xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/amd/amdgpu/amdgpu_amdkfd_gfx_v7.c (revision 41ec02673d281bbb3d38e6c78504ce6e30c228c1)
1 /*	$NetBSD: amdgpu_amdkfd_gfx_v7.c,v 1.4 2021/12/18 23:44:58 riastradh Exp $	*/
2 
3 /*
4  * Copyright 2014 Advanced Micro Devices, Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  */
24 
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: amdgpu_amdkfd_gfx_v7.c,v 1.4 2021/12/18 23:44:58 riastradh Exp $");
27 
28 #include <linux/mmu_context.h>
29 
30 #include "amdgpu.h"
31 #include "amdgpu_amdkfd.h"
32 #include "cikd.h"
33 #include "cik_sdma.h"
34 #include "gfx_v7_0.h"
35 #include "gca/gfx_7_2_d.h"
36 #include "gca/gfx_7_2_enum.h"
37 #include "gca/gfx_7_2_sh_mask.h"
38 #include "oss/oss_2_0_d.h"
39 #include "oss/oss_2_0_sh_mask.h"
40 #include "gmc/gmc_7_1_d.h"
41 #include "gmc/gmc_7_1_sh_mask.h"
42 #include "cik_structs.h"
43 
44 enum hqd_dequeue_request_type {
45 	NO_ACTION = 0,
46 	DRAIN_PIPE,
47 	RESET_WAVES
48 };
49 
50 enum {
51 	MAX_TRAPID = 8,		/* 3 bits in the bitfield. */
52 	MAX_WATCH_ADDRESSES = 4
53 };
54 
55 enum {
56 	ADDRESS_WATCH_REG_ADDR_HI = 0,
57 	ADDRESS_WATCH_REG_ADDR_LO,
58 	ADDRESS_WATCH_REG_CNTL,
59 	ADDRESS_WATCH_REG_MAX
60 };
61 
62 /*  not defined in the CI/KV reg file  */
63 enum {
64 	ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
65 	ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
66 	ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
67 	/* extend the mask to 26 bits to match the low address field */
68 	ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
69 	ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
70 };
71 
72 static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
73 	mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
74 	mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
75 	mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
76 	mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
77 };
78 
79 union TCP_WATCH_CNTL_BITS {
80 	struct {
81 		uint32_t mask:24;
82 		uint32_t vmid:4;
83 		uint32_t atc:1;
84 		uint32_t mode:2;
85 		uint32_t valid:1;
86 	} bitfields, bits;
87 	uint32_t u32All;
88 	signed int i32All;
89 	float f32All;
90 };
91 
92 /* Because of REG_GET_FIELD() being used, we put this function in the
93  * asic specific file.
94  */
get_tile_config(struct kgd_dev * kgd,struct tile_config * config)95 static int get_tile_config(struct kgd_dev *kgd,
96 		struct tile_config *config)
97 {
98 	struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
99 
100 	config->gb_addr_config = adev->gfx.config.gb_addr_config;
101 	config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
102 				MC_ARB_RAMCFG, NOOFBANK);
103 	config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
104 				MC_ARB_RAMCFG, NOOFRANKS);
105 
106 	config->tile_config_ptr = adev->gfx.config.tile_mode_array;
107 	config->num_tile_configs =
108 			ARRAY_SIZE(adev->gfx.config.tile_mode_array);
109 	config->macro_tile_config_ptr =
110 			adev->gfx.config.macrotile_mode_array;
111 	config->num_macro_tile_configs =
112 			ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
113 
114 	return 0;
115 }
116 
get_amdgpu_device(struct kgd_dev * kgd)117 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
118 {
119 	return (struct amdgpu_device *)kgd;
120 }
121 
lock_srbm(struct kgd_dev * kgd,uint32_t mec,uint32_t pipe,uint32_t queue,uint32_t vmid)122 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
123 			uint32_t queue, uint32_t vmid)
124 {
125 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
126 	uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
127 
128 	mutex_lock(&adev->srbm_mutex);
129 	WREG32(mmSRBM_GFX_CNTL, value);
130 }
131 
unlock_srbm(struct kgd_dev * kgd)132 static void unlock_srbm(struct kgd_dev *kgd)
133 {
134 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
135 
136 	WREG32(mmSRBM_GFX_CNTL, 0);
137 	mutex_unlock(&adev->srbm_mutex);
138 }
139 
acquire_queue(struct kgd_dev * kgd,uint32_t pipe_id,uint32_t queue_id)140 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
141 				uint32_t queue_id)
142 {
143 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
144 
145 	uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
146 	uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
147 
148 	lock_srbm(kgd, mec, pipe, queue_id, 0);
149 }
150 
release_queue(struct kgd_dev * kgd)151 static void release_queue(struct kgd_dev *kgd)
152 {
153 	unlock_srbm(kgd);
154 }
155 
kgd_program_sh_mem_settings(struct kgd_dev * kgd,uint32_t vmid,uint32_t sh_mem_config,uint32_t sh_mem_ape1_base,uint32_t sh_mem_ape1_limit,uint32_t sh_mem_bases)156 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
157 					uint32_t sh_mem_config,
158 					uint32_t sh_mem_ape1_base,
159 					uint32_t sh_mem_ape1_limit,
160 					uint32_t sh_mem_bases)
161 {
162 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
163 
164 	lock_srbm(kgd, 0, 0, 0, vmid);
165 
166 	WREG32(mmSH_MEM_CONFIG, sh_mem_config);
167 	WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
168 	WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
169 	WREG32(mmSH_MEM_BASES, sh_mem_bases);
170 
171 	unlock_srbm(kgd);
172 }
173 
kgd_set_pasid_vmid_mapping(struct kgd_dev * kgd,unsigned int pasid,unsigned int vmid)174 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
175 					unsigned int vmid)
176 {
177 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
178 
179 	/*
180 	 * We have to assume that there is no outstanding mapping.
181 	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
182 	 * a mapping is in progress or because a mapping finished and the
183 	 * SW cleared it. So the protocol is to always wait & clear.
184 	 */
185 	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
186 			ATC_VMID0_PASID_MAPPING__VALID_MASK;
187 
188 	WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
189 
190 	while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
191 		cpu_relax();
192 	WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
193 
194 	/* Mapping vmid to pasid also for IH block */
195 	WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
196 
197 	return 0;
198 }
199 
kgd_init_interrupts(struct kgd_dev * kgd,uint32_t pipe_id)200 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
201 {
202 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
203 	uint32_t mec;
204 	uint32_t pipe;
205 
206 	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
207 	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
208 
209 	lock_srbm(kgd, mec, pipe, 0, 0);
210 
211 	WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
212 			CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
213 
214 	unlock_srbm(kgd);
215 
216 	return 0;
217 }
218 
get_sdma_rlc_reg_offset(struct cik_sdma_rlc_registers * m)219 static inline uint32_t get_sdma_rlc_reg_offset(struct cik_sdma_rlc_registers *m)
220 {
221 	uint32_t retval;
222 
223 	retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
224 			m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
225 
226 	pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n",
227 			m->sdma_engine_id, m->sdma_queue_id, retval);
228 
229 	return retval;
230 }
231 
get_mqd(void * mqd)232 static inline struct cik_mqd *get_mqd(void *mqd)
233 {
234 	return (struct cik_mqd *)mqd;
235 }
236 
get_sdma_mqd(void * mqd)237 static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
238 {
239 	return (struct cik_sdma_rlc_registers *)mqd;
240 }
241 
kgd_hqd_load(struct kgd_dev * kgd,void * mqd,uint32_t pipe_id,uint32_t queue_id,uint32_t __user * wptr,uint32_t wptr_shift,uint32_t wptr_mask,struct mm_struct * mm)242 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
243 			uint32_t queue_id, uint32_t __user *wptr,
244 			uint32_t wptr_shift, uint32_t wptr_mask,
245 			struct mm_struct *mm)
246 {
247 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
248 	struct cik_mqd *m;
249 	uint32_t *mqd_hqd;
250 	uint32_t reg, wptr_val, data;
251 	bool valid_wptr = false;
252 
253 	m = get_mqd(mqd);
254 
255 	acquire_queue(kgd, pipe_id, queue_id);
256 
257 	/* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */
258 	mqd_hqd = &m->cp_mqd_base_addr_lo;
259 
260 	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
261 		WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
262 
263 	/* Copy userspace write pointer value to register.
264 	 * Activate doorbell logic to monitor subsequent changes.
265 	 */
266 	data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
267 			     CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
268 	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
269 
270 	/* read_user_ptr may take the mm->mmap_sem.
271 	 * release srbm_mutex to avoid circular dependency between
272 	 * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
273 	 */
274 	release_queue(kgd);
275 	valid_wptr = read_user_wptr(mm, wptr, wptr_val);
276 	acquire_queue(kgd, pipe_id, queue_id);
277 	if (valid_wptr)
278 		WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
279 
280 	data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
281 	WREG32(mmCP_HQD_ACTIVE, data);
282 
283 	release_queue(kgd);
284 
285 	return 0;
286 }
287 
kgd_hqd_dump(struct kgd_dev * kgd,uint32_t pipe_id,uint32_t queue_id,uint32_t (** dump)[2],uint32_t * n_regs)288 static int kgd_hqd_dump(struct kgd_dev *kgd,
289 			uint32_t pipe_id, uint32_t queue_id,
290 			uint32_t (**dump)[2], uint32_t *n_regs)
291 {
292 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
293 	uint32_t i = 0, reg;
294 #define HQD_N_REGS (35+4)
295 #define DUMP_REG(addr) do {				\
296 		if (WARN_ON_ONCE(i >= HQD_N_REGS))	\
297 			break;				\
298 		(*dump)[i][0] = (addr) << 2;		\
299 		(*dump)[i++][1] = RREG32(addr);		\
300 	} while (0)
301 
302 	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
303 	if (*dump == NULL)
304 		return -ENOMEM;
305 
306 	acquire_queue(kgd, pipe_id, queue_id);
307 
308 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
309 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
310 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
311 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
312 
313 	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
314 		DUMP_REG(reg);
315 
316 	release_queue(kgd);
317 
318 	WARN_ON_ONCE(i != HQD_N_REGS);
319 	*n_regs = i;
320 
321 	return 0;
322 }
323 
kgd_hqd_sdma_load(struct kgd_dev * kgd,void * mqd,uint32_t __user * wptr,struct mm_struct * mm)324 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
325 			     uint32_t __user *wptr, struct mm_struct *mm)
326 {
327 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
328 	struct cik_sdma_rlc_registers *m;
329 	unsigned long end_jiffies;
330 	uint32_t sdma_rlc_reg_offset;
331 	uint32_t data;
332 
333 	m = get_sdma_mqd(mqd);
334 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
335 
336 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
337 		m->sdma_rlc_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
338 
339 	end_jiffies = msecs_to_jiffies(2000) + jiffies;
340 	while (true) {
341 		data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
342 		if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
343 			break;
344 		if (time_after(jiffies, end_jiffies)) {
345 			pr_err("SDMA RLC not idle in %s\n", __func__);
346 			return -ETIME;
347 		}
348 		usleep_range(500, 1000);
349 	}
350 
351 	data = REG_SET_FIELD(m->sdma_rlc_doorbell, SDMA0_RLC0_DOORBELL,
352 			     ENABLE, 1);
353 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
354 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
355 				m->sdma_rlc_rb_rptr);
356 
357 	if (read_user_wptr(mm, wptr, data))
358 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, data);
359 	else
360 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
361 		       m->sdma_rlc_rb_rptr);
362 
363 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_VIRTUAL_ADDR,
364 				m->sdma_rlc_virtual_addr);
365 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base);
366 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
367 			m->sdma_rlc_rb_base_hi);
368 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
369 			m->sdma_rlc_rb_rptr_addr_lo);
370 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
371 			m->sdma_rlc_rb_rptr_addr_hi);
372 
373 	data = REG_SET_FIELD(m->sdma_rlc_rb_cntl, SDMA0_RLC0_RB_CNTL,
374 			     RB_ENABLE, 1);
375 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
376 
377 	return 0;
378 }
379 
kgd_hqd_sdma_dump(struct kgd_dev * kgd,uint32_t engine_id,uint32_t queue_id,uint32_t (** dump)[2],uint32_t * n_regs)380 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
381 			     uint32_t engine_id, uint32_t queue_id,
382 			     uint32_t (**dump)[2], uint32_t *n_regs)
383 {
384 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
385 	uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
386 		queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
387 	uint32_t i = 0, reg;
388 #undef HQD_N_REGS
389 #define HQD_N_REGS (19+4)
390 
391 	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
392 	if (*dump == NULL)
393 		return -ENOMEM;
394 
395 	for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
396 		DUMP_REG(sdma_offset + reg);
397 	for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
398 	     reg++)
399 		DUMP_REG(sdma_offset + reg);
400 
401 	WARN_ON_ONCE(i != HQD_N_REGS);
402 	*n_regs = i;
403 
404 	return 0;
405 }
406 
kgd_hqd_is_occupied(struct kgd_dev * kgd,uint64_t queue_address,uint32_t pipe_id,uint32_t queue_id)407 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
408 				uint32_t pipe_id, uint32_t queue_id)
409 {
410 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
411 	uint32_t act;
412 	bool retval = false;
413 	uint32_t low, high;
414 
415 	acquire_queue(kgd, pipe_id, queue_id);
416 	act = RREG32(mmCP_HQD_ACTIVE);
417 	if (act) {
418 		low = lower_32_bits(queue_address >> 8);
419 		high = upper_32_bits(queue_address >> 8);
420 
421 		if (low == RREG32(mmCP_HQD_PQ_BASE) &&
422 				high == RREG32(mmCP_HQD_PQ_BASE_HI))
423 			retval = true;
424 	}
425 	release_queue(kgd);
426 	return retval;
427 }
428 
kgd_hqd_sdma_is_occupied(struct kgd_dev * kgd,void * mqd)429 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
430 {
431 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
432 	struct cik_sdma_rlc_registers *m;
433 	uint32_t sdma_rlc_reg_offset;
434 	uint32_t sdma_rlc_rb_cntl;
435 
436 	m = get_sdma_mqd(mqd);
437 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
438 
439 	sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
440 
441 	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
442 		return true;
443 
444 	return false;
445 }
446 
kgd_hqd_destroy(struct kgd_dev * kgd,void * mqd,enum kfd_preempt_type reset_type,unsigned int utimeout,uint32_t pipe_id,uint32_t queue_id)447 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
448 				enum kfd_preempt_type reset_type,
449 				unsigned int utimeout, uint32_t pipe_id,
450 				uint32_t queue_id)
451 {
452 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
453 	uint32_t temp;
454 	enum hqd_dequeue_request_type type;
455 	unsigned long flags, end_jiffies;
456 	int retry;
457 
458 	if (adev->in_gpu_reset)
459 		return -EIO;
460 
461 	acquire_queue(kgd, pipe_id, queue_id);
462 	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
463 
464 	switch (reset_type) {
465 	case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
466 		type = DRAIN_PIPE;
467 		break;
468 	case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
469 		type = RESET_WAVES;
470 		break;
471 	default:
472 		type = DRAIN_PIPE;
473 		break;
474 	}
475 
476 	/* Workaround: If IQ timer is active and the wait time is close to or
477 	 * equal to 0, dequeueing is not safe. Wait until either the wait time
478 	 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
479 	 * cleared before continuing. Also, ensure wait times are set to at
480 	 * least 0x3.
481 	 */
482 	local_irq_save(flags);
483 	preempt_disable();
484 	retry = 5000; /* wait for 500 usecs at maximum */
485 	while (true) {
486 		temp = RREG32(mmCP_HQD_IQ_TIMER);
487 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
488 			pr_debug("HW is processing IQ\n");
489 			goto loop;
490 		}
491 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
492 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
493 					== 3) /* SEM-rearm is safe */
494 				break;
495 			/* Wait time 3 is safe for CP, but our MMIO read/write
496 			 * time is close to 1 microsecond, so check for 10 to
497 			 * leave more buffer room
498 			 */
499 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
500 					>= 10)
501 				break;
502 			pr_debug("IQ timer is active\n");
503 		} else
504 			break;
505 loop:
506 		if (!retry) {
507 			pr_err("CP HQD IQ timer status time out\n");
508 			break;
509 		}
510 		ndelay(100);
511 		--retry;
512 	}
513 	retry = 1000;
514 	while (true) {
515 		temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
516 		if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
517 			break;
518 		pr_debug("Dequeue request is pending\n");
519 
520 		if (!retry) {
521 			pr_err("CP HQD dequeue request time out\n");
522 			break;
523 		}
524 		ndelay(100);
525 		--retry;
526 	}
527 	local_irq_restore(flags);
528 	preempt_enable();
529 
530 	WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
531 
532 	end_jiffies = (utimeout * HZ / 1000) + jiffies;
533 	while (true) {
534 		temp = RREG32(mmCP_HQD_ACTIVE);
535 		if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
536 			break;
537 		if (time_after(jiffies, end_jiffies)) {
538 			pr_err("cp queue preemption time out\n");
539 			release_queue(kgd);
540 			return -ETIME;
541 		}
542 		usleep_range(500, 1000);
543 	}
544 
545 	release_queue(kgd);
546 	return 0;
547 }
548 
kgd_hqd_sdma_destroy(struct kgd_dev * kgd,void * mqd,unsigned int utimeout)549 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
550 				unsigned int utimeout)
551 {
552 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
553 	struct cik_sdma_rlc_registers *m;
554 	uint32_t sdma_rlc_reg_offset;
555 	uint32_t temp;
556 	unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
557 
558 	m = get_sdma_mqd(mqd);
559 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
560 
561 	temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
562 	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
563 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
564 
565 	while (true) {
566 		temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
567 		if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
568 			break;
569 		if (time_after(jiffies, end_jiffies)) {
570 			pr_err("SDMA RLC not idle in %s\n", __func__);
571 			return -ETIME;
572 		}
573 		usleep_range(500, 1000);
574 	}
575 
576 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
577 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
578 		RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
579 		SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
580 
581 	m->sdma_rlc_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
582 
583 	return 0;
584 }
585 
kgd_address_watch_disable(struct kgd_dev * kgd)586 static int kgd_address_watch_disable(struct kgd_dev *kgd)
587 {
588 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
589 	union TCP_WATCH_CNTL_BITS cntl;
590 	unsigned int i;
591 
592 	cntl.u32All = 0;
593 
594 	cntl.bitfields.valid = 0;
595 	cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
596 	cntl.bitfields.atc = 1;
597 
598 	/* Turning off this address until we set all the registers */
599 	for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
600 		WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
601 			ADDRESS_WATCH_REG_CNTL], cntl.u32All);
602 
603 	return 0;
604 }
605 
kgd_address_watch_execute(struct kgd_dev * kgd,unsigned int watch_point_id,uint32_t cntl_val,uint32_t addr_hi,uint32_t addr_lo)606 static int kgd_address_watch_execute(struct kgd_dev *kgd,
607 					unsigned int watch_point_id,
608 					uint32_t cntl_val,
609 					uint32_t addr_hi,
610 					uint32_t addr_lo)
611 {
612 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
613 	union TCP_WATCH_CNTL_BITS cntl;
614 
615 	cntl.u32All = cntl_val;
616 
617 	/* Turning off this watch point until we set all the registers */
618 	cntl.bitfields.valid = 0;
619 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
620 		ADDRESS_WATCH_REG_CNTL], cntl.u32All);
621 
622 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
623 		ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
624 
625 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
626 		ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
627 
628 	/* Enable the watch point */
629 	cntl.bitfields.valid = 1;
630 
631 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
632 		ADDRESS_WATCH_REG_CNTL], cntl.u32All);
633 
634 	return 0;
635 }
636 
kgd_wave_control_execute(struct kgd_dev * kgd,uint32_t gfx_index_val,uint32_t sq_cmd)637 static int kgd_wave_control_execute(struct kgd_dev *kgd,
638 					uint32_t gfx_index_val,
639 					uint32_t sq_cmd)
640 {
641 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
642 	uint32_t data;
643 
644 	mutex_lock(&adev->grbm_idx_mutex);
645 
646 	WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
647 	WREG32(mmSQ_CMD, sq_cmd);
648 
649 	/*  Restore the GRBM_GFX_INDEX register  */
650 
651 	data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
652 		GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
653 		GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
654 
655 	WREG32(mmGRBM_GFX_INDEX, data);
656 
657 	mutex_unlock(&adev->grbm_idx_mutex);
658 
659 	return 0;
660 }
661 
kgd_address_watch_get_offset(struct kgd_dev * kgd,unsigned int watch_point_id,unsigned int reg_offset)662 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
663 					unsigned int watch_point_id,
664 					unsigned int reg_offset)
665 {
666 	return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
667 }
668 
get_atc_vmid_pasid_mapping_info(struct kgd_dev * kgd,uint8_t vmid,uint16_t * p_pasid)669 static bool get_atc_vmid_pasid_mapping_info(struct kgd_dev *kgd,
670 					uint8_t vmid, uint16_t *p_pasid)
671 {
672 	uint32_t value;
673 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
674 
675 	value = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
676 	*p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
677 
678 	return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
679 }
680 
set_scratch_backing_va(struct kgd_dev * kgd,uint64_t va,uint32_t vmid)681 static void set_scratch_backing_va(struct kgd_dev *kgd,
682 					uint64_t va, uint32_t vmid)
683 {
684 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
685 
686 	lock_srbm(kgd, 0, 0, 0, vmid);
687 	WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
688 	unlock_srbm(kgd);
689 }
690 
set_vm_context_page_table_base(struct kgd_dev * kgd,uint32_t vmid,uint64_t page_table_base)691 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
692 			uint64_t page_table_base)
693 {
694 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
695 
696 	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
697 		pr_err("trying to set page table base for wrong VMID\n");
698 		return;
699 	}
700 	WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8,
701 		lower_32_bits(page_table_base));
702 }
703 
704  /**
705   * read_vmid_from_vmfault_reg - read vmid from register
706   *
707   * adev: amdgpu_device pointer
708   * @vmid: vmid pointer
709   * read vmid from register (CIK).
710   */
read_vmid_from_vmfault_reg(struct kgd_dev * kgd)711 static uint32_t read_vmid_from_vmfault_reg(struct kgd_dev *kgd)
712 {
713 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
714 
715 	uint32_t status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS);
716 
717 	return REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID);
718 }
719 
720 const struct kfd2kgd_calls gfx_v7_kfd2kgd = {
721 	.program_sh_mem_settings = kgd_program_sh_mem_settings,
722 	.set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
723 	.init_interrupts = kgd_init_interrupts,
724 	.hqd_load = kgd_hqd_load,
725 	.hqd_sdma_load = kgd_hqd_sdma_load,
726 	.hqd_dump = kgd_hqd_dump,
727 	.hqd_sdma_dump = kgd_hqd_sdma_dump,
728 	.hqd_is_occupied = kgd_hqd_is_occupied,
729 	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
730 	.hqd_destroy = kgd_hqd_destroy,
731 	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
732 	.address_watch_disable = kgd_address_watch_disable,
733 	.address_watch_execute = kgd_address_watch_execute,
734 	.wave_control_execute = kgd_wave_control_execute,
735 	.address_watch_get_offset = kgd_address_watch_get_offset,
736 	.get_atc_vmid_pasid_mapping_info = get_atc_vmid_pasid_mapping_info,
737 	.set_scratch_backing_va = set_scratch_backing_va,
738 	.get_tile_config = get_tile_config,
739 	.set_vm_context_page_table_base = set_vm_context_page_table_base,
740 	.read_vmid_from_vmfault_reg = read_vmid_from_vmfault_reg,
741 };
742