xref: /netbsd-src/sys/dev/ic/nvme.c (revision d909946ca08dceb44d7d0f22ec9488679695d976)
1 /*	$NetBSD: nvme.c,v 1.3 2016/06/04 16:11:51 nonaka Exp $	*/
2 /*	$OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
3 
4 /*
5  * Copyright (c) 2014 David Gwynne <dlg@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.3 2016/06/04 16:11:51 nonaka Exp $");
22 
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/kernel.h>
26 #include <sys/atomic.h>
27 #include <sys/bus.h>
28 #include <sys/buf.h>
29 #include <sys/conf.h>
30 #include <sys/device.h>
31 #include <sys/kmem.h>
32 #include <sys/once.h>
33 #include <sys/proc.h>
34 #include <sys/queue.h>
35 #include <sys/mutex.h>
36 
37 #include <uvm/uvm_extern.h>
38 
39 #include <dev/ic/nvmereg.h>
40 #include <dev/ic/nvmevar.h>
41 #include <dev/ic/nvmeio.h>
42 
43 int nvme_adminq_size = 128;
44 int nvme_ioq_size = 128;
45 
46 static int	nvme_print(void *, const char *);
47 
48 static int	nvme_ready(struct nvme_softc *, uint32_t);
49 static int	nvme_enable(struct nvme_softc *, u_int);
50 static int	nvme_disable(struct nvme_softc *);
51 static int	nvme_shutdown(struct nvme_softc *);
52 
53 static void	nvme_version(struct nvme_softc *, uint32_t);
54 #ifdef NVME_DEBUG
55 static void	nvme_dumpregs(struct nvme_softc *);
56 #endif
57 static int	nvme_identify(struct nvme_softc *, u_int);
58 static void	nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
59 		    void *);
60 
61 static int	nvme_ccbs_alloc(struct nvme_queue *, u_int);
62 static void	nvme_ccbs_free(struct nvme_queue *);
63 
64 static struct nvme_ccb *
65 		nvme_ccb_get(struct nvme_queue *);
66 static void	nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
67 
68 static int	nvme_poll(struct nvme_softc *, struct nvme_queue *,
69 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
70 		    struct nvme_ccb *, void *));
71 static void	nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
72 static void	nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
73 		    struct nvme_cqe *);
74 static void	nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
75 static void	nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
76 		    struct nvme_cqe *);
77 
78 static struct nvme_queue *
79 		nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
80 static int	nvme_q_create(struct nvme_softc *, struct nvme_queue *);
81 static int	nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
82 static void	nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
83 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
84 		    struct nvme_ccb *, void *));
85 static int	nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
86 static void	nvme_q_free(struct nvme_softc *, struct nvme_queue *);
87 
88 static struct nvme_dmamem *
89 		nvme_dmamem_alloc(struct nvme_softc *, size_t);
90 static void	nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
91 static void	nvme_dmamem_sync(struct nvme_softc *, struct nvme_dmamem *,
92 		    int);
93 
94 static void	nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
95 		    void *);
96 static void	nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
97 		    struct nvme_cqe *);
98 static void	nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
99 		    void *);
100 static void	nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
101 		    struct nvme_cqe *);
102 
103 static void	nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
104 		    void *);
105 static void	nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
106 		    struct nvme_cqe *);
107 static int	nvme_command_passthrough(struct nvme_softc *,
108 		    struct nvme_pt_command *, uint16_t, struct lwp *, bool);
109 
110 #define nvme_read4(_s, _r) \
111 	bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
112 #define nvme_write4(_s, _r, _v) \
113 	bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
114 #ifdef __LP64__
115 #define nvme_read8(_s, _r) \
116 	bus_space_read_8((_s)->sc_iot, (_s)->sc_ioh, (_r))
117 #define nvme_write8(_s, _r, _v) \
118 	bus_space_write_8((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
119 #else /* __LP64__ */
120 static inline uint64_t
121 nvme_read8(struct nvme_softc *sc, bus_size_t r)
122 {
123 	uint64_t v;
124 	uint32_t *a = (uint32_t *)&v;
125 
126 #if _BYTE_ORDER == _LITTLE_ENDIAN
127 	a[0] = nvme_read4(sc, r);
128 	a[1] = nvme_read4(sc, r + 4);
129 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
130 	a[1] = nvme_read4(sc, r);
131 	a[0] = nvme_read4(sc, r + 4);
132 #endif
133 
134 	return v;
135 }
136 
137 static inline void
138 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
139 {
140 	uint32_t *a = (uint32_t *)&v;
141 
142 #if _BYTE_ORDER == _LITTLE_ENDIAN
143 	nvme_write4(sc, r, a[0]);
144 	nvme_write4(sc, r + 4, a[1]);
145 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
146 	nvme_write4(sc, r, a[1]);
147 	nvme_write4(sc, r + 4, a[0]);
148 #endif
149 }
150 #endif /* __LP64__ */
151 #define nvme_barrier(_s, _r, _l, _f) \
152 	bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
153 
154 pool_cache_t nvme_ns_ctx_cache;
155 ONCE_DECL(nvme_init_once);
156 
157 static int
158 nvme_init(void)
159 {
160 	nvme_ns_ctx_cache = pool_cache_init(sizeof(struct nvme_ns_context),
161 	    0, 0, 0, "nvme_ns_ctx", NULL, IPL_BIO, NULL, NULL, NULL);
162 	KASSERT(nvme_ns_ctx_cache != NULL);
163 	return 0;
164 }
165 
166 static void
167 nvme_version(struct nvme_softc *sc, uint32_t ver)
168 {
169 	const char *v = NULL;
170 
171 	switch (ver) {
172 	case NVME_VS_1_0:
173 		v = "1.0";
174 		break;
175 	case NVME_VS_1_1:
176 		v = "1.1";
177 		break;
178 	case NVME_VS_1_2:
179 		v = "1.2";
180 		break;
181 	default:
182 		aprint_error_dev(sc->sc_dev, "unknown version 0x%08x\n", ver);
183 		return;
184 	}
185 
186 	aprint_normal_dev(sc->sc_dev, "NVMe %s\n", v);
187 }
188 
189 #ifdef NVME_DEBUG
190 static void
191 nvme_dumpregs(struct nvme_softc *sc)
192 {
193 	uint64_t r8;
194 	uint32_t r4;
195 
196 #define	DEVNAME(_sc) device_xname((_sc)->sc_dev)
197 	r8 = nvme_read8(sc, NVME_CAP);
198 	printf("%s: cap  0x%016llx\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
199 	printf("%s:  mpsmax %u (%u)\n", DEVNAME(sc),
200 	    (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
201 	printf("%s:  mpsmin %u (%u)\n", DEVNAME(sc),
202 	    (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
203 	printf("%s:  css %llu\n", DEVNAME(sc), NVME_CAP_CSS(r8));
204 	printf("%s:  nssrs %llu\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
205 	printf("%s:  dstrd %u\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
206 	printf("%s:  to %llu msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
207 	printf("%s:  ams %llu\n", DEVNAME(sc), NVME_CAP_AMS(r8));
208 	printf("%s:  cqr %llu\n", DEVNAME(sc), NVME_CAP_CQR(r8));
209 	printf("%s:  mqes %llu\n", DEVNAME(sc), NVME_CAP_MQES(r8));
210 
211 	printf("%s: vs   0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
212 
213 	r4 = nvme_read4(sc, NVME_CC);
214 	printf("%s: cc   0x%04x\n", DEVNAME(sc), r4);
215 	printf("%s:  iocqes %u\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4));
216 	printf("%s:  iosqes %u\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4));
217 	printf("%s:  shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
218 	printf("%s:  ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
219 	printf("%s:  mps %u\n", DEVNAME(sc), NVME_CC_MPS_R(r4));
220 	printf("%s:  css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
221 	printf("%s:  en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN));
222 
223 	printf("%s: csts 0x%08x\n", DEVNAME(sc), nvme_read4(sc, NVME_CSTS));
224 	printf("%s: aqa  0x%08x\n", DEVNAME(sc), nvme_read4(sc, NVME_AQA));
225 	printf("%s: asq  0x%016llx\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
226 	printf("%s: acq  0x%016llx\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
227 #undef	DEVNAME
228 }
229 #endif	/* NVME_DEBUG */
230 
231 static int
232 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
233 {
234 	u_int i = 0;
235 
236 	while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
237 		if (i++ > sc->sc_rdy_to)
238 			return 1;
239 
240 		delay(1000);
241 		nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
242 	}
243 
244 	return 0;
245 }
246 
247 static int
248 nvme_enable(struct nvme_softc *sc, u_int mps)
249 {
250 	uint32_t cc;
251 
252 	cc = nvme_read4(sc, NVME_CC);
253 	if (ISSET(cc, NVME_CC_EN))
254 		return nvme_ready(sc, NVME_CSTS_RDY);
255 
256 	nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
257 	    NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
258 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
259 
260 	nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
261 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
262 	nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
263 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
264 
265 	CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
266 	    NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
267 	SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
268 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
269 	SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
270 	SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
271 	SET(cc, NVME_CC_MPS(mps));
272 	SET(cc, NVME_CC_EN);
273 
274 	nvme_write4(sc, NVME_CC, cc);
275 	nvme_barrier(sc, 0, sc->sc_ios,
276 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
277 
278 	return nvme_ready(sc, NVME_CSTS_RDY);
279 }
280 
281 static int
282 nvme_disable(struct nvme_softc *sc)
283 {
284 	uint32_t cc, csts;
285 
286 	cc = nvme_read4(sc, NVME_CC);
287 	if (ISSET(cc, NVME_CC_EN)) {
288 		csts = nvme_read4(sc, NVME_CSTS);
289 		if (!ISSET(csts, NVME_CSTS_CFS) &&
290 		    nvme_ready(sc, NVME_CSTS_RDY) != 0)
291 			return 1;
292 	}
293 
294 	CLR(cc, NVME_CC_EN);
295 
296 	nvme_write4(sc, NVME_CC, cc);
297 	nvme_barrier(sc, 0, sc->sc_ios,
298 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
299 
300 	return nvme_ready(sc, 0);
301 }
302 
303 int
304 nvme_attach(struct nvme_softc *sc)
305 {
306 	struct nvme_attach_args naa;
307 	uint64_t cap;
308 	uint32_t reg;
309 	u_int dstrd;
310 	u_int mps = PAGE_SHIFT;
311 	int adminq_entries = nvme_adminq_size;
312 	int ioq_entries = nvme_ioq_size;
313 	int i;
314 
315 	RUN_ONCE(&nvme_init_once, nvme_init);
316 
317 	reg = nvme_read4(sc, NVME_VS);
318 	if (reg == 0xffffffff) {
319 		aprint_error_dev(sc->sc_dev, "invalid mapping\n");
320 		return 1;
321 	}
322 
323 	nvme_version(sc, reg);
324 
325 	cap = nvme_read8(sc, NVME_CAP);
326 	dstrd = NVME_CAP_DSTRD(cap);
327 	if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
328 		aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
329 		    "is greater than CPU page size %u\n",
330 		    1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
331 		return 1;
332 	}
333 	if (NVME_CAP_MPSMAX(cap) < mps)
334 		mps = NVME_CAP_MPSMAX(cap);
335 
336 	sc->sc_rdy_to = NVME_CAP_TO(cap);
337 	sc->sc_mps = 1 << mps;
338 	sc->sc_mdts = MAXPHYS;
339 	sc->sc_max_sgl = 2;
340 
341 	if (nvme_disable(sc) != 0) {
342 		aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
343 		return 1;
344 	}
345 
346 	sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries, dstrd);
347 	if (sc->sc_admin_q == NULL) {
348 		aprint_error_dev(sc->sc_dev,
349 		    "unable to allocate admin queue\n");
350 		return 1;
351 	}
352 	if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
353 		goto free_admin_q;
354 
355 	if (nvme_enable(sc, mps) != 0) {
356 		aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
357 		goto disestablish_admin_q;
358 	}
359 
360 	if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
361 		aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
362 		goto disable;
363 	}
364 
365 	/* we know how big things are now */
366 	sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
367 
368 	/* reallocate ccbs of admin queue with new max sgl. */
369 	nvme_ccbs_free(sc->sc_admin_q);
370 	nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
371 
372 	sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
373 	if (sc->sc_q == NULL) {
374 		aprint_error_dev(sc->sc_dev, "unable to allocate io queue\n");
375 		goto disable;
376 	}
377 	for (i = 0; i < sc->sc_nq; i++) {
378 		sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries, dstrd);
379 		if (sc->sc_q[i] == NULL) {
380 			aprint_error_dev(sc->sc_dev,
381 			    "unable to allocate io queue\n");
382 			goto free_q;
383 		}
384 		if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
385 			aprint_error_dev(sc->sc_dev,
386 			    "unable to create io queue\n");
387 			nvme_q_free(sc, sc->sc_q[i]);
388 			goto free_q;
389 		}
390 	}
391 
392 	if (!sc->sc_use_mq)
393 		nvme_write4(sc, NVME_INTMC, 1);
394 
395 	sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
396 	    KM_SLEEP);
397 	for (i = 0; i < sc->sc_nn; i++) {
398 		memset(&naa, 0, sizeof(naa));
399 		naa.naa_nsid = i + 1;
400 		naa.naa_qentries = ioq_entries;
401 		sc->sc_namespaces[i].dev = config_found(sc->sc_dev, &naa,
402 		    nvme_print);
403 	}
404 
405 	return 0;
406 
407 free_q:
408 	while (--i >= 0) {
409 		nvme_q_delete(sc, sc->sc_q[i]);
410 		nvme_q_free(sc, sc->sc_q[i]);
411 	}
412 disable:
413 	nvme_disable(sc);
414 disestablish_admin_q:
415 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
416 free_admin_q:
417 	nvme_q_free(sc, sc->sc_admin_q);
418 
419 	return 1;
420 }
421 
422 static int
423 nvme_print(void *aux, const char *pnp)
424 {
425 	struct nvme_attach_args *naa = aux;
426 
427 	if (pnp)
428 		aprint_normal("at %s", pnp);
429 
430 	if (naa->naa_nsid > 0)
431 		aprint_normal(" nsid %d", naa->naa_nsid);
432 
433 	return UNCONF;
434 }
435 
436 int
437 nvme_detach(struct nvme_softc *sc, int flags)
438 {
439 	int i, error;
440 
441 	error = config_detach_children(sc->sc_dev, flags);
442 	if (error)
443 		return error;
444 
445 	error = nvme_shutdown(sc);
446 	if (error)
447 		return error;
448 
449 	for (i = 0; i < sc->sc_nq; i++)
450 		nvme_q_free(sc, sc->sc_q[i]);
451 	kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
452 	nvme_q_free(sc, sc->sc_admin_q);
453 
454 	return 0;
455 }
456 
457 static int
458 nvme_shutdown(struct nvme_softc *sc)
459 {
460 	uint32_t cc, csts;
461 	bool disabled = false;
462 	int i;
463 
464 	if (!sc->sc_use_mq)
465 		nvme_write4(sc, NVME_INTMS, 1);
466 
467 	for (i = 0; i < sc->sc_nq; i++) {
468 		if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
469 			aprint_error_dev(sc->sc_dev,
470 			    "unable to delete io queue %d, disabling\n", i + 1);
471 			disabled = true;
472 		}
473 	}
474 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
475 	if (disabled)
476 		goto disable;
477 
478 	cc = nvme_read4(sc, NVME_CC);
479 	CLR(cc, NVME_CC_SHN_MASK);
480 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
481 	nvme_write4(sc, NVME_CC, cc);
482 
483 	for (i = 0; i < 4000; i++) {
484 		nvme_barrier(sc, 0, sc->sc_ios,
485 		    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
486 		csts = nvme_read4(sc, NVME_CSTS);
487 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
488 			return 0;
489 
490 		delay(1000);
491 	}
492 
493 	aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
494 
495 disable:
496 	nvme_disable(sc);
497 	return 0;
498 }
499 
500 void
501 nvme_childdet(device_t self, device_t child)
502 {
503 	struct nvme_softc *sc = device_private(self);
504 	int i;
505 
506 	for (i = 0; i < sc->sc_nn; i++) {
507 		if (sc->sc_namespaces[i].dev == child) {
508 			/* Already freed ns->ident. */
509 			sc->sc_namespaces[i].dev = NULL;
510 			break;
511 		}
512 	}
513 }
514 
515 int
516 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
517 {
518 	struct nvme_sqe sqe;
519 	struct nvm_identify_namespace *identify;
520 	struct nvme_dmamem *mem;
521 	struct nvme_ccb *ccb;
522 	struct nvme_namespace *ns;
523 	int rv;
524 
525 	KASSERT(nsid > 0);
526 
527 	ccb = nvme_ccb_get(sc->sc_admin_q);
528 	KASSERT(ccb != NULL);
529 
530 	mem = nvme_dmamem_alloc(sc, sizeof(*identify));
531 	if (mem == NULL)
532 		return ENOMEM;
533 
534 	memset(&sqe, 0, sizeof(sqe));
535 	sqe.opcode = NVM_ADMIN_IDENTIFY;
536 	htolem32(&sqe.nsid, nsid);
537 	htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
538 	htolem32(&sqe.cdw10, 0);
539 
540 	ccb->ccb_done = nvme_empty_done;
541 	ccb->ccb_cookie = &sqe;
542 
543 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
544 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill);
545 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
546 
547 	nvme_ccb_put(sc->sc_admin_q, ccb);
548 
549 	if (rv != 0) {
550 		rv = EIO;
551 		goto done;
552 	}
553 
554 	/* commit */
555 
556 	identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
557 	memcpy(identify, NVME_DMA_KVA(mem), sizeof(*identify));
558 
559 	ns = nvme_ns_get(sc, nsid);
560 	KASSERT(ns);
561 	ns->ident = identify;
562 
563 done:
564 	nvme_dmamem_free(sc, mem);
565 
566 	return rv;
567 }
568 
569 int
570 nvme_ns_dobio(struct nvme_softc *sc, struct nvme_ns_context *ctx)
571 {
572 	struct nvme_queue *q = nvme_get_q(sc);
573 	struct nvme_ccb *ccb;
574 	bus_dmamap_t dmap;
575 	int i, error;
576 
577 	ccb = nvme_ccb_get(q);
578 	if (ccb == NULL)
579 		return EAGAIN;
580 
581 	ccb->ccb_done = nvme_ns_io_done;
582 	ccb->ccb_cookie = ctx;
583 
584 	dmap = ccb->ccb_dmamap;
585 	error = bus_dmamap_load(sc->sc_dmat, dmap, ctx->nnc_data,
586 	    ctx->nnc_datasize, NULL,
587 	    (ISSET(ctx->nnc_flags, NVME_NS_CTX_F_POLL) ?
588 	      BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
589 	    (ISSET(ctx->nnc_flags, NVME_NS_CTX_F_READ) ?
590 	      BUS_DMA_READ : BUS_DMA_WRITE));
591 	if (error) {
592 		nvme_ccb_put(q, ccb);
593 		return error;
594 	}
595 
596 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
597 	    ISSET(ctx->nnc_flags, NVME_NS_CTX_F_READ) ?
598 	    BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
599 
600 	if (dmap->dm_nsegs > 2) {
601 		for (i = 1; i < dmap->dm_nsegs; i++) {
602 			htolem64(&ccb->ccb_prpl[i - 1],
603 			    dmap->dm_segs[i].ds_addr);
604 		}
605 		bus_dmamap_sync(sc->sc_dmat,
606 		    NVME_DMA_MAP(q->q_ccb_prpls),
607 		    ccb->ccb_prpl_off,
608 		    sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
609 		    BUS_DMASYNC_PREWRITE);
610 	}
611 
612 	if (ISSET(ctx->nnc_flags, NVME_NS_CTX_F_POLL)) {
613 		if (nvme_poll(sc, q, ccb, nvme_ns_io_fill) != 0)
614 			return EIO;
615 		return 0;
616 	}
617 
618 	nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
619 	return 0;
620 }
621 
622 static void
623 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
624 {
625 	struct nvme_sqe_io *sqe = slot;
626 	struct nvme_ns_context *ctx = ccb->ccb_cookie;
627 	bus_dmamap_t dmap = ccb->ccb_dmamap;
628 
629 	sqe->opcode = ISSET(ctx->nnc_flags, NVME_NS_CTX_F_READ) ?
630 	    NVM_CMD_READ : NVM_CMD_WRITE;
631 	htolem32(&sqe->nsid, ctx->nnc_nsid);
632 
633 	htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
634 	switch (dmap->dm_nsegs) {
635 	case 1:
636 		break;
637 	case 2:
638 		htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
639 		break;
640 	default:
641 		/* the prp list is already set up and synced */
642 		htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
643 		break;
644 	}
645 
646 	htolem64(&sqe->slba, ctx->nnc_blkno);
647 	htolem16(&sqe->nlb, (ctx->nnc_datasize / ctx->nnc_secsize) - 1);
648 }
649 
650 static void
651 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
652     struct nvme_cqe *cqe)
653 {
654 	struct nvme_softc *sc = q->q_sc;
655 	struct nvme_ns_context *ctx = ccb->ccb_cookie;
656 	bus_dmamap_t dmap = ccb->ccb_dmamap;
657 	uint16_t flags;
658 
659 	if (dmap->dm_nsegs > 2) {
660 		bus_dmamap_sync(sc->sc_dmat,
661 		    NVME_DMA_MAP(q->q_ccb_prpls),
662 		    ccb->ccb_prpl_off,
663 		    sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
664 		    BUS_DMASYNC_POSTWRITE);
665 	}
666 
667 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
668 	    ISSET(ctx->nnc_flags, NVME_NS_CTX_F_READ) ?
669 	    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
670 
671 	bus_dmamap_unload(sc->sc_dmat, dmap);
672 	nvme_ccb_put(q, ccb);
673 
674 	flags = lemtoh16(&cqe->flags);
675 
676 	ctx->nnc_status = flags;
677 	(*ctx->nnc_done)(ctx);
678 }
679 
680 int
681 nvme_ns_sync(struct nvme_softc *sc, struct nvme_ns_context *ctx)
682 {
683 	struct nvme_queue *q = nvme_get_q(sc);
684 	struct nvme_ccb *ccb;
685 
686 	ccb = nvme_ccb_get(q);
687 	if (ccb == NULL)
688 		return EAGAIN;
689 
690 	ccb->ccb_done = nvme_ns_sync_done;
691 	ccb->ccb_cookie = ctx;
692 
693 	if (ISSET(ctx->nnc_flags, NVME_NS_CTX_F_POLL)) {
694 		if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill) != 0)
695 			return EIO;
696 		return 0;
697 	}
698 
699 	nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
700 	return 0;
701 }
702 
703 static void
704 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
705 {
706 	struct nvme_sqe *sqe = slot;
707 	struct nvme_ns_context *ctx = ccb->ccb_cookie;
708 
709 	sqe->opcode = NVM_CMD_FLUSH;
710 	htolem32(&sqe->nsid, ctx->nnc_nsid);
711 }
712 
713 static void
714 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
715     struct nvme_cqe *cqe)
716 {
717 	struct nvme_ns_context *ctx = ccb->ccb_cookie;
718 	uint16_t flags;
719 
720 	nvme_ccb_put(q, ccb);
721 
722 	flags = lemtoh16(&cqe->flags);
723 
724 	ctx->nnc_status = flags;
725 	(*ctx->nnc_done)(ctx);
726 }
727 
728 void
729 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
730 {
731 	struct nvme_namespace *ns;
732 	struct nvm_identify_namespace *identify;
733 
734 	ns = nvme_ns_get(sc, nsid);
735 	KASSERT(ns);
736 
737 	identify = ns->ident;
738 	ns->ident = NULL;
739 	if (identify != NULL)
740 		kmem_free(identify, sizeof(*identify));
741 }
742 
743 static void
744 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
745 {
746 	struct nvme_softc *sc = q->q_sc;
747 	struct nvme_sqe *sqe = slot;
748 	struct nvme_pt_command *pt = ccb->ccb_cookie;
749 	bus_dmamap_t dmap = ccb->ccb_dmamap;
750 	int i;
751 
752 	sqe->opcode = pt->cmd.opcode;
753 	htolem32(&sqe->nsid, pt->cmd.nsid);
754 
755 	if (pt->buf != NULL && pt->len > 0) {
756 		htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
757 		switch (dmap->dm_nsegs) {
758 		case 1:
759 			break;
760 		case 2:
761 			htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
762 			break;
763 		default:
764 			for (i = 1; i < dmap->dm_nsegs; i++) {
765 				htolem64(&ccb->ccb_prpl[i - 1],
766 				    dmap->dm_segs[i].ds_addr);
767 			}
768 			bus_dmamap_sync(sc->sc_dmat,
769 			    NVME_DMA_MAP(q->q_ccb_prpls),
770 			    ccb->ccb_prpl_off,
771 			    sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
772 			    BUS_DMASYNC_PREWRITE);
773 			htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
774 			break;
775 		}
776 	}
777 
778 	htolem32(&sqe->cdw10, pt->cmd.cdw10);
779 	htolem32(&sqe->cdw11, pt->cmd.cdw11);
780 	htolem32(&sqe->cdw12, pt->cmd.cdw12);
781 	htolem32(&sqe->cdw13, pt->cmd.cdw13);
782 	htolem32(&sqe->cdw14, pt->cmd.cdw14);
783 	htolem32(&sqe->cdw15, pt->cmd.cdw15);
784 }
785 
786 static void
787 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
788 {
789 	struct nvme_softc *sc = q->q_sc;
790 	struct nvme_pt_command *pt = ccb->ccb_cookie;
791 	bus_dmamap_t dmap = ccb->ccb_dmamap;
792 
793 	if (pt->buf != NULL && pt->len > 0) {
794 		if (dmap->dm_nsegs > 2) {
795 			bus_dmamap_sync(sc->sc_dmat,
796 			    NVME_DMA_MAP(q->q_ccb_prpls),
797 			    ccb->ccb_prpl_off,
798 			    sizeof(*ccb->ccb_prpl) * dmap->dm_nsegs - 1,
799 			    BUS_DMASYNC_POSTWRITE);
800 		}
801 
802 		bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
803 		    pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
804 		bus_dmamap_unload(sc->sc_dmat, dmap);
805 	}
806 
807 	pt->cpl.cdw0 = cqe->cdw0;
808 	pt->cpl.flags = cqe->flags & ~NVME_CQE_PHASE;
809 }
810 
811 static int
812 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
813     uint16_t nsid, struct lwp *l, bool is_adminq)
814 {
815 	struct nvme_queue *q;
816 	struct nvme_ccb *ccb;
817 	void *buf = NULL;
818 	int error;
819 
820 	if ((pt->buf == NULL && pt->len > 0) ||
821 	    (pt->buf != NULL && pt->len == 0))
822 		return EINVAL;
823 
824 	q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc);
825 	ccb = nvme_ccb_get(q);
826 	if (ccb == NULL)
827 		return EBUSY;
828 
829 	if (pt->buf != NULL && pt->len > 0) {
830 		buf = kmem_alloc(pt->len, KM_SLEEP);
831 		if (buf == NULL) {
832 			error = ENOMEM;
833 			goto ccb_put;
834 		}
835 		if (!pt->is_read) {
836 			error = copyin(pt->buf, buf, pt->len);
837 			if (error)
838 				goto kmem_free;
839 		}
840 		error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
841 		    pt->len, NULL,
842 		    BUS_DMA_WAITOK |
843 		      (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
844 		if (error)
845 			goto kmem_free;
846 		bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
847 		    0, ccb->ccb_dmamap->dm_mapsize,
848 		    pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
849 	}
850 
851 	ccb->ccb_done = nvme_pt_done;
852 	ccb->ccb_cookie = pt;
853 
854 	pt->cmd.nsid = nsid;
855 	if (nvme_poll(sc, q, ccb, nvme_pt_fill)) {
856 		error = EIO;
857 		goto out;
858 	}
859 
860 	error = 0;
861 out:
862 	if (buf != NULL) {
863 		if (error == 0 && pt->is_read)
864 			error = copyout(buf, pt->buf, pt->len);
865 kmem_free:
866 		kmem_free(buf, pt->len);
867 	}
868 ccb_put:
869 	nvme_ccb_put(q, ccb);
870 	return error;
871 }
872 
873 static void
874 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
875     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
876 {
877 	struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
878 	uint32_t tail;
879 
880 	mutex_enter(&q->q_sq_mtx);
881 	tail = q->q_sq_tail;
882 	if (++q->q_sq_tail >= q->q_entries)
883 		q->q_sq_tail = 0;
884 
885 	sqe += tail;
886 
887 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
888 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
889 	memset(sqe, 0, sizeof(*sqe));
890 	(*fill)(q, ccb, sqe);
891 	sqe->cid = ccb->ccb_id;
892 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
893 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
894 
895 	nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
896 	mutex_exit(&q->q_sq_mtx);
897 }
898 
899 struct nvme_poll_state {
900 	struct nvme_sqe s;
901 	struct nvme_cqe c;
902 };
903 
904 static int
905 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
906     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
907 {
908 	struct nvme_poll_state state;
909 	void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
910 	void *cookie;
911 	uint16_t flags;
912 
913 	memset(&state, 0, sizeof(state));
914 	(*fill)(q, ccb, &state.s);
915 
916 	done = ccb->ccb_done;
917 	cookie = ccb->ccb_cookie;
918 
919 	ccb->ccb_done = nvme_poll_done;
920 	ccb->ccb_cookie = &state;
921 
922 	nvme_q_submit(sc, q, ccb, nvme_poll_fill);
923 	while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
924 		if (nvme_q_complete(sc, q) == 0)
925 			delay(10);
926 
927 		/* XXX no timeout? */
928 	}
929 
930 	ccb->ccb_cookie = cookie;
931 	done(q, ccb, &state.c);
932 
933 	flags = lemtoh16(&state.c.flags);
934 
935 	return flags & ~NVME_CQE_PHASE;
936 }
937 
938 static void
939 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
940 {
941 	struct nvme_sqe *sqe = slot;
942 	struct nvme_poll_state *state = ccb->ccb_cookie;
943 
944 	*sqe = state->s;
945 }
946 
947 static void
948 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
949     struct nvme_cqe *cqe)
950 {
951 	struct nvme_poll_state *state = ccb->ccb_cookie;
952 
953 	SET(cqe->flags, htole16(NVME_CQE_PHASE));
954 	state->c = *cqe;
955 }
956 
957 static void
958 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
959 {
960 	struct nvme_sqe *src = ccb->ccb_cookie;
961 	struct nvme_sqe *dst = slot;
962 
963 	*dst = *src;
964 }
965 
966 static void
967 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
968     struct nvme_cqe *cqe)
969 {
970 }
971 
972 static int
973 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
974 {
975 	struct nvme_ccb *ccb;
976 	struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
977 	uint32_t head;
978 	uint16_t flags;
979 	int rv = 0;
980 
981 	if (!mutex_tryenter(&q->q_cq_mtx))
982 		return -1;
983 
984 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
985 	head = q->q_cq_head;
986 	for (;;) {
987 		cqe = &ring[head];
988 		flags = lemtoh16(&cqe->flags);
989 		if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
990 			break;
991 
992 		ccb = &q->q_ccbs[cqe->cid];
993 		ccb->ccb_done(q, ccb, cqe);
994 
995 		if (++head >= q->q_entries) {
996 			head = 0;
997 			q->q_cq_phase ^= NVME_CQE_PHASE;
998 		}
999 
1000 		rv = 1;
1001 	}
1002 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1003 
1004 	if (rv)
1005 		nvme_write4(sc, q->q_cqhdbl, q->q_cq_head = head);
1006 	mutex_exit(&q->q_cq_mtx);
1007 
1008 	return rv;
1009 }
1010 
1011 static int
1012 nvme_identify(struct nvme_softc *sc, u_int mps)
1013 {
1014 	char sn[41], mn[81], fr[17];
1015 	struct nvm_identify_controller *identify;
1016 	struct nvme_dmamem *mem;
1017 	struct nvme_ccb *ccb;
1018 	u_int mdts;
1019 	int rv = 1;
1020 
1021 	ccb = nvme_ccb_get(sc->sc_admin_q);
1022 	if (ccb == NULL)
1023 		panic("%s: nvme_ccb_get returned NULL", __func__);
1024 
1025 	mem = nvme_dmamem_alloc(sc, sizeof(*identify));
1026 	if (mem == NULL)
1027 		return 1;
1028 
1029 	ccb->ccb_done = nvme_empty_done;
1030 	ccb->ccb_cookie = mem;
1031 
1032 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
1033 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify);
1034 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
1035 
1036 	nvme_ccb_put(sc->sc_admin_q, ccb);
1037 
1038 	if (rv != 0)
1039 		goto done;
1040 
1041 	identify = NVME_DMA_KVA(mem);
1042 
1043 	strnvisx(sn, sizeof(sn), (const char *)identify->sn,
1044 	    sizeof(identify->sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1045 	strnvisx(mn, sizeof(mn), (const char *)identify->mn,
1046 	    sizeof(identify->mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1047 	strnvisx(fr, sizeof(fr), (const char *)identify->fr,
1048 	    sizeof(identify->fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1049 	aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
1050 	    sn);
1051 
1052 	if (identify->mdts > 0) {
1053 		mdts = (1 << identify->mdts) * (1 << mps);
1054 		if (mdts < sc->sc_mdts)
1055 			sc->sc_mdts = mdts;
1056 	}
1057 
1058 	sc->sc_nn = lemtoh32(&identify->nn);
1059 
1060 	memcpy(&sc->sc_identify, identify, sizeof(sc->sc_identify));
1061 
1062 done:
1063 	nvme_dmamem_free(sc, mem);
1064 
1065 	return rv;
1066 }
1067 
1068 static int
1069 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
1070 {
1071 	struct nvme_sqe_q sqe;
1072 	struct nvme_ccb *ccb;
1073 	int rv;
1074 
1075 	if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q))
1076 		return 1;
1077 
1078 	ccb = nvme_ccb_get(sc->sc_admin_q);
1079 	KASSERT(ccb != NULL);
1080 
1081 	ccb->ccb_done = nvme_empty_done;
1082 	ccb->ccb_cookie = &sqe;
1083 
1084 	memset(&sqe, 0, sizeof(sqe));
1085 	sqe.opcode = NVM_ADMIN_ADD_IOCQ;
1086 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
1087 	htolem16(&sqe.qsize, q->q_entries - 1);
1088 	htolem16(&sqe.qid, q->q_id);
1089 	sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
1090 	if (sc->sc_use_mq)
1091 		htolem16(&sqe.cqid, q->q_id);	/* qid == vector */
1092 
1093 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill);
1094 	if (rv != 0)
1095 		goto fail;
1096 
1097 	ccb->ccb_done = nvme_empty_done;
1098 	ccb->ccb_cookie = &sqe;
1099 
1100 	memset(&sqe, 0, sizeof(sqe));
1101 	sqe.opcode = NVM_ADMIN_ADD_IOSQ;
1102 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
1103 	htolem16(&sqe.qsize, q->q_entries - 1);
1104 	htolem16(&sqe.qid, q->q_id);
1105 	htolem16(&sqe.cqid, q->q_id);
1106 	sqe.qflags = NVM_SQE_Q_PC;
1107 
1108 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill);
1109 	if (rv != 0)
1110 		goto fail;
1111 
1112 fail:
1113 	nvme_ccb_put(sc->sc_admin_q, ccb);
1114 	return rv;
1115 }
1116 
1117 static int
1118 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
1119 {
1120 	struct nvme_sqe_q sqe;
1121 	struct nvme_ccb *ccb;
1122 	int rv;
1123 
1124 	ccb = nvme_ccb_get(sc->sc_admin_q);
1125 	KASSERT(ccb != NULL);
1126 
1127 	ccb->ccb_done = nvme_empty_done;
1128 	ccb->ccb_cookie = &sqe;
1129 
1130 	memset(&sqe, 0, sizeof(sqe));
1131 	sqe.opcode = NVM_ADMIN_DEL_IOSQ;
1132 	htolem16(&sqe.qid, q->q_id);
1133 
1134 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill);
1135 	if (rv != 0)
1136 		goto fail;
1137 
1138 	ccb->ccb_done = nvme_empty_done;
1139 	ccb->ccb_cookie = &sqe;
1140 
1141 	memset(&sqe, 0, sizeof(sqe));
1142 	sqe.opcode = NVM_ADMIN_DEL_IOCQ;
1143 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
1144 	htolem16(&sqe.qid, q->q_id);
1145 
1146 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill);
1147 	if (rv != 0)
1148 		goto fail;
1149 
1150 fail:
1151 	nvme_ccb_put(sc->sc_admin_q, ccb);
1152 
1153 	if (rv == 0 && sc->sc_use_mq) {
1154 		if (sc->sc_intr_disestablish(sc, q->q_id))
1155 			rv = 1;
1156 	}
1157 
1158 	return rv;
1159 }
1160 
1161 static void
1162 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1163 {
1164 	struct nvme_sqe *sqe = slot;
1165 	struct nvme_dmamem *mem = ccb->ccb_cookie;
1166 
1167 	sqe->opcode = NVM_ADMIN_IDENTIFY;
1168 	htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(mem));
1169 	htolem32(&sqe->cdw10, 1);
1170 }
1171 
1172 static int
1173 nvme_ccbs_alloc(struct nvme_queue *q, u_int nccbs)
1174 {
1175 	struct nvme_softc *sc = q->q_sc;
1176 	struct nvme_ccb *ccb;
1177 	bus_addr_t off;
1178 	uint64_t *prpl;
1179 	u_int i;
1180 
1181 	mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
1182 	SIMPLEQ_INIT(&q->q_ccb_list);
1183 
1184 	q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
1185 	if (q->q_ccbs == NULL)
1186 		return 1;
1187 
1188 	q->q_nccbs = nccbs;
1189 	q->q_ccb_prpls = nvme_dmamem_alloc(sc,
1190 	    sizeof(*prpl) * sc->sc_max_sgl * nccbs);
1191 
1192 	prpl = NVME_DMA_KVA(q->q_ccb_prpls);
1193 	off = 0;
1194 
1195 	for (i = 0; i < nccbs; i++) {
1196 		ccb = &q->q_ccbs[i];
1197 
1198 		if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
1199 		    sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
1200 		    sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
1201 		    &ccb->ccb_dmamap) != 0)
1202 			goto free_maps;
1203 
1204 		ccb->ccb_id = i;
1205 		ccb->ccb_prpl = prpl;
1206 		ccb->ccb_prpl_off = off;
1207 		ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
1208 
1209 		SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
1210 
1211 		prpl += sc->sc_max_sgl;
1212 		off += sizeof(*prpl) * sc->sc_max_sgl;
1213 	}
1214 
1215 	return 0;
1216 
1217 free_maps:
1218 	nvme_ccbs_free(q);
1219 	return 1;
1220 }
1221 
1222 static struct nvme_ccb *
1223 nvme_ccb_get(struct nvme_queue *q)
1224 {
1225 	struct nvme_ccb *ccb;
1226 
1227 	mutex_enter(&q->q_ccb_mtx);
1228 	ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
1229 	if (ccb != NULL)
1230 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1231 	mutex_exit(&q->q_ccb_mtx);
1232 
1233 	return ccb;
1234 }
1235 
1236 static void
1237 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
1238 {
1239 
1240 	mutex_enter(&q->q_ccb_mtx);
1241 	SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
1242 	mutex_exit(&q->q_ccb_mtx);
1243 }
1244 
1245 static void
1246 nvme_ccbs_free(struct nvme_queue *q)
1247 {
1248 	struct nvme_softc *sc = q->q_sc;
1249 	struct nvme_ccb *ccb;
1250 
1251 	mutex_enter(&q->q_ccb_mtx);
1252 	while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
1253 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1254 		bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
1255 	}
1256 	mutex_exit(&q->q_ccb_mtx);
1257 
1258 	nvme_dmamem_free(sc, q->q_ccb_prpls);
1259 	kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
1260 	q->q_ccbs = NULL;
1261 	mutex_destroy(&q->q_ccb_mtx);
1262 }
1263 
1264 static struct nvme_queue *
1265 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
1266 {
1267 	struct nvme_queue *q;
1268 
1269 	q = kmem_alloc(sizeof(*q), KM_SLEEP);
1270 	if (q == NULL)
1271 		return NULL;
1272 
1273 	q->q_sc = sc;
1274 	q->q_sq_dmamem = nvme_dmamem_alloc(sc,
1275 	    sizeof(struct nvme_sqe) * entries);
1276 	if (q->q_sq_dmamem == NULL)
1277 		goto free;
1278 
1279 	q->q_cq_dmamem = nvme_dmamem_alloc(sc,
1280 	    sizeof(struct nvme_cqe) * entries);
1281 	if (q->q_cq_dmamem == NULL)
1282 		goto free_sq;
1283 
1284 	memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
1285 	memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
1286 
1287 	mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
1288 	mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
1289 	q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
1290 	q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
1291 	q->q_id = id;
1292 	q->q_entries = entries;
1293 	q->q_sq_tail = 0;
1294 	q->q_cq_head = 0;
1295 	q->q_cq_phase = NVME_CQE_PHASE;
1296 
1297 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
1298 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1299 
1300 	if (nvme_ccbs_alloc(q, entries) != 0) {
1301 		aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
1302 		goto free_cq;
1303 	}
1304 
1305 	return q;
1306 
1307 free_cq:
1308 	nvme_dmamem_free(sc, q->q_cq_dmamem);
1309 free_sq:
1310 	nvme_dmamem_free(sc, q->q_sq_dmamem);
1311 free:
1312 	kmem_free(q, sizeof(*q));
1313 
1314 	return NULL;
1315 }
1316 
1317 static void
1318 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
1319 {
1320 	nvme_ccbs_free(q);
1321 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1322 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
1323 	nvme_dmamem_free(sc, q->q_cq_dmamem);
1324 	nvme_dmamem_free(sc, q->q_sq_dmamem);
1325 	kmem_free(q, sizeof(*q));
1326 }
1327 
1328 int
1329 nvme_intr(void *xsc)
1330 {
1331 	struct nvme_softc *sc = xsc;
1332 	int rv = 0;
1333 
1334 	nvme_write4(sc, NVME_INTMS, 1);
1335 
1336 	if (nvme_q_complete(sc, sc->sc_admin_q))
1337 		rv = 1;
1338 	if (sc->sc_q != NULL)
1339 		if (nvme_q_complete(sc, sc->sc_q[0]))
1340 			rv = 1;
1341 
1342 	nvme_write4(sc, NVME_INTMC, 1);
1343 
1344 	return rv;
1345 }
1346 
1347 int
1348 nvme_mq_msi_intr(void *xq)
1349 {
1350 	struct nvme_queue *q = xq;
1351 	struct nvme_softc *sc = q->q_sc;
1352 	int rv = 0;
1353 
1354 	nvme_write4(sc, NVME_INTMS, 1U << q->q_id);
1355 
1356 	if (nvme_q_complete(sc, q))
1357 		rv = 1;
1358 
1359 	nvme_write4(sc, NVME_INTMC, 1U << q->q_id);
1360 
1361 	return rv;
1362 }
1363 
1364 int
1365 nvme_mq_msix_intr(void *xq)
1366 {
1367 	struct nvme_queue *q = xq;
1368 	int rv = 0;
1369 
1370 	if (nvme_q_complete(q->q_sc, q))
1371 		rv = 1;
1372 
1373 	return rv;
1374 }
1375 
1376 static struct nvme_dmamem *
1377 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size)
1378 {
1379 	struct nvme_dmamem *ndm;
1380 	int nsegs;
1381 
1382 	ndm = kmem_zalloc(sizeof(*ndm), KM_SLEEP);
1383 	if (ndm == NULL)
1384 		return NULL;
1385 
1386 	ndm->ndm_size = size;
1387 
1388 	if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
1389 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
1390 		goto ndmfree;
1391 
1392 	if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
1393 	    1, &nsegs, BUS_DMA_WAITOK) != 0)
1394 		goto destroy;
1395 
1396 	if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
1397 	    &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
1398 		goto free;
1399 	memset(ndm->ndm_kva, 0, size);
1400 
1401 	if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
1402 	    NULL, BUS_DMA_WAITOK) != 0)
1403 		goto unmap;
1404 
1405 	return ndm;
1406 
1407 unmap:
1408 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
1409 free:
1410 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1411 destroy:
1412 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1413 ndmfree:
1414 	kmem_free(ndm, sizeof(*ndm));
1415 	return NULL;
1416 }
1417 
1418 static void
1419 nvme_dmamem_sync(struct nvme_softc *sc, struct nvme_dmamem *mem, int ops)
1420 {
1421 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(mem),
1422 	    0, NVME_DMA_LEN(mem), ops);
1423 }
1424 
1425 void
1426 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
1427 {
1428 	bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
1429 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
1430 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1431 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1432 	kmem_free(ndm, sizeof(*ndm));
1433 }
1434 
1435 /*
1436  * ioctl
1437  */
1438 
1439 /* nvme */
1440 dev_type_open(nvmeopen);
1441 dev_type_close(nvmeclose);
1442 dev_type_ioctl(nvmeioctl);
1443 
1444 const struct cdevsw nvme_cdevsw = {
1445 	.d_open = nvmeopen,
1446 	.d_close = nvmeclose,
1447 	.d_read = noread,
1448 	.d_write = nowrite,
1449 	.d_ioctl = nvmeioctl,
1450 	.d_stop = nostop,
1451 	.d_tty = notty,
1452 	.d_poll = nopoll,
1453 	.d_mmap = nommap,
1454 	.d_kqfilter = nokqfilter,
1455 	.d_discard = nodiscard,
1456 	.d_flag = D_OTHER,
1457 };
1458 
1459 extern struct cfdriver nvme_cd;
1460 
1461 /*
1462  * Accept an open operation on the control device.
1463  */
1464 int
1465 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
1466 {
1467 	struct nvme_softc *sc;
1468 	int unit = minor(dev);
1469 
1470 	if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
1471 		return ENXIO;
1472 	if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
1473 		return ENXIO;
1474 	if (ISSET(sc->sc_flags, NVME_F_OPEN))
1475 		return EBUSY;
1476 
1477 	SET(sc->sc_flags, NVME_F_OPEN);
1478 	return 0;
1479 }
1480 
1481 /*
1482  * Accept the last close on the control device.
1483  */
1484 int
1485 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
1486 {
1487 	struct nvme_softc *sc;
1488 	int unit = minor(dev);
1489 
1490 	sc = device_lookup_private(&nvme_cd, unit);
1491 	if (sc == NULL)
1492 		return ENXIO;
1493 
1494 	CLR(sc->sc_flags, NVME_F_OPEN);
1495 	return 0;
1496 }
1497 
1498 /*
1499  * Handle control operations.
1500  */
1501 int
1502 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1503 {
1504 	struct nvme_softc *sc;
1505 	struct nvme_pt_command *pt;
1506 	int unit = minor(dev);
1507 
1508 	sc = device_lookup_private(&nvme_cd, unit);
1509 	if (sc == NULL)
1510 		return ENXIO;
1511 
1512 	switch (cmd) {
1513 	case NVME_PASSTHROUGH_CMD:
1514 		pt = (struct nvme_pt_command *)data;
1515 		return nvme_command_passthrough(sc, pt, pt->cmd.nsid, l, true);
1516 	}
1517 
1518 	return ENOTTY;
1519 }
1520 
1521 /* nvmens */
1522 dev_type_open(nvmensopen);
1523 dev_type_close(nvmensclose);
1524 dev_type_ioctl(nvmensioctl);
1525 
1526 const struct cdevsw nvmens_cdevsw = {
1527 	.d_open = nvmensopen,
1528 	.d_close = nvmensclose,
1529 	.d_read = noread,
1530 	.d_write = nowrite,
1531 	.d_ioctl = nvmensioctl,
1532 	.d_stop = nostop,
1533 	.d_tty = notty,
1534 	.d_poll = nopoll,
1535 	.d_mmap = nommap,
1536 	.d_kqfilter = nokqfilter,
1537 	.d_discard = nodiscard,
1538 	.d_flag = D_OTHER,
1539 };
1540 
1541 extern struct cfdriver nvmens_cd;
1542 
1543 /*
1544  * Accept an open operation on the control device.
1545  */
1546 int
1547 nvmensopen(dev_t dev, int flag, int mode, struct lwp *l)
1548 {
1549 	struct nvme_softc *sc;
1550 	int unit = minor(dev) / 0x10000;
1551 	int nsid = minor(dev) & 0xffff;
1552 	int nsidx;
1553 
1554 	if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
1555 		return ENXIO;
1556 	if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
1557 		return ENXIO;
1558 	if (nsid == 0)
1559 		return ENXIO;
1560 
1561 	nsidx = nsid - 1;
1562 	if (nsidx > sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
1563 		return ENXIO;
1564 	if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
1565 		return EBUSY;
1566 
1567 	SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
1568 	return 0;
1569 }
1570 
1571 /*
1572  * Accept the last close on the control device.
1573  */
1574 int
1575 nvmensclose(dev_t dev, int flag, int mode, struct lwp *l)
1576 {
1577 	struct nvme_softc *sc;
1578 	int unit = minor(dev) / 0x10000;
1579 	int nsid = minor(dev) & 0xffff;
1580 	int nsidx;
1581 
1582 	sc = device_lookup_private(&nvme_cd, unit);
1583 	if (sc == NULL)
1584 		return ENXIO;
1585 	if (nsid == 0)
1586 		return ENXIO;
1587 
1588 	nsidx = nsid - 1;
1589 	if (nsidx > sc->sc_nn)
1590 		return ENXIO;
1591 
1592 	CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
1593 	return 0;
1594 }
1595 
1596 /*
1597  * Handle control operations.
1598  */
1599 int
1600 nvmensioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1601 {
1602 	struct nvme_softc *sc;
1603 	int unit = minor(dev) / 0x10000;
1604 	int nsid = minor(dev) & 0xffff;
1605 
1606 	sc = device_lookup_private(&nvme_cd, unit);
1607 	if (sc == NULL)
1608 		return ENXIO;
1609 	if (nsid == 0)
1610 		return ENXIO;
1611 
1612 	switch (cmd) {
1613 	case NVME_PASSTHROUGH_CMD:
1614 		return nvme_command_passthrough(sc, data, nsid, l, false);
1615 	}
1616 
1617 	return ENOTTY;
1618 }
1619