1 /* $NetBSD: zs_ioasic.c,v 1.46 2022/07/20 14:19:38 thorpej Exp $ */ 2 3 /*- 4 * Copyright (c) 1996, 1998 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Gordon W. Ross, Ken Hornstein, and by Jason R. Thorpe of the 9 * Numerical Aerospace Simulation Facility, NASA Ames Research Center. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Zilog Z8530 Dual UART driver (machine-dependent part). This driver 35 * handles Z8530 chips attached to the DECstation/Alpha IOASIC. Modified 36 * for NetBSD/alpha by Ken Hornstein and Jason R. Thorpe. NetBSD/pmax 37 * adaption by Mattias Drochner. Merge work by Tohru Nishimura. 38 * 39 * Runs two serial lines per chip using slave drivers. 40 * Plain tty/async lines use the zstty slave. 41 */ 42 43 #include <sys/cdefs.h> 44 __KERNEL_RCSID(0, "$NetBSD: zs_ioasic.c,v 1.46 2022/07/20 14:19:38 thorpej Exp $"); 45 46 #include "opt_ddb.h" 47 #include "opt_kgdb.h" 48 #include "zskbd.h" 49 50 #include <sys/param.h> 51 #include <sys/systm.h> 52 #include <sys/conf.h> 53 #include <sys/device.h> 54 #include <sys/malloc.h> 55 #include <sys/file.h> 56 #include <sys/ioctl.h> 57 #include <sys/kernel.h> 58 #include <sys/proc.h> 59 #include <sys/tty.h> 60 #include <sys/time.h> 61 #include <sys/syslog.h> 62 #include <sys/intr.h> 63 64 #include <machine/autoconf.h> 65 #include <machine/z8530var.h> 66 67 #include <dev/cons.h> 68 #include <dev/ic/z8530reg.h> 69 70 #include <dev/tc/tcvar.h> 71 #include <dev/tc/ioasicreg.h> 72 #include <dev/tc/ioasicvar.h> 73 74 #include <dev/tc/zs_ioasicvar.h> 75 76 #if defined(__alpha__) 77 #include <machine/rpb.h> 78 #endif 79 #if defined(pmax) 80 #include <pmax/pmax/pmaxtype.h> 81 #endif 82 83 /* 84 * Helpers for console support. 85 */ 86 static void zs_ioasic_cninit(tc_addr_t, tc_offset_t, int); 87 static int zs_ioasic_cngetc(dev_t); 88 static void zs_ioasic_cnputc(dev_t, int); 89 static void zs_ioasic_cnpollc(dev_t, int); 90 91 struct consdev zs_ioasic_cons = { 92 NULL, NULL, zs_ioasic_cngetc, zs_ioasic_cnputc, 93 zs_ioasic_cnpollc, NULL, NULL, NULL, NODEV, CN_NORMAL, 94 }; 95 96 static tc_offset_t zs_ioasic_console_offset; 97 static int zs_ioasic_console_channel; 98 static int zs_ioasic_console; 99 static struct zs_chanstate zs_ioasic_conschanstate_store; 100 101 static int zs_ioasic_isconsole(tc_offset_t, int); 102 static void zs_putc(struct zs_chanstate *, int); 103 104 /* 105 * Some warts needed by z8530tty.c 106 */ 107 int zs_def_cflag = (TTYDEF_CFLAG & ~(CSIZE | PARENB)) | CS8; 108 109 /* 110 * ZS chips are fed a 7.372 MHz clock. 111 */ 112 #define PCLK (9600 * 768) /* PCLK pin input clock rate */ 113 114 /* The layout of this is hardware-dependent (padding, order). */ 115 struct zshan { 116 #if defined(__alpha__) 117 volatile u_int zc_csr; /* ctrl,status, and indirect access */ 118 u_int zc_pad0; 119 volatile u_int zc_data; /* data */ 120 u_int sc_pad1; 121 #endif 122 #if defined(pmax) 123 volatile uint16_t zc_csr; /* ctrl,status, and indirect access */ 124 unsigned : 16; 125 volatile uint16_t zc_data; /* data */ 126 unsigned : 16; 127 #endif 128 }; 129 130 struct zsdevice { 131 /* Yes, they are backwards. */ 132 struct zshan zs_chan_b; 133 struct zshan zs_chan_a; 134 }; 135 136 static const u_char zs_ioasic_init_reg[16] = { 137 0, /* 0: CMD (reset, etc.) */ 138 0, /* 1: No interrupts yet. */ 139 0xf0, /* 2: IVECT */ 140 ZSWR3_RX_8 | ZSWR3_RX_ENABLE, 141 ZSWR4_CLK_X16 | ZSWR4_ONESB, 142 ZSWR5_TX_8 | ZSWR5_TX_ENABLE, 143 0, /* 6: TXSYNC/SYNCLO */ 144 0, /* 7: RXSYNC/SYNCHI */ 145 0, /* 8: alias for data port */ 146 ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT, 147 0, /*10: Misc. TX/RX control bits */ 148 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD, 149 22, /*12: BAUDLO (default=9600) */ 150 0, /*13: BAUDHI (default=9600) */ 151 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK, 152 ZSWR15_BREAK_IE, 153 }; 154 155 static struct zshan * 156 zs_ioasic_get_chan_addr(tc_addr_t zsaddr, int channel) 157 { 158 struct zsdevice *addr; 159 struct zshan *zc; 160 161 #if defined(__alpha__) 162 addr = (struct zsdevice *)TC_DENSE_TO_SPARSE(zsaddr); 163 #endif 164 #if defined(pmax) 165 addr = (struct zsdevice *)MIPS_PHYS_TO_KSEG1(zsaddr); 166 #endif 167 168 if (channel == 0) 169 zc = &addr->zs_chan_a; 170 else 171 zc = &addr->zs_chan_b; 172 173 return (zc); 174 } 175 176 177 /**************************************************************** 178 * Autoconfig 179 ****************************************************************/ 180 181 /* Definition of the driver for autoconfig. */ 182 static int zs_ioasic_match(device_t, cfdata_t, void *); 183 static void zs_ioasic_attach(device_t, device_t, void *); 184 static int zs_ioasic_print(void *, const char *name); 185 static int zs_ioasic_submatch(device_t, cfdata_t, 186 const int *, void *); 187 188 CFATTACH_DECL_NEW(zsc_ioasic, sizeof(struct zsc_softc), 189 zs_ioasic_match, zs_ioasic_attach, NULL, NULL); 190 191 /* Interrupt handlers. */ 192 static int zs_ioasic_hardintr(void *); 193 static void zs_ioasic_softintr(void *); 194 195 /* 196 * Is the zs chip present? 197 */ 198 static int 199 zs_ioasic_match(device_t parent, cfdata_t cf, void *aux) 200 { 201 struct ioasicdev_attach_args *d = aux; 202 tc_addr_t zs_addr; 203 204 /* 205 * Make sure that we're looking for the right kind of device. 206 */ 207 if (strncmp(d->iada_modname, "z8530 ", TC_ROM_LLEN) != 0 && 208 strncmp(d->iada_modname, "scc", TC_ROM_LLEN) != 0) 209 return (0); 210 211 /* 212 * Find out the device address, and check it for validity. 213 */ 214 zs_addr = TC_DENSE_TO_SPARSE((tc_addr_t)d->iada_addr); 215 if (tc_badaddr(zs_addr)) 216 return (0); 217 218 return (1); 219 } 220 221 /* 222 * Attach a found zs. 223 */ 224 static void 225 zs_ioasic_attach(device_t parent, device_t self, void *aux) 226 { 227 struct zsc_softc *zs = device_private(self); 228 struct zsc_attach_args zs_args; 229 struct zs_chanstate *cs; 230 struct ioasicdev_attach_args *d = aux; 231 struct zshan *zc; 232 int s, channel; 233 u_long zflg; 234 int locs[ZSCCF_NLOCS]; 235 236 zs->zsc_dev = self; 237 aprint_normal("\n"); 238 239 /* 240 * Initialize software state for each channel. 241 */ 242 for (channel = 0; channel < 2; channel++) { 243 zs_args.channel = channel; 244 zs_args.hwflags = 0; 245 246 if (zs_ioasic_isconsole(d->iada_offset, channel)) { 247 cs = &zs_ioasic_conschanstate_store; 248 zs_args.hwflags |= ZS_HWFLAG_CONSOLE; 249 } else { 250 cs = malloc(sizeof(struct zs_chanstate), 251 M_DEVBUF, M_WAITOK | M_ZERO); 252 zs_lock_init(cs); 253 zc = zs_ioasic_get_chan_addr(d->iada_addr, channel); 254 cs->cs_reg_csr = (volatile void *)&zc->zc_csr; 255 256 memcpy(cs->cs_creg, zs_ioasic_init_reg, 16); 257 memcpy(cs->cs_preg, zs_ioasic_init_reg, 16); 258 259 cs->cs_defcflag = zs_def_cflag; 260 cs->cs_defspeed = 9600; /* XXX */ 261 (void)zs_set_modes(cs, cs->cs_defcflag); 262 } 263 264 zs->zsc_cs[channel] = cs; 265 zs->zsc_addroffset = d->iada_offset; /* cookie only */ 266 cs->cs_channel = channel; 267 cs->cs_ops = &zsops_null; 268 cs->cs_brg_clk = PCLK / 16; 269 270 /* 271 * DCD and CTS interrupts are only meaningful on 272 * SCC 0/B, and RTS and DTR only on B of SCC 0 & 1. 273 * 274 * XXX This is sorta gross. 275 */ 276 if (d->iada_offset == 0x00100000 && channel == 1) { 277 cs->cs_creg[15] |= ZSWR15_DCD_IE; 278 cs->cs_preg[15] |= ZSWR15_DCD_IE; 279 zflg = ZIP_FLAGS_DCDCTS; 280 } else 281 zflg = 0; 282 if (channel == 1) 283 zflg |= ZIP_FLAGS_DTRRTS; 284 cs->cs_private = (void *)zflg; 285 286 /* 287 * Clear the master interrupt enable. 288 * The INTENA is common to both channels, 289 * so just do it on the A channel. 290 */ 291 if (channel == 0) { 292 zs_write_reg(cs, 9, 0); 293 } 294 295 /* 296 * Set up the flow/modem control channel pointer to 297 * deal with the weird wiring on the TC Alpha and 298 * DECstation. 299 */ 300 if (channel == 1) 301 cs->cs_ctl_chan = zs->zsc_cs[0]; 302 else 303 cs->cs_ctl_chan = NULL; 304 305 locs[ZSCCF_CHANNEL] = channel; 306 307 /* 308 * Look for a child driver for this channel. 309 * The child attach will setup the hardware. 310 */ 311 if (config_found(self, (void *)&zs_args, zs_ioasic_print, 312 CFARGS(.submatch = zs_ioasic_submatch, 313 .locators = locs)) == NULL) { 314 /* No sub-driver. Just reset it. */ 315 uint8_t reset = (channel == 0) ? 316 ZSWR9_A_RESET : ZSWR9_B_RESET; 317 s = splhigh(); 318 zs_write_reg(cs, 9, reset); 319 splx(s); 320 } 321 } 322 323 /* 324 * Set up the ioasic interrupt handler. 325 */ 326 ioasic_intr_establish(parent, d->iada_cookie, TC_IPL_TTY, 327 zs_ioasic_hardintr, zs); 328 zs->zsc_sih = softint_establish(SOFTINT_SERIAL, 329 zs_ioasic_softintr, zs); 330 if (zs->zsc_sih == NULL) 331 panic("%s: unable to register softintr", __func__); 332 333 /* 334 * Set the master interrupt enable and interrupt vector. The 335 * Sun does this only on one channel. The old Alpha SCC driver 336 * did it on both. We'll do it on both. 337 */ 338 s = splhigh(); 339 /* interrupt vector */ 340 zs_write_reg(zs->zsc_cs[0], 2, zs_ioasic_init_reg[2]); 341 zs_write_reg(zs->zsc_cs[1], 2, zs_ioasic_init_reg[2]); 342 343 /* master interrupt control (enable) */ 344 zs_write_reg(zs->zsc_cs[0], 9, zs_ioasic_init_reg[9]); 345 zs_write_reg(zs->zsc_cs[1], 9, zs_ioasic_init_reg[9]); 346 #if defined(__alpha__) 347 /* ioasic interrupt enable */ 348 *(volatile u_int *)(ioasic_base + IOASIC_IMSK) |= 349 IOASIC_INTR_SCC_1 | IOASIC_INTR_SCC_0; 350 tc_mb(); 351 #endif 352 splx(s); 353 } 354 355 static int 356 zs_ioasic_print(void *aux, const char *name) 357 { 358 struct zsc_attach_args *args = aux; 359 360 if (name != NULL) 361 aprint_normal("%s:", name); 362 363 if (args->channel != -1) 364 aprint_normal(" channel %d", args->channel); 365 366 return (UNCONF); 367 } 368 369 static int 370 zs_ioasic_submatch(device_t parent, cfdata_t cf, const int *locs, void *aux) 371 { 372 struct zsc_softc *zs = device_private(parent); 373 struct zsc_attach_args *pa = aux; 374 const char *defname = ""; 375 376 if (cf->cf_loc[ZSCCF_CHANNEL] != ZSCCF_CHANNEL_DEFAULT && 377 cf->cf_loc[ZSCCF_CHANNEL] != locs[ZSCCF_CHANNEL]) 378 return (0); 379 380 if (cf->cf_loc[ZSCCF_CHANNEL] == ZSCCF_CHANNEL_DEFAULT) { 381 if (pa->channel == 0) { 382 #if defined(pmax) 383 if (systype == DS_MAXINE) 384 return (0); 385 #endif 386 if (zs->zsc_addroffset == 0x100000) 387 defname = "vsms"; 388 else 389 defname = "lkkbd"; 390 } 391 else if (zs->zsc_addroffset == 0x100000) 392 defname = "zstty"; 393 #if defined(pmax) 394 else if (systype == DS_MAXINE) 395 return (0); 396 #endif 397 #if defined(__alpha__) 398 else if (cputype == ST_DEC_3000_300) 399 return (0); 400 #endif 401 else 402 defname = "zstty"; /* 3min/3max+, DEC3000/500 */ 403 404 if (strcmp(cf->cf_name, defname)) 405 return (0); 406 } 407 return (config_match(parent, cf, aux)); 408 } 409 410 /* 411 * Hardware interrupt handler. 412 */ 413 static int 414 zs_ioasic_hardintr(void *arg) 415 { 416 struct zsc_softc *zsc = arg; 417 418 /* 419 * Call the upper-level MI hardware interrupt handler. 420 */ 421 zsc_intr_hard(zsc); 422 423 /* 424 * Check to see if we need to schedule any software-level 425 * processing interrupts. 426 */ 427 if (zsc->zsc_cs[0]->cs_softreq | zsc->zsc_cs[1]->cs_softreq) 428 softint_schedule(zsc->zsc_sih); 429 430 return (1); 431 } 432 433 /* 434 * Software-level interrupt (character processing, lower priority). 435 */ 436 static void 437 zs_ioasic_softintr(void *arg) 438 { 439 struct zsc_softc *zsc = arg; 440 int s; 441 442 s = spltty(); 443 (void)zsc_intr_soft(zsc); 444 splx(s); 445 } 446 447 /* 448 * MD functions for setting the baud rate and control modes. 449 */ 450 int 451 zs_set_speed(struct zs_chanstate *cs, int bps /*bits per second*/) 452 { 453 int tconst, real_bps; 454 455 if (bps == 0) 456 return (0); 457 458 #ifdef DIAGNOSTIC 459 if (cs->cs_brg_clk == 0) 460 panic("zs_set_speed"); 461 #endif 462 463 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps); 464 if (tconst < 0) 465 return (EINVAL); 466 467 /* Convert back to make sure we can do it. */ 468 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst); 469 470 /* XXX - Allow some tolerance here? */ 471 if (real_bps != bps) 472 return (EINVAL); 473 474 cs->cs_preg[12] = tconst; 475 cs->cs_preg[13] = tconst >> 8; 476 477 /* Caller will stuff the pending registers. */ 478 return (0); 479 } 480 481 int 482 zs_set_modes(struct zs_chanstate *cs, int cflag) 483 { 484 u_long privflags = (u_long)cs->cs_private; 485 int s; 486 487 /* 488 * Output hardware flow control on the chip is horrendous: 489 * if carrier detect drops, the receiver is disabled, and if 490 * CTS drops, the transmitter is stopped IN MID CHARACTER! 491 * Therefore, NEVER set the HFC bit, and instead use the 492 * status interrupt to detect CTS changes. 493 */ 494 s = splzs(); 495 if ((cflag & (CLOCAL | MDMBUF)) != 0) 496 cs->cs_rr0_dcd = 0; 497 else 498 cs->cs_rr0_dcd = ZSRR0_DCD; 499 if ((cflag & CRTSCTS) != 0) { 500 cs->cs_wr5_dtr = ZSWR5_DTR; 501 cs->cs_wr5_rts = ZSWR5_RTS; 502 cs->cs_rr0_cts = ZSRR0_CTS; 503 } else if ((cflag & CDTRCTS) != 0) { 504 cs->cs_wr5_dtr = 0; 505 cs->cs_wr5_rts = ZSWR5_DTR; 506 cs->cs_rr0_cts = ZSRR0_CTS; 507 } else if ((cflag & MDMBUF) != 0) { 508 cs->cs_wr5_dtr = 0; 509 cs->cs_wr5_rts = ZSWR5_DTR; 510 cs->cs_rr0_cts = ZSRR0_DCD; 511 } else { 512 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS; 513 cs->cs_wr5_rts = 0; 514 cs->cs_rr0_cts = 0; 515 } 516 517 if ((privflags & ZIP_FLAGS_DCDCTS) == 0) { 518 cs->cs_rr0_dcd &= ~(ZSRR0_CTS|ZSRR0_DCD); 519 cs->cs_rr0_cts &= ~(ZSRR0_CTS|ZSRR0_DCD); 520 } 521 if ((privflags & ZIP_FLAGS_DTRRTS) == 0) { 522 cs->cs_wr5_dtr &= ~(ZSWR5_RTS|ZSWR5_DTR); 523 cs->cs_wr5_rts &= ~(ZSWR5_RTS|ZSWR5_DTR); 524 } 525 splx(s); 526 527 /* Caller will stuff the pending registers. */ 528 return (0); 529 } 530 531 /* 532 * Functions to read and write individual registers in a channel. 533 * The ZS chip requires a 1.6 uSec. recovery time between accesses, 534 * and the Alpha TC hardware does NOT take care of this for you. 535 * The delay is now handled inside the chip access functions. 536 * These could be inlines, but with the delay, speed is moot. 537 */ 538 #if defined(pmax) 539 #undef DELAY 540 #define DELAY(x) 541 #endif 542 543 u_int 544 zs_read_reg(struct zs_chanstate *cs, u_int reg) 545 { 546 volatile struct zshan *zc = (volatile void *)cs->cs_reg_csr; 547 unsigned val; 548 549 zc->zc_csr = reg << 8; 550 tc_wmb(); 551 DELAY(5); 552 val = (zc->zc_csr >> 8) & 0xff; 553 /* tc_mb(); */ 554 DELAY(5); 555 return (val); 556 } 557 558 void 559 zs_write_reg(struct zs_chanstate *cs, u_int reg, u_int val) 560 { 561 volatile struct zshan *zc = (volatile void *)cs->cs_reg_csr; 562 563 zc->zc_csr = reg << 8; 564 tc_wmb(); 565 DELAY(5); 566 zc->zc_csr = val << 8; 567 tc_wmb(); 568 DELAY(5); 569 } 570 571 u_int 572 zs_read_csr(struct zs_chanstate *cs) 573 { 574 volatile struct zshan *zc = (volatile void *)cs->cs_reg_csr; 575 unsigned val; 576 577 val = (zc->zc_csr >> 8) & 0xff; 578 /* tc_mb(); */ 579 DELAY(5); 580 return (val); 581 } 582 583 void 584 zs_write_csr(struct zs_chanstate *cs, u_int val) 585 { 586 volatile struct zshan *zc = (volatile void *)cs->cs_reg_csr; 587 588 zc->zc_csr = val << 8; 589 tc_wmb(); 590 DELAY(5); 591 } 592 593 u_int 594 zs_read_data(struct zs_chanstate *cs) 595 { 596 volatile struct zshan *zc = (volatile void *)cs->cs_reg_csr; 597 unsigned val; 598 599 val = (zc->zc_data) >> 8 & 0xff; 600 /* tc_mb(); */ 601 DELAY(5); 602 return (val); 603 } 604 605 void 606 zs_write_data(struct zs_chanstate *cs, u_int val) 607 { 608 volatile struct zshan *zc = (volatile void *)cs->cs_reg_csr; 609 610 zc->zc_data = val << 8; 611 tc_wmb(); 612 DELAY(5); 613 } 614 615 /**************************************************************** 616 * Console support functions 617 ****************************************************************/ 618 619 /* 620 * Handle user request to enter kernel debugger. 621 */ 622 void 623 zs_abort(struct zs_chanstate *cs) 624 { 625 u_int rr0; 626 627 /* Wait for end of break. */ 628 /* XXX - Limit the wait? */ 629 do { 630 rr0 = zs_read_csr(cs); 631 } while (rr0 & ZSRR0_BREAK); 632 633 #if defined(KGDB) 634 zskgdb(cs); 635 #elif defined(DDB) 636 Debugger(); 637 #else 638 printf("zs_abort: ignoring break on console\n"); 639 #endif 640 } 641 642 /* 643 * Polled input char. 644 */ 645 int 646 zs_getc(struct zs_chanstate *cs) 647 { 648 int s, c; 649 u_int rr0; 650 651 s = splhigh(); 652 /* Wait for a character to arrive. */ 653 do { 654 rr0 = zs_read_csr(cs); 655 } while ((rr0 & ZSRR0_RX_READY) == 0); 656 657 c = zs_read_data(cs); 658 splx(s); 659 660 /* 661 * This is used by the kd driver to read scan codes, 662 * so don't translate '\r' ==> '\n' here... 663 */ 664 return (c); 665 } 666 667 /* 668 * Polled output char. 669 */ 670 static void 671 zs_putc(struct zs_chanstate *cs, int c) 672 { 673 int s; 674 u_int rr0; 675 676 s = splhigh(); 677 /* Wait for transmitter to become ready. */ 678 do { 679 rr0 = zs_read_csr(cs); 680 } while ((rr0 & ZSRR0_TX_READY) == 0); 681 682 zs_write_data(cs, c); 683 684 /* Wait for the character to be transmitted. */ 685 do { 686 rr0 = zs_read_csr(cs); 687 } while ((rr0 & ZSRR0_TX_READY) == 0); 688 splx(s); 689 } 690 691 /*****************************************************************/ 692 693 /* 694 * zs_ioasic_cninit -- 695 * Initialize the serial channel for either a keyboard or 696 * a serial console. 697 */ 698 static void 699 zs_ioasic_cninit(tc_addr_t ioasic_addr, tc_offset_t zs_offset, int channel) 700 { 701 struct zs_chanstate *cs; 702 tc_addr_t zs_addr; 703 struct zshan *zc; 704 u_long zflg; 705 706 /* 707 * Initialize the console finder helpers. 708 */ 709 zs_ioasic_console_offset = zs_offset; 710 zs_ioasic_console_channel = channel; 711 zs_ioasic_console = 1; 712 713 /* 714 * Pointer to channel state. 715 */ 716 cs = &zs_ioasic_conschanstate_store; 717 718 /* 719 * Compute the physical address of the chip, "map" it via 720 * K0SEG, and then get the address of the actual channel. 721 */ 722 #if defined(__alpha__) 723 zs_addr = ALPHA_PHYS_TO_K0SEG(ioasic_addr + zs_offset); 724 #endif 725 #if defined(pmax) 726 zs_addr = MIPS_PHYS_TO_KSEG1(ioasic_addr + zs_offset); 727 #endif 728 zc = zs_ioasic_get_chan_addr(zs_addr, channel); 729 730 /* Setup temporary chanstate. */ 731 cs->cs_reg_csr = (volatile void *)&zc->zc_csr; 732 733 cs->cs_channel = channel; 734 cs->cs_ops = &zsops_null; 735 cs->cs_brg_clk = PCLK / 16; 736 737 /* Initialize the pending registers. */ 738 memcpy(cs->cs_preg, zs_ioasic_init_reg, 16); 739 /* cs->cs_preg[5] |= (ZSWR5_DTR | ZSWR5_RTS); */ 740 741 /* 742 * DCD and CTS interrupts are only meaningful on 743 * SCC 0/B, and RTS and DTR only on B of SCC 0 & 1. 744 * 745 * XXX This is sorta gross. 746 */ 747 if (zs_offset == 0x00100000 && channel == 1) 748 zflg = ZIP_FLAGS_DCDCTS; 749 else 750 zflg = 0; 751 if (channel == 1) 752 zflg |= ZIP_FLAGS_DTRRTS; 753 cs->cs_private = (void *)zflg; 754 755 /* Clear the master interrupt enable. */ 756 zs_write_reg(cs, 9, 0); 757 758 /* Reset the whole SCC chip. */ 759 zs_write_reg(cs, 9, ZSWR9_HARD_RESET); 760 761 /* Copy "pending" to "current" and H/W. */ 762 zs_loadchannelregs(cs); 763 } 764 765 /* 766 * zs_ioasic_cnattach -- 767 * Initialize and attach a serial console. 768 */ 769 void 770 zs_ioasic_cnattach(tc_addr_t ioasic_addr, tc_offset_t zs_offset, int channel) 771 { 772 struct zs_chanstate *cs = &zs_ioasic_conschanstate_store; 773 extern const struct cdevsw zstty_cdevsw; 774 775 zs_ioasic_cninit(ioasic_addr, zs_offset, channel); 776 zs_lock_init(cs); 777 cs->cs_defspeed = 9600; 778 cs->cs_defcflag = (TTYDEF_CFLAG & ~(CSIZE | PARENB)) | CS8; 779 780 /* Point the console at the SCC. */ 781 cn_tab = &zs_ioasic_cons; 782 cn_tab->cn_pri = CN_REMOTE; 783 cn_tab->cn_dev = makedev(cdevsw_lookup_major(&zstty_cdevsw), 784 (zs_offset == 0x100000) ? 0 : 1); 785 } 786 787 /* 788 * zs_ioasic_lk201_cnattach -- 789 * Initialize and attach a keyboard. 790 */ 791 int 792 zs_ioasic_lk201_cnattach(tc_addr_t ioasic_addr, tc_offset_t zs_offset, 793 int channel) 794 { 795 #if (NZSKBD > 0) 796 struct zs_chanstate *cs = &zs_ioasic_conschanstate_store; 797 798 zs_ioasic_cninit(ioasic_addr, zs_offset, channel); 799 zs_lock_init(cs); 800 cs->cs_defspeed = 4800; 801 cs->cs_defcflag = (TTYDEF_CFLAG & ~(CSIZE | PARENB)) | CS8; 802 return (zskbd_cnattach(cs)); 803 #else 804 return (ENXIO); 805 #endif 806 } 807 808 static int 809 zs_ioasic_isconsole(tc_offset_t offset, int channel) 810 { 811 812 if (zs_ioasic_console && 813 offset == zs_ioasic_console_offset && 814 channel == zs_ioasic_console_channel) 815 return (1); 816 817 return (0); 818 } 819 820 /* 821 * Polled console input putchar. 822 */ 823 static int 824 zs_ioasic_cngetc(dev_t dev) 825 { 826 827 return (zs_getc(&zs_ioasic_conschanstate_store)); 828 } 829 830 /* 831 * Polled console output putchar. 832 */ 833 static void 834 zs_ioasic_cnputc(dev_t dev, int c) 835 { 836 837 zs_putc(&zs_ioasic_conschanstate_store, c); 838 } 839 840 /* 841 * Set polling/no polling on console. 842 */ 843 static void 844 zs_ioasic_cnpollc(dev_t dev, int onoff) 845 { 846 847 /* XXX ??? */ 848 } 849