1 //===-- tsan_interceptors.cc ----------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //
12 // FIXME: move as many interceptors as possible into
13 // sanitizer_common/sanitizer_common_interceptors.inc
14 //===----------------------------------------------------------------------===//
15
16 #include "sanitizer_common/sanitizer_atomic.h"
17 #include "sanitizer_common/sanitizer_errno.h"
18 #include "sanitizer_common/sanitizer_libc.h"
19 #include "sanitizer_common/sanitizer_linux.h"
20 #include "sanitizer_common/sanitizer_platform_limits_netbsd.h"
21 #include "sanitizer_common/sanitizer_platform_limits_posix.h"
22 #include "sanitizer_common/sanitizer_placement_new.h"
23 #include "sanitizer_common/sanitizer_posix.h"
24 #include "sanitizer_common/sanitizer_stacktrace.h"
25 #include "sanitizer_common/sanitizer_tls_get_addr.h"
26 #include "interception/interception.h"
27 #include "tsan_interceptors.h"
28 #include "tsan_interface.h"
29 #include "tsan_platform.h"
30 #include "tsan_suppressions.h"
31 #include "tsan_rtl.h"
32 #include "tsan_mman.h"
33 #include "tsan_fd.h"
34
35
36 using namespace __tsan; // NOLINT
37
38 #if SANITIZER_FREEBSD || SANITIZER_MAC
39 #define stdout __stdoutp
40 #define stderr __stderrp
41 #endif
42
43 #if SANITIZER_NETBSD
44 #define dirfd(dirp) (*(int *)(dirp))
45 #define fileno_unlocked fileno
46
47 #if _LP64
48 #define __sF_size 152
49 #else
50 #define __sF_size 88
51 #endif
52
53 #define stdout ((char*)&__sF + (__sF_size * 1))
54 #define stderr ((char*)&__sF + (__sF_size * 2))
55
56 #define nanosleep __nanosleep50
57 #define vfork __vfork14
58 #endif
59
60 #if SANITIZER_ANDROID
61 #define mallopt(a, b)
62 #endif
63
64 #ifdef __mips__
65 const int kSigCount = 129;
66 #else
67 const int kSigCount = 65;
68 #endif
69
70 #ifdef __mips__
71 struct ucontext_t {
72 u64 opaque[768 / sizeof(u64) + 1];
73 };
74 #else
75 struct ucontext_t {
76 // The size is determined by looking at sizeof of real ucontext_t on linux.
77 u64 opaque[936 / sizeof(u64) + 1];
78 };
79 #endif
80
81 #if defined(__x86_64__) || defined(__mips__) || SANITIZER_PPC64V1
82 #define PTHREAD_ABI_BASE "GLIBC_2.3.2"
83 #elif defined(__aarch64__) || SANITIZER_PPC64V2
84 #define PTHREAD_ABI_BASE "GLIBC_2.17"
85 #endif
86
87 extern "C" int pthread_attr_init(void *attr);
88 extern "C" int pthread_attr_destroy(void *attr);
89 DECLARE_REAL(int, pthread_attr_getdetachstate, void *, void *)
90 extern "C" int pthread_attr_setstacksize(void *attr, uptr stacksize);
91 extern "C" int pthread_key_create(unsigned *key, void (*destructor)(void* v));
92 extern "C" int pthread_setspecific(unsigned key, const void *v);
93 DECLARE_REAL(int, pthread_mutexattr_gettype, void *, void *)
94 DECLARE_REAL(int, fflush, __sanitizer_FILE *fp)
95 DECLARE_REAL_AND_INTERCEPTOR(void *, malloc, uptr size)
96 DECLARE_REAL_AND_INTERCEPTOR(void, free, void *ptr)
97 extern "C" void *pthread_self();
98 extern "C" void _exit(int status);
99 extern "C" int fileno_unlocked(void *stream);
100 #if !SANITIZER_NETBSD
101 extern "C" int dirfd(void *dirp);
102 #endif
103 #if !SANITIZER_FREEBSD && !SANITIZER_ANDROID && !SANITIZER_NETBSD
104 extern "C" int mallopt(int param, int value);
105 #endif
106 #if SANITIZER_NETBSD
107 extern __sanitizer_FILE __sF[];
108 #else
109 extern __sanitizer_FILE *stdout, *stderr;
110 #endif
111 #if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
112 const int PTHREAD_MUTEX_RECURSIVE = 1;
113 const int PTHREAD_MUTEX_RECURSIVE_NP = 1;
114 #else
115 const int PTHREAD_MUTEX_RECURSIVE = 2;
116 const int PTHREAD_MUTEX_RECURSIVE_NP = 2;
117 #endif
118 #if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
119 const int EPOLL_CTL_ADD = 1;
120 #endif
121 const int SIGILL = 4;
122 const int SIGABRT = 6;
123 const int SIGFPE = 8;
124 const int SIGSEGV = 11;
125 const int SIGPIPE = 13;
126 const int SIGTERM = 15;
127 #if defined(__mips__) || SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_NETBSD
128 const int SIGBUS = 10;
129 const int SIGSYS = 12;
130 #else
131 const int SIGBUS = 7;
132 const int SIGSYS = 31;
133 #endif
134 void *const MAP_FAILED = (void*)-1;
135 #if SANITIZER_NETBSD
136 const int PTHREAD_BARRIER_SERIAL_THREAD = 1234567;
137 #elif !SANITIZER_MAC
138 const int PTHREAD_BARRIER_SERIAL_THREAD = -1;
139 #endif
140 const int MAP_FIXED = 0x10;
141 typedef long long_t; // NOLINT
142
143 // From /usr/include/unistd.h
144 # define F_ULOCK 0 /* Unlock a previously locked region. */
145 # define F_LOCK 1 /* Lock a region for exclusive use. */
146 # define F_TLOCK 2 /* Test and lock a region for exclusive use. */
147 # define F_TEST 3 /* Test a region for other processes locks. */
148
149 #if SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_NETBSD
150 const int SA_SIGINFO = 0x40;
151 const int SIG_SETMASK = 3;
152 #elif defined(__mips__)
153 const int SA_SIGINFO = 8;
154 const int SIG_SETMASK = 3;
155 #else
156 const int SA_SIGINFO = 4;
157 const int SIG_SETMASK = 2;
158 #endif
159
160 #define COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED \
161 (!cur_thread()->is_inited)
162
163 namespace __tsan {
164 struct SignalDesc {
165 bool armed;
166 bool sigaction;
167 __sanitizer_siginfo siginfo;
168 ucontext_t ctx;
169 };
170
171 struct ThreadSignalContext {
172 int int_signal_send;
173 atomic_uintptr_t in_blocking_func;
174 atomic_uintptr_t have_pending_signals;
175 SignalDesc pending_signals[kSigCount];
176 // emptyset and oldset are too big for stack.
177 __sanitizer_sigset_t emptyset;
178 __sanitizer_sigset_t oldset;
179 };
180
181 // The sole reason tsan wraps atexit callbacks is to establish synchronization
182 // between callback setup and callback execution.
183 struct AtExitCtx {
184 void (*f)();
185 void *arg;
186 };
187
188 // InterceptorContext holds all global data required for interceptors.
189 // It's explicitly constructed in InitializeInterceptors with placement new
190 // and is never destroyed. This allows usage of members with non-trivial
191 // constructors and destructors.
192 struct InterceptorContext {
193 // The object is 64-byte aligned, because we want hot data to be located
194 // in a single cache line if possible (it's accessed in every interceptor).
195 ALIGNED(64) LibIgnore libignore;
196 __sanitizer_sigaction sigactions[kSigCount];
197 #if !SANITIZER_MAC && !SANITIZER_NETBSD
198 unsigned finalize_key;
199 #endif
200
201 BlockingMutex atexit_mu;
202 Vector<struct AtExitCtx *> AtExitStack;
203
InterceptorContext__tsan::InterceptorContext204 InterceptorContext()
205 : libignore(LINKER_INITIALIZED), AtExitStack() {
206 }
207 };
208
209 static ALIGNED(64) char interceptor_placeholder[sizeof(InterceptorContext)];
interceptor_ctx()210 InterceptorContext *interceptor_ctx() {
211 return reinterpret_cast<InterceptorContext*>(&interceptor_placeholder[0]);
212 }
213
libignore()214 LibIgnore *libignore() {
215 return &interceptor_ctx()->libignore;
216 }
217
InitializeLibIgnore()218 void InitializeLibIgnore() {
219 const SuppressionContext &supp = *Suppressions();
220 const uptr n = supp.SuppressionCount();
221 for (uptr i = 0; i < n; i++) {
222 const Suppression *s = supp.SuppressionAt(i);
223 if (0 == internal_strcmp(s->type, kSuppressionLib))
224 libignore()->AddIgnoredLibrary(s->templ);
225 }
226 if (flags()->ignore_noninstrumented_modules)
227 libignore()->IgnoreNoninstrumentedModules(true);
228 libignore()->OnLibraryLoaded(0);
229 }
230
231 // The following two hooks can be used by for cooperative scheduling when
232 // locking.
233 #ifdef TSAN_EXTERNAL_HOOKS
234 void OnPotentiallyBlockingRegionBegin();
235 void OnPotentiallyBlockingRegionEnd();
236 #else
OnPotentiallyBlockingRegionBegin()237 SANITIZER_WEAK_CXX_DEFAULT_IMPL void OnPotentiallyBlockingRegionBegin() {}
OnPotentiallyBlockingRegionEnd()238 SANITIZER_WEAK_CXX_DEFAULT_IMPL void OnPotentiallyBlockingRegionEnd() {}
239 #endif
240
241 } // namespace __tsan
242
SigCtx(ThreadState * thr)243 static ThreadSignalContext *SigCtx(ThreadState *thr) {
244 ThreadSignalContext *ctx = (ThreadSignalContext*)thr->signal_ctx;
245 if (ctx == 0 && !thr->is_dead) {
246 ctx = (ThreadSignalContext*)MmapOrDie(sizeof(*ctx), "ThreadSignalContext");
247 MemoryResetRange(thr, (uptr)&SigCtx, (uptr)ctx, sizeof(*ctx));
248 thr->signal_ctx = ctx;
249 }
250 return ctx;
251 }
252
ScopedInterceptor(ThreadState * thr,const char * fname,uptr pc)253 ScopedInterceptor::ScopedInterceptor(ThreadState *thr, const char *fname,
254 uptr pc)
255 : thr_(thr), pc_(pc), in_ignored_lib_(false), ignoring_(false) {
256 Initialize(thr);
257 if (!thr_->is_inited) return;
258 if (!thr_->ignore_interceptors) FuncEntry(thr, pc);
259 DPrintf("#%d: intercept %s()\n", thr_->tid, fname);
260 ignoring_ =
261 !thr_->in_ignored_lib && (flags()->ignore_interceptors_accesses ||
262 libignore()->IsIgnored(pc, &in_ignored_lib_));
263 EnableIgnores();
264 }
265
~ScopedInterceptor()266 ScopedInterceptor::~ScopedInterceptor() {
267 if (!thr_->is_inited) return;
268 DisableIgnores();
269 if (!thr_->ignore_interceptors) {
270 ProcessPendingSignals(thr_);
271 FuncExit(thr_);
272 CheckNoLocks(thr_);
273 }
274 }
275
EnableIgnores()276 void ScopedInterceptor::EnableIgnores() {
277 if (ignoring_) {
278 ThreadIgnoreBegin(thr_, pc_, /*save_stack=*/false);
279 if (flags()->ignore_noninstrumented_modules) thr_->suppress_reports++;
280 if (in_ignored_lib_) {
281 DCHECK(!thr_->in_ignored_lib);
282 thr_->in_ignored_lib = true;
283 }
284 }
285 }
286
DisableIgnores()287 void ScopedInterceptor::DisableIgnores() {
288 if (ignoring_) {
289 ThreadIgnoreEnd(thr_, pc_);
290 if (flags()->ignore_noninstrumented_modules) thr_->suppress_reports--;
291 if (in_ignored_lib_) {
292 DCHECK(thr_->in_ignored_lib);
293 thr_->in_ignored_lib = false;
294 }
295 }
296 }
297
298 #define TSAN_INTERCEPT(func) INTERCEPT_FUNCTION(func)
299 #if SANITIZER_FREEBSD
300 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func)
301 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func)
302 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func)
303 #elif SANITIZER_NETBSD
304 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func)
305 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func) \
306 INTERCEPT_FUNCTION(__libc_##func)
307 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func) \
308 INTERCEPT_FUNCTION(__libc_thr_##func)
309 #else
310 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION_VER(func, ver)
311 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func)
312 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func)
313 #endif
314
315 #define READ_STRING_OF_LEN(thr, pc, s, len, n) \
316 MemoryAccessRange((thr), (pc), (uptr)(s), \
317 common_flags()->strict_string_checks ? (len) + 1 : (n), false)
318
319 #define READ_STRING(thr, pc, s, n) \
320 READ_STRING_OF_LEN((thr), (pc), (s), internal_strlen(s), (n))
321
322 #define BLOCK_REAL(name) (BlockingCall(thr), REAL(name))
323
324 struct BlockingCall {
BlockingCallBlockingCall325 explicit BlockingCall(ThreadState *thr)
326 : thr(thr)
327 , ctx(SigCtx(thr)) {
328 for (;;) {
329 atomic_store(&ctx->in_blocking_func, 1, memory_order_relaxed);
330 if (atomic_load(&ctx->have_pending_signals, memory_order_relaxed) == 0)
331 break;
332 atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
333 ProcessPendingSignals(thr);
334 }
335 // When we are in a "blocking call", we process signals asynchronously
336 // (right when they arrive). In this context we do not expect to be
337 // executing any user/runtime code. The known interceptor sequence when
338 // this is not true is: pthread_join -> munmap(stack). It's fine
339 // to ignore munmap in this case -- we handle stack shadow separately.
340 thr->ignore_interceptors++;
341 }
342
~BlockingCallBlockingCall343 ~BlockingCall() {
344 thr->ignore_interceptors--;
345 atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
346 }
347
348 ThreadState *thr;
349 ThreadSignalContext *ctx;
350 };
351
TSAN_INTERCEPTOR(unsigned,sleep,unsigned sec)352 TSAN_INTERCEPTOR(unsigned, sleep, unsigned sec) {
353 SCOPED_TSAN_INTERCEPTOR(sleep, sec);
354 unsigned res = BLOCK_REAL(sleep)(sec);
355 AfterSleep(thr, pc);
356 return res;
357 }
358
TSAN_INTERCEPTOR(int,usleep,long_t usec)359 TSAN_INTERCEPTOR(int, usleep, long_t usec) {
360 SCOPED_TSAN_INTERCEPTOR(usleep, usec);
361 int res = BLOCK_REAL(usleep)(usec);
362 AfterSleep(thr, pc);
363 return res;
364 }
365
TSAN_INTERCEPTOR(int,nanosleep,void * req,void * rem)366 TSAN_INTERCEPTOR(int, nanosleep, void *req, void *rem) {
367 SCOPED_TSAN_INTERCEPTOR(nanosleep, req, rem);
368 int res = BLOCK_REAL(nanosleep)(req, rem);
369 AfterSleep(thr, pc);
370 return res;
371 }
372
TSAN_INTERCEPTOR(int,pause,int fake)373 TSAN_INTERCEPTOR(int, pause, int fake) {
374 SCOPED_TSAN_INTERCEPTOR(pause, fake);
375 return BLOCK_REAL(pause)(fake);
376 }
377
at_exit_wrapper()378 static void at_exit_wrapper() {
379 AtExitCtx *ctx;
380 {
381 // Ensure thread-safety.
382 BlockingMutexLock l(&interceptor_ctx()->atexit_mu);
383
384 // Pop AtExitCtx from the top of the stack of callback functions
385 uptr element = interceptor_ctx()->AtExitStack.Size() - 1;
386 ctx = interceptor_ctx()->AtExitStack[element];
387 interceptor_ctx()->AtExitStack.PopBack();
388 }
389
390 Acquire(cur_thread(), (uptr)0, (uptr)ctx);
391 ((void(*)())ctx->f)();
392 InternalFree(ctx);
393 }
394
cxa_at_exit_wrapper(void * arg)395 static void cxa_at_exit_wrapper(void *arg) {
396 Acquire(cur_thread(), 0, (uptr)arg);
397 AtExitCtx *ctx = (AtExitCtx*)arg;
398 ((void(*)(void *arg))ctx->f)(ctx->arg);
399 InternalFree(ctx);
400 }
401
402 static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
403 void *arg, void *dso);
404
405 #if !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int,atexit,void (* f)())406 TSAN_INTERCEPTOR(int, atexit, void (*f)()) {
407 if (UNLIKELY(cur_thread()->in_symbolizer))
408 return 0;
409 // We want to setup the atexit callback even if we are in ignored lib
410 // or after fork.
411 SCOPED_INTERCEPTOR_RAW(atexit, f);
412 return setup_at_exit_wrapper(thr, pc, (void(*)())f, 0, 0);
413 }
414 #endif
415
TSAN_INTERCEPTOR(int,__cxa_atexit,void (* f)(void * a),void * arg,void * dso)416 TSAN_INTERCEPTOR(int, __cxa_atexit, void (*f)(void *a), void *arg, void *dso) {
417 if (UNLIKELY(cur_thread()->in_symbolizer))
418 return 0;
419 SCOPED_TSAN_INTERCEPTOR(__cxa_atexit, f, arg, dso);
420 return setup_at_exit_wrapper(thr, pc, (void(*)())f, arg, dso);
421 }
422
setup_at_exit_wrapper(ThreadState * thr,uptr pc,void (* f)(),void * arg,void * dso)423 static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
424 void *arg, void *dso) {
425 AtExitCtx *ctx = (AtExitCtx*)InternalAlloc(sizeof(AtExitCtx));
426 ctx->f = f;
427 ctx->arg = arg;
428 Release(thr, pc, (uptr)ctx);
429 // Memory allocation in __cxa_atexit will race with free during exit,
430 // because we do not see synchronization around atexit callback list.
431 ThreadIgnoreBegin(thr, pc);
432 int res;
433 if (!dso) {
434 // NetBSD does not preserve the 2nd argument if dso is equal to 0
435 // Store ctx in a local stack-like structure
436
437 // Ensure thread-safety.
438 BlockingMutexLock l(&interceptor_ctx()->atexit_mu);
439
440 res = REAL(__cxa_atexit)((void (*)(void *a))at_exit_wrapper, 0, 0);
441 // Push AtExitCtx on the top of the stack of callback functions
442 if (!res) {
443 interceptor_ctx()->AtExitStack.PushBack(ctx);
444 }
445 } else {
446 res = REAL(__cxa_atexit)(cxa_at_exit_wrapper, ctx, dso);
447 }
448 ThreadIgnoreEnd(thr, pc);
449 return res;
450 }
451
452 #if !SANITIZER_MAC && !SANITIZER_NETBSD
on_exit_wrapper(int status,void * arg)453 static void on_exit_wrapper(int status, void *arg) {
454 ThreadState *thr = cur_thread();
455 uptr pc = 0;
456 Acquire(thr, pc, (uptr)arg);
457 AtExitCtx *ctx = (AtExitCtx*)arg;
458 ((void(*)(int status, void *arg))ctx->f)(status, ctx->arg);
459 InternalFree(ctx);
460 }
461
TSAN_INTERCEPTOR(int,on_exit,void (* f)(int,void *),void * arg)462 TSAN_INTERCEPTOR(int, on_exit, void(*f)(int, void*), void *arg) {
463 if (UNLIKELY(cur_thread()->in_symbolizer))
464 return 0;
465 SCOPED_TSAN_INTERCEPTOR(on_exit, f, arg);
466 AtExitCtx *ctx = (AtExitCtx*)InternalAlloc(sizeof(AtExitCtx));
467 ctx->f = (void(*)())f;
468 ctx->arg = arg;
469 Release(thr, pc, (uptr)ctx);
470 // Memory allocation in __cxa_atexit will race with free during exit,
471 // because we do not see synchronization around atexit callback list.
472 ThreadIgnoreBegin(thr, pc);
473 int res = REAL(on_exit)(on_exit_wrapper, ctx);
474 ThreadIgnoreEnd(thr, pc);
475 return res;
476 }
477 #define TSAN_MAYBE_INTERCEPT_ON_EXIT TSAN_INTERCEPT(on_exit)
478 #else
479 #define TSAN_MAYBE_INTERCEPT_ON_EXIT
480 #endif
481
482 // Cleanup old bufs.
JmpBufGarbageCollect(ThreadState * thr,uptr sp)483 static void JmpBufGarbageCollect(ThreadState *thr, uptr sp) {
484 for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
485 JmpBuf *buf = &thr->jmp_bufs[i];
486 if (buf->sp <= sp) {
487 uptr sz = thr->jmp_bufs.Size();
488 internal_memcpy(buf, &thr->jmp_bufs[sz - 1], sizeof(*buf));
489 thr->jmp_bufs.PopBack();
490 i--;
491 }
492 }
493 }
494
SetJmp(ThreadState * thr,uptr sp,uptr mangled_sp)495 static void SetJmp(ThreadState *thr, uptr sp, uptr mangled_sp) {
496 if (!thr->is_inited) // called from libc guts during bootstrap
497 return;
498 // Cleanup old bufs.
499 JmpBufGarbageCollect(thr, sp);
500 // Remember the buf.
501 JmpBuf *buf = thr->jmp_bufs.PushBack();
502 buf->sp = sp;
503 buf->mangled_sp = mangled_sp;
504 buf->shadow_stack_pos = thr->shadow_stack_pos;
505 ThreadSignalContext *sctx = SigCtx(thr);
506 buf->int_signal_send = sctx ? sctx->int_signal_send : 0;
507 buf->in_blocking_func = sctx ?
508 atomic_load(&sctx->in_blocking_func, memory_order_relaxed) :
509 false;
510 buf->in_signal_handler = atomic_load(&thr->in_signal_handler,
511 memory_order_relaxed);
512 }
513
LongJmp(ThreadState * thr,uptr * env)514 static void LongJmp(ThreadState *thr, uptr *env) {
515 #ifdef __powerpc__
516 uptr mangled_sp = env[0];
517 #elif SANITIZER_FREEBSD
518 uptr mangled_sp = env[2];
519 #elif SANITIZER_NETBSD
520 uptr mangled_sp = env[6];
521 #elif SANITIZER_MAC
522 # ifdef __aarch64__
523 uptr mangled_sp =
524 (GetMacosVersion() >= MACOS_VERSION_MOJAVE) ? env[12] : env[13];
525 # else
526 uptr mangled_sp = env[2];
527 # endif
528 #elif SANITIZER_LINUX
529 # ifdef __aarch64__
530 uptr mangled_sp = env[13];
531 # elif defined(__mips64)
532 uptr mangled_sp = env[1];
533 # else
534 uptr mangled_sp = env[6];
535 # endif
536 #endif
537 // Find the saved buf by mangled_sp.
538 for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
539 JmpBuf *buf = &thr->jmp_bufs[i];
540 if (buf->mangled_sp == mangled_sp) {
541 CHECK_GE(thr->shadow_stack_pos, buf->shadow_stack_pos);
542 // Unwind the stack.
543 while (thr->shadow_stack_pos > buf->shadow_stack_pos)
544 FuncExit(thr);
545 ThreadSignalContext *sctx = SigCtx(thr);
546 if (sctx) {
547 sctx->int_signal_send = buf->int_signal_send;
548 atomic_store(&sctx->in_blocking_func, buf->in_blocking_func,
549 memory_order_relaxed);
550 }
551 atomic_store(&thr->in_signal_handler, buf->in_signal_handler,
552 memory_order_relaxed);
553 JmpBufGarbageCollect(thr, buf->sp - 1); // do not collect buf->sp
554 return;
555 }
556 }
557 Printf("ThreadSanitizer: can't find longjmp buf\n");
558 CHECK(0);
559 }
560
561 // FIXME: put everything below into a common extern "C" block?
__tsan_setjmp(uptr sp,uptr mangled_sp)562 extern "C" void __tsan_setjmp(uptr sp, uptr mangled_sp) {
563 SetJmp(cur_thread(), sp, mangled_sp);
564 }
565
566 #if SANITIZER_MAC
567 TSAN_INTERCEPTOR(int, setjmp, void *env);
568 TSAN_INTERCEPTOR(int, _setjmp, void *env);
569 TSAN_INTERCEPTOR(int, sigsetjmp, void *env);
570 #else // SANITIZER_MAC
571
572 #if SANITIZER_NETBSD
573 #define setjmp_symname __setjmp14
574 #define sigsetjmp_symname __sigsetjmp14
575 #else
576 #define setjmp_symname setjmp
577 #define sigsetjmp_symname sigsetjmp
578 #endif
579
580 #define TSAN_INTERCEPTOR_SETJMP_(x) __interceptor_ ## x
581 #define TSAN_INTERCEPTOR_SETJMP__(x) TSAN_INTERCEPTOR_SETJMP_(x)
582 #define TSAN_INTERCEPTOR_SETJMP TSAN_INTERCEPTOR_SETJMP__(setjmp_symname)
583 #define TSAN_INTERCEPTOR_SIGSETJMP TSAN_INTERCEPTOR_SETJMP__(sigsetjmp_symname)
584
585 #define TSAN_STRING_SETJMP SANITIZER_STRINGIFY(setjmp_symname)
586 #define TSAN_STRING_SIGSETJMP SANITIZER_STRINGIFY(sigsetjmp_symname)
587
588 // Not called. Merely to satisfy TSAN_INTERCEPT().
589 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
590 int TSAN_INTERCEPTOR_SETJMP(void *env);
TSAN_INTERCEPTOR_SETJMP(void * env)591 extern "C" int TSAN_INTERCEPTOR_SETJMP(void *env) {
592 CHECK(0);
593 return 0;
594 }
595
596 // FIXME: any reason to have a separate declaration?
597 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
598 int __interceptor__setjmp(void *env);
__interceptor__setjmp(void * env)599 extern "C" int __interceptor__setjmp(void *env) {
600 CHECK(0);
601 return 0;
602 }
603
604 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
605 int TSAN_INTERCEPTOR_SIGSETJMP(void *env);
TSAN_INTERCEPTOR_SIGSETJMP(void * env)606 extern "C" int TSAN_INTERCEPTOR_SIGSETJMP(void *env) {
607 CHECK(0);
608 return 0;
609 }
610
611 #if !SANITIZER_NETBSD
612 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
613 int __interceptor___sigsetjmp(void *env);
__interceptor___sigsetjmp(void * env)614 extern "C" int __interceptor___sigsetjmp(void *env) {
615 CHECK(0);
616 return 0;
617 }
618 #endif
619
620 extern "C" int setjmp_symname(void *env);
621 extern "C" int _setjmp(void *env);
622 extern "C" int sigsetjmp_symname(void *env);
623 #if !SANITIZER_NETBSD
624 extern "C" int __sigsetjmp(void *env);
625 #endif
DEFINE_REAL(int,setjmp_symname,void * env)626 DEFINE_REAL(int, setjmp_symname, void *env)
627 DEFINE_REAL(int, _setjmp, void *env)
628 DEFINE_REAL(int, sigsetjmp_symname, void *env)
629 #if !SANITIZER_NETBSD
630 DEFINE_REAL(int, __sigsetjmp, void *env)
631 #endif
632 #endif // SANITIZER_MAC
633
634 #if SANITIZER_NETBSD
635 #define longjmp_symname __longjmp14
636 #define siglongjmp_symname __siglongjmp14
637 #else
638 #define longjmp_symname longjmp
639 #define siglongjmp_symname siglongjmp
640 #endif
641
642 TSAN_INTERCEPTOR(void, longjmp_symname, uptr *env, int val) {
643 // Note: if we call REAL(longjmp) in the context of ScopedInterceptor,
644 // bad things will happen. We will jump over ScopedInterceptor dtor and can
645 // leave thr->in_ignored_lib set.
646 {
647 SCOPED_INTERCEPTOR_RAW(longjmp_symname, env, val);
648 }
649 LongJmp(cur_thread(), env);
650 REAL(longjmp_symname)(env, val);
651 }
652
TSAN_INTERCEPTOR(void,siglongjmp_symname,uptr * env,int val)653 TSAN_INTERCEPTOR(void, siglongjmp_symname, uptr *env, int val) {
654 {
655 SCOPED_INTERCEPTOR_RAW(siglongjmp_symname, env, val);
656 }
657 LongJmp(cur_thread(), env);
658 REAL(siglongjmp_symname)(env, val);
659 }
660
661 #if SANITIZER_NETBSD
TSAN_INTERCEPTOR(void,_longjmp,uptr * env,int val)662 TSAN_INTERCEPTOR(void, _longjmp, uptr *env, int val) {
663 {
664 SCOPED_INTERCEPTOR_RAW(_longjmp, env, val);
665 }
666 LongJmp(cur_thread(), env);
667 REAL(_longjmp)(env, val);
668 }
669 #endif
670
671 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(void *,malloc,uptr size)672 TSAN_INTERCEPTOR(void*, malloc, uptr size) {
673 if (UNLIKELY(cur_thread()->in_symbolizer))
674 return InternalAlloc(size);
675 void *p = 0;
676 {
677 SCOPED_INTERCEPTOR_RAW(malloc, size);
678 p = user_alloc(thr, pc, size);
679 }
680 invoke_malloc_hook(p, size);
681 return p;
682 }
683
TSAN_INTERCEPTOR(void *,__libc_memalign,uptr align,uptr sz)684 TSAN_INTERCEPTOR(void*, __libc_memalign, uptr align, uptr sz) {
685 SCOPED_TSAN_INTERCEPTOR(__libc_memalign, align, sz);
686 return user_memalign(thr, pc, align, sz);
687 }
688
TSAN_INTERCEPTOR(void *,calloc,uptr size,uptr n)689 TSAN_INTERCEPTOR(void*, calloc, uptr size, uptr n) {
690 if (UNLIKELY(cur_thread()->in_symbolizer))
691 return InternalCalloc(size, n);
692 void *p = 0;
693 {
694 SCOPED_INTERCEPTOR_RAW(calloc, size, n);
695 p = user_calloc(thr, pc, size, n);
696 }
697 invoke_malloc_hook(p, n * size);
698 return p;
699 }
700
TSAN_INTERCEPTOR(void *,realloc,void * p,uptr size)701 TSAN_INTERCEPTOR(void*, realloc, void *p, uptr size) {
702 if (UNLIKELY(cur_thread()->in_symbolizer))
703 return InternalRealloc(p, size);
704 if (p)
705 invoke_free_hook(p);
706 {
707 SCOPED_INTERCEPTOR_RAW(realloc, p, size);
708 p = user_realloc(thr, pc, p, size);
709 }
710 invoke_malloc_hook(p, size);
711 return p;
712 }
713
TSAN_INTERCEPTOR(void,free,void * p)714 TSAN_INTERCEPTOR(void, free, void *p) {
715 if (p == 0)
716 return;
717 if (UNLIKELY(cur_thread()->in_symbolizer))
718 return InternalFree(p);
719 invoke_free_hook(p);
720 SCOPED_INTERCEPTOR_RAW(free, p);
721 user_free(thr, pc, p);
722 }
723
TSAN_INTERCEPTOR(void,cfree,void * p)724 TSAN_INTERCEPTOR(void, cfree, void *p) {
725 if (p == 0)
726 return;
727 if (UNLIKELY(cur_thread()->in_symbolizer))
728 return InternalFree(p);
729 invoke_free_hook(p);
730 SCOPED_INTERCEPTOR_RAW(cfree, p);
731 user_free(thr, pc, p);
732 }
733
TSAN_INTERCEPTOR(uptr,malloc_usable_size,void * p)734 TSAN_INTERCEPTOR(uptr, malloc_usable_size, void *p) {
735 SCOPED_INTERCEPTOR_RAW(malloc_usable_size, p);
736 return user_alloc_usable_size(p);
737 }
738 #endif
739
TSAN_INTERCEPTOR(char *,strcpy,char * dst,const char * src)740 TSAN_INTERCEPTOR(char*, strcpy, char *dst, const char *src) { // NOLINT
741 SCOPED_TSAN_INTERCEPTOR(strcpy, dst, src); // NOLINT
742 uptr srclen = internal_strlen(src);
743 MemoryAccessRange(thr, pc, (uptr)dst, srclen + 1, true);
744 MemoryAccessRange(thr, pc, (uptr)src, srclen + 1, false);
745 return REAL(strcpy)(dst, src); // NOLINT
746 }
747
TSAN_INTERCEPTOR(char *,strncpy,char * dst,char * src,uptr n)748 TSAN_INTERCEPTOR(char*, strncpy, char *dst, char *src, uptr n) {
749 SCOPED_TSAN_INTERCEPTOR(strncpy, dst, src, n);
750 uptr srclen = internal_strnlen(src, n);
751 MemoryAccessRange(thr, pc, (uptr)dst, n, true);
752 MemoryAccessRange(thr, pc, (uptr)src, min(srclen + 1, n), false);
753 return REAL(strncpy)(dst, src, n);
754 }
755
TSAN_INTERCEPTOR(char *,strdup,const char * str)756 TSAN_INTERCEPTOR(char*, strdup, const char *str) {
757 SCOPED_TSAN_INTERCEPTOR(strdup, str);
758 // strdup will call malloc, so no instrumentation is required here.
759 return REAL(strdup)(str);
760 }
761
fix_mmap_addr(void ** addr,long_t sz,int flags)762 static bool fix_mmap_addr(void **addr, long_t sz, int flags) {
763 if (*addr) {
764 if (!IsAppMem((uptr)*addr) || !IsAppMem((uptr)*addr + sz - 1)) {
765 if (flags & MAP_FIXED) {
766 errno = errno_EINVAL;
767 return false;
768 } else {
769 *addr = 0;
770 }
771 }
772 }
773 return true;
774 }
775
776 template <class Mmap>
mmap_interceptor(ThreadState * thr,uptr pc,Mmap real_mmap,void * addr,SIZE_T sz,int prot,int flags,int fd,OFF64_T off)777 static void *mmap_interceptor(ThreadState *thr, uptr pc, Mmap real_mmap,
778 void *addr, SIZE_T sz, int prot, int flags,
779 int fd, OFF64_T off) {
780 if (!fix_mmap_addr(&addr, sz, flags)) return MAP_FAILED;
781 void *res = real_mmap(addr, sz, prot, flags, fd, off);
782 if (res != MAP_FAILED) {
783 if (fd > 0) FdAccess(thr, pc, fd);
784 if (thr->ignore_reads_and_writes == 0)
785 MemoryRangeImitateWrite(thr, pc, (uptr)res, sz);
786 else
787 MemoryResetRange(thr, pc, (uptr)res, sz);
788 }
789 return res;
790 }
791
TSAN_INTERCEPTOR(int,munmap,void * addr,long_t sz)792 TSAN_INTERCEPTOR(int, munmap, void *addr, long_t sz) {
793 SCOPED_TSAN_INTERCEPTOR(munmap, addr, sz);
794 if (sz != 0) {
795 // If sz == 0, munmap will return EINVAL and don't unmap any memory.
796 DontNeedShadowFor((uptr)addr, sz);
797 ScopedGlobalProcessor sgp;
798 ctx->metamap.ResetRange(thr->proc(), (uptr)addr, (uptr)sz);
799 }
800 int res = REAL(munmap)(addr, sz);
801 return res;
802 }
803
804 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(void *,memalign,uptr align,uptr sz)805 TSAN_INTERCEPTOR(void*, memalign, uptr align, uptr sz) {
806 SCOPED_INTERCEPTOR_RAW(memalign, align, sz);
807 return user_memalign(thr, pc, align, sz);
808 }
809 #define TSAN_MAYBE_INTERCEPT_MEMALIGN TSAN_INTERCEPT(memalign)
810 #else
811 #define TSAN_MAYBE_INTERCEPT_MEMALIGN
812 #endif
813
814 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(void *,aligned_alloc,uptr align,uptr sz)815 TSAN_INTERCEPTOR(void*, aligned_alloc, uptr align, uptr sz) {
816 if (UNLIKELY(cur_thread()->in_symbolizer))
817 return InternalAlloc(sz, nullptr, align);
818 SCOPED_INTERCEPTOR_RAW(aligned_alloc, align, sz);
819 return user_aligned_alloc(thr, pc, align, sz);
820 }
821
TSAN_INTERCEPTOR(void *,valloc,uptr sz)822 TSAN_INTERCEPTOR(void*, valloc, uptr sz) {
823 if (UNLIKELY(cur_thread()->in_symbolizer))
824 return InternalAlloc(sz, nullptr, GetPageSizeCached());
825 SCOPED_INTERCEPTOR_RAW(valloc, sz);
826 return user_valloc(thr, pc, sz);
827 }
828 #endif
829
830 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(void *,pvalloc,uptr sz)831 TSAN_INTERCEPTOR(void*, pvalloc, uptr sz) {
832 if (UNLIKELY(cur_thread()->in_symbolizer)) {
833 uptr PageSize = GetPageSizeCached();
834 sz = sz ? RoundUpTo(sz, PageSize) : PageSize;
835 return InternalAlloc(sz, nullptr, PageSize);
836 }
837 SCOPED_INTERCEPTOR_RAW(pvalloc, sz);
838 return user_pvalloc(thr, pc, sz);
839 }
840 #define TSAN_MAYBE_INTERCEPT_PVALLOC TSAN_INTERCEPT(pvalloc)
841 #else
842 #define TSAN_MAYBE_INTERCEPT_PVALLOC
843 #endif
844
845 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,posix_memalign,void ** memptr,uptr align,uptr sz)846 TSAN_INTERCEPTOR(int, posix_memalign, void **memptr, uptr align, uptr sz) {
847 if (UNLIKELY(cur_thread()->in_symbolizer)) {
848 void *p = InternalAlloc(sz, nullptr, align);
849 if (!p)
850 return errno_ENOMEM;
851 *memptr = p;
852 return 0;
853 }
854 SCOPED_INTERCEPTOR_RAW(posix_memalign, memptr, align, sz);
855 return user_posix_memalign(thr, pc, memptr, align, sz);
856 }
857 #endif
858
859 // __cxa_guard_acquire and friends need to be intercepted in a special way -
860 // regular interceptors will break statically-linked libstdc++. Linux
861 // interceptors are especially defined as weak functions (so that they don't
862 // cause link errors when user defines them as well). So they silently
863 // auto-disable themselves when such symbol is already present in the binary. If
864 // we link libstdc++ statically, it will bring own __cxa_guard_acquire which
865 // will silently replace our interceptor. That's why on Linux we simply export
866 // these interceptors with INTERFACE_ATTRIBUTE.
867 // On OS X, we don't support statically linking, so we just use a regular
868 // interceptor.
869 #if SANITIZER_MAC
870 #define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
871 #else
872 #define STDCXX_INTERCEPTOR(rettype, name, ...) \
873 extern "C" rettype INTERFACE_ATTRIBUTE name(__VA_ARGS__)
874 #endif
875
876 // Used in thread-safe function static initialization.
STDCXX_INTERCEPTOR(int,__cxa_guard_acquire,atomic_uint32_t * g)877 STDCXX_INTERCEPTOR(int, __cxa_guard_acquire, atomic_uint32_t *g) {
878 SCOPED_INTERCEPTOR_RAW(__cxa_guard_acquire, g);
879 OnPotentiallyBlockingRegionBegin();
880 auto on_exit = at_scope_exit(&OnPotentiallyBlockingRegionEnd);
881 for (;;) {
882 u32 cmp = atomic_load(g, memory_order_acquire);
883 if (cmp == 0) {
884 if (atomic_compare_exchange_strong(g, &cmp, 1<<16, memory_order_relaxed))
885 return 1;
886 } else if (cmp == 1) {
887 Acquire(thr, pc, (uptr)g);
888 return 0;
889 } else {
890 internal_sched_yield();
891 }
892 }
893 }
894
STDCXX_INTERCEPTOR(void,__cxa_guard_release,atomic_uint32_t * g)895 STDCXX_INTERCEPTOR(void, __cxa_guard_release, atomic_uint32_t *g) {
896 SCOPED_INTERCEPTOR_RAW(__cxa_guard_release, g);
897 Release(thr, pc, (uptr)g);
898 atomic_store(g, 1, memory_order_release);
899 }
900
STDCXX_INTERCEPTOR(void,__cxa_guard_abort,atomic_uint32_t * g)901 STDCXX_INTERCEPTOR(void, __cxa_guard_abort, atomic_uint32_t *g) {
902 SCOPED_INTERCEPTOR_RAW(__cxa_guard_abort, g);
903 atomic_store(g, 0, memory_order_relaxed);
904 }
905
906 namespace __tsan {
DestroyThreadState()907 void DestroyThreadState() {
908 ThreadState *thr = cur_thread();
909 Processor *proc = thr->proc();
910 ThreadFinish(thr);
911 ProcUnwire(proc, thr);
912 ProcDestroy(proc);
913 ThreadSignalContext *sctx = thr->signal_ctx;
914 if (sctx) {
915 thr->signal_ctx = 0;
916 UnmapOrDie(sctx, sizeof(*sctx));
917 }
918 DTLS_Destroy();
919 cur_thread_finalize();
920 }
921 } // namespace __tsan
922
923 #if !SANITIZER_MAC && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
thread_finalize(void * v)924 static void thread_finalize(void *v) {
925 uptr iter = (uptr)v;
926 if (iter > 1) {
927 if (pthread_setspecific(interceptor_ctx()->finalize_key,
928 (void*)(iter - 1))) {
929 Printf("ThreadSanitizer: failed to set thread key\n");
930 Die();
931 }
932 return;
933 }
934 DestroyThreadState();
935 }
936 #endif
937
938
939 struct ThreadParam {
940 void* (*callback)(void *arg);
941 void *param;
942 atomic_uintptr_t tid;
943 };
944
__tsan_thread_start_func(void * arg)945 extern "C" void *__tsan_thread_start_func(void *arg) {
946 ThreadParam *p = (ThreadParam*)arg;
947 void* (*callback)(void *arg) = p->callback;
948 void *param = p->param;
949 int tid = 0;
950 {
951 ThreadState *thr = cur_thread();
952 // Thread-local state is not initialized yet.
953 ScopedIgnoreInterceptors ignore;
954 #if !SANITIZER_MAC && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
955 ThreadIgnoreBegin(thr, 0);
956 if (pthread_setspecific(interceptor_ctx()->finalize_key,
957 (void *)GetPthreadDestructorIterations())) {
958 Printf("ThreadSanitizer: failed to set thread key\n");
959 Die();
960 }
961 ThreadIgnoreEnd(thr, 0);
962 #endif
963 while ((tid = atomic_load(&p->tid, memory_order_acquire)) == 0)
964 internal_sched_yield();
965 Processor *proc = ProcCreate();
966 ProcWire(proc, thr);
967 ThreadStart(thr, tid, GetTid(), /*workerthread*/ false);
968 atomic_store(&p->tid, 0, memory_order_release);
969 }
970 void *res = callback(param);
971 // Prevent the callback from being tail called,
972 // it mixes up stack traces.
973 volatile int foo = 42;
974 foo++;
975 return res;
976 }
977
TSAN_INTERCEPTOR(int,pthread_create,void * th,void * attr,void * (* callback)(void *),void * param)978 TSAN_INTERCEPTOR(int, pthread_create,
979 void *th, void *attr, void *(*callback)(void*), void * param) {
980 SCOPED_INTERCEPTOR_RAW(pthread_create, th, attr, callback, param);
981
982 MaybeSpawnBackgroundThread();
983
984 if (ctx->after_multithreaded_fork) {
985 if (flags()->die_after_fork) {
986 Report("ThreadSanitizer: starting new threads after multi-threaded "
987 "fork is not supported. Dying (set die_after_fork=0 to override)\n");
988 Die();
989 } else {
990 VPrintf(1, "ThreadSanitizer: starting new threads after multi-threaded "
991 "fork is not supported (pid %d). Continuing because of "
992 "die_after_fork=0, but you are on your own\n", internal_getpid());
993 }
994 }
995 __sanitizer_pthread_attr_t myattr;
996 if (attr == 0) {
997 pthread_attr_init(&myattr);
998 attr = &myattr;
999 }
1000 int detached = 0;
1001 REAL(pthread_attr_getdetachstate)(attr, &detached);
1002 AdjustStackSize(attr);
1003
1004 ThreadParam p;
1005 p.callback = callback;
1006 p.param = param;
1007 atomic_store(&p.tid, 0, memory_order_relaxed);
1008 int res = -1;
1009 {
1010 // Otherwise we see false positives in pthread stack manipulation.
1011 ScopedIgnoreInterceptors ignore;
1012 ThreadIgnoreBegin(thr, pc);
1013 res = REAL(pthread_create)(th, attr, __tsan_thread_start_func, &p);
1014 ThreadIgnoreEnd(thr, pc);
1015 }
1016 if (res == 0) {
1017 int tid = ThreadCreate(thr, pc, *(uptr*)th, IsStateDetached(detached));
1018 CHECK_NE(tid, 0);
1019 // Synchronization on p.tid serves two purposes:
1020 // 1. ThreadCreate must finish before the new thread starts.
1021 // Otherwise the new thread can call pthread_detach, but the pthread_t
1022 // identifier is not yet registered in ThreadRegistry by ThreadCreate.
1023 // 2. ThreadStart must finish before this thread continues.
1024 // Otherwise, this thread can call pthread_detach and reset thr->sync
1025 // before the new thread got a chance to acquire from it in ThreadStart.
1026 atomic_store(&p.tid, tid, memory_order_release);
1027 while (atomic_load(&p.tid, memory_order_acquire) != 0)
1028 internal_sched_yield();
1029 }
1030 if (attr == &myattr)
1031 pthread_attr_destroy(&myattr);
1032 return res;
1033 }
1034
TSAN_INTERCEPTOR(int,pthread_join,void * th,void ** ret)1035 TSAN_INTERCEPTOR(int, pthread_join, void *th, void **ret) {
1036 SCOPED_INTERCEPTOR_RAW(pthread_join, th, ret);
1037 int tid = ThreadTid(thr, pc, (uptr)th);
1038 ThreadIgnoreBegin(thr, pc);
1039 int res = BLOCK_REAL(pthread_join)(th, ret);
1040 ThreadIgnoreEnd(thr, pc);
1041 if (res == 0) {
1042 ThreadJoin(thr, pc, tid);
1043 }
1044 return res;
1045 }
1046
1047 DEFINE_REAL_PTHREAD_FUNCTIONS
1048
TSAN_INTERCEPTOR(int,pthread_detach,void * th)1049 TSAN_INTERCEPTOR(int, pthread_detach, void *th) {
1050 SCOPED_TSAN_INTERCEPTOR(pthread_detach, th);
1051 int tid = ThreadTid(thr, pc, (uptr)th);
1052 int res = REAL(pthread_detach)(th);
1053 if (res == 0) {
1054 ThreadDetach(thr, pc, tid);
1055 }
1056 return res;
1057 }
1058
1059 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,pthread_tryjoin_np,void * th,void ** ret)1060 TSAN_INTERCEPTOR(int, pthread_tryjoin_np, void *th, void **ret) {
1061 SCOPED_TSAN_INTERCEPTOR(pthread_tryjoin_np, th, ret);
1062 int tid = ThreadTid(thr, pc, (uptr)th);
1063 ThreadIgnoreBegin(thr, pc);
1064 int res = REAL(pthread_tryjoin_np)(th, ret);
1065 ThreadIgnoreEnd(thr, pc);
1066 if (res == 0)
1067 ThreadJoin(thr, pc, tid);
1068 else
1069 ThreadNotJoined(thr, pc, tid, (uptr)th);
1070 return res;
1071 }
1072
TSAN_INTERCEPTOR(int,pthread_timedjoin_np,void * th,void ** ret,const struct timespec * abstime)1073 TSAN_INTERCEPTOR(int, pthread_timedjoin_np, void *th, void **ret,
1074 const struct timespec *abstime) {
1075 SCOPED_TSAN_INTERCEPTOR(pthread_timedjoin_np, th, ret, abstime);
1076 int tid = ThreadTid(thr, pc, (uptr)th);
1077 ThreadIgnoreBegin(thr, pc);
1078 int res = BLOCK_REAL(pthread_timedjoin_np)(th, ret, abstime);
1079 ThreadIgnoreEnd(thr, pc);
1080 if (res == 0)
1081 ThreadJoin(thr, pc, tid);
1082 else
1083 ThreadNotJoined(thr, pc, tid, (uptr)th);
1084 return res;
1085 }
1086 #endif
1087
1088 // Problem:
1089 // NPTL implementation of pthread_cond has 2 versions (2.2.5 and 2.3.2).
1090 // pthread_cond_t has different size in the different versions.
1091 // If call new REAL functions for old pthread_cond_t, they will corrupt memory
1092 // after pthread_cond_t (old cond is smaller).
1093 // If we call old REAL functions for new pthread_cond_t, we will lose some
1094 // functionality (e.g. old functions do not support waiting against
1095 // CLOCK_REALTIME).
1096 // Proper handling would require to have 2 versions of interceptors as well.
1097 // But this is messy, in particular requires linker scripts when sanitizer
1098 // runtime is linked into a shared library.
1099 // Instead we assume we don't have dynamic libraries built against old
1100 // pthread (2.2.5 is dated by 2002). And provide legacy_pthread_cond flag
1101 // that allows to work with old libraries (but this mode does not support
1102 // some features, e.g. pthread_condattr_getpshared).
init_cond(void * c,bool force=false)1103 static void *init_cond(void *c, bool force = false) {
1104 // sizeof(pthread_cond_t) >= sizeof(uptr) in both versions.
1105 // So we allocate additional memory on the side large enough to hold
1106 // any pthread_cond_t object. Always call new REAL functions, but pass
1107 // the aux object to them.
1108 // Note: the code assumes that PTHREAD_COND_INITIALIZER initializes
1109 // first word of pthread_cond_t to zero.
1110 // It's all relevant only for linux.
1111 if (!common_flags()->legacy_pthread_cond)
1112 return c;
1113 atomic_uintptr_t *p = (atomic_uintptr_t*)c;
1114 uptr cond = atomic_load(p, memory_order_acquire);
1115 if (!force && cond != 0)
1116 return (void*)cond;
1117 void *newcond = WRAP(malloc)(pthread_cond_t_sz);
1118 internal_memset(newcond, 0, pthread_cond_t_sz);
1119 if (atomic_compare_exchange_strong(p, &cond, (uptr)newcond,
1120 memory_order_acq_rel))
1121 return newcond;
1122 WRAP(free)(newcond);
1123 return (void*)cond;
1124 }
1125
1126 struct CondMutexUnlockCtx {
1127 ScopedInterceptor *si;
1128 ThreadState *thr;
1129 uptr pc;
1130 void *m;
1131 };
1132
cond_mutex_unlock(CondMutexUnlockCtx * arg)1133 static void cond_mutex_unlock(CondMutexUnlockCtx *arg) {
1134 // pthread_cond_wait interceptor has enabled async signal delivery
1135 // (see BlockingCall below). Disable async signals since we are running
1136 // tsan code. Also ScopedInterceptor and BlockingCall destructors won't run
1137 // since the thread is cancelled, so we have to manually execute them
1138 // (the thread still can run some user code due to pthread_cleanup_push).
1139 ThreadSignalContext *ctx = SigCtx(arg->thr);
1140 CHECK_EQ(atomic_load(&ctx->in_blocking_func, memory_order_relaxed), 1);
1141 atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
1142 MutexPostLock(arg->thr, arg->pc, (uptr)arg->m, MutexFlagDoPreLockOnPostLock);
1143 // Undo BlockingCall ctor effects.
1144 arg->thr->ignore_interceptors--;
1145 arg->si->~ScopedInterceptor();
1146 }
1147
INTERCEPTOR(int,pthread_cond_init,void * c,void * a)1148 INTERCEPTOR(int, pthread_cond_init, void *c, void *a) {
1149 void *cond = init_cond(c, true);
1150 SCOPED_TSAN_INTERCEPTOR(pthread_cond_init, cond, a);
1151 MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
1152 return REAL(pthread_cond_init)(cond, a);
1153 }
1154
cond_wait(ThreadState * thr,uptr pc,ScopedInterceptor * si,int (* fn)(void * c,void * m,void * abstime),void * c,void * m,void * t)1155 static int cond_wait(ThreadState *thr, uptr pc, ScopedInterceptor *si,
1156 int (*fn)(void *c, void *m, void *abstime), void *c,
1157 void *m, void *t) {
1158 MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1159 MutexUnlock(thr, pc, (uptr)m);
1160 CondMutexUnlockCtx arg = {si, thr, pc, m};
1161 int res = 0;
1162 // This ensures that we handle mutex lock even in case of pthread_cancel.
1163 // See test/tsan/cond_cancel.cc.
1164 {
1165 // Enable signal delivery while the thread is blocked.
1166 BlockingCall bc(thr);
1167 res = call_pthread_cancel_with_cleanup(
1168 fn, c, m, t, (void (*)(void *arg))cond_mutex_unlock, &arg);
1169 }
1170 if (res == errno_EOWNERDEAD) MutexRepair(thr, pc, (uptr)m);
1171 MutexPostLock(thr, pc, (uptr)m, MutexFlagDoPreLockOnPostLock);
1172 return res;
1173 }
1174
INTERCEPTOR(int,pthread_cond_wait,void * c,void * m)1175 INTERCEPTOR(int, pthread_cond_wait, void *c, void *m) {
1176 void *cond = init_cond(c);
1177 SCOPED_TSAN_INTERCEPTOR(pthread_cond_wait, cond, m);
1178 return cond_wait(thr, pc, &si, (int (*)(void *c, void *m, void *abstime))REAL(
1179 pthread_cond_wait),
1180 cond, m, 0);
1181 }
1182
INTERCEPTOR(int,pthread_cond_timedwait,void * c,void * m,void * abstime)1183 INTERCEPTOR(int, pthread_cond_timedwait, void *c, void *m, void *abstime) {
1184 void *cond = init_cond(c);
1185 SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait, cond, m, abstime);
1186 return cond_wait(thr, pc, &si, REAL(pthread_cond_timedwait), cond, m,
1187 abstime);
1188 }
1189
1190 #if SANITIZER_MAC
INTERCEPTOR(int,pthread_cond_timedwait_relative_np,void * c,void * m,void * reltime)1191 INTERCEPTOR(int, pthread_cond_timedwait_relative_np, void *c, void *m,
1192 void *reltime) {
1193 void *cond = init_cond(c);
1194 SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait_relative_np, cond, m, reltime);
1195 return cond_wait(thr, pc, &si, REAL(pthread_cond_timedwait_relative_np), cond,
1196 m, reltime);
1197 }
1198 #endif
1199
INTERCEPTOR(int,pthread_cond_signal,void * c)1200 INTERCEPTOR(int, pthread_cond_signal, void *c) {
1201 void *cond = init_cond(c);
1202 SCOPED_TSAN_INTERCEPTOR(pthread_cond_signal, cond);
1203 MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1204 return REAL(pthread_cond_signal)(cond);
1205 }
1206
INTERCEPTOR(int,pthread_cond_broadcast,void * c)1207 INTERCEPTOR(int, pthread_cond_broadcast, void *c) {
1208 void *cond = init_cond(c);
1209 SCOPED_TSAN_INTERCEPTOR(pthread_cond_broadcast, cond);
1210 MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1211 return REAL(pthread_cond_broadcast)(cond);
1212 }
1213
INTERCEPTOR(int,pthread_cond_destroy,void * c)1214 INTERCEPTOR(int, pthread_cond_destroy, void *c) {
1215 void *cond = init_cond(c);
1216 SCOPED_TSAN_INTERCEPTOR(pthread_cond_destroy, cond);
1217 MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
1218 int res = REAL(pthread_cond_destroy)(cond);
1219 if (common_flags()->legacy_pthread_cond) {
1220 // Free our aux cond and zero the pointer to not leave dangling pointers.
1221 WRAP(free)(cond);
1222 atomic_store((atomic_uintptr_t*)c, 0, memory_order_relaxed);
1223 }
1224 return res;
1225 }
1226
TSAN_INTERCEPTOR(int,pthread_mutex_init,void * m,void * a)1227 TSAN_INTERCEPTOR(int, pthread_mutex_init, void *m, void *a) {
1228 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_init, m, a);
1229 int res = REAL(pthread_mutex_init)(m, a);
1230 if (res == 0) {
1231 u32 flagz = 0;
1232 if (a) {
1233 int type = 0;
1234 if (REAL(pthread_mutexattr_gettype)(a, &type) == 0)
1235 if (type == PTHREAD_MUTEX_RECURSIVE ||
1236 type == PTHREAD_MUTEX_RECURSIVE_NP)
1237 flagz |= MutexFlagWriteReentrant;
1238 }
1239 MutexCreate(thr, pc, (uptr)m, flagz);
1240 }
1241 return res;
1242 }
1243
TSAN_INTERCEPTOR(int,pthread_mutex_destroy,void * m)1244 TSAN_INTERCEPTOR(int, pthread_mutex_destroy, void *m) {
1245 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_destroy, m);
1246 int res = REAL(pthread_mutex_destroy)(m);
1247 if (res == 0 || res == errno_EBUSY) {
1248 MutexDestroy(thr, pc, (uptr)m);
1249 }
1250 return res;
1251 }
1252
TSAN_INTERCEPTOR(int,pthread_mutex_trylock,void * m)1253 TSAN_INTERCEPTOR(int, pthread_mutex_trylock, void *m) {
1254 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_trylock, m);
1255 int res = REAL(pthread_mutex_trylock)(m);
1256 if (res == errno_EOWNERDEAD)
1257 MutexRepair(thr, pc, (uptr)m);
1258 if (res == 0 || res == errno_EOWNERDEAD)
1259 MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1260 return res;
1261 }
1262
1263 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,pthread_mutex_timedlock,void * m,void * abstime)1264 TSAN_INTERCEPTOR(int, pthread_mutex_timedlock, void *m, void *abstime) {
1265 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_timedlock, m, abstime);
1266 int res = REAL(pthread_mutex_timedlock)(m, abstime);
1267 if (res == 0) {
1268 MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1269 }
1270 return res;
1271 }
1272 #endif
1273
1274 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,pthread_spin_init,void * m,int pshared)1275 TSAN_INTERCEPTOR(int, pthread_spin_init, void *m, int pshared) {
1276 SCOPED_TSAN_INTERCEPTOR(pthread_spin_init, m, pshared);
1277 int res = REAL(pthread_spin_init)(m, pshared);
1278 if (res == 0) {
1279 MutexCreate(thr, pc, (uptr)m);
1280 }
1281 return res;
1282 }
1283
TSAN_INTERCEPTOR(int,pthread_spin_destroy,void * m)1284 TSAN_INTERCEPTOR(int, pthread_spin_destroy, void *m) {
1285 SCOPED_TSAN_INTERCEPTOR(pthread_spin_destroy, m);
1286 int res = REAL(pthread_spin_destroy)(m);
1287 if (res == 0) {
1288 MutexDestroy(thr, pc, (uptr)m);
1289 }
1290 return res;
1291 }
1292
TSAN_INTERCEPTOR(int,pthread_spin_lock,void * m)1293 TSAN_INTERCEPTOR(int, pthread_spin_lock, void *m) {
1294 SCOPED_TSAN_INTERCEPTOR(pthread_spin_lock, m);
1295 MutexPreLock(thr, pc, (uptr)m);
1296 int res = REAL(pthread_spin_lock)(m);
1297 if (res == 0) {
1298 MutexPostLock(thr, pc, (uptr)m);
1299 }
1300 return res;
1301 }
1302
TSAN_INTERCEPTOR(int,pthread_spin_trylock,void * m)1303 TSAN_INTERCEPTOR(int, pthread_spin_trylock, void *m) {
1304 SCOPED_TSAN_INTERCEPTOR(pthread_spin_trylock, m);
1305 int res = REAL(pthread_spin_trylock)(m);
1306 if (res == 0) {
1307 MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1308 }
1309 return res;
1310 }
1311
TSAN_INTERCEPTOR(int,pthread_spin_unlock,void * m)1312 TSAN_INTERCEPTOR(int, pthread_spin_unlock, void *m) {
1313 SCOPED_TSAN_INTERCEPTOR(pthread_spin_unlock, m);
1314 MutexUnlock(thr, pc, (uptr)m);
1315 int res = REAL(pthread_spin_unlock)(m);
1316 return res;
1317 }
1318 #endif
1319
TSAN_INTERCEPTOR(int,pthread_rwlock_init,void * m,void * a)1320 TSAN_INTERCEPTOR(int, pthread_rwlock_init, void *m, void *a) {
1321 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_init, m, a);
1322 int res = REAL(pthread_rwlock_init)(m, a);
1323 if (res == 0) {
1324 MutexCreate(thr, pc, (uptr)m);
1325 }
1326 return res;
1327 }
1328
TSAN_INTERCEPTOR(int,pthread_rwlock_destroy,void * m)1329 TSAN_INTERCEPTOR(int, pthread_rwlock_destroy, void *m) {
1330 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_destroy, m);
1331 int res = REAL(pthread_rwlock_destroy)(m);
1332 if (res == 0) {
1333 MutexDestroy(thr, pc, (uptr)m);
1334 }
1335 return res;
1336 }
1337
TSAN_INTERCEPTOR(int,pthread_rwlock_rdlock,void * m)1338 TSAN_INTERCEPTOR(int, pthread_rwlock_rdlock, void *m) {
1339 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_rdlock, m);
1340 MutexPreReadLock(thr, pc, (uptr)m);
1341 int res = REAL(pthread_rwlock_rdlock)(m);
1342 if (res == 0) {
1343 MutexPostReadLock(thr, pc, (uptr)m);
1344 }
1345 return res;
1346 }
1347
TSAN_INTERCEPTOR(int,pthread_rwlock_tryrdlock,void * m)1348 TSAN_INTERCEPTOR(int, pthread_rwlock_tryrdlock, void *m) {
1349 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_tryrdlock, m);
1350 int res = REAL(pthread_rwlock_tryrdlock)(m);
1351 if (res == 0) {
1352 MutexPostReadLock(thr, pc, (uptr)m, MutexFlagTryLock);
1353 }
1354 return res;
1355 }
1356
1357 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,pthread_rwlock_timedrdlock,void * m,void * abstime)1358 TSAN_INTERCEPTOR(int, pthread_rwlock_timedrdlock, void *m, void *abstime) {
1359 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedrdlock, m, abstime);
1360 int res = REAL(pthread_rwlock_timedrdlock)(m, abstime);
1361 if (res == 0) {
1362 MutexPostReadLock(thr, pc, (uptr)m);
1363 }
1364 return res;
1365 }
1366 #endif
1367
TSAN_INTERCEPTOR(int,pthread_rwlock_wrlock,void * m)1368 TSAN_INTERCEPTOR(int, pthread_rwlock_wrlock, void *m) {
1369 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_wrlock, m);
1370 MutexPreLock(thr, pc, (uptr)m);
1371 int res = REAL(pthread_rwlock_wrlock)(m);
1372 if (res == 0) {
1373 MutexPostLock(thr, pc, (uptr)m);
1374 }
1375 return res;
1376 }
1377
TSAN_INTERCEPTOR(int,pthread_rwlock_trywrlock,void * m)1378 TSAN_INTERCEPTOR(int, pthread_rwlock_trywrlock, void *m) {
1379 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_trywrlock, m);
1380 int res = REAL(pthread_rwlock_trywrlock)(m);
1381 if (res == 0) {
1382 MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1383 }
1384 return res;
1385 }
1386
1387 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,pthread_rwlock_timedwrlock,void * m,void * abstime)1388 TSAN_INTERCEPTOR(int, pthread_rwlock_timedwrlock, void *m, void *abstime) {
1389 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedwrlock, m, abstime);
1390 int res = REAL(pthread_rwlock_timedwrlock)(m, abstime);
1391 if (res == 0) {
1392 MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1393 }
1394 return res;
1395 }
1396 #endif
1397
TSAN_INTERCEPTOR(int,pthread_rwlock_unlock,void * m)1398 TSAN_INTERCEPTOR(int, pthread_rwlock_unlock, void *m) {
1399 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_unlock, m);
1400 MutexReadOrWriteUnlock(thr, pc, (uptr)m);
1401 int res = REAL(pthread_rwlock_unlock)(m);
1402 return res;
1403 }
1404
1405 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,pthread_barrier_init,void * b,void * a,unsigned count)1406 TSAN_INTERCEPTOR(int, pthread_barrier_init, void *b, void *a, unsigned count) {
1407 SCOPED_TSAN_INTERCEPTOR(pthread_barrier_init, b, a, count);
1408 MemoryWrite(thr, pc, (uptr)b, kSizeLog1);
1409 int res = REAL(pthread_barrier_init)(b, a, count);
1410 return res;
1411 }
1412
TSAN_INTERCEPTOR(int,pthread_barrier_destroy,void * b)1413 TSAN_INTERCEPTOR(int, pthread_barrier_destroy, void *b) {
1414 SCOPED_TSAN_INTERCEPTOR(pthread_barrier_destroy, b);
1415 MemoryWrite(thr, pc, (uptr)b, kSizeLog1);
1416 int res = REAL(pthread_barrier_destroy)(b);
1417 return res;
1418 }
1419
TSAN_INTERCEPTOR(int,pthread_barrier_wait,void * b)1420 TSAN_INTERCEPTOR(int, pthread_barrier_wait, void *b) {
1421 SCOPED_TSAN_INTERCEPTOR(pthread_barrier_wait, b);
1422 Release(thr, pc, (uptr)b);
1423 MemoryRead(thr, pc, (uptr)b, kSizeLog1);
1424 int res = REAL(pthread_barrier_wait)(b);
1425 MemoryRead(thr, pc, (uptr)b, kSizeLog1);
1426 if (res == 0 || res == PTHREAD_BARRIER_SERIAL_THREAD) {
1427 Acquire(thr, pc, (uptr)b);
1428 }
1429 return res;
1430 }
1431 #endif
1432
TSAN_INTERCEPTOR(int,pthread_once,void * o,void (* f)())1433 TSAN_INTERCEPTOR(int, pthread_once, void *o, void (*f)()) {
1434 SCOPED_INTERCEPTOR_RAW(pthread_once, o, f);
1435 if (o == 0 || f == 0)
1436 return errno_EINVAL;
1437 atomic_uint32_t *a;
1438
1439 if (SANITIZER_MAC)
1440 a = static_cast<atomic_uint32_t*>((void *)((char *)o + sizeof(long_t)));
1441 else if (SANITIZER_NETBSD)
1442 a = static_cast<atomic_uint32_t*>
1443 ((void *)((char *)o + __sanitizer::pthread_mutex_t_sz));
1444 else
1445 a = static_cast<atomic_uint32_t*>(o);
1446
1447 u32 v = atomic_load(a, memory_order_acquire);
1448 if (v == 0 && atomic_compare_exchange_strong(a, &v, 1,
1449 memory_order_relaxed)) {
1450 (*f)();
1451 if (!thr->in_ignored_lib)
1452 Release(thr, pc, (uptr)o);
1453 atomic_store(a, 2, memory_order_release);
1454 } else {
1455 while (v != 2) {
1456 internal_sched_yield();
1457 v = atomic_load(a, memory_order_acquire);
1458 }
1459 if (!thr->in_ignored_lib)
1460 Acquire(thr, pc, (uptr)o);
1461 }
1462 return 0;
1463 }
1464
1465 #if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int,__fxstat,int version,int fd,void * buf)1466 TSAN_INTERCEPTOR(int, __fxstat, int version, int fd, void *buf) {
1467 SCOPED_TSAN_INTERCEPTOR(__fxstat, version, fd, buf);
1468 if (fd > 0)
1469 FdAccess(thr, pc, fd);
1470 return REAL(__fxstat)(version, fd, buf);
1471 }
1472 #define TSAN_MAYBE_INTERCEPT___FXSTAT TSAN_INTERCEPT(__fxstat)
1473 #else
1474 #define TSAN_MAYBE_INTERCEPT___FXSTAT
1475 #endif
1476
TSAN_INTERCEPTOR(int,fstat,int fd,void * buf)1477 TSAN_INTERCEPTOR(int, fstat, int fd, void *buf) {
1478 #if SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_ANDROID || SANITIZER_NETBSD
1479 SCOPED_TSAN_INTERCEPTOR(fstat, fd, buf);
1480 if (fd > 0)
1481 FdAccess(thr, pc, fd);
1482 return REAL(fstat)(fd, buf);
1483 #else
1484 SCOPED_TSAN_INTERCEPTOR(__fxstat, 0, fd, buf);
1485 if (fd > 0)
1486 FdAccess(thr, pc, fd);
1487 return REAL(__fxstat)(0, fd, buf);
1488 #endif
1489 }
1490
1491 #if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int,__fxstat64,int version,int fd,void * buf)1492 TSAN_INTERCEPTOR(int, __fxstat64, int version, int fd, void *buf) {
1493 SCOPED_TSAN_INTERCEPTOR(__fxstat64, version, fd, buf);
1494 if (fd > 0)
1495 FdAccess(thr, pc, fd);
1496 return REAL(__fxstat64)(version, fd, buf);
1497 }
1498 #define TSAN_MAYBE_INTERCEPT___FXSTAT64 TSAN_INTERCEPT(__fxstat64)
1499 #else
1500 #define TSAN_MAYBE_INTERCEPT___FXSTAT64
1501 #endif
1502
1503 #if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int,fstat64,int fd,void * buf)1504 TSAN_INTERCEPTOR(int, fstat64, int fd, void *buf) {
1505 SCOPED_TSAN_INTERCEPTOR(__fxstat64, 0, fd, buf);
1506 if (fd > 0)
1507 FdAccess(thr, pc, fd);
1508 return REAL(__fxstat64)(0, fd, buf);
1509 }
1510 #define TSAN_MAYBE_INTERCEPT_FSTAT64 TSAN_INTERCEPT(fstat64)
1511 #else
1512 #define TSAN_MAYBE_INTERCEPT_FSTAT64
1513 #endif
1514
TSAN_INTERCEPTOR(int,open,const char * name,int flags,int mode)1515 TSAN_INTERCEPTOR(int, open, const char *name, int flags, int mode) {
1516 SCOPED_TSAN_INTERCEPTOR(open, name, flags, mode);
1517 READ_STRING(thr, pc, name, 0);
1518 int fd = REAL(open)(name, flags, mode);
1519 if (fd >= 0)
1520 FdFileCreate(thr, pc, fd);
1521 return fd;
1522 }
1523
1524 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,open64,const char * name,int flags,int mode)1525 TSAN_INTERCEPTOR(int, open64, const char *name, int flags, int mode) {
1526 SCOPED_TSAN_INTERCEPTOR(open64, name, flags, mode);
1527 READ_STRING(thr, pc, name, 0);
1528 int fd = REAL(open64)(name, flags, mode);
1529 if (fd >= 0)
1530 FdFileCreate(thr, pc, fd);
1531 return fd;
1532 }
1533 #define TSAN_MAYBE_INTERCEPT_OPEN64 TSAN_INTERCEPT(open64)
1534 #else
1535 #define TSAN_MAYBE_INTERCEPT_OPEN64
1536 #endif
1537
TSAN_INTERCEPTOR(int,creat,const char * name,int mode)1538 TSAN_INTERCEPTOR(int, creat, const char *name, int mode) {
1539 SCOPED_TSAN_INTERCEPTOR(creat, name, mode);
1540 READ_STRING(thr, pc, name, 0);
1541 int fd = REAL(creat)(name, mode);
1542 if (fd >= 0)
1543 FdFileCreate(thr, pc, fd);
1544 return fd;
1545 }
1546
1547 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,creat64,const char * name,int mode)1548 TSAN_INTERCEPTOR(int, creat64, const char *name, int mode) {
1549 SCOPED_TSAN_INTERCEPTOR(creat64, name, mode);
1550 READ_STRING(thr, pc, name, 0);
1551 int fd = REAL(creat64)(name, mode);
1552 if (fd >= 0)
1553 FdFileCreate(thr, pc, fd);
1554 return fd;
1555 }
1556 #define TSAN_MAYBE_INTERCEPT_CREAT64 TSAN_INTERCEPT(creat64)
1557 #else
1558 #define TSAN_MAYBE_INTERCEPT_CREAT64
1559 #endif
1560
TSAN_INTERCEPTOR(int,dup,int oldfd)1561 TSAN_INTERCEPTOR(int, dup, int oldfd) {
1562 SCOPED_TSAN_INTERCEPTOR(dup, oldfd);
1563 int newfd = REAL(dup)(oldfd);
1564 if (oldfd >= 0 && newfd >= 0 && newfd != oldfd)
1565 FdDup(thr, pc, oldfd, newfd, true);
1566 return newfd;
1567 }
1568
TSAN_INTERCEPTOR(int,dup2,int oldfd,int newfd)1569 TSAN_INTERCEPTOR(int, dup2, int oldfd, int newfd) {
1570 SCOPED_TSAN_INTERCEPTOR(dup2, oldfd, newfd);
1571 int newfd2 = REAL(dup2)(oldfd, newfd);
1572 if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
1573 FdDup(thr, pc, oldfd, newfd2, false);
1574 return newfd2;
1575 }
1576
1577 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,dup3,int oldfd,int newfd,int flags)1578 TSAN_INTERCEPTOR(int, dup3, int oldfd, int newfd, int flags) {
1579 SCOPED_TSAN_INTERCEPTOR(dup3, oldfd, newfd, flags);
1580 int newfd2 = REAL(dup3)(oldfd, newfd, flags);
1581 if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
1582 FdDup(thr, pc, oldfd, newfd2, false);
1583 return newfd2;
1584 }
1585 #endif
1586
1587 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,eventfd,unsigned initval,int flags)1588 TSAN_INTERCEPTOR(int, eventfd, unsigned initval, int flags) {
1589 SCOPED_TSAN_INTERCEPTOR(eventfd, initval, flags);
1590 int fd = REAL(eventfd)(initval, flags);
1591 if (fd >= 0)
1592 FdEventCreate(thr, pc, fd);
1593 return fd;
1594 }
1595 #define TSAN_MAYBE_INTERCEPT_EVENTFD TSAN_INTERCEPT(eventfd)
1596 #else
1597 #define TSAN_MAYBE_INTERCEPT_EVENTFD
1598 #endif
1599
1600 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,signalfd,int fd,void * mask,int flags)1601 TSAN_INTERCEPTOR(int, signalfd, int fd, void *mask, int flags) {
1602 SCOPED_TSAN_INTERCEPTOR(signalfd, fd, mask, flags);
1603 if (fd >= 0)
1604 FdClose(thr, pc, fd);
1605 fd = REAL(signalfd)(fd, mask, flags);
1606 if (fd >= 0)
1607 FdSignalCreate(thr, pc, fd);
1608 return fd;
1609 }
1610 #define TSAN_MAYBE_INTERCEPT_SIGNALFD TSAN_INTERCEPT(signalfd)
1611 #else
1612 #define TSAN_MAYBE_INTERCEPT_SIGNALFD
1613 #endif
1614
1615 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,inotify_init,int fake)1616 TSAN_INTERCEPTOR(int, inotify_init, int fake) {
1617 SCOPED_TSAN_INTERCEPTOR(inotify_init, fake);
1618 int fd = REAL(inotify_init)(fake);
1619 if (fd >= 0)
1620 FdInotifyCreate(thr, pc, fd);
1621 return fd;
1622 }
1623 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT TSAN_INTERCEPT(inotify_init)
1624 #else
1625 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT
1626 #endif
1627
1628 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,inotify_init1,int flags)1629 TSAN_INTERCEPTOR(int, inotify_init1, int flags) {
1630 SCOPED_TSAN_INTERCEPTOR(inotify_init1, flags);
1631 int fd = REAL(inotify_init1)(flags);
1632 if (fd >= 0)
1633 FdInotifyCreate(thr, pc, fd);
1634 return fd;
1635 }
1636 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1 TSAN_INTERCEPT(inotify_init1)
1637 #else
1638 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1
1639 #endif
1640
TSAN_INTERCEPTOR(int,socket,int domain,int type,int protocol)1641 TSAN_INTERCEPTOR(int, socket, int domain, int type, int protocol) {
1642 SCOPED_TSAN_INTERCEPTOR(socket, domain, type, protocol);
1643 int fd = REAL(socket)(domain, type, protocol);
1644 if (fd >= 0)
1645 FdSocketCreate(thr, pc, fd);
1646 return fd;
1647 }
1648
TSAN_INTERCEPTOR(int,socketpair,int domain,int type,int protocol,int * fd)1649 TSAN_INTERCEPTOR(int, socketpair, int domain, int type, int protocol, int *fd) {
1650 SCOPED_TSAN_INTERCEPTOR(socketpair, domain, type, protocol, fd);
1651 int res = REAL(socketpair)(domain, type, protocol, fd);
1652 if (res == 0 && fd[0] >= 0 && fd[1] >= 0)
1653 FdPipeCreate(thr, pc, fd[0], fd[1]);
1654 return res;
1655 }
1656
TSAN_INTERCEPTOR(int,connect,int fd,void * addr,unsigned addrlen)1657 TSAN_INTERCEPTOR(int, connect, int fd, void *addr, unsigned addrlen) {
1658 SCOPED_TSAN_INTERCEPTOR(connect, fd, addr, addrlen);
1659 FdSocketConnecting(thr, pc, fd);
1660 int res = REAL(connect)(fd, addr, addrlen);
1661 if (res == 0 && fd >= 0)
1662 FdSocketConnect(thr, pc, fd);
1663 return res;
1664 }
1665
TSAN_INTERCEPTOR(int,bind,int fd,void * addr,unsigned addrlen)1666 TSAN_INTERCEPTOR(int, bind, int fd, void *addr, unsigned addrlen) {
1667 SCOPED_TSAN_INTERCEPTOR(bind, fd, addr, addrlen);
1668 int res = REAL(bind)(fd, addr, addrlen);
1669 if (fd > 0 && res == 0)
1670 FdAccess(thr, pc, fd);
1671 return res;
1672 }
1673
TSAN_INTERCEPTOR(int,listen,int fd,int backlog)1674 TSAN_INTERCEPTOR(int, listen, int fd, int backlog) {
1675 SCOPED_TSAN_INTERCEPTOR(listen, fd, backlog);
1676 int res = REAL(listen)(fd, backlog);
1677 if (fd > 0 && res == 0)
1678 FdAccess(thr, pc, fd);
1679 return res;
1680 }
1681
TSAN_INTERCEPTOR(int,close,int fd)1682 TSAN_INTERCEPTOR(int, close, int fd) {
1683 SCOPED_TSAN_INTERCEPTOR(close, fd);
1684 if (fd >= 0)
1685 FdClose(thr, pc, fd);
1686 return REAL(close)(fd);
1687 }
1688
1689 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,__close,int fd)1690 TSAN_INTERCEPTOR(int, __close, int fd) {
1691 SCOPED_TSAN_INTERCEPTOR(__close, fd);
1692 if (fd >= 0)
1693 FdClose(thr, pc, fd);
1694 return REAL(__close)(fd);
1695 }
1696 #define TSAN_MAYBE_INTERCEPT___CLOSE TSAN_INTERCEPT(__close)
1697 #else
1698 #define TSAN_MAYBE_INTERCEPT___CLOSE
1699 #endif
1700
1701 // glibc guts
1702 #if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(void,__res_iclose,void * state,bool free_addr)1703 TSAN_INTERCEPTOR(void, __res_iclose, void *state, bool free_addr) {
1704 SCOPED_TSAN_INTERCEPTOR(__res_iclose, state, free_addr);
1705 int fds[64];
1706 int cnt = ExtractResolvFDs(state, fds, ARRAY_SIZE(fds));
1707 for (int i = 0; i < cnt; i++) {
1708 if (fds[i] > 0)
1709 FdClose(thr, pc, fds[i]);
1710 }
1711 REAL(__res_iclose)(state, free_addr);
1712 }
1713 #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE TSAN_INTERCEPT(__res_iclose)
1714 #else
1715 #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE
1716 #endif
1717
TSAN_INTERCEPTOR(int,pipe,int * pipefd)1718 TSAN_INTERCEPTOR(int, pipe, int *pipefd) {
1719 SCOPED_TSAN_INTERCEPTOR(pipe, pipefd);
1720 int res = REAL(pipe)(pipefd);
1721 if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
1722 FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
1723 return res;
1724 }
1725
1726 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,pipe2,int * pipefd,int flags)1727 TSAN_INTERCEPTOR(int, pipe2, int *pipefd, int flags) {
1728 SCOPED_TSAN_INTERCEPTOR(pipe2, pipefd, flags);
1729 int res = REAL(pipe2)(pipefd, flags);
1730 if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
1731 FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
1732 return res;
1733 }
1734 #endif
1735
TSAN_INTERCEPTOR(int,unlink,char * path)1736 TSAN_INTERCEPTOR(int, unlink, char *path) {
1737 SCOPED_TSAN_INTERCEPTOR(unlink, path);
1738 Release(thr, pc, File2addr(path));
1739 int res = REAL(unlink)(path);
1740 return res;
1741 }
1742
TSAN_INTERCEPTOR(void *,tmpfile,int fake)1743 TSAN_INTERCEPTOR(void*, tmpfile, int fake) {
1744 SCOPED_TSAN_INTERCEPTOR(tmpfile, fake);
1745 void *res = REAL(tmpfile)(fake);
1746 if (res) {
1747 int fd = fileno_unlocked(res);
1748 if (fd >= 0)
1749 FdFileCreate(thr, pc, fd);
1750 }
1751 return res;
1752 }
1753
1754 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(void *,tmpfile64,int fake)1755 TSAN_INTERCEPTOR(void*, tmpfile64, int fake) {
1756 SCOPED_TSAN_INTERCEPTOR(tmpfile64, fake);
1757 void *res = REAL(tmpfile64)(fake);
1758 if (res) {
1759 int fd = fileno_unlocked(res);
1760 if (fd >= 0)
1761 FdFileCreate(thr, pc, fd);
1762 }
1763 return res;
1764 }
1765 #define TSAN_MAYBE_INTERCEPT_TMPFILE64 TSAN_INTERCEPT(tmpfile64)
1766 #else
1767 #define TSAN_MAYBE_INTERCEPT_TMPFILE64
1768 #endif
1769
FlushStreams()1770 static void FlushStreams() {
1771 // Flushing all the streams here may freeze the process if a child thread is
1772 // performing file stream operations at the same time.
1773 REAL(fflush)(stdout);
1774 REAL(fflush)(stderr);
1775 }
1776
TSAN_INTERCEPTOR(void,abort,int fake)1777 TSAN_INTERCEPTOR(void, abort, int fake) {
1778 SCOPED_TSAN_INTERCEPTOR(abort, fake);
1779 FlushStreams();
1780 REAL(abort)(fake);
1781 }
1782
TSAN_INTERCEPTOR(int,rmdir,char * path)1783 TSAN_INTERCEPTOR(int, rmdir, char *path) {
1784 SCOPED_TSAN_INTERCEPTOR(rmdir, path);
1785 Release(thr, pc, Dir2addr(path));
1786 int res = REAL(rmdir)(path);
1787 return res;
1788 }
1789
TSAN_INTERCEPTOR(int,closedir,void * dirp)1790 TSAN_INTERCEPTOR(int, closedir, void *dirp) {
1791 SCOPED_TSAN_INTERCEPTOR(closedir, dirp);
1792 if (dirp) {
1793 int fd = dirfd(dirp);
1794 FdClose(thr, pc, fd);
1795 }
1796 return REAL(closedir)(dirp);
1797 }
1798
1799 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,epoll_create,int size)1800 TSAN_INTERCEPTOR(int, epoll_create, int size) {
1801 SCOPED_TSAN_INTERCEPTOR(epoll_create, size);
1802 int fd = REAL(epoll_create)(size);
1803 if (fd >= 0)
1804 FdPollCreate(thr, pc, fd);
1805 return fd;
1806 }
1807
TSAN_INTERCEPTOR(int,epoll_create1,int flags)1808 TSAN_INTERCEPTOR(int, epoll_create1, int flags) {
1809 SCOPED_TSAN_INTERCEPTOR(epoll_create1, flags);
1810 int fd = REAL(epoll_create1)(flags);
1811 if (fd >= 0)
1812 FdPollCreate(thr, pc, fd);
1813 return fd;
1814 }
1815
TSAN_INTERCEPTOR(int,epoll_ctl,int epfd,int op,int fd,void * ev)1816 TSAN_INTERCEPTOR(int, epoll_ctl, int epfd, int op, int fd, void *ev) {
1817 SCOPED_TSAN_INTERCEPTOR(epoll_ctl, epfd, op, fd, ev);
1818 if (epfd >= 0)
1819 FdAccess(thr, pc, epfd);
1820 if (epfd >= 0 && fd >= 0)
1821 FdAccess(thr, pc, fd);
1822 if (op == EPOLL_CTL_ADD && epfd >= 0)
1823 FdRelease(thr, pc, epfd);
1824 int res = REAL(epoll_ctl)(epfd, op, fd, ev);
1825 return res;
1826 }
1827
TSAN_INTERCEPTOR(int,epoll_wait,int epfd,void * ev,int cnt,int timeout)1828 TSAN_INTERCEPTOR(int, epoll_wait, int epfd, void *ev, int cnt, int timeout) {
1829 SCOPED_TSAN_INTERCEPTOR(epoll_wait, epfd, ev, cnt, timeout);
1830 if (epfd >= 0)
1831 FdAccess(thr, pc, epfd);
1832 int res = BLOCK_REAL(epoll_wait)(epfd, ev, cnt, timeout);
1833 if (res > 0 && epfd >= 0)
1834 FdAcquire(thr, pc, epfd);
1835 return res;
1836 }
1837
TSAN_INTERCEPTOR(int,epoll_pwait,int epfd,void * ev,int cnt,int timeout,void * sigmask)1838 TSAN_INTERCEPTOR(int, epoll_pwait, int epfd, void *ev, int cnt, int timeout,
1839 void *sigmask) {
1840 SCOPED_TSAN_INTERCEPTOR(epoll_pwait, epfd, ev, cnt, timeout, sigmask);
1841 if (epfd >= 0)
1842 FdAccess(thr, pc, epfd);
1843 int res = BLOCK_REAL(epoll_pwait)(epfd, ev, cnt, timeout, sigmask);
1844 if (res > 0 && epfd >= 0)
1845 FdAcquire(thr, pc, epfd);
1846 return res;
1847 }
1848
1849 #define TSAN_MAYBE_INTERCEPT_EPOLL \
1850 TSAN_INTERCEPT(epoll_create); \
1851 TSAN_INTERCEPT(epoll_create1); \
1852 TSAN_INTERCEPT(epoll_ctl); \
1853 TSAN_INTERCEPT(epoll_wait); \
1854 TSAN_INTERCEPT(epoll_pwait)
1855 #else
1856 #define TSAN_MAYBE_INTERCEPT_EPOLL
1857 #endif
1858
1859 // The following functions are intercepted merely to process pending signals.
1860 // If program blocks signal X, we must deliver the signal before the function
1861 // returns. Similarly, if program unblocks a signal (or returns from sigsuspend)
1862 // it's better to deliver the signal straight away.
TSAN_INTERCEPTOR(int,sigsuspend,const __sanitizer_sigset_t * mask)1863 TSAN_INTERCEPTOR(int, sigsuspend, const __sanitizer_sigset_t *mask) {
1864 SCOPED_TSAN_INTERCEPTOR(sigsuspend, mask);
1865 return REAL(sigsuspend)(mask);
1866 }
1867
TSAN_INTERCEPTOR(int,sigblock,int mask)1868 TSAN_INTERCEPTOR(int, sigblock, int mask) {
1869 SCOPED_TSAN_INTERCEPTOR(sigblock, mask);
1870 return REAL(sigblock)(mask);
1871 }
1872
TSAN_INTERCEPTOR(int,sigsetmask,int mask)1873 TSAN_INTERCEPTOR(int, sigsetmask, int mask) {
1874 SCOPED_TSAN_INTERCEPTOR(sigsetmask, mask);
1875 return REAL(sigsetmask)(mask);
1876 }
1877
TSAN_INTERCEPTOR(int,pthread_sigmask,int how,const __sanitizer_sigset_t * set,__sanitizer_sigset_t * oldset)1878 TSAN_INTERCEPTOR(int, pthread_sigmask, int how, const __sanitizer_sigset_t *set,
1879 __sanitizer_sigset_t *oldset) {
1880 SCOPED_TSAN_INTERCEPTOR(pthread_sigmask, how, set, oldset);
1881 return REAL(pthread_sigmask)(how, set, oldset);
1882 }
1883
1884 namespace __tsan {
1885
CallUserSignalHandler(ThreadState * thr,bool sync,bool acquire,bool sigact,int sig,__sanitizer_siginfo * info,void * uctx)1886 static void CallUserSignalHandler(ThreadState *thr, bool sync, bool acquire,
1887 bool sigact, int sig,
1888 __sanitizer_siginfo *info, void *uctx) {
1889 __sanitizer_sigaction *sigactions = interceptor_ctx()->sigactions;
1890 if (acquire)
1891 Acquire(thr, 0, (uptr)&sigactions[sig]);
1892 // Signals are generally asynchronous, so if we receive a signals when
1893 // ignores are enabled we should disable ignores. This is critical for sync
1894 // and interceptors, because otherwise we can miss syncronization and report
1895 // false races.
1896 int ignore_reads_and_writes = thr->ignore_reads_and_writes;
1897 int ignore_interceptors = thr->ignore_interceptors;
1898 int ignore_sync = thr->ignore_sync;
1899 if (!ctx->after_multithreaded_fork) {
1900 thr->ignore_reads_and_writes = 0;
1901 thr->fast_state.ClearIgnoreBit();
1902 thr->ignore_interceptors = 0;
1903 thr->ignore_sync = 0;
1904 }
1905 // Ensure that the handler does not spoil errno.
1906 const int saved_errno = errno;
1907 errno = 99;
1908 // This code races with sigaction. Be careful to not read sa_sigaction twice.
1909 // Also need to remember pc for reporting before the call,
1910 // because the handler can reset it.
1911 volatile uptr pc =
1912 sigact ? (uptr)sigactions[sig].sigaction : (uptr)sigactions[sig].handler;
1913 if (pc != sig_dfl && pc != sig_ign) {
1914 if (sigact)
1915 ((__sanitizer_sigactionhandler_ptr)pc)(sig, info, uctx);
1916 else
1917 ((__sanitizer_sighandler_ptr)pc)(sig);
1918 }
1919 if (!ctx->after_multithreaded_fork) {
1920 thr->ignore_reads_and_writes = ignore_reads_and_writes;
1921 if (ignore_reads_and_writes)
1922 thr->fast_state.SetIgnoreBit();
1923 thr->ignore_interceptors = ignore_interceptors;
1924 thr->ignore_sync = ignore_sync;
1925 }
1926 // We do not detect errno spoiling for SIGTERM,
1927 // because some SIGTERM handlers do spoil errno but reraise SIGTERM,
1928 // tsan reports false positive in such case.
1929 // It's difficult to properly detect this situation (reraise),
1930 // because in async signal processing case (when handler is called directly
1931 // from rtl_generic_sighandler) we have not yet received the reraised
1932 // signal; and it looks too fragile to intercept all ways to reraise a signal.
1933 if (flags()->report_bugs && !sync && sig != SIGTERM && errno != 99) {
1934 VarSizeStackTrace stack;
1935 // StackTrace::GetNestInstructionPc(pc) is used because return address is
1936 // expected, OutputReport() will undo this.
1937 ObtainCurrentStack(thr, StackTrace::GetNextInstructionPc(pc), &stack);
1938 ThreadRegistryLock l(ctx->thread_registry);
1939 ScopedReport rep(ReportTypeErrnoInSignal);
1940 if (!IsFiredSuppression(ctx, ReportTypeErrnoInSignal, stack)) {
1941 rep.AddStack(stack, true);
1942 OutputReport(thr, rep);
1943 }
1944 }
1945 errno = saved_errno;
1946 }
1947
ProcessPendingSignals(ThreadState * thr)1948 void ProcessPendingSignals(ThreadState *thr) {
1949 ThreadSignalContext *sctx = SigCtx(thr);
1950 if (sctx == 0 ||
1951 atomic_load(&sctx->have_pending_signals, memory_order_relaxed) == 0)
1952 return;
1953 atomic_store(&sctx->have_pending_signals, 0, memory_order_relaxed);
1954 atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
1955 internal_sigfillset(&sctx->emptyset);
1956 int res = REAL(pthread_sigmask)(SIG_SETMASK, &sctx->emptyset, &sctx->oldset);
1957 CHECK_EQ(res, 0);
1958 for (int sig = 0; sig < kSigCount; sig++) {
1959 SignalDesc *signal = &sctx->pending_signals[sig];
1960 if (signal->armed) {
1961 signal->armed = false;
1962 CallUserSignalHandler(thr, false, true, signal->sigaction, sig,
1963 &signal->siginfo, &signal->ctx);
1964 }
1965 }
1966 res = REAL(pthread_sigmask)(SIG_SETMASK, &sctx->oldset, 0);
1967 CHECK_EQ(res, 0);
1968 atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
1969 }
1970
1971 } // namespace __tsan
1972
is_sync_signal(ThreadSignalContext * sctx,int sig)1973 static bool is_sync_signal(ThreadSignalContext *sctx, int sig) {
1974 return sig == SIGSEGV || sig == SIGBUS || sig == SIGILL ||
1975 sig == SIGABRT || sig == SIGFPE || sig == SIGPIPE || sig == SIGSYS ||
1976 // If we are sending signal to ourselves, we must process it now.
1977 (sctx && sig == sctx->int_signal_send);
1978 }
1979
rtl_generic_sighandler(bool sigact,int sig,__sanitizer_siginfo * info,void * ctx)1980 void ALWAYS_INLINE rtl_generic_sighandler(bool sigact, int sig,
1981 __sanitizer_siginfo *info,
1982 void *ctx) {
1983 ThreadState *thr = cur_thread();
1984 ThreadSignalContext *sctx = SigCtx(thr);
1985 if (sig < 0 || sig >= kSigCount) {
1986 VPrintf(1, "ThreadSanitizer: ignoring signal %d\n", sig);
1987 return;
1988 }
1989 // Don't mess with synchronous signals.
1990 const bool sync = is_sync_signal(sctx, sig);
1991 if (sync ||
1992 // If we are in blocking function, we can safely process it now
1993 // (but check if we are in a recursive interceptor,
1994 // i.e. pthread_join()->munmap()).
1995 (sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed))) {
1996 atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
1997 if (sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed)) {
1998 atomic_store(&sctx->in_blocking_func, 0, memory_order_relaxed);
1999 CallUserSignalHandler(thr, sync, true, sigact, sig, info, ctx);
2000 atomic_store(&sctx->in_blocking_func, 1, memory_order_relaxed);
2001 } else {
2002 // Be very conservative with when we do acquire in this case.
2003 // It's unsafe to do acquire in async handlers, because ThreadState
2004 // can be in inconsistent state.
2005 // SIGSYS looks relatively safe -- it's synchronous and can actually
2006 // need some global state.
2007 bool acq = (sig == SIGSYS);
2008 CallUserSignalHandler(thr, sync, acq, sigact, sig, info, ctx);
2009 }
2010 atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
2011 return;
2012 }
2013
2014 if (sctx == 0)
2015 return;
2016 SignalDesc *signal = &sctx->pending_signals[sig];
2017 if (signal->armed == false) {
2018 signal->armed = true;
2019 signal->sigaction = sigact;
2020 if (info)
2021 internal_memcpy(&signal->siginfo, info, sizeof(*info));
2022 if (ctx)
2023 internal_memcpy(&signal->ctx, ctx, sizeof(signal->ctx));
2024 atomic_store(&sctx->have_pending_signals, 1, memory_order_relaxed);
2025 }
2026 }
2027
rtl_sighandler(int sig)2028 static void rtl_sighandler(int sig) {
2029 rtl_generic_sighandler(false, sig, 0, 0);
2030 }
2031
rtl_sigaction(int sig,__sanitizer_siginfo * info,void * ctx)2032 static void rtl_sigaction(int sig, __sanitizer_siginfo *info, void *ctx) {
2033 rtl_generic_sighandler(true, sig, info, ctx);
2034 }
2035
TSAN_INTERCEPTOR(int,raise,int sig)2036 TSAN_INTERCEPTOR(int, raise, int sig) {
2037 SCOPED_TSAN_INTERCEPTOR(raise, sig);
2038 ThreadSignalContext *sctx = SigCtx(thr);
2039 CHECK_NE(sctx, 0);
2040 int prev = sctx->int_signal_send;
2041 sctx->int_signal_send = sig;
2042 int res = REAL(raise)(sig);
2043 CHECK_EQ(sctx->int_signal_send, sig);
2044 sctx->int_signal_send = prev;
2045 return res;
2046 }
2047
TSAN_INTERCEPTOR(int,kill,int pid,int sig)2048 TSAN_INTERCEPTOR(int, kill, int pid, int sig) {
2049 SCOPED_TSAN_INTERCEPTOR(kill, pid, sig);
2050 ThreadSignalContext *sctx = SigCtx(thr);
2051 CHECK_NE(sctx, 0);
2052 int prev = sctx->int_signal_send;
2053 if (pid == (int)internal_getpid()) {
2054 sctx->int_signal_send = sig;
2055 }
2056 int res = REAL(kill)(pid, sig);
2057 if (pid == (int)internal_getpid()) {
2058 CHECK_EQ(sctx->int_signal_send, sig);
2059 sctx->int_signal_send = prev;
2060 }
2061 return res;
2062 }
2063
TSAN_INTERCEPTOR(int,pthread_kill,void * tid,int sig)2064 TSAN_INTERCEPTOR(int, pthread_kill, void *tid, int sig) {
2065 SCOPED_TSAN_INTERCEPTOR(pthread_kill, tid, sig);
2066 ThreadSignalContext *sctx = SigCtx(thr);
2067 CHECK_NE(sctx, 0);
2068 int prev = sctx->int_signal_send;
2069 if (tid == pthread_self()) {
2070 sctx->int_signal_send = sig;
2071 }
2072 int res = REAL(pthread_kill)(tid, sig);
2073 if (tid == pthread_self()) {
2074 CHECK_EQ(sctx->int_signal_send, sig);
2075 sctx->int_signal_send = prev;
2076 }
2077 return res;
2078 }
2079
TSAN_INTERCEPTOR(int,gettimeofday,void * tv,void * tz)2080 TSAN_INTERCEPTOR(int, gettimeofday, void *tv, void *tz) {
2081 SCOPED_TSAN_INTERCEPTOR(gettimeofday, tv, tz);
2082 // It's intercepted merely to process pending signals.
2083 return REAL(gettimeofday)(tv, tz);
2084 }
2085
TSAN_INTERCEPTOR(int,getaddrinfo,void * node,void * service,void * hints,void * rv)2086 TSAN_INTERCEPTOR(int, getaddrinfo, void *node, void *service,
2087 void *hints, void *rv) {
2088 SCOPED_TSAN_INTERCEPTOR(getaddrinfo, node, service, hints, rv);
2089 // We miss atomic synchronization in getaddrinfo,
2090 // and can report false race between malloc and free
2091 // inside of getaddrinfo. So ignore memory accesses.
2092 ThreadIgnoreBegin(thr, pc);
2093 int res = REAL(getaddrinfo)(node, service, hints, rv);
2094 ThreadIgnoreEnd(thr, pc);
2095 return res;
2096 }
2097
TSAN_INTERCEPTOR(int,fork,int fake)2098 TSAN_INTERCEPTOR(int, fork, int fake) {
2099 if (UNLIKELY(cur_thread()->in_symbolizer))
2100 return REAL(fork)(fake);
2101 SCOPED_INTERCEPTOR_RAW(fork, fake);
2102 ForkBefore(thr, pc);
2103 int pid;
2104 {
2105 // On OS X, REAL(fork) can call intercepted functions (OSSpinLockLock), and
2106 // we'll assert in CheckNoLocks() unless we ignore interceptors.
2107 ScopedIgnoreInterceptors ignore;
2108 pid = REAL(fork)(fake);
2109 }
2110 if (pid == 0) {
2111 // child
2112 ForkChildAfter(thr, pc);
2113 FdOnFork(thr, pc);
2114 } else if (pid > 0) {
2115 // parent
2116 ForkParentAfter(thr, pc);
2117 } else {
2118 // error
2119 ForkParentAfter(thr, pc);
2120 }
2121 return pid;
2122 }
2123
TSAN_INTERCEPTOR(int,vfork,int fake)2124 TSAN_INTERCEPTOR(int, vfork, int fake) {
2125 // Some programs (e.g. openjdk) call close for all file descriptors
2126 // in the child process. Under tsan it leads to false positives, because
2127 // address space is shared, so the parent process also thinks that
2128 // the descriptors are closed (while they are actually not).
2129 // This leads to false positives due to missed synchronization.
2130 // Strictly saying this is undefined behavior, because vfork child is not
2131 // allowed to call any functions other than exec/exit. But this is what
2132 // openjdk does, so we want to handle it.
2133 // We could disable interceptors in the child process. But it's not possible
2134 // to simply intercept and wrap vfork, because vfork child is not allowed
2135 // to return from the function that calls vfork, and that's exactly what
2136 // we would do. So this would require some assembly trickery as well.
2137 // Instead we simply turn vfork into fork.
2138 return WRAP(fork)(fake);
2139 }
2140
2141 #if !SANITIZER_MAC && !SANITIZER_ANDROID
2142 typedef int (*dl_iterate_phdr_cb_t)(__sanitizer_dl_phdr_info *info, SIZE_T size,
2143 void *data);
2144 struct dl_iterate_phdr_data {
2145 ThreadState *thr;
2146 uptr pc;
2147 dl_iterate_phdr_cb_t cb;
2148 void *data;
2149 };
2150
IsAppNotRodata(uptr addr)2151 static bool IsAppNotRodata(uptr addr) {
2152 return IsAppMem(addr) && *(u64*)MemToShadow(addr) != kShadowRodata;
2153 }
2154
dl_iterate_phdr_cb(__sanitizer_dl_phdr_info * info,SIZE_T size,void * data)2155 static int dl_iterate_phdr_cb(__sanitizer_dl_phdr_info *info, SIZE_T size,
2156 void *data) {
2157 dl_iterate_phdr_data *cbdata = (dl_iterate_phdr_data *)data;
2158 // dlopen/dlclose allocate/free dynamic-linker-internal memory, which is later
2159 // accessible in dl_iterate_phdr callback. But we don't see synchronization
2160 // inside of dynamic linker, so we "unpoison" it here in order to not
2161 // produce false reports. Ignoring malloc/free in dlopen/dlclose is not enough
2162 // because some libc functions call __libc_dlopen.
2163 if (info && IsAppNotRodata((uptr)info->dlpi_name))
2164 MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name,
2165 internal_strlen(info->dlpi_name));
2166 int res = cbdata->cb(info, size, cbdata->data);
2167 // Perform the check one more time in case info->dlpi_name was overwritten
2168 // by user callback.
2169 if (info && IsAppNotRodata((uptr)info->dlpi_name))
2170 MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name,
2171 internal_strlen(info->dlpi_name));
2172 return res;
2173 }
2174
TSAN_INTERCEPTOR(int,dl_iterate_phdr,dl_iterate_phdr_cb_t cb,void * data)2175 TSAN_INTERCEPTOR(int, dl_iterate_phdr, dl_iterate_phdr_cb_t cb, void *data) {
2176 SCOPED_TSAN_INTERCEPTOR(dl_iterate_phdr, cb, data);
2177 dl_iterate_phdr_data cbdata;
2178 cbdata.thr = thr;
2179 cbdata.pc = pc;
2180 cbdata.cb = cb;
2181 cbdata.data = data;
2182 int res = REAL(dl_iterate_phdr)(dl_iterate_phdr_cb, &cbdata);
2183 return res;
2184 }
2185 #endif
2186
OnExit(ThreadState * thr)2187 static int OnExit(ThreadState *thr) {
2188 int status = Finalize(thr);
2189 FlushStreams();
2190 return status;
2191 }
2192
2193 struct TsanInterceptorContext {
2194 ThreadState *thr;
2195 const uptr caller_pc;
2196 const uptr pc;
2197 };
2198
2199 #if !SANITIZER_MAC
HandleRecvmsg(ThreadState * thr,uptr pc,__sanitizer_msghdr * msg)2200 static void HandleRecvmsg(ThreadState *thr, uptr pc,
2201 __sanitizer_msghdr *msg) {
2202 int fds[64];
2203 int cnt = ExtractRecvmsgFDs(msg, fds, ARRAY_SIZE(fds));
2204 for (int i = 0; i < cnt; i++)
2205 FdEventCreate(thr, pc, fds[i]);
2206 }
2207 #endif
2208
2209 #include "sanitizer_common/sanitizer_platform_interceptors.h"
2210 // Causes interceptor recursion (getaddrinfo() and fopen())
2211 #undef SANITIZER_INTERCEPT_GETADDRINFO
2212 // There interceptors do not seem to be strictly necessary for tsan.
2213 // But we see cases where the interceptors consume 70% of execution time.
2214 // Memory blocks passed to fgetgrent_r are "written to" by tsan several times.
2215 // First, there is some recursion (getgrnam_r calls fgetgrent_r), and each
2216 // function "writes to" the buffer. Then, the same memory is "written to"
2217 // twice, first as buf and then as pwbufp (both of them refer to the same
2218 // addresses).
2219 #undef SANITIZER_INTERCEPT_GETPWENT
2220 #undef SANITIZER_INTERCEPT_GETPWENT_R
2221 #undef SANITIZER_INTERCEPT_FGETPWENT
2222 #undef SANITIZER_INTERCEPT_GETPWNAM_AND_FRIENDS
2223 #undef SANITIZER_INTERCEPT_GETPWNAM_R_AND_FRIENDS
2224 // We define our own.
2225 #if SANITIZER_INTERCEPT_TLS_GET_ADDR
2226 #define NEED_TLS_GET_ADDR
2227 #endif
2228 #undef SANITIZER_INTERCEPT_TLS_GET_ADDR
2229
2230 #define COMMON_INTERCEPT_FUNCTION(name) INTERCEPT_FUNCTION(name)
2231 #define COMMON_INTERCEPT_FUNCTION_VER(name, ver) \
2232 INTERCEPT_FUNCTION_VER(name, ver)
2233
2234 #define COMMON_INTERCEPTOR_WRITE_RANGE(ctx, ptr, size) \
2235 MemoryAccessRange(((TsanInterceptorContext *)ctx)->thr, \
2236 ((TsanInterceptorContext *)ctx)->pc, (uptr)ptr, size, \
2237 true)
2238
2239 #define COMMON_INTERCEPTOR_READ_RANGE(ctx, ptr, size) \
2240 MemoryAccessRange(((TsanInterceptorContext *) ctx)->thr, \
2241 ((TsanInterceptorContext *) ctx)->pc, (uptr) ptr, size, \
2242 false)
2243
2244 #define COMMON_INTERCEPTOR_ENTER(ctx, func, ...) \
2245 SCOPED_TSAN_INTERCEPTOR(func, __VA_ARGS__); \
2246 TsanInterceptorContext _ctx = {thr, caller_pc, pc}; \
2247 ctx = (void *)&_ctx; \
2248 (void) ctx;
2249
2250 #define COMMON_INTERCEPTOR_ENTER_NOIGNORE(ctx, func, ...) \
2251 SCOPED_INTERCEPTOR_RAW(func, __VA_ARGS__); \
2252 TsanInterceptorContext _ctx = {thr, caller_pc, pc}; \
2253 ctx = (void *)&_ctx; \
2254 (void) ctx;
2255
2256 #define COMMON_INTERCEPTOR_FILE_OPEN(ctx, file, path) \
2257 if (path) \
2258 Acquire(thr, pc, File2addr(path)); \
2259 if (file) { \
2260 int fd = fileno_unlocked(file); \
2261 if (fd >= 0) FdFileCreate(thr, pc, fd); \
2262 }
2263
2264 #define COMMON_INTERCEPTOR_FILE_CLOSE(ctx, file) \
2265 if (file) { \
2266 int fd = fileno_unlocked(file); \
2267 if (fd >= 0) FdClose(thr, pc, fd); \
2268 }
2269
2270 #define COMMON_INTERCEPTOR_LIBRARY_LOADED(filename, handle) \
2271 libignore()->OnLibraryLoaded(filename)
2272
2273 #define COMMON_INTERCEPTOR_LIBRARY_UNLOADED() \
2274 libignore()->OnLibraryUnloaded()
2275
2276 #define COMMON_INTERCEPTOR_ACQUIRE(ctx, u) \
2277 Acquire(((TsanInterceptorContext *) ctx)->thr, pc, u)
2278
2279 #define COMMON_INTERCEPTOR_RELEASE(ctx, u) \
2280 Release(((TsanInterceptorContext *) ctx)->thr, pc, u)
2281
2282 #define COMMON_INTERCEPTOR_DIR_ACQUIRE(ctx, path) \
2283 Acquire(((TsanInterceptorContext *) ctx)->thr, pc, Dir2addr(path))
2284
2285 #define COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd) \
2286 FdAcquire(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2287
2288 #define COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd) \
2289 FdRelease(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2290
2291 #define COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd) \
2292 FdAccess(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2293
2294 #define COMMON_INTERCEPTOR_FD_SOCKET_ACCEPT(ctx, fd, newfd) \
2295 FdSocketAccept(((TsanInterceptorContext *) ctx)->thr, pc, fd, newfd)
2296
2297 #define COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name) \
2298 ThreadSetName(((TsanInterceptorContext *) ctx)->thr, name)
2299
2300 #define COMMON_INTERCEPTOR_SET_PTHREAD_NAME(ctx, thread, name) \
2301 __tsan::ctx->thread_registry->SetThreadNameByUserId(thread, name)
2302
2303 #define COMMON_INTERCEPTOR_BLOCK_REAL(name) BLOCK_REAL(name)
2304
2305 #define COMMON_INTERCEPTOR_ON_EXIT(ctx) \
2306 OnExit(((TsanInterceptorContext *) ctx)->thr)
2307
2308 #define COMMON_INTERCEPTOR_MUTEX_PRE_LOCK(ctx, m) \
2309 MutexPreLock(((TsanInterceptorContext *)ctx)->thr, \
2310 ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2311
2312 #define COMMON_INTERCEPTOR_MUTEX_POST_LOCK(ctx, m) \
2313 MutexPostLock(((TsanInterceptorContext *)ctx)->thr, \
2314 ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2315
2316 #define COMMON_INTERCEPTOR_MUTEX_UNLOCK(ctx, m) \
2317 MutexUnlock(((TsanInterceptorContext *)ctx)->thr, \
2318 ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2319
2320 #define COMMON_INTERCEPTOR_MUTEX_REPAIR(ctx, m) \
2321 MutexRepair(((TsanInterceptorContext *)ctx)->thr, \
2322 ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2323
2324 #define COMMON_INTERCEPTOR_MUTEX_INVALID(ctx, m) \
2325 MutexInvalidAccess(((TsanInterceptorContext *)ctx)->thr, \
2326 ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2327
2328 #define COMMON_INTERCEPTOR_MMAP_IMPL(ctx, mmap, addr, sz, prot, flags, fd, \
2329 off) \
2330 do { \
2331 return mmap_interceptor(thr, pc, REAL(mmap), addr, sz, prot, flags, fd, \
2332 off); \
2333 } while (false)
2334
2335 #if !SANITIZER_MAC
2336 #define COMMON_INTERCEPTOR_HANDLE_RECVMSG(ctx, msg) \
2337 HandleRecvmsg(((TsanInterceptorContext *)ctx)->thr, \
2338 ((TsanInterceptorContext *)ctx)->pc, msg)
2339 #endif
2340
2341 #define COMMON_INTERCEPTOR_GET_TLS_RANGE(begin, end) \
2342 if (TsanThread *t = GetCurrentThread()) { \
2343 *begin = t->tls_begin(); \
2344 *end = t->tls_end(); \
2345 } else { \
2346 *begin = *end = 0; \
2347 }
2348
2349 #define COMMON_INTERCEPTOR_USER_CALLBACK_START() \
2350 SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_START()
2351
2352 #define COMMON_INTERCEPTOR_USER_CALLBACK_END() \
2353 SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_END()
2354
2355 #include "sanitizer_common/sanitizer_common_interceptors.inc"
2356
2357 static int sigaction_impl(int sig, const __sanitizer_sigaction *act,
2358 __sanitizer_sigaction *old);
2359 static __sanitizer_sighandler_ptr signal_impl(int sig,
2360 __sanitizer_sighandler_ptr h);
2361
2362 #define SIGNAL_INTERCEPTOR_SIGACTION_IMPL(signo, act, oldact) \
2363 { return sigaction_impl(signo, act, oldact); }
2364
2365 #define SIGNAL_INTERCEPTOR_SIGNAL_IMPL(func, signo, handler) \
2366 { return (uptr)signal_impl(signo, (__sanitizer_sighandler_ptr)handler); }
2367
2368 #include "sanitizer_common/sanitizer_signal_interceptors.inc"
2369
sigaction_impl(int sig,const __sanitizer_sigaction * act,__sanitizer_sigaction * old)2370 int sigaction_impl(int sig, const __sanitizer_sigaction *act,
2371 __sanitizer_sigaction *old) {
2372 // Note: if we call REAL(sigaction) directly for any reason without proxying
2373 // the signal handler through rtl_sigaction, very bad things will happen.
2374 // The handler will run synchronously and corrupt tsan per-thread state.
2375 SCOPED_INTERCEPTOR_RAW(sigaction, sig, act, old);
2376 __sanitizer_sigaction *sigactions = interceptor_ctx()->sigactions;
2377 __sanitizer_sigaction old_stored;
2378 if (old) internal_memcpy(&old_stored, &sigactions[sig], sizeof(old_stored));
2379 __sanitizer_sigaction newact;
2380 if (act) {
2381 // Copy act into sigactions[sig].
2382 // Can't use struct copy, because compiler can emit call to memcpy.
2383 // Can't use internal_memcpy, because it copies byte-by-byte,
2384 // and signal handler reads the handler concurrently. It it can read
2385 // some bytes from old value and some bytes from new value.
2386 // Use volatile to prevent insertion of memcpy.
2387 sigactions[sig].handler =
2388 *(volatile __sanitizer_sighandler_ptr const *)&act->handler;
2389 sigactions[sig].sa_flags = *(volatile int const *)&act->sa_flags;
2390 internal_memcpy(&sigactions[sig].sa_mask, &act->sa_mask,
2391 sizeof(sigactions[sig].sa_mask));
2392 #if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
2393 sigactions[sig].sa_restorer = act->sa_restorer;
2394 #endif
2395 internal_memcpy(&newact, act, sizeof(newact));
2396 internal_sigfillset(&newact.sa_mask);
2397 if ((uptr)act->handler != sig_ign && (uptr)act->handler != sig_dfl) {
2398 if (newact.sa_flags & SA_SIGINFO)
2399 newact.sigaction = rtl_sigaction;
2400 else
2401 newact.handler = rtl_sighandler;
2402 }
2403 ReleaseStore(thr, pc, (uptr)&sigactions[sig]);
2404 act = &newact;
2405 }
2406 int res = REAL(sigaction)(sig, act, old);
2407 if (res == 0 && old) {
2408 uptr cb = (uptr)old->sigaction;
2409 if (cb == (uptr)rtl_sigaction || cb == (uptr)rtl_sighandler) {
2410 internal_memcpy(old, &old_stored, sizeof(*old));
2411 }
2412 }
2413 return res;
2414 }
2415
signal_impl(int sig,__sanitizer_sighandler_ptr h)2416 static __sanitizer_sighandler_ptr signal_impl(int sig,
2417 __sanitizer_sighandler_ptr h) {
2418 __sanitizer_sigaction act;
2419 act.handler = h;
2420 internal_memset(&act.sa_mask, -1, sizeof(act.sa_mask));
2421 act.sa_flags = 0;
2422 __sanitizer_sigaction old;
2423 int res = sigaction_symname(sig, &act, &old);
2424 if (res) return (__sanitizer_sighandler_ptr)sig_err;
2425 return old.handler;
2426 }
2427
2428 #define TSAN_SYSCALL() \
2429 ThreadState *thr = cur_thread(); \
2430 if (thr->ignore_interceptors) \
2431 return; \
2432 ScopedSyscall scoped_syscall(thr) \
2433 /**/
2434
2435 struct ScopedSyscall {
2436 ThreadState *thr;
2437
ScopedSyscallScopedSyscall2438 explicit ScopedSyscall(ThreadState *thr)
2439 : thr(thr) {
2440 Initialize(thr);
2441 }
2442
~ScopedSyscallScopedSyscall2443 ~ScopedSyscall() {
2444 ProcessPendingSignals(thr);
2445 }
2446 };
2447
2448 #if !SANITIZER_FREEBSD && !SANITIZER_MAC
syscall_access_range(uptr pc,uptr p,uptr s,bool write)2449 static void syscall_access_range(uptr pc, uptr p, uptr s, bool write) {
2450 TSAN_SYSCALL();
2451 MemoryAccessRange(thr, pc, p, s, write);
2452 }
2453
syscall_acquire(uptr pc,uptr addr)2454 static void syscall_acquire(uptr pc, uptr addr) {
2455 TSAN_SYSCALL();
2456 Acquire(thr, pc, addr);
2457 DPrintf("syscall_acquire(%p)\n", addr);
2458 }
2459
syscall_release(uptr pc,uptr addr)2460 static void syscall_release(uptr pc, uptr addr) {
2461 TSAN_SYSCALL();
2462 DPrintf("syscall_release(%p)\n", addr);
2463 Release(thr, pc, addr);
2464 }
2465
syscall_fd_close(uptr pc,int fd)2466 static void syscall_fd_close(uptr pc, int fd) {
2467 TSAN_SYSCALL();
2468 FdClose(thr, pc, fd);
2469 }
2470
syscall_fd_acquire(uptr pc,int fd)2471 static USED void syscall_fd_acquire(uptr pc, int fd) {
2472 TSAN_SYSCALL();
2473 FdAcquire(thr, pc, fd);
2474 DPrintf("syscall_fd_acquire(%p)\n", fd);
2475 }
2476
syscall_fd_release(uptr pc,int fd)2477 static USED void syscall_fd_release(uptr pc, int fd) {
2478 TSAN_SYSCALL();
2479 DPrintf("syscall_fd_release(%p)\n", fd);
2480 FdRelease(thr, pc, fd);
2481 }
2482
syscall_pre_fork(uptr pc)2483 static void syscall_pre_fork(uptr pc) {
2484 TSAN_SYSCALL();
2485 ForkBefore(thr, pc);
2486 }
2487
syscall_post_fork(uptr pc,int pid)2488 static void syscall_post_fork(uptr pc, int pid) {
2489 TSAN_SYSCALL();
2490 if (pid == 0) {
2491 // child
2492 ForkChildAfter(thr, pc);
2493 FdOnFork(thr, pc);
2494 } else if (pid > 0) {
2495 // parent
2496 ForkParentAfter(thr, pc);
2497 } else {
2498 // error
2499 ForkParentAfter(thr, pc);
2500 }
2501 }
2502 #endif
2503
2504 #define COMMON_SYSCALL_PRE_READ_RANGE(p, s) \
2505 syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), false)
2506
2507 #define COMMON_SYSCALL_PRE_WRITE_RANGE(p, s) \
2508 syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), true)
2509
2510 #define COMMON_SYSCALL_POST_READ_RANGE(p, s) \
2511 do { \
2512 (void)(p); \
2513 (void)(s); \
2514 } while (false)
2515
2516 #define COMMON_SYSCALL_POST_WRITE_RANGE(p, s) \
2517 do { \
2518 (void)(p); \
2519 (void)(s); \
2520 } while (false)
2521
2522 #define COMMON_SYSCALL_ACQUIRE(addr) \
2523 syscall_acquire(GET_CALLER_PC(), (uptr)(addr))
2524
2525 #define COMMON_SYSCALL_RELEASE(addr) \
2526 syscall_release(GET_CALLER_PC(), (uptr)(addr))
2527
2528 #define COMMON_SYSCALL_FD_CLOSE(fd) syscall_fd_close(GET_CALLER_PC(), fd)
2529
2530 #define COMMON_SYSCALL_FD_ACQUIRE(fd) syscall_fd_acquire(GET_CALLER_PC(), fd)
2531
2532 #define COMMON_SYSCALL_FD_RELEASE(fd) syscall_fd_release(GET_CALLER_PC(), fd)
2533
2534 #define COMMON_SYSCALL_PRE_FORK() \
2535 syscall_pre_fork(GET_CALLER_PC())
2536
2537 #define COMMON_SYSCALL_POST_FORK(res) \
2538 syscall_post_fork(GET_CALLER_PC(), res)
2539
2540 #include "sanitizer_common/sanitizer_common_syscalls.inc"
2541 #include "sanitizer_common/sanitizer_syscalls_netbsd.inc"
2542
2543 #ifdef NEED_TLS_GET_ADDR
2544 // Define own interceptor instead of sanitizer_common's for three reasons:
2545 // 1. It must not process pending signals.
2546 // Signal handlers may contain MOVDQA instruction (see below).
2547 // 2. It must be as simple as possible to not contain MOVDQA.
2548 // 3. Sanitizer_common version uses COMMON_INTERCEPTOR_INITIALIZE_RANGE which
2549 // is empty for tsan (meant only for msan).
2550 // Note: __tls_get_addr can be called with mis-aligned stack due to:
2551 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58066
2552 // So the interceptor must work with mis-aligned stack, in particular, does not
2553 // execute MOVDQA with stack addresses.
TSAN_INTERCEPTOR(void *,__tls_get_addr,void * arg)2554 TSAN_INTERCEPTOR(void *, __tls_get_addr, void *arg) {
2555 void *res = REAL(__tls_get_addr)(arg);
2556 ThreadState *thr = cur_thread();
2557 if (!thr)
2558 return res;
2559 DTLS::DTV *dtv = DTLS_on_tls_get_addr(arg, res, thr->tls_addr,
2560 thr->tls_addr + thr->tls_size);
2561 if (!dtv)
2562 return res;
2563 // New DTLS block has been allocated.
2564 MemoryResetRange(thr, 0, dtv->beg, dtv->size);
2565 return res;
2566 }
2567 #endif
2568
2569 #if SANITIZER_NETBSD
TSAN_INTERCEPTOR(void,_lwp_exit)2570 TSAN_INTERCEPTOR(void, _lwp_exit) {
2571 SCOPED_TSAN_INTERCEPTOR(_lwp_exit);
2572 DestroyThreadState();
2573 REAL(_lwp_exit)();
2574 }
2575 #define TSAN_MAYBE_INTERCEPT__LWP_EXIT TSAN_INTERCEPT(_lwp_exit)
2576 #else
2577 #define TSAN_MAYBE_INTERCEPT__LWP_EXIT
2578 #endif
2579
2580 #if SANITIZER_FREEBSD
TSAN_INTERCEPTOR(void,thr_exit,tid_t * state)2581 TSAN_INTERCEPTOR(void, thr_exit, tid_t *state) {
2582 SCOPED_TSAN_INTERCEPTOR(thr_exit, state);
2583 DestroyThreadState();
2584 REAL(thr_exit(state));
2585 }
2586 #define TSAN_MAYBE_INTERCEPT_THR_EXIT TSAN_INTERCEPT(thr_exit)
2587 #else
2588 #define TSAN_MAYBE_INTERCEPT_THR_EXIT
2589 #endif
2590
2591 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_init, void *c, void *a)
2592 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_signal, void *c)
2593 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_broadcast, void *c)
2594 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_wait, void *c, void *m)
2595 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_destroy, void *c)
2596 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_init, void *m, void *a)
2597 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_destroy, void *m)
2598 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_trylock, void *m)
2599 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_init, void *m, void *a)
2600 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_destroy, void *m)
2601 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_rdlock, void *m)
2602 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_tryrdlock, void *m)
2603 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_wrlock, void *m)
2604 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_trywrlock, void *m)
2605 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_unlock, void *m)
2606 TSAN_INTERCEPTOR_NETBSD_ALIAS_THR(int, once, void *o, void (*f)())
2607 TSAN_INTERCEPTOR_NETBSD_ALIAS_THR2(int, sigsetmask, sigmask, int a, void *b,
2608 void *c)
2609
2610 namespace __tsan {
2611
finalize(void * arg)2612 static void finalize(void *arg) {
2613 ThreadState *thr = cur_thread();
2614 int status = Finalize(thr);
2615 // Make sure the output is not lost.
2616 FlushStreams();
2617 if (status)
2618 Die();
2619 }
2620
2621 #if !SANITIZER_MAC && !SANITIZER_ANDROID
unreachable()2622 static void unreachable() {
2623 Report("FATAL: ThreadSanitizer: unreachable called\n");
2624 Die();
2625 }
2626 #endif
2627
InitializeInterceptors()2628 void InitializeInterceptors() {
2629 #if !SANITIZER_MAC
2630 // We need to setup it early, because functions like dlsym() can call it.
2631 REAL(memset) = internal_memset;
2632 REAL(memcpy) = internal_memcpy;
2633 #endif
2634
2635 // Instruct libc malloc to consume less memory.
2636 #if SANITIZER_LINUX
2637 mallopt(1, 0); // M_MXFAST
2638 mallopt(-3, 32*1024); // M_MMAP_THRESHOLD
2639 #endif
2640
2641 new(interceptor_ctx()) InterceptorContext();
2642
2643 InitializeCommonInterceptors();
2644 InitializeSignalInterceptors();
2645
2646 #if !SANITIZER_MAC
2647 // We can not use TSAN_INTERCEPT to get setjmp addr,
2648 // because it does &setjmp and setjmp is not present in some versions of libc.
2649 using __interception::GetRealFunctionAddress;
2650 GetRealFunctionAddress(TSAN_STRING_SETJMP,
2651 (uptr*)&REAL(setjmp_symname), 0, 0);
2652 GetRealFunctionAddress("_setjmp", (uptr*)&REAL(_setjmp), 0, 0);
2653 GetRealFunctionAddress(TSAN_STRING_SIGSETJMP,
2654 (uptr*)&REAL(sigsetjmp_symname), 0, 0);
2655 #if !SANITIZER_NETBSD
2656 GetRealFunctionAddress("__sigsetjmp", (uptr*)&REAL(__sigsetjmp), 0, 0);
2657 #endif
2658 #endif
2659
2660 TSAN_INTERCEPT(longjmp_symname);
2661 TSAN_INTERCEPT(siglongjmp_symname);
2662 #if SANITIZER_NETBSD
2663 TSAN_INTERCEPT(_longjmp);
2664 #endif
2665
2666 TSAN_INTERCEPT(malloc);
2667 TSAN_INTERCEPT(__libc_memalign);
2668 TSAN_INTERCEPT(calloc);
2669 TSAN_INTERCEPT(realloc);
2670 TSAN_INTERCEPT(free);
2671 TSAN_INTERCEPT(cfree);
2672 TSAN_INTERCEPT(munmap);
2673 TSAN_MAYBE_INTERCEPT_MEMALIGN;
2674 TSAN_INTERCEPT(valloc);
2675 TSAN_MAYBE_INTERCEPT_PVALLOC;
2676 TSAN_INTERCEPT(posix_memalign);
2677
2678 TSAN_INTERCEPT(strcpy); // NOLINT
2679 TSAN_INTERCEPT(strncpy);
2680 TSAN_INTERCEPT(strdup);
2681
2682 TSAN_INTERCEPT(pthread_create);
2683 TSAN_INTERCEPT(pthread_join);
2684 TSAN_INTERCEPT(pthread_detach);
2685 #if SANITIZER_LINUX
2686 TSAN_INTERCEPT(pthread_tryjoin_np);
2687 TSAN_INTERCEPT(pthread_timedjoin_np);
2688 #endif
2689
2690 TSAN_INTERCEPT_VER(pthread_cond_init, PTHREAD_ABI_BASE);
2691 TSAN_INTERCEPT_VER(pthread_cond_signal, PTHREAD_ABI_BASE);
2692 TSAN_INTERCEPT_VER(pthread_cond_broadcast, PTHREAD_ABI_BASE);
2693 TSAN_INTERCEPT_VER(pthread_cond_wait, PTHREAD_ABI_BASE);
2694 TSAN_INTERCEPT_VER(pthread_cond_timedwait, PTHREAD_ABI_BASE);
2695 TSAN_INTERCEPT_VER(pthread_cond_destroy, PTHREAD_ABI_BASE);
2696
2697 TSAN_INTERCEPT(pthread_mutex_init);
2698 TSAN_INTERCEPT(pthread_mutex_destroy);
2699 TSAN_INTERCEPT(pthread_mutex_trylock);
2700 TSAN_INTERCEPT(pthread_mutex_timedlock);
2701
2702 TSAN_INTERCEPT(pthread_spin_init);
2703 TSAN_INTERCEPT(pthread_spin_destroy);
2704 TSAN_INTERCEPT(pthread_spin_lock);
2705 TSAN_INTERCEPT(pthread_spin_trylock);
2706 TSAN_INTERCEPT(pthread_spin_unlock);
2707
2708 TSAN_INTERCEPT(pthread_rwlock_init);
2709 TSAN_INTERCEPT(pthread_rwlock_destroy);
2710 TSAN_INTERCEPT(pthread_rwlock_rdlock);
2711 TSAN_INTERCEPT(pthread_rwlock_tryrdlock);
2712 TSAN_INTERCEPT(pthread_rwlock_timedrdlock);
2713 TSAN_INTERCEPT(pthread_rwlock_wrlock);
2714 TSAN_INTERCEPT(pthread_rwlock_trywrlock);
2715 TSAN_INTERCEPT(pthread_rwlock_timedwrlock);
2716 TSAN_INTERCEPT(pthread_rwlock_unlock);
2717
2718 TSAN_INTERCEPT(pthread_barrier_init);
2719 TSAN_INTERCEPT(pthread_barrier_destroy);
2720 TSAN_INTERCEPT(pthread_barrier_wait);
2721
2722 TSAN_INTERCEPT(pthread_once);
2723
2724 TSAN_INTERCEPT(fstat);
2725 TSAN_MAYBE_INTERCEPT___FXSTAT;
2726 TSAN_MAYBE_INTERCEPT_FSTAT64;
2727 TSAN_MAYBE_INTERCEPT___FXSTAT64;
2728 TSAN_INTERCEPT(open);
2729 TSAN_MAYBE_INTERCEPT_OPEN64;
2730 TSAN_INTERCEPT(creat);
2731 TSAN_MAYBE_INTERCEPT_CREAT64;
2732 TSAN_INTERCEPT(dup);
2733 TSAN_INTERCEPT(dup2);
2734 TSAN_INTERCEPT(dup3);
2735 TSAN_MAYBE_INTERCEPT_EVENTFD;
2736 TSAN_MAYBE_INTERCEPT_SIGNALFD;
2737 TSAN_MAYBE_INTERCEPT_INOTIFY_INIT;
2738 TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1;
2739 TSAN_INTERCEPT(socket);
2740 TSAN_INTERCEPT(socketpair);
2741 TSAN_INTERCEPT(connect);
2742 TSAN_INTERCEPT(bind);
2743 TSAN_INTERCEPT(listen);
2744 TSAN_MAYBE_INTERCEPT_EPOLL;
2745 TSAN_INTERCEPT(close);
2746 TSAN_MAYBE_INTERCEPT___CLOSE;
2747 TSAN_MAYBE_INTERCEPT___RES_ICLOSE;
2748 TSAN_INTERCEPT(pipe);
2749 TSAN_INTERCEPT(pipe2);
2750
2751 TSAN_INTERCEPT(unlink);
2752 TSAN_INTERCEPT(tmpfile);
2753 TSAN_MAYBE_INTERCEPT_TMPFILE64;
2754 TSAN_INTERCEPT(abort);
2755 TSAN_INTERCEPT(rmdir);
2756 TSAN_INTERCEPT(closedir);
2757
2758 TSAN_INTERCEPT(sigsuspend);
2759 TSAN_INTERCEPT(sigblock);
2760 TSAN_INTERCEPT(sigsetmask);
2761 TSAN_INTERCEPT(pthread_sigmask);
2762 TSAN_INTERCEPT(raise);
2763 TSAN_INTERCEPT(kill);
2764 TSAN_INTERCEPT(pthread_kill);
2765 TSAN_INTERCEPT(sleep);
2766 TSAN_INTERCEPT(usleep);
2767 TSAN_INTERCEPT(nanosleep);
2768 TSAN_INTERCEPT(pause);
2769 TSAN_INTERCEPT(gettimeofday);
2770 TSAN_INTERCEPT(getaddrinfo);
2771
2772 TSAN_INTERCEPT(fork);
2773 TSAN_INTERCEPT(vfork);
2774 #if !SANITIZER_ANDROID
2775 TSAN_INTERCEPT(dl_iterate_phdr);
2776 #endif
2777 TSAN_MAYBE_INTERCEPT_ON_EXIT;
2778 TSAN_INTERCEPT(__cxa_atexit);
2779 TSAN_INTERCEPT(_exit);
2780
2781 #ifdef NEED_TLS_GET_ADDR
2782 TSAN_INTERCEPT(__tls_get_addr);
2783 #endif
2784
2785 TSAN_MAYBE_INTERCEPT__LWP_EXIT;
2786 TSAN_MAYBE_INTERCEPT_THR_EXIT;
2787
2788 #if !SANITIZER_MAC && !SANITIZER_ANDROID
2789 // Need to setup it, because interceptors check that the function is resolved.
2790 // But atexit is emitted directly into the module, so can't be resolved.
2791 REAL(atexit) = (int(*)(void(*)()))unreachable;
2792 #endif
2793
2794 if (REAL(__cxa_atexit)(&finalize, 0, 0)) {
2795 Printf("ThreadSanitizer: failed to setup atexit callback\n");
2796 Die();
2797 }
2798
2799 #if !SANITIZER_MAC && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
2800 if (pthread_key_create(&interceptor_ctx()->finalize_key, &thread_finalize)) {
2801 Printf("ThreadSanitizer: failed to create thread key\n");
2802 Die();
2803 }
2804 #endif
2805
2806 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_init);
2807 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_signal);
2808 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_broadcast);
2809 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_wait);
2810 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_destroy);
2811 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_init);
2812 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_destroy);
2813 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_trylock);
2814 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_init);
2815 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_destroy);
2816 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_rdlock);
2817 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_tryrdlock);
2818 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_wrlock);
2819 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_trywrlock);
2820 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_unlock);
2821 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(once);
2822 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(sigsetmask);
2823
2824 FdInit();
2825 }
2826
2827 } // namespace __tsan
2828
2829 // Invisible barrier for tests.
2830 // There were several unsuccessful iterations for this functionality:
2831 // 1. Initially it was implemented in user code using
2832 // REAL(pthread_barrier_wait). But pthread_barrier_wait is not supported on
2833 // MacOS. Futexes are linux-specific for this matter.
2834 // 2. Then we switched to atomics+usleep(10). But usleep produced parasitic
2835 // "as-if synchronized via sleep" messages in reports which failed some
2836 // output tests.
2837 // 3. Then we switched to atomics+sched_yield. But this produced tons of tsan-
2838 // visible events, which lead to "failed to restore stack trace" failures.
2839 // Note that no_sanitize_thread attribute does not turn off atomic interception
2840 // so attaching it to the function defined in user code does not help.
2841 // That's why we now have what we have.
2842 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
__tsan_testonly_barrier_init(u64 * barrier,u32 count)2843 void __tsan_testonly_barrier_init(u64 *barrier, u32 count) {
2844 if (count >= (1 << 8)) {
2845 Printf("barrier_init: count is too large (%d)\n", count);
2846 Die();
2847 }
2848 // 8 lsb is thread count, the remaining are count of entered threads.
2849 *barrier = count;
2850 }
2851
2852 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
__tsan_testonly_barrier_wait(u64 * barrier)2853 void __tsan_testonly_barrier_wait(u64 *barrier) {
2854 unsigned old = __atomic_fetch_add(barrier, 1 << 8, __ATOMIC_RELAXED);
2855 unsigned old_epoch = (old >> 8) / (old & 0xff);
2856 for (;;) {
2857 unsigned cur = __atomic_load_n(barrier, __ATOMIC_RELAXED);
2858 unsigned cur_epoch = (cur >> 8) / (cur & 0xff);
2859 if (cur_epoch != old_epoch)
2860 return;
2861 internal_sched_yield();
2862 }
2863 }
2864