx) {
1076 				explicit_memset(swd->sw_octx, 0, axf->ctxsize);
1077 				kmem_free(swd->sw_octx, axf->ctxsize);
1078 			}
1079 			break;
1080 
1081 		case CRYPTO_MD5_KPDK:
1082 		case CRYPTO_SHA1_KPDK:
1083 			axf = swd->sw_axf;
1084 
1085 			if (swd->sw_ictx) {
1086 				explicit_memset(swd->sw_ictx, 0, axf->ctxsize);
1087 				kmem_free(swd->sw_ictx, axf->ctxsize);
1088 			}
1089 			if (swd->sw_octx) {
1090 				explicit_memset(swd->sw_octx, 0, swd->sw_klen);
1091 				kmem_free(swd->sw_octx, swd->sw_klen);
1092 			}
1093 			break;
1094 
1095 		case CRYPTO_MD5:
1096 		case CRYPTO_SHA1:
1097 		case CRYPTO_AES_XCBC_MAC_96:
1098 		case CRYPTO_AES_128_GMAC:
1099 		case CRYPTO_AES_192_GMAC:
1100 		case CRYPTO_AES_256_GMAC:
1101 			axf = swd->sw_axf;
1102 
1103 			if (swd->sw_ictx) {
1104 				explicit_memset(swd->sw_ictx, 0, axf->ctxsize);
1105 				kmem_free(swd->sw_ictx, axf->ctxsize);
1106 			}
1107 			break;
1108 
1109 		case CRYPTO_DEFLATE_COMP:
1110 		case CRYPTO_DEFLATE_COMP_NOGROW:
1111 		case CRYPTO_GZIP_COMP:
1112 			break;
1113 		}
1114 
1115 		kmem_free(swd, sizeof(*swd));
1116 	}
1117 }
1118 
1119 /*
1120  * Free a session.
1121  */
1122 static void
swcr_freesession(void * arg,u_int64_t tid)1123 swcr_freesession(void *arg, u_int64_t tid)
1124 {
1125 	struct swcr_data *swd;
1126 	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
1127 
1128 	KASSERTMSG(sid < swcr_sesnum, "sid=%"PRIu32" swcr_sesnum=%"PRIu32,
1129 	    sid, swcr_sesnum);
1130 	KASSERT(swcr_sessions[sid]);
1131 
1132 	swd = swcr_sessions[sid];
1133 	swcr_sessions[sid] = NULL;
1134 	swcr_freesession_internal(swd);
1135 }
1136 
1137 /*
1138  * Process a software request.
1139  */
1140 static int
swcr_process(void * arg,struct cryptop * crp,int hint)1141 swcr_process(void *arg, struct cryptop *crp, int hint)
1142 {
1143 	struct cryptodesc *crd;
1144 	struct swcr_data *sw;
1145 	u_int32_t lid;
1146 	int type;
1147 
1148 	/* Sanity check */
1149 	if (crp == NULL)
1150 		return EINVAL;
1151 
1152 	if (crp->crp_desc == NULL || crp->crp_buf == NULL) {
1153 		crp->crp_etype = EINVAL;
1154 		goto done;
1155 	}
1156 
1157 	lid = crp->crp_sid & 0xffffffff;
1158 	if (lid >= swcr_sesnum || lid == 0 || swcr_sessions[lid] == NULL) {
1159 		crp->crp_etype = ENOENT;
1160 		goto done;
1161 	}
1162 
1163 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
1164 		type = CRYPTO_BUF_MBUF;
1165 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
1166 		type = CRYPTO_BUF_IOV;
1167 	} else {
1168 		type = CRYPTO_BUF_CONTIG;
1169 	}
1170 
1171 	/* Go through crypto descriptors, processing as we go */
1172 	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1173 		/*
1174 		 * Find the crypto context.
1175 		 *
1176 		 * XXX Note that the logic here prevents us from having
1177 		 * XXX the same algorithm multiple times in a session
1178 		 * XXX (or rather, we can but it won't give us the right
1179 		 * XXX results). To do that, we'd need some way of differentiating
1180 		 * XXX between the various instances of an algorithm (so we can
1181 		 * XXX locate the correct crypto context).
1182 		 */
1183 		for (sw = swcr_sessions[lid];
1184 		    sw && sw->sw_alg != crd->crd_alg;
1185 		    sw = sw->sw_next)
1186 			;
1187 
1188 		/* No such context ? */
1189 		if (sw == NULL) {
1190 			crp->crp_etype = EINVAL;
1191 			goto done;
1192 		}
1193 
1194 		switch (sw->sw_alg) {
1195 		case CRYPTO_DES_CBC:
1196 		case CRYPTO_3DES_CBC:
1197 		case CRYPTO_BLF_CBC:
1198 		case CRYPTO_CAST_CBC:
1199 		case CRYPTO_SKIPJACK_CBC:
1200 		case CRYPTO_AES_CBC:
1201 		case CRYPTO_CAMELLIA_CBC:
1202 		case CRYPTO_AES_CTR:
1203 			if ((crp->crp_etype = swcr_encdec(crd, sw,
1204 			    crp->crp_buf, type)) != 0)
1205 				goto done;
1206 			break;
1207 		case CRYPTO_NULL_CBC:
1208 			crp->crp_etype = 0;
1209 			break;
1210 		case CRYPTO_MD5_HMAC:
1211 		case CRYPTO_MD5_HMAC_96:
1212 		case CRYPTO_SHA1_HMAC:
1213 		case CRYPTO_SHA1_HMAC_96:
1214 		case CRYPTO_SHA2_256_HMAC:
1215 		case CRYPTO_SHA2_384_HMAC:
1216 		case CRYPTO_SHA2_512_HMAC:
1217 		case CRYPTO_RIPEMD160_HMAC:
1218 		case CRYPTO_RIPEMD160_HMAC_96:
1219 		case CRYPTO_NULL_HMAC:
1220 		case CRYPTO_MD5_KPDK:
1221 		case CRYPTO_SHA1_KPDK:
1222 		case CRYPTO_MD5:
1223 		case CRYPTO_SHA1:
1224 		case CRYPTO_AES_XCBC_MAC_96:
1225 			if ((crp->crp_etype = swcr_authcompute(crp, crd, sw,
1226 			    crp->crp_buf, type)) != 0)
1227 				goto done;
1228 			break;
1229 
1230 		case CRYPTO_AES_GCM_16:
1231 		case CRYPTO_AES_GMAC:
1232 		case CRYPTO_AES_128_GMAC:
1233 		case CRYPTO_AES_192_GMAC:
1234 		case CRYPTO_AES_256_GMAC:
1235 			crp->crp_etype = swcr_combined(crp, type);
1236 			goto done;
1237 
1238 		case CRYPTO_DEFLATE_COMP:
1239 		case CRYPTO_DEFLATE_COMP_NOGROW:
1240 		case CRYPTO_GZIP_COMP:
1241 			DPRINTF("compdec for %d\n", sw->sw_alg);
1242 			if ((crp->crp_etype = swcr_compdec(crd, sw,
1243 			    crp->crp_buf, type, &crp->crp_olen)) != 0)
1244 				goto done;
1245 			break;
1246 
1247 		default:
1248 			/* Unknown/unsupported algorithm */
1249 			crp->crp_etype = EINVAL;
1250 			goto done;
1251 		}
1252 	}
1253 
1254 done:
1255 	DPRINTF("request %p done\n", crp);
1256 	crypto_done(crp);
1257 	return 0;
1258 }
1259 
1260 static void
swcr_init(void)1261 swcr_init(void)
1262 {
1263 	swcr_id = crypto_get_driverid(CRYPTOCAP_F_SOFTWARE);
1264 	if (swcr_id < 0) {
1265 		/* This should never happen */
1266 		panic("Software crypto device cannot initialize!");
1267 	}
1268 
1269 	crypto_register(swcr_id, CRYPTO_DES_CBC,
1270 	    0, 0, swcr_newsession, swcr_freesession, swcr_process, NULL);
1271 #define	REGISTER(alg) \
1272 	crypto_register(swcr_id, alg, 0, 0, NULL, NULL, NULL, NULL)
1273 
1274 	REGISTER(CRYPTO_3DES_CBC);
1275 	REGISTER(CRYPTO_BLF_CBC);
1276 	REGISTER(CRYPTO_CAST_CBC);
1277 	REGISTER(CRYPTO_SKIPJACK_CBC);
1278 	REGISTER(CRYPTO_CAMELLIA_CBC);
1279 	REGISTER(CRYPTO_AES_CTR);
1280 	REGISTER(CRYPTO_AES_GCM_16);
1281 	REGISTER(CRYPTO_AES_GMAC);
1282 	REGISTER(CRYPTO_NULL_CBC);
1283 	REGISTER(CRYPTO_MD5_HMAC);
1284 	REGISTER(CRYPTO_MD5_HMAC_96);
1285 	REGISTER(CRYPTO_SHA1_HMAC);
1286 	REGISTER(CRYPTO_SHA1_HMAC_96);
1287 	REGISTER(CRYPTO_SHA2_256_HMAC);
1288 	REGISTER(CRYPTO_SHA2_384_HMAC);
1289 	REGISTER(CRYPTO_SHA2_512_HMAC);
1290 	REGISTER(CRYPTO_RIPEMD160_HMAC);
1291 	REGISTER(CRYPTO_RIPEMD160_HMAC_96);
1292 	REGISTER(CRYPTO_NULL_HMAC);
1293 	REGISTER(CRYPTO_MD5_KPDK);
1294 	REGISTER(CRYPTO_SHA1_KPDK);
1295 	REGISTER(CRYPTO_MD5);
1296 	REGISTER(CRYPTO_SHA1);
1297 	REGISTER(CRYPTO_AES_XCBC_MAC_96);
1298 	REGISTER(CRYPTO_AES_128_GMAC);
1299 	REGISTER(CRYPTO_AES_192_GMAC);
1300 	REGISTER(CRYPTO_AES_256_GMAC);
1301 	REGISTER(CRYPTO_AES_CBC);
1302 	REGISTER(CRYPTO_DEFLATE_COMP);
1303 	REGISTER(CRYPTO_DEFLATE_COMP_NOGROW);
1304 	REGISTER(CRYPTO_GZIP_COMP);
1305 #undef REGISTER
1306 }
1307 
1308 
1309 /*
1310  * Pseudo-device init routine for software crypto.
1311  */
1312 
1313 void
swcryptoattach(int num)1314 swcryptoattach(int num)
1315 {
1316 	/*
1317 	 * swcrypto_attach() must be called after attached cpus, because
1318 	 * it calls softint_establish() through below call path.
1319 	 *     swcr_init() => crypto_get_driverid() => crypto_init()
1320 	 *         => crypto_init0()
1321 	 * If softint_establish() is called before attached cpus that ncpu == 0,
1322 	 * the softint handler is established to CPU#0 only.
1323 	 *
1324 	 * So, swcrypto_attach() must be called from not module_init_class()
1325 	 * but config_finalize() when it is built as builtin module.
1326 	 */
1327 	swcryptoattach_internal();
1328 }
1329 
1330 void	swcrypto_attach(device_t, device_t, void *);
1331 
1332 void
swcrypto_attach(device_t parent,device_t self,void * opaque)1333 swcrypto_attach(device_t parent, device_t self, void *opaque)
1334 {
1335 
1336 	swcr_init();
1337 
1338 	if (!pmf_device_register(self, NULL, NULL))
1339 		aprint_error_dev(self, "couldn't establish power handler\n");
1340 }
1341 
1342 int	swcrypto_detach(device_t, int);
1343 
1344 int
swcrypto_detach(device_t self,int flag)1345 swcrypto_detach(device_t self, int flag)
1346 {
1347 	pmf_device_deregister(self);
1348 	if (swcr_id >= 0)
1349 		crypto_unregister_all(swcr_id);
1350 	return 0;
1351 }
1352 
1353 int	swcrypto_match(device_t, cfdata_t, void *);
1354 
1355 int
swcrypto_match(device_t parent,cfdata_t data,void * opaque)1356 swcrypto_match(device_t parent, cfdata_t data, void *opaque)
1357 {
1358 
1359         return 1;
1360 }
1361 
1362 MODULE(MODULE_CLASS_DRIVER, swcrypto,
1363 	"opencrypto,zlib,blowfish,des,cast128,camellia,skipjack");
1364 
1365 CFDRIVER_DECL(swcrypto, DV_DULL, NULL);
1366 
1367 CFATTACH_DECL2_NEW(swcrypto, 0, swcrypto_match, swcrypto_attach,
1368     swcrypto_detach, NULL, NULL, NULL);
1369 
1370 static int swcryptoloc[] = { -1, -1 };
1371 
1372 static struct cfdata swcrypto_cfdata[] = {
1373 	{
1374 		.cf_name = "swcrypto",
1375 		.cf_atname = "swcrypto",
1376 		.cf_unit = 0,
1377 		.cf_fstate = 0,
1378 		.cf_loc = swcryptoloc,
1379 		.cf_flags = 0,
1380 		.cf_pspec = NULL,
1381 	},
1382 	{ NULL, NULL, 0, 0, NULL, 0, NULL }
1383 };
1384 
1385 /*
1386  * Internal attach routine.
1387  * Don't call before attached cpus.
1388  */
1389 static int
swcryptoattach_internal(void)1390 swcryptoattach_internal(void)
1391 {
1392 	int error;
1393 
1394 	error = config_cfdriver_attach(&swcrypto_cd);
1395 	if (error) {
1396 		return error;
1397 	}
1398 
1399 	error = config_cfattach_attach(swcrypto_cd.cd_name, &swcrypto_ca);
1400 	if (error) {
1401 		config_cfdriver_detach(&swcrypto_cd);
1402 		aprint_error("%s: unable to register cfattach\n",
1403 		    swcrypto_cd.cd_name);
1404 
1405 		return error;
1406 	}
1407 
1408 	error = config_cfdata_attach(swcrypto_cfdata, 1);
1409 	if (error) {
1410 		config_cfattach_detach(swcrypto_cd.cd_name,
1411 		    &swcrypto_ca);
1412 		config_cfdriver_detach(&swcrypto_cd);
1413 		aprint_error("%s: unable to register cfdata\n",
1414 		    swcrypto_cd.cd_name);
1415 
1416 		return error;
1417 	}
1418 
1419 	(void)config_attach_pseudo(swcrypto_cfdata);
1420 
1421 	return 0;
1422 }
1423 
1424 static int
swcrypto_modcmd(modcmd_t cmd,void * arg)1425 swcrypto_modcmd(modcmd_t cmd, void *arg)
1426 {
1427 	int error = 0;
1428 
1429 	switch (cmd) {
1430 	case MODULE_CMD_INIT:
1431 #ifdef _MODULE
1432 		error = swcryptoattach_internal();
1433 #endif
1434 		return error;
1435 	case MODULE_CMD_FINI:
1436 #if 1
1437 		// XXX: Need to keep track if we are in use.
1438 		return ENOTTY;
1439 #else
1440 		error = config_cfdata_detach(swcrypto_cfdata);
1441 		if (error) {
1442 			return error;
1443 		}
1444 
1445 		config_cfattach_detach(swcrypto_cd.cd_name, &swcrypto_ca);
1446 		config_cfdriver_detach(&swcrypto_cd);
1447 
1448 		return 0;
1449 #endif
1450 	default:
1451 		return ENOTTY;
1452 	}
1453 }
1454