1 /* $NetBSD: amdgpu_amdkfd_gfx_v8.c,v 1.4 2021/12/18 23:44:58 riastradh Exp $ */
2
3 /*
4 * Copyright 2014 Advanced Micro Devices, Inc.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: amdgpu_amdkfd_gfx_v8.c,v 1.4 2021/12/18 23:44:58 riastradh Exp $");
27
28 #include <linux/mmu_context.h>
29
30 #include "amdgpu.h"
31 #include "amdgpu_amdkfd.h"
32 #include "gfx_v8_0.h"
33 #include "gca/gfx_8_0_sh_mask.h"
34 #include "gca/gfx_8_0_d.h"
35 #include "gca/gfx_8_0_enum.h"
36 #include "oss/oss_3_0_sh_mask.h"
37 #include "oss/oss_3_0_d.h"
38 #include "gmc/gmc_8_1_sh_mask.h"
39 #include "gmc/gmc_8_1_d.h"
40 #include "vi_structs.h"
41 #include "vid.h"
42
43 enum hqd_dequeue_request_type {
44 NO_ACTION = 0,
45 DRAIN_PIPE,
46 RESET_WAVES
47 };
48
49 /* Because of REG_GET_FIELD() being used, we put this function in the
50 * asic specific file.
51 */
get_tile_config(struct kgd_dev * kgd,struct tile_config * config)52 static int get_tile_config(struct kgd_dev *kgd,
53 struct tile_config *config)
54 {
55 struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
56
57 config->gb_addr_config = adev->gfx.config.gb_addr_config;
58 config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
59 MC_ARB_RAMCFG, NOOFBANK);
60 config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
61 MC_ARB_RAMCFG, NOOFRANKS);
62
63 config->tile_config_ptr = adev->gfx.config.tile_mode_array;
64 config->num_tile_configs =
65 ARRAY_SIZE(adev->gfx.config.tile_mode_array);
66 config->macro_tile_config_ptr =
67 adev->gfx.config.macrotile_mode_array;
68 config->num_macro_tile_configs =
69 ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
70
71 return 0;
72 }
73
get_amdgpu_device(struct kgd_dev * kgd)74 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
75 {
76 return (struct amdgpu_device *)kgd;
77 }
78
lock_srbm(struct kgd_dev * kgd,uint32_t mec,uint32_t pipe,uint32_t queue,uint32_t vmid)79 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
80 uint32_t queue, uint32_t vmid)
81 {
82 struct amdgpu_device *adev = get_amdgpu_device(kgd);
83 uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
84
85 mutex_lock(&adev->srbm_mutex);
86 WREG32(mmSRBM_GFX_CNTL, value);
87 }
88
unlock_srbm(struct kgd_dev * kgd)89 static void unlock_srbm(struct kgd_dev *kgd)
90 {
91 struct amdgpu_device *adev = get_amdgpu_device(kgd);
92
93 WREG32(mmSRBM_GFX_CNTL, 0);
94 mutex_unlock(&adev->srbm_mutex);
95 }
96
acquire_queue(struct kgd_dev * kgd,uint32_t pipe_id,uint32_t queue_id)97 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
98 uint32_t queue_id)
99 {
100 struct amdgpu_device *adev = get_amdgpu_device(kgd);
101
102 uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
103 uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
104
105 lock_srbm(kgd, mec, pipe, queue_id, 0);
106 }
107
release_queue(struct kgd_dev * kgd)108 static void release_queue(struct kgd_dev *kgd)
109 {
110 unlock_srbm(kgd);
111 }
112
kgd_program_sh_mem_settings(struct kgd_dev * kgd,uint32_t vmid,uint32_t sh_mem_config,uint32_t sh_mem_ape1_base,uint32_t sh_mem_ape1_limit,uint32_t sh_mem_bases)113 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
114 uint32_t sh_mem_config,
115 uint32_t sh_mem_ape1_base,
116 uint32_t sh_mem_ape1_limit,
117 uint32_t sh_mem_bases)
118 {
119 struct amdgpu_device *adev = get_amdgpu_device(kgd);
120
121 lock_srbm(kgd, 0, 0, 0, vmid);
122
123 WREG32(mmSH_MEM_CONFIG, sh_mem_config);
124 WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
125 WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
126 WREG32(mmSH_MEM_BASES, sh_mem_bases);
127
128 unlock_srbm(kgd);
129 }
130
kgd_set_pasid_vmid_mapping(struct kgd_dev * kgd,unsigned int pasid,unsigned int vmid)131 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
132 unsigned int vmid)
133 {
134 struct amdgpu_device *adev = get_amdgpu_device(kgd);
135
136 /*
137 * We have to assume that there is no outstanding mapping.
138 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
139 * a mapping is in progress or because a mapping finished
140 * and the SW cleared it.
141 * So the protocol is to always wait & clear.
142 */
143 uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
144 ATC_VMID0_PASID_MAPPING__VALID_MASK;
145
146 WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
147
148 while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
149 cpu_relax();
150 WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
151
152 /* Mapping vmid to pasid also for IH block */
153 WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
154
155 return 0;
156 }
157
kgd_init_interrupts(struct kgd_dev * kgd,uint32_t pipe_id)158 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
159 {
160 struct amdgpu_device *adev = get_amdgpu_device(kgd);
161 uint32_t mec;
162 uint32_t pipe;
163
164 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
165 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
166
167 lock_srbm(kgd, mec, pipe, 0, 0);
168
169 WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
170 CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
171
172 unlock_srbm(kgd);
173
174 return 0;
175 }
176
get_sdma_rlc_reg_offset(struct vi_sdma_mqd * m)177 static inline uint32_t get_sdma_rlc_reg_offset(struct vi_sdma_mqd *m)
178 {
179 uint32_t retval;
180
181 retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
182 m->sdma_queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
183
184 pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n",
185 m->sdma_engine_id, m->sdma_queue_id, retval);
186
187 return retval;
188 }
189
get_mqd(void * mqd)190 static inline struct vi_mqd *get_mqd(void *mqd)
191 {
192 return (struct vi_mqd *)mqd;
193 }
194
get_sdma_mqd(void * mqd)195 static inline struct vi_sdma_mqd *get_sdma_mqd(void *mqd)
196 {
197 return (struct vi_sdma_mqd *)mqd;
198 }
199
kgd_hqd_load(struct kgd_dev * kgd,void * mqd,uint32_t pipe_id,uint32_t queue_id,uint32_t __user * wptr,uint32_t wptr_shift,uint32_t wptr_mask,struct mm_struct * mm)200 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
201 uint32_t queue_id, uint32_t __user *wptr,
202 uint32_t wptr_shift, uint32_t wptr_mask,
203 struct mm_struct *mm)
204 {
205 struct amdgpu_device *adev = get_amdgpu_device(kgd);
206 struct vi_mqd *m;
207 uint32_t *mqd_hqd;
208 uint32_t reg, wptr_val, data;
209 bool valid_wptr = false;
210
211 m = get_mqd(mqd);
212
213 acquire_queue(kgd, pipe_id, queue_id);
214
215 /* HIQ is set during driver init period with vmid set to 0*/
216 if (m->cp_hqd_vmid == 0) {
217 uint32_t value, mec, pipe;
218
219 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
220 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
221
222 pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
223 mec, pipe, queue_id);
224 value = RREG32(mmRLC_CP_SCHEDULERS);
225 value = REG_SET_FIELD(value, RLC_CP_SCHEDULERS, scheduler1,
226 ((mec << 5) | (pipe << 3) | queue_id | 0x80));
227 WREG32(mmRLC_CP_SCHEDULERS, value);
228 }
229
230 /* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
231 mqd_hqd = &m->cp_mqd_base_addr_lo;
232
233 for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_CONTROL; reg++)
234 WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
235
236 /* Tonga errata: EOP RPTR/WPTR should be left unmodified.
237 * This is safe since EOP RPTR==WPTR for any inactive HQD
238 * on ASICs that do not support context-save.
239 * EOP writes/reads can start anywhere in the ring.
240 */
241 if (get_amdgpu_device(kgd)->asic_type != CHIP_TONGA) {
242 WREG32(mmCP_HQD_EOP_RPTR, m->cp_hqd_eop_rptr);
243 WREG32(mmCP_HQD_EOP_WPTR, m->cp_hqd_eop_wptr);
244 WREG32(mmCP_HQD_EOP_WPTR_MEM, m->cp_hqd_eop_wptr_mem);
245 }
246
247 for (reg = mmCP_HQD_EOP_EVENTS; reg <= mmCP_HQD_ERROR; reg++)
248 WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
249
250 /* Copy userspace write pointer value to register.
251 * Activate doorbell logic to monitor subsequent changes.
252 */
253 data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
254 CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
255 WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
256
257 /* read_user_ptr may take the mm->mmap_sem.
258 * release srbm_mutex to avoid circular dependency between
259 * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
260 */
261 release_queue(kgd);
262 valid_wptr = read_user_wptr(mm, wptr, wptr_val);
263 acquire_queue(kgd, pipe_id, queue_id);
264 if (valid_wptr)
265 WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
266
267 data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
268 WREG32(mmCP_HQD_ACTIVE, data);
269
270 release_queue(kgd);
271
272 return 0;
273 }
274
kgd_hqd_dump(struct kgd_dev * kgd,uint32_t pipe_id,uint32_t queue_id,uint32_t (** dump)[2],uint32_t * n_regs)275 static int kgd_hqd_dump(struct kgd_dev *kgd,
276 uint32_t pipe_id, uint32_t queue_id,
277 uint32_t (**dump)[2], uint32_t *n_regs)
278 {
279 struct amdgpu_device *adev = get_amdgpu_device(kgd);
280 uint32_t i = 0, reg;
281 #define HQD_N_REGS (54+4)
282 #define DUMP_REG(addr) do { \
283 if (WARN_ON_ONCE(i >= HQD_N_REGS)) \
284 break; \
285 (*dump)[i][0] = (addr) << 2; \
286 (*dump)[i++][1] = RREG32(addr); \
287 } while (0)
288
289 *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
290 if (*dump == NULL)
291 return -ENOMEM;
292
293 acquire_queue(kgd, pipe_id, queue_id);
294
295 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
296 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
297 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
298 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
299
300 for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_DONES; reg++)
301 DUMP_REG(reg);
302
303 release_queue(kgd);
304
305 WARN_ON_ONCE(i != HQD_N_REGS);
306 *n_regs = i;
307
308 return 0;
309 }
310
kgd_hqd_sdma_load(struct kgd_dev * kgd,void * mqd,uint32_t __user * wptr,struct mm_struct * mm)311 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
312 uint32_t __user *wptr, struct mm_struct *mm)
313 {
314 struct amdgpu_device *adev = get_amdgpu_device(kgd);
315 struct vi_sdma_mqd *m;
316 unsigned long end_jiffies;
317 uint32_t sdma_rlc_reg_offset;
318 uint32_t data;
319
320 m = get_sdma_mqd(mqd);
321 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
322 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
323 m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
324
325 end_jiffies = msecs_to_jiffies(2000) + jiffies;
326 while (true) {
327 data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
328 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
329 break;
330 if (time_after(jiffies, end_jiffies)) {
331 pr_err("SDMA RLC not idle in %s\n", __func__);
332 return -ETIME;
333 }
334 usleep_range(500, 1000);
335 }
336
337 data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
338 ENABLE, 1);
339 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
340 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
341 m->sdmax_rlcx_rb_rptr);
342
343 if (read_user_wptr(mm, wptr, data))
344 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, data);
345 else
346 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
347 m->sdmax_rlcx_rb_rptr);
348
349 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_VIRTUAL_ADDR,
350 m->sdmax_rlcx_virtual_addr);
351 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
352 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
353 m->sdmax_rlcx_rb_base_hi);
354 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
355 m->sdmax_rlcx_rb_rptr_addr_lo);
356 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
357 m->sdmax_rlcx_rb_rptr_addr_hi);
358
359 data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
360 RB_ENABLE, 1);
361 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
362
363 return 0;
364 }
365
kgd_hqd_sdma_dump(struct kgd_dev * kgd,uint32_t engine_id,uint32_t queue_id,uint32_t (** dump)[2],uint32_t * n_regs)366 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
367 uint32_t engine_id, uint32_t queue_id,
368 uint32_t (**dump)[2], uint32_t *n_regs)
369 {
370 struct amdgpu_device *adev = get_amdgpu_device(kgd);
371 uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
372 queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
373 uint32_t i = 0, reg;
374 #undef HQD_N_REGS
375 #define HQD_N_REGS (19+4+2+3+7)
376
377 *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
378 if (*dump == NULL)
379 return -ENOMEM;
380
381 for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
382 DUMP_REG(sdma_offset + reg);
383 for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
384 reg++)
385 DUMP_REG(sdma_offset + reg);
386 for (reg = mmSDMA0_RLC0_CSA_ADDR_LO; reg <= mmSDMA0_RLC0_CSA_ADDR_HI;
387 reg++)
388 DUMP_REG(sdma_offset + reg);
389 for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN; reg <= mmSDMA0_RLC0_DUMMY_REG;
390 reg++)
391 DUMP_REG(sdma_offset + reg);
392 for (reg = mmSDMA0_RLC0_MIDCMD_DATA0; reg <= mmSDMA0_RLC0_MIDCMD_CNTL;
393 reg++)
394 DUMP_REG(sdma_offset + reg);
395
396 WARN_ON_ONCE(i != HQD_N_REGS);
397 *n_regs = i;
398
399 return 0;
400 }
401
kgd_hqd_is_occupied(struct kgd_dev * kgd,uint64_t queue_address,uint32_t pipe_id,uint32_t queue_id)402 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
403 uint32_t pipe_id, uint32_t queue_id)
404 {
405 struct amdgpu_device *adev = get_amdgpu_device(kgd);
406 uint32_t act;
407 bool retval = false;
408 uint32_t low, high;
409
410 acquire_queue(kgd, pipe_id, queue_id);
411 act = RREG32(mmCP_HQD_ACTIVE);
412 if (act) {
413 low = lower_32_bits(queue_address >> 8);
414 high = upper_32_bits(queue_address >> 8);
415
416 if (low == RREG32(mmCP_HQD_PQ_BASE) &&
417 high == RREG32(mmCP_HQD_PQ_BASE_HI))
418 retval = true;
419 }
420 release_queue(kgd);
421 return retval;
422 }
423
kgd_hqd_sdma_is_occupied(struct kgd_dev * kgd,void * mqd)424 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
425 {
426 struct amdgpu_device *adev = get_amdgpu_device(kgd);
427 struct vi_sdma_mqd *m;
428 uint32_t sdma_rlc_reg_offset;
429 uint32_t sdma_rlc_rb_cntl;
430
431 m = get_sdma_mqd(mqd);
432 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
433
434 sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
435
436 if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
437 return true;
438
439 return false;
440 }
441
kgd_hqd_destroy(struct kgd_dev * kgd,void * mqd,enum kfd_preempt_type reset_type,unsigned int utimeout,uint32_t pipe_id,uint32_t queue_id)442 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
443 enum kfd_preempt_type reset_type,
444 unsigned int utimeout, uint32_t pipe_id,
445 uint32_t queue_id)
446 {
447 struct amdgpu_device *adev = get_amdgpu_device(kgd);
448 uint32_t temp;
449 enum hqd_dequeue_request_type type;
450 unsigned long flags, end_jiffies;
451 int retry;
452 struct vi_mqd *m = get_mqd(mqd);
453
454 if (adev->in_gpu_reset)
455 return -EIO;
456
457 acquire_queue(kgd, pipe_id, queue_id);
458
459 if (m->cp_hqd_vmid == 0)
460 WREG32_FIELD(RLC_CP_SCHEDULERS, scheduler1, 0);
461
462 switch (reset_type) {
463 case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
464 type = DRAIN_PIPE;
465 break;
466 case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
467 type = RESET_WAVES;
468 break;
469 default:
470 type = DRAIN_PIPE;
471 break;
472 }
473
474 /* Workaround: If IQ timer is active and the wait time is close to or
475 * equal to 0, dequeueing is not safe. Wait until either the wait time
476 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
477 * cleared before continuing. Also, ensure wait times are set to at
478 * least 0x3.
479 */
480 local_irq_save(flags);
481 preempt_disable();
482 retry = 5000; /* wait for 500 usecs at maximum */
483 while (true) {
484 temp = RREG32(mmCP_HQD_IQ_TIMER);
485 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
486 pr_debug("HW is processing IQ\n");
487 goto loop;
488 }
489 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
490 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
491 == 3) /* SEM-rearm is safe */
492 break;
493 /* Wait time 3 is safe for CP, but our MMIO read/write
494 * time is close to 1 microsecond, so check for 10 to
495 * leave more buffer room
496 */
497 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
498 >= 10)
499 break;
500 pr_debug("IQ timer is active\n");
501 } else
502 break;
503 loop:
504 if (!retry) {
505 pr_err("CP HQD IQ timer status time out\n");
506 break;
507 }
508 ndelay(100);
509 --retry;
510 }
511 retry = 1000;
512 while (true) {
513 temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
514 if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
515 break;
516 pr_debug("Dequeue request is pending\n");
517
518 if (!retry) {
519 pr_err("CP HQD dequeue request time out\n");
520 break;
521 }
522 ndelay(100);
523 --retry;
524 }
525 local_irq_restore(flags);
526 preempt_enable();
527
528 WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
529
530 end_jiffies = (utimeout * HZ / 1000) + jiffies;
531 while (true) {
532 temp = RREG32(mmCP_HQD_ACTIVE);
533 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
534 break;
535 if (time_after(jiffies, end_jiffies)) {
536 pr_err("cp queue preemption time out.\n");
537 release_queue(kgd);
538 return -ETIME;
539 }
540 usleep_range(500, 1000);
541 }
542
543 release_queue(kgd);
544 return 0;
545 }
546
kgd_hqd_sdma_destroy(struct kgd_dev * kgd,void * mqd,unsigned int utimeout)547 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
548 unsigned int utimeout)
549 {
550 struct amdgpu_device *adev = get_amdgpu_device(kgd);
551 struct vi_sdma_mqd *m;
552 uint32_t sdma_rlc_reg_offset;
553 uint32_t temp;
554 unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
555
556 m = get_sdma_mqd(mqd);
557 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
558
559 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
560 temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
561 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
562
563 while (true) {
564 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
565 if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
566 break;
567 if (time_after(jiffies, end_jiffies)) {
568 pr_err("SDMA RLC not idle in %s\n", __func__);
569 return -ETIME;
570 }
571 usleep_range(500, 1000);
572 }
573
574 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
575 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
576 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
577 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
578
579 m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
580
581 return 0;
582 }
583
get_atc_vmid_pasid_mapping_info(struct kgd_dev * kgd,uint8_t vmid,uint16_t * p_pasid)584 static bool get_atc_vmid_pasid_mapping_info(struct kgd_dev *kgd,
585 uint8_t vmid, uint16_t *p_pasid)
586 {
587 uint32_t value;
588 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
589
590 value = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
591 *p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
592
593 return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
594 }
595
kgd_address_watch_disable(struct kgd_dev * kgd)596 static int kgd_address_watch_disable(struct kgd_dev *kgd)
597 {
598 return 0;
599 }
600
kgd_address_watch_execute(struct kgd_dev * kgd,unsigned int watch_point_id,uint32_t cntl_val,uint32_t addr_hi,uint32_t addr_lo)601 static int kgd_address_watch_execute(struct kgd_dev *kgd,
602 unsigned int watch_point_id,
603 uint32_t cntl_val,
604 uint32_t addr_hi,
605 uint32_t addr_lo)
606 {
607 return 0;
608 }
609
kgd_wave_control_execute(struct kgd_dev * kgd,uint32_t gfx_index_val,uint32_t sq_cmd)610 static int kgd_wave_control_execute(struct kgd_dev *kgd,
611 uint32_t gfx_index_val,
612 uint32_t sq_cmd)
613 {
614 struct amdgpu_device *adev = get_amdgpu_device(kgd);
615 uint32_t data = 0;
616
617 mutex_lock(&adev->grbm_idx_mutex);
618
619 WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
620 WREG32(mmSQ_CMD, sq_cmd);
621
622 data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
623 INSTANCE_BROADCAST_WRITES, 1);
624 data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
625 SH_BROADCAST_WRITES, 1);
626 data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
627 SE_BROADCAST_WRITES, 1);
628
629 WREG32(mmGRBM_GFX_INDEX, data);
630 mutex_unlock(&adev->grbm_idx_mutex);
631
632 return 0;
633 }
634
kgd_address_watch_get_offset(struct kgd_dev * kgd,unsigned int watch_point_id,unsigned int reg_offset)635 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
636 unsigned int watch_point_id,
637 unsigned int reg_offset)
638 {
639 return 0;
640 }
641
set_scratch_backing_va(struct kgd_dev * kgd,uint64_t va,uint32_t vmid)642 static void set_scratch_backing_va(struct kgd_dev *kgd,
643 uint64_t va, uint32_t vmid)
644 {
645 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
646
647 lock_srbm(kgd, 0, 0, 0, vmid);
648 WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
649 unlock_srbm(kgd);
650 }
651
set_vm_context_page_table_base(struct kgd_dev * kgd,uint32_t vmid,uint64_t page_table_base)652 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
653 uint64_t page_table_base)
654 {
655 struct amdgpu_device *adev = get_amdgpu_device(kgd);
656
657 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
658 pr_err("trying to set page table base for wrong VMID\n");
659 return;
660 }
661 WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8,
662 lower_32_bits(page_table_base));
663 }
664
665 const struct kfd2kgd_calls gfx_v8_kfd2kgd = {
666 .program_sh_mem_settings = kgd_program_sh_mem_settings,
667 .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
668 .init_interrupts = kgd_init_interrupts,
669 .hqd_load = kgd_hqd_load,
670 .hqd_sdma_load = kgd_hqd_sdma_load,
671 .hqd_dump = kgd_hqd_dump,
672 .hqd_sdma_dump = kgd_hqd_sdma_dump,
673 .hqd_is_occupied = kgd_hqd_is_occupied,
674 .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
675 .hqd_destroy = kgd_hqd_destroy,
676 .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
677 .address_watch_disable = kgd_address_watch_disable,
678 .address_watch_execute = kgd_address_watch_execute,
679 .wave_control_execute = kgd_wave_control_execute,
680 .address_watch_get_offset = kgd_address_watch_get_offset,
681 .get_atc_vmid_pasid_mapping_info =
682 get_atc_vmid_pasid_mapping_info,
683 .set_scratch_backing_va = set_scratch_backing_va,
684 .get_tile_config = get_tile_config,
685 .set_vm_context_page_table_base = set_vm_context_page_table_base,
686 };
687