xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/amd/amdgpu/amdgpu_sdma_v3_0.c (revision 2b73d18af7a98bc9907041875c671f63165f1d3e)
1 /*	$NetBSD: amdgpu_sdma_v3_0.c,v 1.5 2021/12/19 12:21:29 riastradh Exp $	*/
2 
3 /*
4  * Copyright 2014 Advanced Micro Devices, Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Alex Deucher
25  */
26 
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: amdgpu_sdma_v3_0.c,v 1.5 2021/12/19 12:21:29 riastradh Exp $");
29 
30 #include <linux/delay.h>
31 #include <linux/firmware.h>
32 #include <linux/module.h>
33 
34 #include "amdgpu.h"
35 #include "amdgpu_ucode.h"
36 #include "amdgpu_trace.h"
37 #include "vi.h"
38 #include "vid.h"
39 
40 #include "oss/oss_3_0_d.h"
41 #include "oss/oss_3_0_sh_mask.h"
42 
43 #include "gmc/gmc_8_1_d.h"
44 #include "gmc/gmc_8_1_sh_mask.h"
45 
46 #include "gca/gfx_8_0_d.h"
47 #include "gca/gfx_8_0_enum.h"
48 #include "gca/gfx_8_0_sh_mask.h"
49 
50 #include "bif/bif_5_0_d.h"
51 #include "bif/bif_5_0_sh_mask.h"
52 
53 #include "tonga_sdma_pkt_open.h"
54 
55 #include "ivsrcid/ivsrcid_vislands30.h"
56 #include <linux/nbsd-namespace.h>
57 
58 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
59 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
60 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
61 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
62 
63 MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
64 MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
65 MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
66 MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
67 MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
68 MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
69 MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
70 MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
71 MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
72 MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
73 MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
74 MODULE_FIRMWARE("amdgpu/polaris12_sdma.bin");
75 MODULE_FIRMWARE("amdgpu/polaris12_sdma1.bin");
76 MODULE_FIRMWARE("amdgpu/vegam_sdma.bin");
77 MODULE_FIRMWARE("amdgpu/vegam_sdma1.bin");
78 
79 
80 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
81 {
82 	SDMA0_REGISTER_OFFSET,
83 	SDMA1_REGISTER_OFFSET
84 };
85 
86 static const u32 golden_settings_tonga_a11[] =
87 {
88 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
89 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
90 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
91 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
92 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
93 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
94 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
95 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
96 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
97 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
98 };
99 
100 static const u32 tonga_mgcg_cgcg_init[] =
101 {
102 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
103 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
104 };
105 
106 static const u32 golden_settings_fiji_a10[] =
107 {
108 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
109 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
110 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
111 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
112 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
113 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
114 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
115 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
116 };
117 
118 static const u32 fiji_mgcg_cgcg_init[] =
119 {
120 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
121 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
122 };
123 
124 static const u32 golden_settings_polaris11_a11[] =
125 {
126 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
127 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
128 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
129 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
130 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
131 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
132 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
133 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
134 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
135 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
136 };
137 
138 static const u32 golden_settings_polaris10_a11[] =
139 {
140 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
141 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
142 	mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
143 	mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
144 	mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
145 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
146 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
147 	mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
148 	mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
149 	mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
150 };
151 
152 static const u32 cz_golden_settings_a11[] =
153 {
154 	mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
155 	mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
156 	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
157 	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
158 	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
159 	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
160 	mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
161 	mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
162 	mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
163 	mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
164 	mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
165 	mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
166 };
167 
168 static const u32 cz_mgcg_cgcg_init[] =
169 {
170 	mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
171 	mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
172 };
173 
174 static const u32 stoney_golden_settings_a11[] =
175 {
176 	mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
177 	mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
178 	mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
179 	mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
180 };
181 
182 static const u32 stoney_mgcg_cgcg_init[] =
183 {
184 	mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
185 };
186 
187 /*
188  * sDMA - System DMA
189  * Starting with CIK, the GPU has new asynchronous
190  * DMA engines.  These engines are used for compute
191  * and gfx.  There are two DMA engines (SDMA0, SDMA1)
192  * and each one supports 1 ring buffer used for gfx
193  * and 2 queues used for compute.
194  *
195  * The programming model is very similar to the CP
196  * (ring buffer, IBs, etc.), but sDMA has it's own
197  * packet format that is different from the PM4 format
198  * used by the CP. sDMA supports copying data, writing
199  * embedded data, solid fills, and a number of other
200  * things.  It also has support for tiling/detiling of
201  * buffers.
202  */
203 
sdma_v3_0_init_golden_registers(struct amdgpu_device * adev)204 static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
205 {
206 	switch (adev->asic_type) {
207 	case CHIP_FIJI:
208 		amdgpu_device_program_register_sequence(adev,
209 							fiji_mgcg_cgcg_init,
210 							ARRAY_SIZE(fiji_mgcg_cgcg_init));
211 		amdgpu_device_program_register_sequence(adev,
212 							golden_settings_fiji_a10,
213 							ARRAY_SIZE(golden_settings_fiji_a10));
214 		break;
215 	case CHIP_TONGA:
216 		amdgpu_device_program_register_sequence(adev,
217 							tonga_mgcg_cgcg_init,
218 							ARRAY_SIZE(tonga_mgcg_cgcg_init));
219 		amdgpu_device_program_register_sequence(adev,
220 							golden_settings_tonga_a11,
221 							ARRAY_SIZE(golden_settings_tonga_a11));
222 		break;
223 	case CHIP_POLARIS11:
224 	case CHIP_POLARIS12:
225 	case CHIP_VEGAM:
226 		amdgpu_device_program_register_sequence(adev,
227 							golden_settings_polaris11_a11,
228 							ARRAY_SIZE(golden_settings_polaris11_a11));
229 		break;
230 	case CHIP_POLARIS10:
231 		amdgpu_device_program_register_sequence(adev,
232 							golden_settings_polaris10_a11,
233 							ARRAY_SIZE(golden_settings_polaris10_a11));
234 		break;
235 	case CHIP_CARRIZO:
236 		amdgpu_device_program_register_sequence(adev,
237 							cz_mgcg_cgcg_init,
238 							ARRAY_SIZE(cz_mgcg_cgcg_init));
239 		amdgpu_device_program_register_sequence(adev,
240 							cz_golden_settings_a11,
241 							ARRAY_SIZE(cz_golden_settings_a11));
242 		break;
243 	case CHIP_STONEY:
244 		amdgpu_device_program_register_sequence(adev,
245 							stoney_mgcg_cgcg_init,
246 							ARRAY_SIZE(stoney_mgcg_cgcg_init));
247 		amdgpu_device_program_register_sequence(adev,
248 							stoney_golden_settings_a11,
249 							ARRAY_SIZE(stoney_golden_settings_a11));
250 		break;
251 	default:
252 		break;
253 	}
254 }
255 
sdma_v3_0_free_microcode(struct amdgpu_device * adev)256 static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
257 {
258 	int i;
259 	for (i = 0; i < adev->sdma.num_instances; i++) {
260 		release_firmware(adev->sdma.instance[i].fw);
261 		adev->sdma.instance[i].fw = NULL;
262 	}
263 }
264 
265 /**
266  * sdma_v3_0_init_microcode - load ucode images from disk
267  *
268  * @adev: amdgpu_device pointer
269  *
270  * Use the firmware interface to load the ucode images into
271  * the driver (not loaded into hw).
272  * Returns 0 on success, error on failure.
273  */
sdma_v3_0_init_microcode(struct amdgpu_device * adev)274 static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
275 {
276 	const char *chip_name;
277 	char fw_name[30];
278 	int err = 0, i;
279 	struct amdgpu_firmware_info *info = NULL;
280 	const struct common_firmware_header *header = NULL;
281 	const struct sdma_firmware_header_v1_0 *hdr;
282 
283 	DRM_DEBUG("\n");
284 
285 	switch (adev->asic_type) {
286 	case CHIP_TONGA:
287 		chip_name = "tonga";
288 		break;
289 	case CHIP_FIJI:
290 		chip_name = "fiji";
291 		break;
292 	case CHIP_POLARIS10:
293 		chip_name = "polaris10";
294 		break;
295 	case CHIP_POLARIS11:
296 		chip_name = "polaris11";
297 		break;
298 	case CHIP_POLARIS12:
299 		chip_name = "polaris12";
300 		break;
301 	case CHIP_VEGAM:
302 		chip_name = "vegam";
303 		break;
304 	case CHIP_CARRIZO:
305 		chip_name = "carrizo";
306 		break;
307 	case CHIP_STONEY:
308 		chip_name = "stoney";
309 		break;
310 	default: BUG();
311 	}
312 
313 	for (i = 0; i < adev->sdma.num_instances; i++) {
314 		if (i == 0)
315 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
316 		else
317 			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
318 		err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
319 		if (err)
320 			goto out;
321 		err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
322 		if (err)
323 			goto out;
324 		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
325 		adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
326 		adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
327 		if (adev->sdma.instance[i].feature_version >= 20)
328 			adev->sdma.instance[i].burst_nop = true;
329 
330 		info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
331 		info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
332 		info->fw = adev->sdma.instance[i].fw;
333 		header = (const struct common_firmware_header *)info->fw->data;
334 		adev->firmware.fw_size +=
335 			ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
336 
337 	}
338 out:
339 	if (err) {
340 		pr_err("sdma_v3_0: Failed to load firmware \"%s\"\n", fw_name);
341 		for (i = 0; i < adev->sdma.num_instances; i++) {
342 			release_firmware(adev->sdma.instance[i].fw);
343 			adev->sdma.instance[i].fw = NULL;
344 		}
345 	}
346 	return err;
347 }
348 
349 /**
350  * sdma_v3_0_ring_get_rptr - get the current read pointer
351  *
352  * @ring: amdgpu ring pointer
353  *
354  * Get the current rptr from the hardware (VI+).
355  */
sdma_v3_0_ring_get_rptr(struct amdgpu_ring * ring)356 static uint64_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
357 {
358 	/* XXX check if swapping is necessary on BE */
359 	return ring->adev->wb.wb[ring->rptr_offs] >> 2;
360 }
361 
362 /**
363  * sdma_v3_0_ring_get_wptr - get the current write pointer
364  *
365  * @ring: amdgpu ring pointer
366  *
367  * Get the current wptr from the hardware (VI+).
368  */
sdma_v3_0_ring_get_wptr(struct amdgpu_ring * ring)369 static uint64_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
370 {
371 	struct amdgpu_device *adev = ring->adev;
372 	u32 wptr;
373 
374 	if (ring->use_doorbell || ring->use_pollmem) {
375 		/* XXX check if swapping is necessary on BE */
376 		wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
377 	} else {
378 		wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me]) >> 2;
379 	}
380 
381 	return wptr;
382 }
383 
384 /**
385  * sdma_v3_0_ring_set_wptr - commit the write pointer
386  *
387  * @ring: amdgpu ring pointer
388  *
389  * Write the wptr back to the hardware (VI+).
390  */
sdma_v3_0_ring_set_wptr(struct amdgpu_ring * ring)391 static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
392 {
393 	struct amdgpu_device *adev = ring->adev;
394 
395 	if (ring->use_doorbell) {
396 		volatile u32 *wb = (volatile u32 *)&adev->wb.wb[ring->wptr_offs];
397 		/* XXX check if swapping is necessary on BE */
398 		WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2));
399 		WDOORBELL32(ring->doorbell_index, lower_32_bits(ring->wptr) << 2);
400 	} else if (ring->use_pollmem) {
401 		volatile u32 *wb = (volatile u32 *)&adev->wb.wb[ring->wptr_offs];
402 
403 		WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2));
404 	} else {
405 		WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me], lower_32_bits(ring->wptr) << 2);
406 	}
407 }
408 
sdma_v3_0_ring_insert_nop(struct amdgpu_ring * ring,uint32_t count)409 static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
410 {
411 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
412 	int i;
413 
414 	for (i = 0; i < count; i++)
415 		if (sdma && sdma->burst_nop && (i == 0))
416 			amdgpu_ring_write(ring, ring->funcs->nop |
417 				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
418 		else
419 			amdgpu_ring_write(ring, ring->funcs->nop);
420 }
421 
422 /**
423  * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
424  *
425  * @ring: amdgpu ring pointer
426  * @ib: IB object to schedule
427  *
428  * Schedule an IB in the DMA ring (VI).
429  */
sdma_v3_0_ring_emit_ib(struct amdgpu_ring * ring,struct amdgpu_job * job,struct amdgpu_ib * ib,uint32_t flags)430 static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
431 				   struct amdgpu_job *job,
432 				   struct amdgpu_ib *ib,
433 				   uint32_t flags)
434 {
435 	unsigned vmid = AMDGPU_JOB_GET_VMID(job);
436 
437 	/* IB packet must end on a 8 DW boundary */
438 	sdma_v3_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
439 
440 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
441 			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
442 	/* base must be 32 byte aligned */
443 	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
444 	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
445 	amdgpu_ring_write(ring, ib->length_dw);
446 	amdgpu_ring_write(ring, 0);
447 	amdgpu_ring_write(ring, 0);
448 
449 }
450 
451 /**
452  * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
453  *
454  * @ring: amdgpu ring pointer
455  *
456  * Emit an hdp flush packet on the requested DMA ring.
457  */
sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring * ring)458 static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
459 {
460 	u32 ref_and_mask = 0;
461 
462 	if (ring->me == 0)
463 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
464 	else
465 		ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
466 
467 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
468 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
469 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
470 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
471 	amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
472 	amdgpu_ring_write(ring, ref_and_mask); /* reference */
473 	amdgpu_ring_write(ring, ref_and_mask); /* mask */
474 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
475 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
476 }
477 
478 /**
479  * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
480  *
481  * @ring: amdgpu ring pointer
482  * @fence: amdgpu fence object
483  *
484  * Add a DMA fence packet to the ring to write
485  * the fence seq number and DMA trap packet to generate
486  * an interrupt if needed (VI).
487  */
sdma_v3_0_ring_emit_fence(struct amdgpu_ring * ring,u64 addr,u64 seq,unsigned flags)488 static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
489 				      unsigned flags)
490 {
491 	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
492 	/* write the fence */
493 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
494 	amdgpu_ring_write(ring, lower_32_bits(addr));
495 	amdgpu_ring_write(ring, upper_32_bits(addr));
496 	amdgpu_ring_write(ring, lower_32_bits(seq));
497 
498 	/* optionally write high bits as well */
499 	if (write64bit) {
500 		addr += 4;
501 		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
502 		amdgpu_ring_write(ring, lower_32_bits(addr));
503 		amdgpu_ring_write(ring, upper_32_bits(addr));
504 		amdgpu_ring_write(ring, upper_32_bits(seq));
505 	}
506 
507 	/* generate an interrupt */
508 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
509 	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
510 }
511 
512 /**
513  * sdma_v3_0_gfx_stop - stop the gfx async dma engines
514  *
515  * @adev: amdgpu_device pointer
516  *
517  * Stop the gfx async dma ring buffers (VI).
518  */
sdma_v3_0_gfx_stop(struct amdgpu_device * adev)519 static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
520 {
521 	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
522 	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
523 	u32 rb_cntl, ib_cntl;
524 	int i;
525 
526 	if ((adev->mman.buffer_funcs_ring == sdma0) ||
527 	    (adev->mman.buffer_funcs_ring == sdma1))
528 		amdgpu_ttm_set_buffer_funcs_status(adev, false);
529 
530 	for (i = 0; i < adev->sdma.num_instances; i++) {
531 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
532 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
533 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
534 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
535 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
536 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
537 	}
538 	sdma0->sched.ready = false;
539 	sdma1->sched.ready = false;
540 }
541 
542 /**
543  * sdma_v3_0_rlc_stop - stop the compute async dma engines
544  *
545  * @adev: amdgpu_device pointer
546  *
547  * Stop the compute async dma queues (VI).
548  */
sdma_v3_0_rlc_stop(struct amdgpu_device * adev)549 static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
550 {
551 	/* XXX todo */
552 }
553 
554 /**
555  * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
556  *
557  * @adev: amdgpu_device pointer
558  * @enable: enable/disable the DMA MEs context switch.
559  *
560  * Halt or unhalt the async dma engines context switch (VI).
561  */
sdma_v3_0_ctx_switch_enable(struct amdgpu_device * adev,bool enable)562 static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
563 {
564 	u32 f32_cntl, phase_quantum = 0;
565 	int i;
566 
567 	if (amdgpu_sdma_phase_quantum) {
568 		unsigned value = amdgpu_sdma_phase_quantum;
569 		unsigned unit = 0;
570 
571 		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
572 				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
573 			value = (value + 1) >> 1;
574 			unit++;
575 		}
576 		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
577 			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
578 			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
579 				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
580 			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
581 				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
582 			WARN_ONCE(1,
583 			"clamping sdma_phase_quantum to %uK clock cycles\n",
584 				  value << unit);
585 		}
586 		phase_quantum =
587 			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
588 			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
589 	}
590 
591 	for (i = 0; i < adev->sdma.num_instances; i++) {
592 		f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
593 		if (enable) {
594 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
595 					AUTO_CTXSW_ENABLE, 1);
596 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
597 					ATC_L1_ENABLE, 1);
598 			if (amdgpu_sdma_phase_quantum) {
599 				WREG32(mmSDMA0_PHASE0_QUANTUM + sdma_offsets[i],
600 				       phase_quantum);
601 				WREG32(mmSDMA0_PHASE1_QUANTUM + sdma_offsets[i],
602 				       phase_quantum);
603 			}
604 		} else {
605 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
606 					AUTO_CTXSW_ENABLE, 0);
607 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
608 					ATC_L1_ENABLE, 1);
609 		}
610 
611 		WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
612 	}
613 }
614 
615 /**
616  * sdma_v3_0_enable - stop the async dma engines
617  *
618  * @adev: amdgpu_device pointer
619  * @enable: enable/disable the DMA MEs.
620  *
621  * Halt or unhalt the async dma engines (VI).
622  */
sdma_v3_0_enable(struct amdgpu_device * adev,bool enable)623 static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
624 {
625 	u32 f32_cntl;
626 	int i;
627 
628 	if (!enable) {
629 		sdma_v3_0_gfx_stop(adev);
630 		sdma_v3_0_rlc_stop(adev);
631 	}
632 
633 	for (i = 0; i < adev->sdma.num_instances; i++) {
634 		f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
635 		if (enable)
636 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
637 		else
638 			f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
639 		WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
640 	}
641 }
642 
643 /**
644  * sdma_v3_0_gfx_resume - setup and start the async dma engines
645  *
646  * @adev: amdgpu_device pointer
647  *
648  * Set up the gfx DMA ring buffers and enable them (VI).
649  * Returns 0 for success, error for failure.
650  */
sdma_v3_0_gfx_resume(struct amdgpu_device * adev)651 static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
652 {
653 	struct amdgpu_ring *ring;
654 	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
655 	u32 rb_bufsz;
656 	u32 wb_offset;
657 	u32 doorbell;
658 	u64 wptr_gpu_addr;
659 	int i, j, r;
660 
661 	for (i = 0; i < adev->sdma.num_instances; i++) {
662 		ring = &adev->sdma.instance[i].ring;
663 		amdgpu_ring_clear_ring(ring);
664 		wb_offset = (ring->rptr_offs * 4);
665 
666 		mutex_lock(&adev->srbm_mutex);
667 		for (j = 0; j < 16; j++) {
668 			vi_srbm_select(adev, 0, 0, 0, j);
669 			/* SDMA GFX */
670 			WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
671 			WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
672 		}
673 		vi_srbm_select(adev, 0, 0, 0, 0);
674 		mutex_unlock(&adev->srbm_mutex);
675 
676 		WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
677 		       adev->gfx.config.gb_addr_config & 0x70);
678 
679 		WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
680 
681 		/* Set ring buffer size in dwords */
682 		rb_bufsz = order_base_2(ring->ring_size / 4);
683 		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
684 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
685 #ifdef __BIG_ENDIAN
686 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
687 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
688 					RPTR_WRITEBACK_SWAP_ENABLE, 1);
689 #endif
690 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
691 
692 		/* Initialize the ring buffer's read and write pointers */
693 		ring->wptr = 0;
694 		WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
695 		sdma_v3_0_ring_set_wptr(ring);
696 		WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
697 		WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
698 
699 		/* set the wb address whether it's enabled or not */
700 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
701 		       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
702 		WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
703 		       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
704 
705 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
706 
707 		WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
708 		WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
709 
710 		doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
711 
712 		if (ring->use_doorbell) {
713 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
714 						 OFFSET, ring->doorbell_index);
715 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
716 		} else {
717 			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
718 		}
719 		WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
720 
721 		/* setup the wptr shadow polling */
722 		wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
723 
724 		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO + sdma_offsets[i],
725 		       lower_32_bits(wptr_gpu_addr));
726 		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI + sdma_offsets[i],
727 		       upper_32_bits(wptr_gpu_addr));
728 		wptr_poll_cntl = RREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i]);
729 		if (ring->use_pollmem) {
730 			/*wptr polling is not enogh fast, directly clean the wptr register */
731 			WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
732 			wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
733 						       SDMA0_GFX_RB_WPTR_POLL_CNTL,
734 						       ENABLE, 1);
735 		} else {
736 			wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
737 						       SDMA0_GFX_RB_WPTR_POLL_CNTL,
738 						       ENABLE, 0);
739 		}
740 		WREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i], wptr_poll_cntl);
741 
742 		/* enable DMA RB */
743 		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
744 		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
745 
746 		ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
747 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
748 #ifdef __BIG_ENDIAN
749 		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
750 #endif
751 		/* enable DMA IBs */
752 		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
753 
754 		ring->sched.ready = true;
755 	}
756 
757 	/* unhalt the MEs */
758 	sdma_v3_0_enable(adev, true);
759 	/* enable sdma ring preemption */
760 	sdma_v3_0_ctx_switch_enable(adev, true);
761 
762 	for (i = 0; i < adev->sdma.num_instances; i++) {
763 		ring = &adev->sdma.instance[i].ring;
764 		r = amdgpu_ring_test_helper(ring);
765 		if (r)
766 			return r;
767 
768 		if (adev->mman.buffer_funcs_ring == ring)
769 			amdgpu_ttm_set_buffer_funcs_status(adev, true);
770 	}
771 
772 	return 0;
773 }
774 
775 /**
776  * sdma_v3_0_rlc_resume - setup and start the async dma engines
777  *
778  * @adev: amdgpu_device pointer
779  *
780  * Set up the compute DMA queues and enable them (VI).
781  * Returns 0 for success, error for failure.
782  */
sdma_v3_0_rlc_resume(struct amdgpu_device * adev)783 static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
784 {
785 	/* XXX todo */
786 	return 0;
787 }
788 
789 /**
790  * sdma_v3_0_start - setup and start the async dma engines
791  *
792  * @adev: amdgpu_device pointer
793  *
794  * Set up the DMA engines and enable them (VI).
795  * Returns 0 for success, error for failure.
796  */
sdma_v3_0_start(struct amdgpu_device * adev)797 static int sdma_v3_0_start(struct amdgpu_device *adev)
798 {
799 	int r;
800 
801 	/* disable sdma engine before programing it */
802 	sdma_v3_0_ctx_switch_enable(adev, false);
803 	sdma_v3_0_enable(adev, false);
804 
805 	/* start the gfx rings and rlc compute queues */
806 	r = sdma_v3_0_gfx_resume(adev);
807 	if (r)
808 		return r;
809 	r = sdma_v3_0_rlc_resume(adev);
810 	if (r)
811 		return r;
812 
813 	return 0;
814 }
815 
816 /**
817  * sdma_v3_0_ring_test_ring - simple async dma engine test
818  *
819  * @ring: amdgpu_ring structure holding ring information
820  *
821  * Test the DMA engine by writing using it to write an
822  * value to memory. (VI).
823  * Returns 0 for success, error for failure.
824  */
sdma_v3_0_ring_test_ring(struct amdgpu_ring * ring)825 static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
826 {
827 	struct amdgpu_device *adev = ring->adev;
828 	unsigned i;
829 	unsigned index;
830 	int r;
831 	u32 tmp;
832 	u64 gpu_addr;
833 
834 	r = amdgpu_device_wb_get(adev, &index);
835 	if (r)
836 		return r;
837 
838 	gpu_addr = adev->wb.gpu_addr + (index * 4);
839 	tmp = 0xCAFEDEAD;
840 	adev->wb.wb[index] = cpu_to_le32(tmp);
841 
842 	r = amdgpu_ring_alloc(ring, 5);
843 	if (r)
844 		goto error_free_wb;
845 
846 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
847 			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
848 	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
849 	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
850 	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
851 	amdgpu_ring_write(ring, 0xDEADBEEF);
852 	amdgpu_ring_commit(ring);
853 
854 	for (i = 0; i < adev->usec_timeout; i++) {
855 		tmp = le32_to_cpu(adev->wb.wb[index]);
856 		if (tmp == 0xDEADBEEF)
857 			break;
858 		udelay(1);
859 	}
860 
861 	if (i >= adev->usec_timeout)
862 		r = -ETIMEDOUT;
863 
864 error_free_wb:
865 	amdgpu_device_wb_free(adev, index);
866 	return r;
867 }
868 
869 /**
870  * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
871  *
872  * @ring: amdgpu_ring structure holding ring information
873  *
874  * Test a simple IB in the DMA ring (VI).
875  * Returns 0 on success, error on failure.
876  */
sdma_v3_0_ring_test_ib(struct amdgpu_ring * ring,long timeout)877 static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
878 {
879 	struct amdgpu_device *adev = ring->adev;
880 	struct amdgpu_ib ib;
881 	struct dma_fence *f = NULL;
882 	unsigned index;
883 	u32 tmp = 0;
884 	u64 gpu_addr;
885 	long r;
886 
887 	r = amdgpu_device_wb_get(adev, &index);
888 	if (r)
889 		return r;
890 
891 	gpu_addr = adev->wb.gpu_addr + (index * 4);
892 	tmp = 0xCAFEDEAD;
893 	adev->wb.wb[index] = cpu_to_le32(tmp);
894 	memset(&ib, 0, sizeof(ib));
895 	r = amdgpu_ib_get(adev, NULL, 256, &ib);
896 	if (r)
897 		goto err0;
898 
899 	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
900 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
901 	ib.ptr[1] = lower_32_bits(gpu_addr);
902 	ib.ptr[2] = upper_32_bits(gpu_addr);
903 	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
904 	ib.ptr[4] = 0xDEADBEEF;
905 	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
906 	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
907 	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
908 	ib.length_dw = 8;
909 
910 	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
911 	if (r)
912 		goto err1;
913 
914 	r = dma_fence_wait_timeout(f, false, timeout);
915 	if (r == 0) {
916 		r = -ETIMEDOUT;
917 		goto err1;
918 	} else if (r < 0) {
919 		goto err1;
920 	}
921 	tmp = le32_to_cpu(adev->wb.wb[index]);
922 	if (tmp == 0xDEADBEEF)
923 		r = 0;
924 	else
925 		r = -EINVAL;
926 err1:
927 	amdgpu_ib_free(adev, &ib, NULL);
928 	dma_fence_put(f);
929 err0:
930 	amdgpu_device_wb_free(adev, index);
931 	return r;
932 }
933 
934 /**
935  * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
936  *
937  * @ib: indirect buffer to fill with commands
938  * @pe: addr of the page entry
939  * @src: src addr to copy from
940  * @count: number of page entries to update
941  *
942  * Update PTEs by copying them from the GART using sDMA (CIK).
943  */
sdma_v3_0_vm_copy_pte(struct amdgpu_ib * ib,uint64_t pe,uint64_t src,unsigned count)944 static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
945 				  uint64_t pe, uint64_t src,
946 				  unsigned count)
947 {
948 	unsigned bytes = count * 8;
949 
950 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
951 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
952 	ib->ptr[ib->length_dw++] = bytes;
953 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
954 	ib->ptr[ib->length_dw++] = lower_32_bits(src);
955 	ib->ptr[ib->length_dw++] = upper_32_bits(src);
956 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
957 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
958 }
959 
960 /**
961  * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
962  *
963  * @ib: indirect buffer to fill with commands
964  * @pe: addr of the page entry
965  * @value: dst addr to write into pe
966  * @count: number of page entries to update
967  * @incr: increase next addr by incr bytes
968  *
969  * Update PTEs by writing them manually using sDMA (CIK).
970  */
sdma_v3_0_vm_write_pte(struct amdgpu_ib * ib,uint64_t pe,uint64_t value,unsigned count,uint32_t incr)971 static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
972 				   uint64_t value, unsigned count,
973 				   uint32_t incr)
974 {
975 	unsigned ndw = count * 2;
976 
977 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
978 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
979 	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
980 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
981 	ib->ptr[ib->length_dw++] = ndw;
982 	for (; ndw > 0; ndw -= 2) {
983 		ib->ptr[ib->length_dw++] = lower_32_bits(value);
984 		ib->ptr[ib->length_dw++] = upper_32_bits(value);
985 		value += incr;
986 	}
987 }
988 
989 /**
990  * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
991  *
992  * @ib: indirect buffer to fill with commands
993  * @pe: addr of the page entry
994  * @addr: dst addr to write into pe
995  * @count: number of page entries to update
996  * @incr: increase next addr by incr bytes
997  * @flags: access flags
998  *
999  * Update the page tables using sDMA (CIK).
1000  */
sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib * ib,uint64_t pe,uint64_t addr,unsigned count,uint32_t incr,uint64_t flags)1001 static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
1002 				     uint64_t addr, unsigned count,
1003 				     uint32_t incr, uint64_t flags)
1004 {
1005 	/* for physically contiguous pages (vram) */
1006 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
1007 	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1008 	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1009 	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1010 	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1011 	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1012 	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1013 	ib->ptr[ib->length_dw++] = incr; /* increment size */
1014 	ib->ptr[ib->length_dw++] = 0;
1015 	ib->ptr[ib->length_dw++] = count; /* number of entries */
1016 }
1017 
1018 /**
1019  * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
1020  *
1021  * @ib: indirect buffer to fill with padding
1022  *
1023  */
sdma_v3_0_ring_pad_ib(struct amdgpu_ring * ring,struct amdgpu_ib * ib)1024 static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1025 {
1026 	struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1027 	u32 pad_count;
1028 	int i;
1029 
1030 	pad_count = (-ib->length_dw) & 7;
1031 	for (i = 0; i < pad_count; i++)
1032 		if (sdma && sdma->burst_nop && (i == 0))
1033 			ib->ptr[ib->length_dw++] =
1034 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1035 				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1036 		else
1037 			ib->ptr[ib->length_dw++] =
1038 				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1039 }
1040 
1041 /**
1042  * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
1043  *
1044  * @ring: amdgpu_ring pointer
1045  *
1046  * Make sure all previous operations are completed (CIK).
1047  */
sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring * ring)1048 static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1049 {
1050 	uint32_t seq = ring->fence_drv.sync_seq;
1051 	uint64_t addr = ring->fence_drv.gpu_addr;
1052 
1053 	/* wait for idle */
1054 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1055 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1056 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1057 			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1058 	amdgpu_ring_write(ring, addr & 0xfffffffc);
1059 	amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1060 	amdgpu_ring_write(ring, seq); /* reference */
1061 	amdgpu_ring_write(ring, 0xffffffff); /* mask */
1062 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1063 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1064 }
1065 
1066 /**
1067  * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
1068  *
1069  * @ring: amdgpu_ring pointer
1070  * @vm: amdgpu_vm pointer
1071  *
1072  * Update the page table base and flush the VM TLB
1073  * using sDMA (VI).
1074  */
sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring * ring,unsigned vmid,uint64_t pd_addr)1075 static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1076 					 unsigned vmid, uint64_t pd_addr)
1077 {
1078 	amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1079 
1080 	/* wait for flush */
1081 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1082 			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1083 			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
1084 	amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
1085 	amdgpu_ring_write(ring, 0);
1086 	amdgpu_ring_write(ring, 0); /* reference */
1087 	amdgpu_ring_write(ring, 0); /* mask */
1088 	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1089 			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
1090 }
1091 
sdma_v3_0_ring_emit_wreg(struct amdgpu_ring * ring,uint32_t reg,uint32_t val)1092 static void sdma_v3_0_ring_emit_wreg(struct amdgpu_ring *ring,
1093 				     uint32_t reg, uint32_t val)
1094 {
1095 	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1096 			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1097 	amdgpu_ring_write(ring, reg);
1098 	amdgpu_ring_write(ring, val);
1099 }
1100 
sdma_v3_0_early_init(void * handle)1101 static int sdma_v3_0_early_init(void *handle)
1102 {
1103 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1104 
1105 	switch (adev->asic_type) {
1106 	case CHIP_STONEY:
1107 		adev->sdma.num_instances = 1;
1108 		break;
1109 	default:
1110 		adev->sdma.num_instances = SDMA_MAX_INSTANCE;
1111 		break;
1112 	}
1113 
1114 	sdma_v3_0_set_ring_funcs(adev);
1115 	sdma_v3_0_set_buffer_funcs(adev);
1116 	sdma_v3_0_set_vm_pte_funcs(adev);
1117 	sdma_v3_0_set_irq_funcs(adev);
1118 
1119 	return 0;
1120 }
1121 
sdma_v3_0_sw_init(void * handle)1122 static int sdma_v3_0_sw_init(void *handle)
1123 {
1124 	struct amdgpu_ring *ring;
1125 	int r, i;
1126 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1127 
1128 	/* SDMA trap event */
1129 	r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_TRAP,
1130 			      &adev->sdma.trap_irq);
1131 	if (r)
1132 		return r;
1133 
1134 	/* SDMA Privileged inst */
1135 	r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, 241,
1136 			      &adev->sdma.illegal_inst_irq);
1137 	if (r)
1138 		return r;
1139 
1140 	/* SDMA Privileged inst */
1141 	r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_SRBM_WRITE,
1142 			      &adev->sdma.illegal_inst_irq);
1143 	if (r)
1144 		return r;
1145 
1146 	r = sdma_v3_0_init_microcode(adev);
1147 	if (r) {
1148 		DRM_ERROR("Failed to load sdma firmware!\n");
1149 		return r;
1150 	}
1151 
1152 	for (i = 0; i < adev->sdma.num_instances; i++) {
1153 		ring = &adev->sdma.instance[i].ring;
1154 		ring->ring_obj = NULL;
1155 		if (!amdgpu_sriov_vf(adev)) {
1156 			ring->use_doorbell = true;
1157 			ring->doorbell_index = adev->doorbell_index.sdma_engine[i];
1158 		} else {
1159 			ring->use_pollmem = true;
1160 		}
1161 
1162 		snprintf(ring->name, sizeof ring->name, "sdma%d", i);
1163 		r = amdgpu_ring_init(adev, ring, 1024,
1164 				     &adev->sdma.trap_irq,
1165 				     (i == 0) ?
1166 				     AMDGPU_SDMA_IRQ_INSTANCE0 :
1167 				     AMDGPU_SDMA_IRQ_INSTANCE1);
1168 		if (r)
1169 			return r;
1170 	}
1171 
1172 	return r;
1173 }
1174 
sdma_v3_0_sw_fini(void * handle)1175 static int sdma_v3_0_sw_fini(void *handle)
1176 {
1177 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1178 	int i;
1179 
1180 	for (i = 0; i < adev->sdma.num_instances; i++)
1181 		amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1182 
1183 	sdma_v3_0_free_microcode(adev);
1184 	return 0;
1185 }
1186 
sdma_v3_0_hw_init(void * handle)1187 static int sdma_v3_0_hw_init(void *handle)
1188 {
1189 	int r;
1190 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1191 
1192 	sdma_v3_0_init_golden_registers(adev);
1193 
1194 	r = sdma_v3_0_start(adev);
1195 	if (r)
1196 		return r;
1197 
1198 	return r;
1199 }
1200 
sdma_v3_0_hw_fini(void * handle)1201 static int sdma_v3_0_hw_fini(void *handle)
1202 {
1203 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1204 
1205 	sdma_v3_0_ctx_switch_enable(adev, false);
1206 	sdma_v3_0_enable(adev, false);
1207 
1208 	return 0;
1209 }
1210 
sdma_v3_0_suspend(void * handle)1211 static int sdma_v3_0_suspend(void *handle)
1212 {
1213 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1214 
1215 	return sdma_v3_0_hw_fini(adev);
1216 }
1217 
sdma_v3_0_resume(void * handle)1218 static int sdma_v3_0_resume(void *handle)
1219 {
1220 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1221 
1222 	return sdma_v3_0_hw_init(adev);
1223 }
1224 
sdma_v3_0_is_idle(void * handle)1225 static bool sdma_v3_0_is_idle(void *handle)
1226 {
1227 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1228 	u32 tmp = RREG32(mmSRBM_STATUS2);
1229 
1230 	if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1231 		   SRBM_STATUS2__SDMA1_BUSY_MASK))
1232 	    return false;
1233 
1234 	return true;
1235 }
1236 
sdma_v3_0_wait_for_idle(void * handle)1237 static int sdma_v3_0_wait_for_idle(void *handle)
1238 {
1239 	unsigned i;
1240 	u32 tmp;
1241 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1242 
1243 	for (i = 0; i < adev->usec_timeout; i++) {
1244 		tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1245 				SRBM_STATUS2__SDMA1_BUSY_MASK);
1246 
1247 		if (!tmp)
1248 			return 0;
1249 		udelay(1);
1250 	}
1251 	return -ETIMEDOUT;
1252 }
1253 
sdma_v3_0_check_soft_reset(void * handle)1254 static bool sdma_v3_0_check_soft_reset(void *handle)
1255 {
1256 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1257 	u32 srbm_soft_reset = 0;
1258 	u32 tmp = RREG32(mmSRBM_STATUS2);
1259 
1260 	if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) ||
1261 	    (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) {
1262 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1263 		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1264 	}
1265 
1266 	if (srbm_soft_reset) {
1267 		adev->sdma.srbm_soft_reset = srbm_soft_reset;
1268 		return true;
1269 	} else {
1270 		adev->sdma.srbm_soft_reset = 0;
1271 		return false;
1272 	}
1273 }
1274 
sdma_v3_0_pre_soft_reset(void * handle)1275 static int sdma_v3_0_pre_soft_reset(void *handle)
1276 {
1277 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1278 	u32 srbm_soft_reset = 0;
1279 
1280 	if (!adev->sdma.srbm_soft_reset)
1281 		return 0;
1282 
1283 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1284 
1285 	if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1286 	    REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1287 		sdma_v3_0_ctx_switch_enable(adev, false);
1288 		sdma_v3_0_enable(adev, false);
1289 	}
1290 
1291 	return 0;
1292 }
1293 
sdma_v3_0_post_soft_reset(void * handle)1294 static int sdma_v3_0_post_soft_reset(void *handle)
1295 {
1296 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1297 	u32 srbm_soft_reset = 0;
1298 
1299 	if (!adev->sdma.srbm_soft_reset)
1300 		return 0;
1301 
1302 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1303 
1304 	if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1305 	    REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1306 		sdma_v3_0_gfx_resume(adev);
1307 		sdma_v3_0_rlc_resume(adev);
1308 	}
1309 
1310 	return 0;
1311 }
1312 
sdma_v3_0_soft_reset(void * handle)1313 static int sdma_v3_0_soft_reset(void *handle)
1314 {
1315 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1316 	u32 srbm_soft_reset = 0;
1317 	u32 tmp;
1318 
1319 	if (!adev->sdma.srbm_soft_reset)
1320 		return 0;
1321 
1322 	srbm_soft_reset = adev->sdma.srbm_soft_reset;
1323 
1324 	if (srbm_soft_reset) {
1325 		tmp = RREG32(mmSRBM_SOFT_RESET);
1326 		tmp |= srbm_soft_reset;
1327 		dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1328 		WREG32(mmSRBM_SOFT_RESET, tmp);
1329 		tmp = RREG32(mmSRBM_SOFT_RESET);
1330 
1331 		udelay(50);
1332 
1333 		tmp &= ~srbm_soft_reset;
1334 		WREG32(mmSRBM_SOFT_RESET, tmp);
1335 		tmp = RREG32(mmSRBM_SOFT_RESET);
1336 
1337 		/* Wait a little for things to settle down */
1338 		udelay(50);
1339 	}
1340 
1341 	return 0;
1342 }
1343 
sdma_v3_0_set_trap_irq_state(struct amdgpu_device * adev,struct amdgpu_irq_src * source,unsigned type,enum amdgpu_interrupt_state state)1344 static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
1345 					struct amdgpu_irq_src *source,
1346 					unsigned type,
1347 					enum amdgpu_interrupt_state state)
1348 {
1349 	u32 sdma_cntl;
1350 
1351 	switch (type) {
1352 	case AMDGPU_SDMA_IRQ_INSTANCE0:
1353 		switch (state) {
1354 		case AMDGPU_IRQ_STATE_DISABLE:
1355 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1356 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1357 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1358 			break;
1359 		case AMDGPU_IRQ_STATE_ENABLE:
1360 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1361 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1362 			WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1363 			break;
1364 		default:
1365 			break;
1366 		}
1367 		break;
1368 	case AMDGPU_SDMA_IRQ_INSTANCE1:
1369 		switch (state) {
1370 		case AMDGPU_IRQ_STATE_DISABLE:
1371 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1372 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1373 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1374 			break;
1375 		case AMDGPU_IRQ_STATE_ENABLE:
1376 			sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1377 			sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1378 			WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1379 			break;
1380 		default:
1381 			break;
1382 		}
1383 		break;
1384 	default:
1385 		break;
1386 	}
1387 	return 0;
1388 }
1389 
sdma_v3_0_process_trap_irq(struct amdgpu_device * adev,struct amdgpu_irq_src * source,struct amdgpu_iv_entry * entry)1390 static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
1391 				      struct amdgpu_irq_src *source,
1392 				      struct amdgpu_iv_entry *entry)
1393 {
1394 	u8 instance_id, queue_id;
1395 
1396 	instance_id = (entry->ring_id & 0x3) >> 0;
1397 	queue_id = (entry->ring_id & 0xc) >> 2;
1398 	DRM_DEBUG("IH: SDMA trap\n");
1399 	switch (instance_id) {
1400 	case 0:
1401 		switch (queue_id) {
1402 		case 0:
1403 			amdgpu_fence_process(&adev->sdma.instance[0].ring);
1404 			break;
1405 		case 1:
1406 			/* XXX compute */
1407 			break;
1408 		case 2:
1409 			/* XXX compute */
1410 			break;
1411 		}
1412 		break;
1413 	case 1:
1414 		switch (queue_id) {
1415 		case 0:
1416 			amdgpu_fence_process(&adev->sdma.instance[1].ring);
1417 			break;
1418 		case 1:
1419 			/* XXX compute */
1420 			break;
1421 		case 2:
1422 			/* XXX compute */
1423 			break;
1424 		}
1425 		break;
1426 	}
1427 	return 0;
1428 }
1429 
sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device * adev,struct amdgpu_irq_src * source,struct amdgpu_iv_entry * entry)1430 static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1431 					      struct amdgpu_irq_src *source,
1432 					      struct amdgpu_iv_entry *entry)
1433 {
1434 	u8 instance_id, queue_id;
1435 
1436 	DRM_ERROR("Illegal instruction in SDMA command stream\n");
1437 	instance_id = (entry->ring_id & 0x3) >> 0;
1438 	queue_id = (entry->ring_id & 0xc) >> 2;
1439 
1440 	if (instance_id <= 1 && queue_id == 0)
1441 		drm_sched_fault(&adev->sdma.instance[instance_id].ring.sched);
1442 	return 0;
1443 }
1444 
sdma_v3_0_update_sdma_medium_grain_clock_gating(struct amdgpu_device * adev,bool enable)1445 static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
1446 		struct amdgpu_device *adev,
1447 		bool enable)
1448 {
1449 	uint32_t temp, data;
1450 	int i;
1451 
1452 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1453 		for (i = 0; i < adev->sdma.num_instances; i++) {
1454 			temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1455 			data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1456 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1457 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1458 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1459 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1460 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1461 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1462 				  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1463 			if (data != temp)
1464 				WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1465 		}
1466 	} else {
1467 		for (i = 0; i < adev->sdma.num_instances; i++) {
1468 			temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1469 			data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1470 				SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1471 				SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1472 				SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1473 				SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1474 				SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1475 				SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1476 				SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
1477 
1478 			if (data != temp)
1479 				WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1480 		}
1481 	}
1482 }
1483 
sdma_v3_0_update_sdma_medium_grain_light_sleep(struct amdgpu_device * adev,bool enable)1484 static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
1485 		struct amdgpu_device *adev,
1486 		bool enable)
1487 {
1488 	uint32_t temp, data;
1489 	int i;
1490 
1491 	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1492 		for (i = 0; i < adev->sdma.num_instances; i++) {
1493 			temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1494 			data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1495 
1496 			if (temp != data)
1497 				WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1498 		}
1499 	} else {
1500 		for (i = 0; i < adev->sdma.num_instances; i++) {
1501 			temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1502 			data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1503 
1504 			if (temp != data)
1505 				WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1506 		}
1507 	}
1508 }
1509 
sdma_v3_0_set_clockgating_state(void * handle,enum amd_clockgating_state state)1510 static int sdma_v3_0_set_clockgating_state(void *handle,
1511 					  enum amd_clockgating_state state)
1512 {
1513 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1514 
1515 	if (amdgpu_sriov_vf(adev))
1516 		return 0;
1517 
1518 	switch (adev->asic_type) {
1519 	case CHIP_FIJI:
1520 	case CHIP_CARRIZO:
1521 	case CHIP_STONEY:
1522 		sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
1523 				state == AMD_CG_STATE_GATE);
1524 		sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
1525 				state == AMD_CG_STATE_GATE);
1526 		break;
1527 	default:
1528 		break;
1529 	}
1530 	return 0;
1531 }
1532 
sdma_v3_0_set_powergating_state(void * handle,enum amd_powergating_state state)1533 static int sdma_v3_0_set_powergating_state(void *handle,
1534 					  enum amd_powergating_state state)
1535 {
1536 	return 0;
1537 }
1538 
sdma_v3_0_get_clockgating_state(void * handle,u32 * flags)1539 static void sdma_v3_0_get_clockgating_state(void *handle, u32 *flags)
1540 {
1541 	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1542 	int data;
1543 
1544 	if (amdgpu_sriov_vf(adev))
1545 		*flags = 0;
1546 
1547 	/* AMD_CG_SUPPORT_SDMA_MGCG */
1548 	data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[0]);
1549 	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK))
1550 		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1551 
1552 	/* AMD_CG_SUPPORT_SDMA_LS */
1553 	data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[0]);
1554 	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1555 		*flags |= AMD_CG_SUPPORT_SDMA_LS;
1556 }
1557 
1558 static const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
1559 	.name = "sdma_v3_0",
1560 	.early_init = sdma_v3_0_early_init,
1561 	.late_init = NULL,
1562 	.sw_init = sdma_v3_0_sw_init,
1563 	.sw_fini = sdma_v3_0_sw_fini,
1564 	.hw_init = sdma_v3_0_hw_init,
1565 	.hw_fini = sdma_v3_0_hw_fini,
1566 	.suspend = sdma_v3_0_suspend,
1567 	.resume = sdma_v3_0_resume,
1568 	.is_idle = sdma_v3_0_is_idle,
1569 	.wait_for_idle = sdma_v3_0_wait_for_idle,
1570 	.check_soft_reset = sdma_v3_0_check_soft_reset,
1571 	.pre_soft_reset = sdma_v3_0_pre_soft_reset,
1572 	.post_soft_reset = sdma_v3_0_post_soft_reset,
1573 	.soft_reset = sdma_v3_0_soft_reset,
1574 	.set_clockgating_state = sdma_v3_0_set_clockgating_state,
1575 	.set_powergating_state = sdma_v3_0_set_powergating_state,
1576 	.get_clockgating_state = sdma_v3_0_get_clockgating_state,
1577 };
1578 
1579 static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
1580 	.type = AMDGPU_RING_TYPE_SDMA,
1581 	.align_mask = 0xf,
1582 	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1583 	.support_64bit_ptrs = false,
1584 	.get_rptr = sdma_v3_0_ring_get_rptr,
1585 	.get_wptr = sdma_v3_0_ring_get_wptr,
1586 	.set_wptr = sdma_v3_0_ring_set_wptr,
1587 	.emit_frame_size =
1588 		6 + /* sdma_v3_0_ring_emit_hdp_flush */
1589 		3 + /* hdp invalidate */
1590 		6 + /* sdma_v3_0_ring_emit_pipeline_sync */
1591 		VI_FLUSH_GPU_TLB_NUM_WREG * 3 + 6 + /* sdma_v3_0_ring_emit_vm_flush */
1592 		10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */
1593 	.emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */
1594 	.emit_ib = sdma_v3_0_ring_emit_ib,
1595 	.emit_fence = sdma_v3_0_ring_emit_fence,
1596 	.emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
1597 	.emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
1598 	.emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
1599 	.test_ring = sdma_v3_0_ring_test_ring,
1600 	.test_ib = sdma_v3_0_ring_test_ib,
1601 	.insert_nop = sdma_v3_0_ring_insert_nop,
1602 	.pad_ib = sdma_v3_0_ring_pad_ib,
1603 	.emit_wreg = sdma_v3_0_ring_emit_wreg,
1604 };
1605 
sdma_v3_0_set_ring_funcs(struct amdgpu_device * adev)1606 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
1607 {
1608 	int i;
1609 
1610 	for (i = 0; i < adev->sdma.num_instances; i++) {
1611 		adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
1612 		adev->sdma.instance[i].ring.me = i;
1613 	}
1614 }
1615 
1616 static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
1617 	.set = sdma_v3_0_set_trap_irq_state,
1618 	.process = sdma_v3_0_process_trap_irq,
1619 };
1620 
1621 static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
1622 	.process = sdma_v3_0_process_illegal_inst_irq,
1623 };
1624 
sdma_v3_0_set_irq_funcs(struct amdgpu_device * adev)1625 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
1626 {
1627 	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1628 	adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
1629 	adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
1630 }
1631 
1632 /**
1633  * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
1634  *
1635  * @ring: amdgpu_ring structure holding ring information
1636  * @src_offset: src GPU address
1637  * @dst_offset: dst GPU address
1638  * @byte_count: number of bytes to xfer
1639  *
1640  * Copy GPU buffers using the DMA engine (VI).
1641  * Used by the amdgpu ttm implementation to move pages if
1642  * registered as the asic copy callback.
1643  */
sdma_v3_0_emit_copy_buffer(struct amdgpu_ib * ib,uint64_t src_offset,uint64_t dst_offset,uint32_t byte_count)1644 static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
1645 				       uint64_t src_offset,
1646 				       uint64_t dst_offset,
1647 				       uint32_t byte_count)
1648 {
1649 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1650 		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1651 	ib->ptr[ib->length_dw++] = byte_count;
1652 	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1653 	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1654 	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1655 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1656 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1657 }
1658 
1659 /**
1660  * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
1661  *
1662  * @ring: amdgpu_ring structure holding ring information
1663  * @src_data: value to write to buffer
1664  * @dst_offset: dst GPU address
1665  * @byte_count: number of bytes to xfer
1666  *
1667  * Fill GPU buffers using the DMA engine (VI).
1668  */
sdma_v3_0_emit_fill_buffer(struct amdgpu_ib * ib,uint32_t src_data,uint64_t dst_offset,uint32_t byte_count)1669 static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
1670 				       uint32_t src_data,
1671 				       uint64_t dst_offset,
1672 				       uint32_t byte_count)
1673 {
1674 	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1675 	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1676 	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1677 	ib->ptr[ib->length_dw++] = src_data;
1678 	ib->ptr[ib->length_dw++] = byte_count;
1679 }
1680 
1681 static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
1682 	.copy_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1683 	.copy_num_dw = 7,
1684 	.emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
1685 
1686 	.fill_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1687 	.fill_num_dw = 5,
1688 	.emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
1689 };
1690 
sdma_v3_0_set_buffer_funcs(struct amdgpu_device * adev)1691 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
1692 {
1693 	adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
1694 	adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1695 }
1696 
1697 static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
1698 	.copy_pte_num_dw = 7,
1699 	.copy_pte = sdma_v3_0_vm_copy_pte,
1700 
1701 	.write_pte = sdma_v3_0_vm_write_pte,
1702 	.set_pte_pde = sdma_v3_0_vm_set_pte_pde,
1703 };
1704 
sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device * adev)1705 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1706 {
1707 	unsigned i;
1708 
1709 	adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
1710 	for (i = 0; i < adev->sdma.num_instances; i++) {
1711 		adev->vm_manager.vm_pte_scheds[i] =
1712 			 &adev->sdma.instance[i].ring.sched;
1713 	}
1714 	adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
1715 }
1716 
1717 const struct amdgpu_ip_block_version sdma_v3_0_ip_block =
1718 {
1719 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1720 	.major = 3,
1721 	.minor = 0,
1722 	.rev = 0,
1723 	.funcs = &sdma_v3_0_ip_funcs,
1724 };
1725 
1726 const struct amdgpu_ip_block_version sdma_v3_1_ip_block =
1727 {
1728 	.type = AMD_IP_BLOCK_TYPE_SDMA,
1729 	.major = 3,
1730 	.minor = 1,
1731 	.rev = 0,
1732 	.funcs = &sdma_v3_0_ip_funcs,
1733 };
1734