xref: /netbsd-src/sys/dev/ic/nvme.c (revision 006a6769ec8153e66d32fc4ee0c13f063b19a559)
1 /*	$NetBSD: nvme.c,v 1.69 2024/03/11 21:10:46 riastradh Exp $	*/
2 /*	$OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
3 
4 /*
5  * Copyright (c) 2014 David Gwynne <dlg@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.69 2024/03/11 21:10:46 riastradh Exp $");
22 
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/kernel.h>
26 #include <sys/atomic.h>
27 #include <sys/bus.h>
28 #include <sys/buf.h>
29 #include <sys/conf.h>
30 #include <sys/device.h>
31 #include <sys/kmem.h>
32 #include <sys/once.h>
33 #include <sys/proc.h>
34 #include <sys/queue.h>
35 #include <sys/mutex.h>
36 
37 #include <uvm/uvm_extern.h>
38 
39 #include <dev/ic/nvmereg.h>
40 #include <dev/ic/nvmevar.h>
41 #include <dev/ic/nvmeio.h>
42 
43 #include "ioconf.h"
44 #include "locators.h"
45 
46 #define	B4_CHK_RDY_DELAY_MS	2300	/* workaround controller bug */
47 
48 int nvme_adminq_size = 32;
49 int nvme_ioq_size = 1024;
50 
51 static int	nvme_print(void *, const char *);
52 
53 static int	nvme_ready(struct nvme_softc *, uint32_t);
54 static int	nvme_enable(struct nvme_softc *, u_int);
55 static int	nvme_disable(struct nvme_softc *);
56 static int	nvme_shutdown(struct nvme_softc *);
57 
58 uint32_t	nvme_op_sq_enter(struct nvme_softc *,
59 		    struct nvme_queue *, struct nvme_ccb *);
60 void		nvme_op_sq_leave(struct nvme_softc *,
61 		    struct nvme_queue *, struct nvme_ccb *);
62 uint32_t	nvme_op_sq_enter_locked(struct nvme_softc *,
63 		    struct nvme_queue *, struct nvme_ccb *);
64 void		nvme_op_sq_leave_locked(struct nvme_softc *,
65 		    struct nvme_queue *, struct nvme_ccb *);
66 
67 void		nvme_op_cq_done(struct nvme_softc *,
68 		    struct nvme_queue *, struct nvme_ccb *);
69 
70 static const struct nvme_ops nvme_ops = {
71 	.op_sq_enter		= nvme_op_sq_enter,
72 	.op_sq_leave		= nvme_op_sq_leave,
73 	.op_sq_enter_locked	= nvme_op_sq_enter_locked,
74 	.op_sq_leave_locked	= nvme_op_sq_leave_locked,
75 
76 	.op_cq_done		= nvme_op_cq_done,
77 };
78 
79 #ifdef NVME_DEBUG
80 static void	nvme_dumpregs(struct nvme_softc *);
81 #endif
82 static int	nvme_identify(struct nvme_softc *, u_int);
83 static void	nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
84 		    void *);
85 
86 static int	nvme_ccbs_alloc(struct nvme_queue *, uint16_t);
87 static void	nvme_ccbs_free(struct nvme_queue *);
88 
89 static struct nvme_ccb *
90 		nvme_ccb_get(struct nvme_queue *, bool);
91 static struct nvme_ccb *
92 		nvme_ccb_get_bio(struct nvme_softc *, struct buf *,
93 		    struct nvme_queue **);
94 static void	nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
95 
96 static int	nvme_poll(struct nvme_softc *, struct nvme_queue *,
97 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
98 		    struct nvme_ccb *, void *), int);
99 static void	nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
100 static void	nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
101 		    struct nvme_cqe *);
102 static void	nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
103 static void	nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
104 		    struct nvme_cqe *);
105 
106 static struct nvme_queue *
107 		nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
108 static int	nvme_q_create(struct nvme_softc *, struct nvme_queue *);
109 static void	nvme_q_reset(struct nvme_softc *, struct nvme_queue *);
110 static int	nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
111 static void	nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
112 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
113 		    struct nvme_ccb *, void *));
114 static int	nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
115 static void	nvme_q_free(struct nvme_softc *, struct nvme_queue *);
116 static void	nvme_q_wait_complete(struct nvme_softc *, struct nvme_queue *,
117 		    bool (*)(void *), void *);
118 
119 static void	nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
120 		    void *);
121 static void	nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
122 		    struct nvme_cqe *);
123 static void	nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
124 		    void *);
125 static void	nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
126 		    struct nvme_cqe *);
127 static void	nvme_getcache_fill(struct nvme_queue *, struct nvme_ccb *,
128 		    void *);
129 static void	nvme_getcache_done(struct nvme_queue *, struct nvme_ccb *,
130 		    struct nvme_cqe *);
131 
132 static void	nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
133 		    void *);
134 static void	nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
135 		    struct nvme_cqe *);
136 static int	nvme_command_passthrough(struct nvme_softc *,
137 		    struct nvme_pt_command *, uint32_t, struct lwp *, bool);
138 
139 static int	nvme_set_number_of_queues(struct nvme_softc *, u_int, u_int *,
140 		    u_int *);
141 
142 #define NVME_TIMO_QOP		5	/* queue create and delete timeout */
143 #define NVME_TIMO_IDENT		10	/* probe identify timeout */
144 #define NVME_TIMO_PT		-1	/* passthrough cmd timeout */
145 #define NVME_TIMO_SY		60	/* sync cache timeout */
146 
147 /*
148  * Some controllers, at least Apple NVMe, always require split
149  * transfers, so don't use bus_space_{read,write}_8() on LP64.
150  */
151 uint64_t
nvme_read8(struct nvme_softc * sc,bus_size_t r)152 nvme_read8(struct nvme_softc *sc, bus_size_t r)
153 {
154 	uint64_t v;
155 	uint32_t *a = (uint32_t *)&v;
156 
157 #if _BYTE_ORDER == _LITTLE_ENDIAN
158 	a[0] = nvme_read4(sc, r);
159 	a[1] = nvme_read4(sc, r + 4);
160 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
161 	a[1] = nvme_read4(sc, r);
162 	a[0] = nvme_read4(sc, r + 4);
163 #endif
164 
165 	return v;
166 }
167 
168 void
nvme_write8(struct nvme_softc * sc,bus_size_t r,uint64_t v)169 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
170 {
171 	uint32_t *a = (uint32_t *)&v;
172 
173 #if _BYTE_ORDER == _LITTLE_ENDIAN
174 	nvme_write4(sc, r, a[0]);
175 	nvme_write4(sc, r + 4, a[1]);
176 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
177 	nvme_write4(sc, r, a[1]);
178 	nvme_write4(sc, r + 4, a[0]);
179 #endif
180 }
181 
182 #ifdef NVME_DEBUG
183 static __used void
nvme_dumpregs(struct nvme_softc * sc)184 nvme_dumpregs(struct nvme_softc *sc)
185 {
186 	uint64_t r8;
187 	uint32_t r4;
188 
189 #define	DEVNAME(_sc) device_xname((_sc)->sc_dev)
190 	r8 = nvme_read8(sc, NVME_CAP);
191 	printf("%s: cap  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
192 	printf("%s:  mpsmax %u (%u)\n", DEVNAME(sc),
193 	    (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
194 	printf("%s:  mpsmin %u (%u)\n", DEVNAME(sc),
195 	    (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
196 	printf("%s:  css %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CSS(r8));
197 	printf("%s:  nssrs %"PRIu64"\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
198 	printf("%s:  dstrd %"PRIu64"\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
199 	printf("%s:  to %"PRIu64" msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
200 	printf("%s:  ams %"PRIu64"\n", DEVNAME(sc), NVME_CAP_AMS(r8));
201 	printf("%s:  cqr %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CQR(r8));
202 	printf("%s:  mqes %"PRIu64"\n", DEVNAME(sc), NVME_CAP_MQES(r8));
203 
204 	printf("%s: vs   0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
205 
206 	r4 = nvme_read4(sc, NVME_CC);
207 	printf("%s: cc   0x%04x\n", DEVNAME(sc), r4);
208 	printf("%s:  iocqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4),
209 	    (1 << NVME_CC_IOCQES_R(r4)));
210 	printf("%s:  iosqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4),
211 	    (1 << NVME_CC_IOSQES_R(r4)));
212 	printf("%s:  shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
213 	printf("%s:  ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
214 	printf("%s:  mps %u (%u)\n", DEVNAME(sc), NVME_CC_MPS_R(r4),
215 	    (1 << NVME_CC_MPS_R(r4)));
216 	printf("%s:  css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
217 	printf("%s:  en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
218 
219 	r4 = nvme_read4(sc, NVME_CSTS);
220 	printf("%s: csts 0x%08x\n", DEVNAME(sc), r4);
221 	printf("%s:  rdy %u\n", DEVNAME(sc), r4 & NVME_CSTS_RDY);
222 	printf("%s:  cfs %u\n", DEVNAME(sc), r4 & NVME_CSTS_CFS);
223 	printf("%s:  shst %x\n", DEVNAME(sc), r4 & NVME_CSTS_SHST_MASK);
224 
225 	r4 = nvme_read4(sc, NVME_AQA);
226 	printf("%s: aqa  0x%08x\n", DEVNAME(sc), r4);
227 	printf("%s:  acqs %u\n", DEVNAME(sc), NVME_AQA_ACQS_R(r4));
228 	printf("%s:  asqs %u\n", DEVNAME(sc), NVME_AQA_ASQS_R(r4));
229 
230 	printf("%s: asq  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
231 	printf("%s: acq  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
232 #undef	DEVNAME
233 }
234 #endif	/* NVME_DEBUG */
235 
236 static int
nvme_ready(struct nvme_softc * sc,uint32_t rdy)237 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
238 {
239 	u_int i = 0;
240 
241 	while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
242 		if (i++ > sc->sc_rdy_to)
243 			return ENXIO;
244 
245 		delay(1000);
246 		nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
247 	}
248 
249 	return 0;
250 }
251 
252 static int
nvme_enable(struct nvme_softc * sc,u_int mps)253 nvme_enable(struct nvme_softc *sc, u_int mps)
254 {
255 	uint32_t cc, csts;
256 	int error;
257 
258 	cc = nvme_read4(sc, NVME_CC);
259 	csts = nvme_read4(sc, NVME_CSTS);
260 
261 	/*
262 	 * See note in nvme_disable. Short circuit if we're already enabled.
263 	 */
264 	if (ISSET(cc, NVME_CC_EN)) {
265 		if (ISSET(csts, NVME_CSTS_RDY))
266 			return 0;
267 
268 		goto waitready;
269 	} else {
270 		/* EN == 0 already wait for RDY == 0 or fail */
271 		error = nvme_ready(sc, 0);
272 		if (error)
273 			return error;
274 	}
275 
276 	if (sc->sc_ops->op_enable != NULL)
277 		sc->sc_ops->op_enable(sc);
278 
279 	nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
280 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
281 	delay(5000);
282 	nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
283 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
284 	delay(5000);
285 
286 	nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
287 	    NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
288 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
289 	delay(5000);
290 
291 	CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
292 	    NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
293 	SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
294 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
295 	SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
296 	SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
297 	SET(cc, NVME_CC_MPS(mps));
298 	SET(cc, NVME_CC_EN);
299 
300 	nvme_write4(sc, NVME_CC, cc);
301 	nvme_barrier(sc, 0, sc->sc_ios,
302 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
303 
304     waitready:
305 	return nvme_ready(sc, NVME_CSTS_RDY);
306 }
307 
308 static int
nvme_disable(struct nvme_softc * sc)309 nvme_disable(struct nvme_softc *sc)
310 {
311 	uint32_t cc, csts;
312 	int error;
313 
314 	cc = nvme_read4(sc, NVME_CC);
315 	csts = nvme_read4(sc, NVME_CSTS);
316 
317 	/*
318 	 * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
319 	 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
320 	 * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
321 	 * isn't the desired value. Short circuit if we're already disabled.
322 	 */
323 	if (ISSET(cc, NVME_CC_EN)) {
324 		if (!ISSET(csts, NVME_CSTS_RDY)) {
325 			/* EN == 1, wait for RDY == 1 or fail */
326 			error = nvme_ready(sc, NVME_CSTS_RDY);
327 			if (error)
328 				return error;
329 		}
330 	} else {
331 		/* EN == 0 already wait for RDY == 0 */
332 		if (!ISSET(csts, NVME_CSTS_RDY))
333 			return 0;
334 
335 		goto waitready;
336 	}
337 
338 	CLR(cc, NVME_CC_EN);
339 	nvme_write4(sc, NVME_CC, cc);
340 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_READ);
341 
342 	/*
343 	 * Some drives have issues with accessing the mmio after we disable,
344 	 * so delay for a bit after we write the bit to cope with these issues.
345 	 */
346 	if (ISSET(sc->sc_quirks, NVME_QUIRK_DELAY_B4_CHK_RDY))
347 		delay(B4_CHK_RDY_DELAY_MS);
348 
349     waitready:
350 	return nvme_ready(sc, 0);
351 }
352 
353 int
nvme_attach(struct nvme_softc * sc)354 nvme_attach(struct nvme_softc *sc)
355 {
356 	uint64_t cap;
357 	uint32_t reg;
358 	u_int mps = PAGE_SHIFT;
359 	u_int ncq, nsq;
360 	uint16_t adminq_entries = nvme_adminq_size;
361 	uint16_t ioq_entries = nvme_ioq_size;
362 	int i;
363 
364 	if (sc->sc_ops == NULL)
365 		sc->sc_ops = &nvme_ops;
366 
367 	reg = nvme_read4(sc, NVME_VS);
368 	if (reg == 0xffffffff) {
369 		aprint_error_dev(sc->sc_dev, "invalid mapping\n");
370 		return 1;
371 	}
372 
373 	if (NVME_VS_TER(reg) == 0)
374 		aprint_normal_dev(sc->sc_dev, "NVMe %d.%d\n", NVME_VS_MJR(reg),
375 		    NVME_VS_MNR(reg));
376 	else
377 		aprint_normal_dev(sc->sc_dev, "NVMe %d.%d.%d\n", NVME_VS_MJR(reg),
378 		    NVME_VS_MNR(reg), NVME_VS_TER(reg));
379 
380 	cap = nvme_read8(sc, NVME_CAP);
381 	sc->sc_dstrd = NVME_CAP_DSTRD(cap);
382 	if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
383 		aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
384 		    "is greater than CPU page size %u\n",
385 		    1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
386 		return 1;
387 	}
388 	if (NVME_CAP_MPSMAX(cap) < mps)
389 		mps = NVME_CAP_MPSMAX(cap);
390 	if (ioq_entries > NVME_CAP_MQES(cap))
391 		ioq_entries = NVME_CAP_MQES(cap);
392 
393 	/* set initial values to be used for admin queue during probe */
394 	sc->sc_rdy_to = NVME_CAP_TO(cap);
395 	sc->sc_mps = 1 << mps;
396 	sc->sc_mdts = MAXPHYS;
397 	sc->sc_max_sgl = btoc(round_page(sc->sc_mdts));
398 
399 	if (nvme_disable(sc) != 0) {
400 		aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
401 		return 1;
402 	}
403 
404 	sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries,
405 	    sc->sc_dstrd);
406 	if (sc->sc_admin_q == NULL) {
407 		aprint_error_dev(sc->sc_dev,
408 		    "unable to allocate admin queue\n");
409 		return 1;
410 	}
411 	if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
412 		goto free_admin_q;
413 
414 	if (nvme_enable(sc, mps) != 0) {
415 		aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
416 		goto disestablish_admin_q;
417 	}
418 
419 	if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
420 		aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
421 		goto disable;
422 	}
423 	if (sc->sc_nn == 0) {
424 		aprint_error_dev(sc->sc_dev, "namespace not found\n");
425 		goto disable;
426 	}
427 
428 	/* we know how big things are now */
429 	sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
430 
431 	/* reallocate ccbs of admin queue with new max sgl. */
432 	nvme_ccbs_free(sc->sc_admin_q);
433 	nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
434 
435 	if (sc->sc_use_mq) {
436 		/* Limit the number of queues to the number allocated in HW */
437 		if (nvme_set_number_of_queues(sc, sc->sc_nq, &ncq, &nsq) != 0) {
438 			aprint_error_dev(sc->sc_dev,
439 			    "unable to get number of queues\n");
440 			goto disable;
441 		}
442 		if (sc->sc_nq > ncq)
443 			sc->sc_nq = ncq;
444 		if (sc->sc_nq > nsq)
445 			sc->sc_nq = nsq;
446 	}
447 
448 	sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
449 	for (i = 0; i < sc->sc_nq; i++) {
450 		sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries,
451 		    sc->sc_dstrd);
452 		if (sc->sc_q[i] == NULL) {
453 			aprint_error_dev(sc->sc_dev,
454 			    "unable to allocate io queue\n");
455 			goto free_q;
456 		}
457 		if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
458 			aprint_error_dev(sc->sc_dev,
459 			    "unable to create io queue\n");
460 			nvme_q_free(sc, sc->sc_q[i]);
461 			goto free_q;
462 		}
463 	}
464 
465 	if (!sc->sc_use_mq)
466 		nvme_write4(sc, NVME_INTMC, 1);
467 
468 	/* probe subdevices */
469 	sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
470 	    KM_SLEEP);
471 	nvme_rescan(sc->sc_dev, NULL, NULL);
472 
473 	return 0;
474 
475 free_q:
476 	while (--i >= 0) {
477 		nvme_q_delete(sc, sc->sc_q[i]);
478 		nvme_q_free(sc, sc->sc_q[i]);
479 	}
480 disable:
481 	nvme_disable(sc);
482 disestablish_admin_q:
483 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
484 free_admin_q:
485 	nvme_q_free(sc, sc->sc_admin_q);
486 
487 	return 1;
488 }
489 
490 int
nvme_rescan(device_t self,const char * ifattr,const int * locs)491 nvme_rescan(device_t self, const char *ifattr, const int *locs)
492 {
493 	struct nvme_softc *sc = device_private(self);
494 	struct nvme_attach_args naa;
495 	struct nvm_namespace_format *f;
496 	struct nvme_namespace *ns;
497 	uint64_t cap;
498 	int ioq_entries = nvme_ioq_size;
499 	int i, mlocs[NVMECF_NLOCS];
500 	int error;
501 
502 	cap = nvme_read8(sc, NVME_CAP);
503 	if (ioq_entries > NVME_CAP_MQES(cap))
504 		ioq_entries = NVME_CAP_MQES(cap);
505 
506 	for (i = 1; i <= sc->sc_nn; i++) {
507 		if (sc->sc_namespaces[i - 1].dev)
508 			continue;
509 
510 		/* identify to check for availability */
511 		error = nvme_ns_identify(sc, i);
512 		if (error) {
513 			aprint_error_dev(self, "couldn't identify namespace #%d\n", i);
514 			continue;
515 		}
516 
517 		ns = nvme_ns_get(sc, i);
518 		KASSERT(ns);
519 
520 		f = &ns->ident->lbaf[NVME_ID_NS_FLBAS(ns->ident->flbas)];
521 
522 		/*
523 		 * NVME1.0e 6.11 Identify command
524 		 *
525 		 * LBADS values smaller than 9 are not supported, a value
526 		 * of zero means that the format is not used.
527 		 */
528 		if (f->lbads < 9) {
529 			if (f->lbads > 0)
530 				aprint_error_dev(self,
531 						 "unsupported logical data size %u\n", f->lbads);
532 			continue;
533 		}
534 
535 		mlocs[NVMECF_NSID] = i;
536 
537 		memset(&naa, 0, sizeof(naa));
538 		naa.naa_nsid = i;
539 		naa.naa_qentries = (ioq_entries - 1) * sc->sc_nq;
540 		naa.naa_maxphys = sc->sc_mdts;
541 		naa.naa_typename = sc->sc_modelname;
542 		sc->sc_namespaces[i - 1].dev =
543 		    config_found(sc->sc_dev, &naa, nvme_print,
544 				 CFARGS(.submatch = config_stdsubmatch,
545 					.locators = mlocs));
546 	}
547 	return 0;
548 }
549 
550 static int
nvme_print(void * aux,const char * pnp)551 nvme_print(void *aux, const char *pnp)
552 {
553 	struct nvme_attach_args *naa = aux;
554 
555 	if (pnp)
556 		aprint_normal("ld at %s", pnp);
557 
558 	if (naa->naa_nsid > 0)
559 		aprint_normal(" nsid %d", naa->naa_nsid);
560 
561 	return UNCONF;
562 }
563 
564 int
nvme_detach(struct nvme_softc * sc,int flags)565 nvme_detach(struct nvme_softc *sc, int flags)
566 {
567 	int i, error;
568 
569 	error = config_detach_children(sc->sc_dev, flags);
570 	if (error)
571 		return error;
572 
573 	error = nvme_shutdown(sc);
574 	if (error)
575 		return error;
576 
577 	/* from now on we are committed to detach, following will never fail */
578 	for (i = 0; i < sc->sc_nq; i++)
579 		nvme_q_free(sc, sc->sc_q[i]);
580 	kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
581 	nvme_q_free(sc, sc->sc_admin_q);
582 
583 	return 0;
584 }
585 
586 int
nvme_suspend(struct nvme_softc * sc)587 nvme_suspend(struct nvme_softc *sc)
588 {
589 
590 	return nvme_shutdown(sc);
591 }
592 
593 int
nvme_resume(struct nvme_softc * sc)594 nvme_resume(struct nvme_softc *sc)
595 {
596 	int i, error;
597 
598 	error = nvme_disable(sc);
599 	if (error) {
600 		device_printf(sc->sc_dev, "unable to disable controller\n");
601 		return error;
602 	}
603 
604 	nvme_q_reset(sc, sc->sc_admin_q);
605 	if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q)) {
606 		error = EIO;
607 		device_printf(sc->sc_dev, "unable to establish admin q\n");
608 		goto disable;
609 	}
610 
611 	error = nvme_enable(sc, ffs(sc->sc_mps) - 1);
612 	if (error) {
613 		device_printf(sc->sc_dev, "unable to enable controller\n");
614 		return error;
615 	}
616 
617 	for (i = 0; i < sc->sc_nq; i++) {
618 		nvme_q_reset(sc, sc->sc_q[i]);
619 		if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
620 			error = EIO;
621 			device_printf(sc->sc_dev, "unable to create io q %d"
622 			    "\n", i);
623 			goto disable;
624 		}
625 	}
626 
627 	if (!sc->sc_use_mq)
628 		nvme_write4(sc, NVME_INTMC, 1);
629 
630 	return 0;
631 
632 disable:
633 	(void)nvme_disable(sc);
634 
635 	return error;
636 }
637 
638 static int
nvme_shutdown(struct nvme_softc * sc)639 nvme_shutdown(struct nvme_softc *sc)
640 {
641 	uint32_t cc, csts;
642 	bool disabled = false;
643 	int i;
644 
645 	if (!sc->sc_use_mq)
646 		nvme_write4(sc, NVME_INTMS, 1);
647 
648 	for (i = 0; i < sc->sc_nq; i++) {
649 		if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
650 			aprint_error_dev(sc->sc_dev,
651 			    "unable to delete io queue %d, disabling\n", i + 1);
652 			disabled = true;
653 		}
654 	}
655 	if (disabled)
656 		goto disable;
657 
658 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
659 
660 	cc = nvme_read4(sc, NVME_CC);
661 	CLR(cc, NVME_CC_SHN_MASK);
662 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
663 	nvme_write4(sc, NVME_CC, cc);
664 
665 	for (i = 0; i < 4000; i++) {
666 		nvme_barrier(sc, 0, sc->sc_ios,
667 		    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
668 		csts = nvme_read4(sc, NVME_CSTS);
669 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
670 			return 0;
671 
672 		delay(1000);
673 	}
674 
675 	aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
676 
677 disable:
678 	nvme_disable(sc);
679 	return 0;
680 }
681 
682 void
nvme_childdet(device_t self,device_t child)683 nvme_childdet(device_t self, device_t child)
684 {
685 	struct nvme_softc *sc = device_private(self);
686 	int i;
687 
688 	for (i = 0; i < sc->sc_nn; i++) {
689 		if (sc->sc_namespaces[i].dev == child) {
690 			/* Already freed ns->ident. */
691 			sc->sc_namespaces[i].dev = NULL;
692 			break;
693 		}
694 	}
695 }
696 
697 int
nvme_ns_identify(struct nvme_softc * sc,uint16_t nsid)698 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
699 {
700 	struct nvme_sqe sqe;
701 	struct nvm_identify_namespace *identify;
702 	struct nvme_dmamem *mem;
703 	struct nvme_ccb *ccb;
704 	struct nvme_namespace *ns;
705 	int rv;
706 
707 	KASSERT(nsid > 0);
708 
709 	ns = nvme_ns_get(sc, nsid);
710 	KASSERT(ns);
711 
712 	if (ns->ident != NULL)
713 		return 0;
714 
715 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
716 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
717 
718 	mem = nvme_dmamem_alloc(sc, sizeof(*identify));
719 	if (mem == NULL) {
720 		nvme_ccb_put(sc->sc_admin_q, ccb);
721 		return ENOMEM;
722 	}
723 
724 	memset(&sqe, 0, sizeof(sqe));
725 	sqe.opcode = NVM_ADMIN_IDENTIFY;
726 	htolem32(&sqe.nsid, nsid);
727 	htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
728 	htolem32(&sqe.cdw10, 0);
729 
730 	ccb->ccb_done = nvme_empty_done;
731 	ccb->ccb_cookie = &sqe;
732 
733 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
734 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_IDENT);
735 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
736 
737 	nvme_ccb_put(sc->sc_admin_q, ccb);
738 
739 	if (rv != 0) {
740 		rv = EIO;
741 		goto done;
742 	}
743 
744 	/* commit */
745 
746 	identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
747 	*identify = *((volatile struct nvm_identify_namespace *)NVME_DMA_KVA(mem));
748 
749 	/* Convert data to host endian */
750 	nvme_identify_namespace_swapbytes(identify);
751 
752 	ns->ident = identify;
753 
754 done:
755 	nvme_dmamem_free(sc, mem);
756 
757 	return rv;
758 }
759 
760 int
nvme_ns_dobio(struct nvme_softc * sc,uint16_t nsid,void * cookie,struct buf * bp,void * data,size_t datasize,int secsize,daddr_t blkno,int flags,nvme_nnc_done nnc_done)761 nvme_ns_dobio(struct nvme_softc *sc, uint16_t nsid, void *cookie,
762     struct buf *bp, void *data, size_t datasize,
763     int secsize, daddr_t blkno, int flags, nvme_nnc_done nnc_done)
764 {
765 	struct nvme_queue *q;
766 	struct nvme_ccb *ccb;
767 	bus_dmamap_t dmap;
768 	int i, error;
769 
770 	ccb = nvme_ccb_get_bio(sc, bp, &q);
771 	if (ccb == NULL)
772 		return EAGAIN;
773 
774 	ccb->ccb_done = nvme_ns_io_done;
775 	ccb->ccb_cookie = cookie;
776 
777 	/* namespace context */
778 	ccb->nnc_nsid = nsid;
779 	ccb->nnc_flags = flags;
780 	ccb->nnc_buf = bp;
781 	ccb->nnc_datasize = datasize;
782 	ccb->nnc_secsize = secsize;
783 	ccb->nnc_blkno = blkno;
784 	ccb->nnc_done = nnc_done;
785 
786 	dmap = ccb->ccb_dmamap;
787 	error = bus_dmamap_load(sc->sc_dmat, dmap, data,
788 	    datasize, NULL,
789 	    (ISSET(flags, NVME_NS_CTX_F_POLL) ?
790 	      BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
791 	    (ISSET(flags, NVME_NS_CTX_F_READ) ?
792 	      BUS_DMA_READ : BUS_DMA_WRITE));
793 	if (error) {
794 		nvme_ccb_put(q, ccb);
795 		return error;
796 	}
797 
798 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
799 	    ISSET(flags, NVME_NS_CTX_F_READ) ?
800 	    BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
801 
802 	if (dmap->dm_nsegs > 2) {
803 		for (i = 1; i < dmap->dm_nsegs; i++) {
804 			htolem64(&ccb->ccb_prpl[i - 1],
805 			    dmap->dm_segs[i].ds_addr);
806 		}
807 		bus_dmamap_sync(sc->sc_dmat,
808 		    NVME_DMA_MAP(q->q_ccb_prpls),
809 		    ccb->ccb_prpl_off,
810 		    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
811 		    BUS_DMASYNC_PREWRITE);
812 	}
813 
814 	if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
815 		if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
816 			return EIO;
817 		return 0;
818 	}
819 
820 	nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
821 	return 0;
822 }
823 
824 static void
nvme_ns_io_fill(struct nvme_queue * q,struct nvme_ccb * ccb,void * slot)825 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
826 {
827 	struct nvme_sqe_io *sqe = slot;
828 	bus_dmamap_t dmap = ccb->ccb_dmamap;
829 
830 	sqe->opcode = ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
831 	    NVM_CMD_READ : NVM_CMD_WRITE;
832 	htolem32(&sqe->nsid, ccb->nnc_nsid);
833 
834 	htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
835 	switch (dmap->dm_nsegs) {
836 	case 1:
837 		break;
838 	case 2:
839 		htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
840 		break;
841 	default:
842 		/* the prp list is already set up and synced */
843 		htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
844 		break;
845 	}
846 
847 	htolem64(&sqe->slba, ccb->nnc_blkno);
848 
849 	if (ISSET(ccb->nnc_flags, NVME_NS_CTX_F_FUA))
850 		htolem16(&sqe->ioflags, NVM_SQE_IO_FUA);
851 
852 	/* guaranteed by upper layers, but check just in case */
853 	KASSERT((ccb->nnc_datasize % ccb->nnc_secsize) == 0);
854 	htolem16(&sqe->nlb, (ccb->nnc_datasize / ccb->nnc_secsize) - 1);
855 }
856 
857 static void
nvme_ns_io_done(struct nvme_queue * q,struct nvme_ccb * ccb,struct nvme_cqe * cqe)858 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
859     struct nvme_cqe *cqe)
860 {
861 	struct nvme_softc *sc = q->q_sc;
862 	bus_dmamap_t dmap = ccb->ccb_dmamap;
863 	void *nnc_cookie = ccb->ccb_cookie;
864 	nvme_nnc_done nnc_done = ccb->nnc_done;
865 	struct buf *bp = ccb->nnc_buf;
866 
867 	if (dmap->dm_nsegs > 2) {
868 		bus_dmamap_sync(sc->sc_dmat,
869 		    NVME_DMA_MAP(q->q_ccb_prpls),
870 		    ccb->ccb_prpl_off,
871 		    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
872 		    BUS_DMASYNC_POSTWRITE);
873 	}
874 
875 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
876 	    ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
877 	    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
878 
879 	bus_dmamap_unload(sc->sc_dmat, dmap);
880 	nvme_ccb_put(q, ccb);
881 
882 	nnc_done(nnc_cookie, bp, lemtoh16(&cqe->flags), lemtoh32(&cqe->cdw0));
883 }
884 
885 /*
886  * If there is no volatile write cache, it makes no sense to issue
887  * flush commands or query for the status.
888  */
889 static bool
nvme_has_volatile_write_cache(struct nvme_softc * sc)890 nvme_has_volatile_write_cache(struct nvme_softc *sc)
891 {
892 	/* sc_identify is filled during attachment */
893 	return  ((sc->sc_identify.vwc & NVME_ID_CTRLR_VWC_PRESENT) != 0);
894 }
895 
896 static bool
nvme_ns_sync_finished(void * cookie)897 nvme_ns_sync_finished(void *cookie)
898 {
899 	int *result = cookie;
900 
901 	return (*result != 0);
902 }
903 
904 int
nvme_ns_sync(struct nvme_softc * sc,uint16_t nsid,int flags)905 nvme_ns_sync(struct nvme_softc *sc, uint16_t nsid, int flags)
906 {
907 	struct nvme_queue *q = nvme_get_q(sc);
908 	struct nvme_ccb *ccb;
909 	int result = 0;
910 
911 	if (!nvme_has_volatile_write_cache(sc)) {
912 		/* cache not present, no value in trying to flush it */
913 		return 0;
914 	}
915 
916 	ccb = nvme_ccb_get(q, true);
917 	KASSERT(ccb != NULL);
918 
919 	ccb->ccb_done = nvme_ns_sync_done;
920 	ccb->ccb_cookie = &result;
921 
922 	/* namespace context */
923 	ccb->nnc_nsid = nsid;
924 	ccb->nnc_flags = flags;
925 	ccb->nnc_done = NULL;
926 
927 	if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
928 		if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
929 			return EIO;
930 		return 0;
931 	}
932 
933 	nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
934 
935 	/* wait for completion */
936 	nvme_q_wait_complete(sc, q, nvme_ns_sync_finished, &result);
937 	KASSERT(result != 0);
938 
939 	return (result > 0) ? 0 : EIO;
940 }
941 
942 static void
nvme_ns_sync_fill(struct nvme_queue * q,struct nvme_ccb * ccb,void * slot)943 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
944 {
945 	struct nvme_sqe *sqe = slot;
946 
947 	sqe->opcode = NVM_CMD_FLUSH;
948 	htolem32(&sqe->nsid, ccb->nnc_nsid);
949 }
950 
951 static void
nvme_ns_sync_done(struct nvme_queue * q,struct nvme_ccb * ccb,struct nvme_cqe * cqe)952 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
953     struct nvme_cqe *cqe)
954 {
955 	int *result = ccb->ccb_cookie;
956 	uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
957 
958 	if (status == NVME_CQE_SC_SUCCESS)
959 		*result = 1;
960 	else
961 		*result = -1;
962 
963 	nvme_ccb_put(q, ccb);
964 }
965 
966 static bool
nvme_getcache_finished(void * xc)967 nvme_getcache_finished(void *xc)
968 {
969 	int *addr = xc;
970 
971 	return (*addr != 0);
972 }
973 
974 /*
975  * Get status of volatile write cache. Always asynchronous.
976  */
977 int
nvme_admin_getcache(struct nvme_softc * sc,int * addr)978 nvme_admin_getcache(struct nvme_softc *sc, int *addr)
979 {
980 	struct nvme_ccb *ccb;
981 	struct nvme_queue *q = sc->sc_admin_q;
982 	int result = 0, error;
983 
984 	if (!nvme_has_volatile_write_cache(sc)) {
985 		/* cache simply not present */
986 		*addr = 0;
987 		return 0;
988 	}
989 
990 	ccb = nvme_ccb_get(q, true);
991 	KASSERT(ccb != NULL);
992 
993 	ccb->ccb_done = nvme_getcache_done;
994 	ccb->ccb_cookie = &result;
995 
996 	/* namespace context */
997 	ccb->nnc_flags = 0;
998 	ccb->nnc_done = NULL;
999 
1000 	nvme_q_submit(sc, q, ccb, nvme_getcache_fill);
1001 
1002 	/* wait for completion */
1003 	nvme_q_wait_complete(sc, q, nvme_getcache_finished, &result);
1004 	KASSERT(result != 0);
1005 
1006 	if (result > 0) {
1007 		*addr = result;
1008 		error = 0;
1009 	} else
1010 		error = EINVAL;
1011 
1012 	return error;
1013 }
1014 
1015 static void
nvme_getcache_fill(struct nvme_queue * q,struct nvme_ccb * ccb,void * slot)1016 nvme_getcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1017 {
1018 	struct nvme_sqe *sqe = slot;
1019 
1020 	sqe->opcode = NVM_ADMIN_GET_FEATURES;
1021 	htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
1022 	htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
1023 }
1024 
1025 static void
nvme_getcache_done(struct nvme_queue * q,struct nvme_ccb * ccb,struct nvme_cqe * cqe)1026 nvme_getcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1027     struct nvme_cqe *cqe)
1028 {
1029 	int *addr = ccb->ccb_cookie;
1030 	uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
1031 	uint32_t cdw0 = lemtoh32(&cqe->cdw0);
1032 	int result;
1033 
1034 	if (status == NVME_CQE_SC_SUCCESS) {
1035 		result = 0;
1036 
1037 		/*
1038 		 * DPO not supported, Dataset Management (DSM) field doesn't
1039 		 * specify the same semantics. FUA is always supported.
1040 		 */
1041 		result = DKCACHE_FUA;
1042 
1043 		if (cdw0 & NVM_VOLATILE_WRITE_CACHE_WCE)
1044 			result |= DKCACHE_WRITE;
1045 
1046 		/*
1047 		 * If volatile write cache is present, the flag shall also be
1048 		 * settable.
1049 		 */
1050 		result |= DKCACHE_WCHANGE;
1051 
1052 		/*
1053 		 * ONCS field indicates whether the optional SAVE is also
1054 		 * supported for Set Features. According to spec v1.3,
1055 		 * Volatile Write Cache however doesn't support persistency
1056 		 * across power cycle/reset.
1057 		 */
1058 
1059 	} else {
1060 		result = -1;
1061 	}
1062 
1063 	*addr = result;
1064 
1065 	nvme_ccb_put(q, ccb);
1066 }
1067 
1068 struct nvme_setcache_state {
1069 	int dkcache;
1070 	int result;
1071 };
1072 
1073 static bool
nvme_setcache_finished(void * xc)1074 nvme_setcache_finished(void *xc)
1075 {
1076 	struct nvme_setcache_state *st = xc;
1077 
1078 	return (st->result != 0);
1079 }
1080 
1081 static void
nvme_setcache_fill(struct nvme_queue * q,struct nvme_ccb * ccb,void * slot)1082 nvme_setcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1083 {
1084 	struct nvme_sqe *sqe = slot;
1085 	struct nvme_setcache_state *st = ccb->ccb_cookie;
1086 
1087 	sqe->opcode = NVM_ADMIN_SET_FEATURES;
1088 	htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
1089 	if (st->dkcache & DKCACHE_WRITE)
1090 		htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
1091 }
1092 
1093 static void
nvme_setcache_done(struct nvme_queue * q,struct nvme_ccb * ccb,struct nvme_cqe * cqe)1094 nvme_setcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1095     struct nvme_cqe *cqe)
1096 {
1097 	struct nvme_setcache_state *st = ccb->ccb_cookie;
1098 	uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
1099 
1100 	if (status == NVME_CQE_SC_SUCCESS) {
1101 		st->result = 1;
1102 	} else {
1103 		st->result = -1;
1104 	}
1105 
1106 	nvme_ccb_put(q, ccb);
1107 }
1108 
1109 /*
1110  * Set status of volatile write cache. Always asynchronous.
1111  */
1112 int
nvme_admin_setcache(struct nvme_softc * sc,int dkcache)1113 nvme_admin_setcache(struct nvme_softc *sc, int dkcache)
1114 {
1115 	struct nvme_ccb *ccb;
1116 	struct nvme_queue *q = sc->sc_admin_q;
1117 	int error;
1118 	struct nvme_setcache_state st;
1119 
1120 	if (!nvme_has_volatile_write_cache(sc)) {
1121 		/* cache simply not present */
1122 		return EOPNOTSUPP;
1123 	}
1124 
1125 	if (dkcache & ~(DKCACHE_WRITE)) {
1126 		/* unsupported parameters */
1127 		return EOPNOTSUPP;
1128 	}
1129 
1130 	ccb = nvme_ccb_get(q, true);
1131 	KASSERT(ccb != NULL);
1132 
1133 	memset(&st, 0, sizeof(st));
1134 	st.dkcache = dkcache;
1135 
1136 	ccb->ccb_done = nvme_setcache_done;
1137 	ccb->ccb_cookie = &st;
1138 
1139 	/* namespace context */
1140 	ccb->nnc_flags = 0;
1141 	ccb->nnc_done = NULL;
1142 
1143 	nvme_q_submit(sc, q, ccb, nvme_setcache_fill);
1144 
1145 	/* wait for completion */
1146 	nvme_q_wait_complete(sc, q, nvme_setcache_finished, &st);
1147 	KASSERT(st.result != 0);
1148 
1149 	if (st.result > 0)
1150 		error = 0;
1151 	else
1152 		error = EINVAL;
1153 
1154 	return error;
1155 }
1156 
1157 void
nvme_ns_free(struct nvme_softc * sc,uint16_t nsid)1158 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
1159 {
1160 	struct nvme_namespace *ns;
1161 	struct nvm_identify_namespace *identify;
1162 
1163 	ns = nvme_ns_get(sc, nsid);
1164 	KASSERT(ns);
1165 
1166 	identify = ns->ident;
1167 	ns->ident = NULL;
1168 	if (identify != NULL)
1169 		kmem_free(identify, sizeof(*identify));
1170 }
1171 
1172 struct nvme_pt_state {
1173 	struct nvme_pt_command *pt;
1174 	bool finished;
1175 };
1176 
1177 static void
nvme_pt_fill(struct nvme_queue * q,struct nvme_ccb * ccb,void * slot)1178 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1179 {
1180 	struct nvme_softc *sc = q->q_sc;
1181 	struct nvme_sqe *sqe = slot;
1182 	struct nvme_pt_state *state = ccb->ccb_cookie;
1183 	struct nvme_pt_command *pt = state->pt;
1184 	bus_dmamap_t dmap = ccb->ccb_dmamap;
1185 	int i;
1186 
1187 	sqe->opcode = pt->cmd.opcode;
1188 	htolem32(&sqe->nsid, pt->cmd.nsid);
1189 
1190 	if (pt->buf != NULL && pt->len > 0) {
1191 		htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
1192 		switch (dmap->dm_nsegs) {
1193 		case 1:
1194 			break;
1195 		case 2:
1196 			htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
1197 			break;
1198 		default:
1199 			for (i = 1; i < dmap->dm_nsegs; i++) {
1200 				htolem64(&ccb->ccb_prpl[i - 1],
1201 				    dmap->dm_segs[i].ds_addr);
1202 			}
1203 			bus_dmamap_sync(sc->sc_dmat,
1204 			    NVME_DMA_MAP(q->q_ccb_prpls),
1205 			    ccb->ccb_prpl_off,
1206 			    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
1207 			    BUS_DMASYNC_PREWRITE);
1208 			htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
1209 			break;
1210 		}
1211 	}
1212 
1213 	htolem32(&sqe->cdw10, pt->cmd.cdw10);
1214 	htolem32(&sqe->cdw11, pt->cmd.cdw11);
1215 	htolem32(&sqe->cdw12, pt->cmd.cdw12);
1216 	htolem32(&sqe->cdw13, pt->cmd.cdw13);
1217 	htolem32(&sqe->cdw14, pt->cmd.cdw14);
1218 	htolem32(&sqe->cdw15, pt->cmd.cdw15);
1219 }
1220 
1221 static void
nvme_pt_done(struct nvme_queue * q,struct nvme_ccb * ccb,struct nvme_cqe * cqe)1222 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
1223 {
1224 	struct nvme_softc *sc = q->q_sc;
1225 	struct nvme_pt_state *state = ccb->ccb_cookie;
1226 	struct nvme_pt_command *pt = state->pt;
1227 	bus_dmamap_t dmap = ccb->ccb_dmamap;
1228 
1229 	if (pt->buf != NULL && pt->len > 0) {
1230 		if (dmap->dm_nsegs > 2) {
1231 			bus_dmamap_sync(sc->sc_dmat,
1232 			    NVME_DMA_MAP(q->q_ccb_prpls),
1233 			    ccb->ccb_prpl_off,
1234 			    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
1235 			    BUS_DMASYNC_POSTWRITE);
1236 		}
1237 
1238 		bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
1239 		    pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1240 		bus_dmamap_unload(sc->sc_dmat, dmap);
1241 	}
1242 
1243 	pt->cpl.cdw0 = lemtoh32(&cqe->cdw0);
1244 	pt->cpl.flags = lemtoh16(&cqe->flags) & ~NVME_CQE_PHASE;
1245 
1246 	state->finished = true;
1247 
1248 	nvme_ccb_put(q, ccb);
1249 }
1250 
1251 static bool
nvme_pt_finished(void * cookie)1252 nvme_pt_finished(void *cookie)
1253 {
1254 	struct nvme_pt_state *state = cookie;
1255 
1256 	return state->finished;
1257 }
1258 
1259 static int
nvme_command_passthrough(struct nvme_softc * sc,struct nvme_pt_command * pt,uint32_t nsid,struct lwp * l,bool is_adminq)1260 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
1261     uint32_t nsid, struct lwp *l, bool is_adminq)
1262 {
1263 	struct nvme_queue *q;
1264 	struct nvme_ccb *ccb;
1265 	void *buf = NULL;
1266 	struct nvme_pt_state state;
1267 	int error;
1268 
1269 	/* limit command size to maximum data transfer size */
1270 	if ((pt->buf == NULL && pt->len > 0) ||
1271 	    (pt->buf != NULL && (pt->len == 0 || pt->len > sc->sc_mdts)))
1272 		return EINVAL;
1273 
1274 	q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc);
1275 	ccb = nvme_ccb_get(q, true);
1276 	KASSERT(ccb != NULL);
1277 
1278 	if (pt->buf != NULL) {
1279 		KASSERT(pt->len > 0);
1280 		buf = kmem_alloc(pt->len, KM_SLEEP);
1281 		if (!pt->is_read) {
1282 			error = copyin(pt->buf, buf, pt->len);
1283 			if (error)
1284 				goto kmem_free;
1285 		}
1286 		error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
1287 		    pt->len, NULL,
1288 		    BUS_DMA_WAITOK |
1289 		      (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
1290 		if (error)
1291 			goto kmem_free;
1292 		bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
1293 		    0, ccb->ccb_dmamap->dm_mapsize,
1294 		    pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
1295 	}
1296 
1297 	memset(&state, 0, sizeof(state));
1298 	state.pt = pt;
1299 	state.finished = false;
1300 
1301 	ccb->ccb_done = nvme_pt_done;
1302 	ccb->ccb_cookie = &state;
1303 
1304 	pt->cmd.nsid = nsid;
1305 
1306 	nvme_q_submit(sc, q, ccb, nvme_pt_fill);
1307 
1308 	/* wait for completion */
1309 	nvme_q_wait_complete(sc, q, nvme_pt_finished, &state);
1310 	KASSERT(state.finished);
1311 
1312 	error = 0;
1313 
1314 	if (buf != NULL) {
1315 		if (error == 0 && pt->is_read)
1316 			error = copyout(buf, pt->buf, pt->len);
1317 kmem_free:
1318 		kmem_free(buf, pt->len);
1319 	}
1320 
1321 	return error;
1322 }
1323 
1324 uint32_t
nvme_op_sq_enter(struct nvme_softc * sc,struct nvme_queue * q,struct nvme_ccb * ccb)1325 nvme_op_sq_enter(struct nvme_softc *sc,
1326     struct nvme_queue *q, struct nvme_ccb *ccb)
1327 {
1328 	mutex_enter(&q->q_sq_mtx);
1329 
1330 	return nvme_op_sq_enter_locked(sc, q, ccb);
1331 }
1332 
1333 uint32_t
nvme_op_sq_enter_locked(struct nvme_softc * sc,struct nvme_queue * q,struct nvme_ccb * ccb)1334 nvme_op_sq_enter_locked(struct nvme_softc *sc,
1335     struct nvme_queue *q, struct nvme_ccb *ccb)
1336 {
1337 	return q->q_sq_tail;
1338 }
1339 
1340 void
nvme_op_sq_leave_locked(struct nvme_softc * sc,struct nvme_queue * q,struct nvme_ccb * ccb)1341 nvme_op_sq_leave_locked(struct nvme_softc *sc,
1342     struct nvme_queue *q, struct nvme_ccb *ccb)
1343 {
1344 	uint32_t tail;
1345 
1346 	tail = ++q->q_sq_tail;
1347 	if (tail >= q->q_entries)
1348 		tail = 0;
1349 	q->q_sq_tail = tail;
1350 	nvme_write4(sc, q->q_sqtdbl, tail);
1351 }
1352 
1353 void
nvme_op_sq_leave(struct nvme_softc * sc,struct nvme_queue * q,struct nvme_ccb * ccb)1354 nvme_op_sq_leave(struct nvme_softc *sc,
1355     struct nvme_queue *q, struct nvme_ccb *ccb)
1356 {
1357 	nvme_op_sq_leave_locked(sc, q, ccb);
1358 
1359 	mutex_exit(&q->q_sq_mtx);
1360 }
1361 
1362 static void
nvme_q_submit(struct nvme_softc * sc,struct nvme_queue * q,struct nvme_ccb * ccb,void (* fill)(struct nvme_queue *,struct nvme_ccb *,void *))1363 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
1364     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
1365 {
1366 	struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
1367 	uint32_t tail;
1368 
1369 	tail = sc->sc_ops->op_sq_enter(sc, q, ccb);
1370 
1371 	sqe += tail;
1372 
1373 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
1374 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
1375 	memset(sqe, 0, sizeof(*sqe));
1376 	(*fill)(q, ccb, sqe);
1377 	htolem16(&sqe->cid, ccb->ccb_id);
1378 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
1379 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
1380 
1381 	sc->sc_ops->op_sq_leave(sc, q, ccb);
1382 }
1383 
1384 struct nvme_poll_state {
1385 	struct nvme_sqe s;
1386 	struct nvme_cqe c;
1387 	void *cookie;
1388 	void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
1389 };
1390 
1391 static int
nvme_poll(struct nvme_softc * sc,struct nvme_queue * q,struct nvme_ccb * ccb,void (* fill)(struct nvme_queue *,struct nvme_ccb *,void *),int timo_sec)1392 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
1393     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
1394 {
1395 	struct nvme_poll_state state;
1396 	uint16_t flags;
1397 	int step = 10;
1398 	int maxloop = timo_sec * 1000000 / step;
1399 	int error = 0;
1400 
1401 	memset(&state, 0, sizeof(state));
1402 	(*fill)(q, ccb, &state.s);
1403 
1404 	state.done = ccb->ccb_done;
1405 	state.cookie = ccb->ccb_cookie;
1406 
1407 	ccb->ccb_done = nvme_poll_done;
1408 	ccb->ccb_cookie = &state;
1409 
1410 	nvme_q_submit(sc, q, ccb, nvme_poll_fill);
1411 	while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
1412 		if (nvme_q_complete(sc, q) == 0)
1413 			delay(step);
1414 
1415 		if (timo_sec >= 0 && --maxloop <= 0) {
1416 			error = ETIMEDOUT;
1417 			break;
1418 		}
1419 	}
1420 
1421 	if (error == 0) {
1422 		flags = lemtoh16(&state.c.flags);
1423 		return flags & ~NVME_CQE_PHASE;
1424 	} else {
1425 		/*
1426 		 * If it succeds later, it would hit ccb which will have been
1427 		 * already reused for something else. Not good. Cross
1428 		 * fingers and hope for best. XXX do controller reset?
1429 		 */
1430 		aprint_error_dev(sc->sc_dev, "polled command timed out\n");
1431 
1432 		/* Invoke the callback to clean state anyway */
1433 		struct nvme_cqe cqe;
1434 		memset(&cqe, 0, sizeof(cqe));
1435 		ccb->ccb_done(q, ccb, &cqe);
1436 
1437 		return 1;
1438 	}
1439 }
1440 
1441 static void
nvme_poll_fill(struct nvme_queue * q,struct nvme_ccb * ccb,void * slot)1442 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1443 {
1444 	struct nvme_sqe *sqe = slot;
1445 	struct nvme_poll_state *state = ccb->ccb_cookie;
1446 
1447 	*sqe = state->s;
1448 }
1449 
1450 static void
nvme_poll_done(struct nvme_queue * q,struct nvme_ccb * ccb,struct nvme_cqe * cqe)1451 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1452     struct nvme_cqe *cqe)
1453 {
1454 	struct nvme_poll_state *state = ccb->ccb_cookie;
1455 
1456 	state->c = *cqe;
1457 	SET(state->c.flags, htole16(NVME_CQE_PHASE));
1458 
1459 	ccb->ccb_cookie = state->cookie;
1460 	state->done(q, ccb, &state->c);
1461 }
1462 
1463 static void
nvme_sqe_fill(struct nvme_queue * q,struct nvme_ccb * ccb,void * slot)1464 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1465 {
1466 	struct nvme_sqe *src = ccb->ccb_cookie;
1467 	struct nvme_sqe *dst = slot;
1468 
1469 	*dst = *src;
1470 }
1471 
1472 static void
nvme_empty_done(struct nvme_queue * q,struct nvme_ccb * ccb,struct nvme_cqe * cqe)1473 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1474     struct nvme_cqe *cqe)
1475 {
1476 }
1477 
1478 void
nvme_op_cq_done(struct nvme_softc * sc,struct nvme_queue * q,struct nvme_ccb * ccb)1479 nvme_op_cq_done(struct nvme_softc *sc,
1480     struct nvme_queue *q, struct nvme_ccb *ccb)
1481 {
1482 	/* nop */
1483 }
1484 
1485 static int
nvme_q_complete(struct nvme_softc * sc,struct nvme_queue * q)1486 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
1487 {
1488 	struct nvme_ccb *ccb;
1489 	struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
1490 	uint16_t flags;
1491 	int rv = 0;
1492 
1493 	mutex_enter(&q->q_cq_mtx);
1494 
1495 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1496 	for (;;) {
1497 		cqe = &ring[q->q_cq_head];
1498 		flags = lemtoh16(&cqe->flags);
1499 		if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
1500 			break;
1501 
1502 		/*
1503 		 * Make sure we have read the flags _before_ we read
1504 		 * the cid.  Otherwise the CPU might speculatively read
1505 		 * the cid before the entry has been assigned to our
1506 		 * phase.
1507 		 */
1508 		nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1509 
1510 		ccb = &q->q_ccbs[lemtoh16(&cqe->cid)];
1511 
1512 		if (++q->q_cq_head >= q->q_entries) {
1513 			q->q_cq_head = 0;
1514 			q->q_cq_phase ^= NVME_CQE_PHASE;
1515 		}
1516 
1517 #ifdef DEBUG
1518 		/*
1519 		 * If we get spurious completion notification, something
1520 		 * is seriously hosed up. Very likely DMA to some random
1521 		 * memory place happened, so just bail out.
1522 		 */
1523 		if ((intptr_t)ccb->ccb_cookie == NVME_CCB_FREE) {
1524 			panic("%s: invalid ccb detected",
1525 			    device_xname(sc->sc_dev));
1526 			/* NOTREACHED */
1527 		}
1528 #endif
1529 
1530 		rv++;
1531 
1532 		sc->sc_ops->op_cq_done(sc, q, ccb);
1533 
1534 		/*
1535 		 * Unlock the mutex before calling the ccb_done callback
1536 		 * and re-lock afterwards. The callback triggers lddone()
1537 		 * which schedules another i/o, and also calls nvme_ccb_put().
1538 		 * Unlock/relock avoids possibility of deadlock.
1539 		 */
1540 		mutex_exit(&q->q_cq_mtx);
1541 		ccb->ccb_done(q, ccb, cqe);
1542 		mutex_enter(&q->q_cq_mtx);
1543 	}
1544 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1545 
1546 	if (rv)
1547 		nvme_write4(sc, q->q_cqhdbl, q->q_cq_head);
1548 
1549 	mutex_exit(&q->q_cq_mtx);
1550 
1551 	return rv;
1552 }
1553 
1554 static void
nvme_q_wait_complete(struct nvme_softc * sc,struct nvme_queue * q,bool (* finished)(void *),void * cookie)1555 nvme_q_wait_complete(struct nvme_softc *sc,
1556     struct nvme_queue *q, bool (*finished)(void *), void *cookie)
1557 {
1558 	mutex_enter(&q->q_ccb_mtx);
1559 	if (finished(cookie))
1560 		goto out;
1561 
1562 	for(;;) {
1563 		q->q_ccb_waiting = true;
1564 		cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
1565 
1566 		if (finished(cookie))
1567 			break;
1568 	}
1569 
1570 out:
1571 	mutex_exit(&q->q_ccb_mtx);
1572 }
1573 
1574 static int
nvme_identify(struct nvme_softc * sc,u_int mps)1575 nvme_identify(struct nvme_softc *sc, u_int mps)
1576 {
1577 	char sn[41], mn[81], fr[17];
1578 	struct nvm_identify_controller *identify;
1579 	struct nvme_dmamem *mem;
1580 	struct nvme_ccb *ccb;
1581 	u_int mdts;
1582 	int rv = 1;
1583 
1584 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
1585 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1586 
1587 	mem = nvme_dmamem_alloc(sc, sizeof(*identify));
1588 	if (mem == NULL)
1589 		return 1;
1590 
1591 	ccb->ccb_done = nvme_empty_done;
1592 	ccb->ccb_cookie = mem;
1593 
1594 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
1595 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
1596 	    NVME_TIMO_IDENT);
1597 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
1598 
1599 	nvme_ccb_put(sc->sc_admin_q, ccb);
1600 
1601 	if (rv != 0)
1602 		goto done;
1603 
1604 	identify = NVME_DMA_KVA(mem);
1605 	sc->sc_identify = *identify;
1606 	identify = NULL;
1607 
1608 	/* Convert data to host endian */
1609 	nvme_identify_controller_swapbytes(&sc->sc_identify);
1610 
1611 	strnvisx(sn, sizeof(sn), (const char *)sc->sc_identify.sn,
1612 	    sizeof(sc->sc_identify.sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1613 	strnvisx(mn, sizeof(mn), (const char *)sc->sc_identify.mn,
1614 	    sizeof(sc->sc_identify.mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1615 	strnvisx(fr, sizeof(fr), (const char *)sc->sc_identify.fr,
1616 	    sizeof(sc->sc_identify.fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1617 	aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
1618 	    sn);
1619 
1620 	strlcpy(sc->sc_modelname, mn, sizeof(sc->sc_modelname));
1621 
1622 	if (sc->sc_identify.mdts > 0) {
1623 		mdts = (1 << sc->sc_identify.mdts) * (1 << mps);
1624 		if (mdts < sc->sc_mdts)
1625 			sc->sc_mdts = mdts;
1626 	}
1627 
1628 	sc->sc_nn = sc->sc_identify.nn;
1629 
1630 done:
1631 	nvme_dmamem_free(sc, mem);
1632 
1633 	return rv;
1634 }
1635 
1636 static int
nvme_q_create(struct nvme_softc * sc,struct nvme_queue * q)1637 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
1638 {
1639 	struct nvme_sqe_q sqe;
1640 	struct nvme_ccb *ccb;
1641 	int rv;
1642 
1643 	if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q) != 0)
1644 		return 1;
1645 
1646 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
1647 	KASSERT(ccb != NULL);
1648 
1649 	ccb->ccb_done = nvme_empty_done;
1650 	ccb->ccb_cookie = &sqe;
1651 
1652 	memset(&sqe, 0, sizeof(sqe));
1653 	sqe.opcode = NVM_ADMIN_ADD_IOCQ;
1654 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
1655 	htolem16(&sqe.qsize, q->q_entries - 1);
1656 	htolem16(&sqe.qid, q->q_id);
1657 	sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
1658 	if (sc->sc_use_mq)
1659 		htolem16(&sqe.cqid, q->q_id);	/* qid == vector */
1660 
1661 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1662 	if (rv != 0)
1663 		goto fail;
1664 
1665 	ccb->ccb_done = nvme_empty_done;
1666 	ccb->ccb_cookie = &sqe;
1667 
1668 	memset(&sqe, 0, sizeof(sqe));
1669 	sqe.opcode = NVM_ADMIN_ADD_IOSQ;
1670 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
1671 	htolem16(&sqe.qsize, q->q_entries - 1);
1672 	htolem16(&sqe.qid, q->q_id);
1673 	htolem16(&sqe.cqid, q->q_id);
1674 	sqe.qflags = NVM_SQE_Q_PC;
1675 
1676 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1677 	if (rv != 0)
1678 		goto fail;
1679 
1680 	nvme_ccb_put(sc->sc_admin_q, ccb);
1681 	return 0;
1682 
1683 fail:
1684 	if (sc->sc_use_mq)
1685 		sc->sc_intr_disestablish(sc, q->q_id);
1686 
1687 	nvme_ccb_put(sc->sc_admin_q, ccb);
1688 	return rv;
1689 }
1690 
1691 static int
nvme_q_delete(struct nvme_softc * sc,struct nvme_queue * q)1692 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
1693 {
1694 	struct nvme_sqe_q sqe;
1695 	struct nvme_ccb *ccb;
1696 	int rv;
1697 
1698 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
1699 	KASSERT(ccb != NULL);
1700 
1701 	ccb->ccb_done = nvme_empty_done;
1702 	ccb->ccb_cookie = &sqe;
1703 
1704 	memset(&sqe, 0, sizeof(sqe));
1705 	sqe.opcode = NVM_ADMIN_DEL_IOSQ;
1706 	htolem16(&sqe.qid, q->q_id);
1707 
1708 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1709 	if (rv != 0)
1710 		goto fail;
1711 
1712 	ccb->ccb_done = nvme_empty_done;
1713 	ccb->ccb_cookie = &sqe;
1714 
1715 	memset(&sqe, 0, sizeof(sqe));
1716 	sqe.opcode = NVM_ADMIN_DEL_IOCQ;
1717 	htolem16(&sqe.qid, q->q_id);
1718 
1719 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1720 	if (rv != 0)
1721 		goto fail;
1722 
1723 fail:
1724 	nvme_ccb_put(sc->sc_admin_q, ccb);
1725 
1726 	if (rv == 0 && sc->sc_use_mq) {
1727 		if (sc->sc_intr_disestablish(sc, q->q_id))
1728 			rv = 1;
1729 	}
1730 
1731 	return rv;
1732 }
1733 
1734 static void
nvme_fill_identify(struct nvme_queue * q,struct nvme_ccb * ccb,void * slot)1735 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1736 {
1737 	struct nvme_sqe *sqe = slot;
1738 	struct nvme_dmamem *mem = ccb->ccb_cookie;
1739 
1740 	sqe->opcode = NVM_ADMIN_IDENTIFY;
1741 	htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(mem));
1742 	htolem32(&sqe->cdw10, 1);
1743 }
1744 
1745 static int
nvme_set_number_of_queues(struct nvme_softc * sc,u_int nq,u_int * ncqa,u_int * nsqa)1746 nvme_set_number_of_queues(struct nvme_softc *sc, u_int nq, u_int *ncqa,
1747     u_int *nsqa)
1748 {
1749 	struct nvme_pt_state state;
1750 	struct nvme_pt_command pt;
1751 	struct nvme_ccb *ccb;
1752 	int rv;
1753 
1754 	ccb = nvme_ccb_get(sc->sc_admin_q, false);
1755 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1756 
1757 	memset(&pt, 0, sizeof(pt));
1758 	pt.cmd.opcode = NVM_ADMIN_SET_FEATURES;
1759 	pt.cmd.cdw10 = NVM_FEATURE_NUMBER_OF_QUEUES;
1760 	pt.cmd.cdw11 = ((nq - 1) << 16) | (nq - 1);
1761 
1762 	memset(&state, 0, sizeof(state));
1763 	state.pt = &pt;
1764 	state.finished = false;
1765 
1766 	ccb->ccb_done = nvme_pt_done;
1767 	ccb->ccb_cookie = &state;
1768 
1769 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_pt_fill, NVME_TIMO_QOP);
1770 
1771 	if (rv != 0) {
1772 		*ncqa = *nsqa = 0;
1773 		return EIO;
1774 	}
1775 
1776 	*ncqa = (pt.cpl.cdw0 >> 16) + 1;
1777 	*nsqa = (pt.cpl.cdw0 & 0xffff) + 1;
1778 
1779 	return 0;
1780 }
1781 
1782 static int
nvme_ccbs_alloc(struct nvme_queue * q,uint16_t nccbs)1783 nvme_ccbs_alloc(struct nvme_queue *q, uint16_t nccbs)
1784 {
1785 	struct nvme_softc *sc = q->q_sc;
1786 	struct nvme_ccb *ccb;
1787 	bus_addr_t off;
1788 	uint64_t *prpl;
1789 	u_int i;
1790 
1791 	mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
1792 	cv_init(&q->q_ccb_wait, "nvmeqw");
1793 	q->q_ccb_waiting = false;
1794 	SIMPLEQ_INIT(&q->q_ccb_list);
1795 
1796 	q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
1797 
1798 	q->q_nccbs = nccbs;
1799 	q->q_ccb_prpls = nvme_dmamem_alloc(sc,
1800 	    sizeof(*prpl) * sc->sc_max_sgl * nccbs);
1801 
1802 	prpl = NVME_DMA_KVA(q->q_ccb_prpls);
1803 	off = 0;
1804 
1805 	for (i = 0; i < nccbs; i++) {
1806 		ccb = &q->q_ccbs[i];
1807 
1808 		if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
1809 		    sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
1810 		    sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
1811 		    &ccb->ccb_dmamap) != 0)
1812 			goto free_maps;
1813 
1814 		ccb->ccb_id = i;
1815 		ccb->ccb_prpl = prpl;
1816 		ccb->ccb_prpl_off = off;
1817 		ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
1818 
1819 		SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
1820 
1821 		prpl += sc->sc_max_sgl;
1822 		off += sizeof(*prpl) * sc->sc_max_sgl;
1823 	}
1824 
1825 	return 0;
1826 
1827 free_maps:
1828 	nvme_ccbs_free(q);
1829 	return 1;
1830 }
1831 
1832 static struct nvme_ccb *
nvme_ccb_get(struct nvme_queue * q,bool wait)1833 nvme_ccb_get(struct nvme_queue *q, bool wait)
1834 {
1835 	struct nvme_ccb *ccb = NULL;
1836 
1837 	mutex_enter(&q->q_ccb_mtx);
1838 again:
1839 	ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
1840 	if (ccb != NULL) {
1841 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1842 #ifdef DEBUG
1843 		ccb->ccb_cookie = NULL;
1844 #endif
1845 	} else {
1846 		if (__predict_false(wait)) {
1847 			q->q_ccb_waiting = true;
1848 			cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
1849 			goto again;
1850 		}
1851 	}
1852 	mutex_exit(&q->q_ccb_mtx);
1853 
1854 	return ccb;
1855 }
1856 
1857 static struct nvme_ccb *
nvme_ccb_get_bio(struct nvme_softc * sc,struct buf * bp,struct nvme_queue ** selq)1858 nvme_ccb_get_bio(struct nvme_softc *sc, struct buf *bp,
1859     struct nvme_queue **selq)
1860 {
1861 	u_int cpuindex = cpu_index((bp && bp->b_ci) ? bp->b_ci : curcpu());
1862 
1863 	/*
1864 	 * Find a queue with available ccbs, preferring the originating
1865 	 * CPU's queue.
1866 	 */
1867 
1868 	for (u_int qoff = 0; qoff < sc->sc_nq; qoff++) {
1869 		struct nvme_queue *q = sc->sc_q[(cpuindex + qoff) % sc->sc_nq];
1870 		struct nvme_ccb *ccb;
1871 
1872 		mutex_enter(&q->q_ccb_mtx);
1873 		ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
1874 		if (ccb != NULL) {
1875 			SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1876 #ifdef DEBUG
1877 			ccb->ccb_cookie = NULL;
1878 #endif
1879 		}
1880 		mutex_exit(&q->q_ccb_mtx);
1881 
1882 		if (ccb != NULL) {
1883 			*selq = q;
1884 			return ccb;
1885 		}
1886 	}
1887 
1888 	return NULL;
1889 }
1890 
1891 static void
nvme_ccb_put(struct nvme_queue * q,struct nvme_ccb * ccb)1892 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
1893 {
1894 
1895 	mutex_enter(&q->q_ccb_mtx);
1896 #ifdef DEBUG
1897 	ccb->ccb_cookie = (void *)NVME_CCB_FREE;
1898 #endif
1899 	SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
1900 
1901 	/* It's unlikely there are any waiters, it's not used for regular I/O */
1902 	if (__predict_false(q->q_ccb_waiting)) {
1903 		q->q_ccb_waiting = false;
1904 		cv_broadcast(&q->q_ccb_wait);
1905 	}
1906 
1907 	mutex_exit(&q->q_ccb_mtx);
1908 }
1909 
1910 static void
nvme_ccbs_free(struct nvme_queue * q)1911 nvme_ccbs_free(struct nvme_queue *q)
1912 {
1913 	struct nvme_softc *sc = q->q_sc;
1914 	struct nvme_ccb *ccb;
1915 
1916 	mutex_enter(&q->q_ccb_mtx);
1917 	while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
1918 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1919 		/*
1920 		 * bus_dmamap_destroy() may call vm_map_lock() and rw_enter()
1921 		 * internally. don't hold spin mutex
1922 		 */
1923 		mutex_exit(&q->q_ccb_mtx);
1924 		bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
1925 		mutex_enter(&q->q_ccb_mtx);
1926 	}
1927 	mutex_exit(&q->q_ccb_mtx);
1928 
1929 	nvme_dmamem_free(sc, q->q_ccb_prpls);
1930 	kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
1931 	q->q_ccbs = NULL;
1932 	cv_destroy(&q->q_ccb_wait);
1933 	mutex_destroy(&q->q_ccb_mtx);
1934 }
1935 
1936 static struct nvme_queue *
nvme_q_alloc(struct nvme_softc * sc,uint16_t id,u_int entries,u_int dstrd)1937 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
1938 {
1939 	struct nvme_queue *q;
1940 
1941 	q = kmem_alloc(sizeof(*q), KM_SLEEP);
1942 	q->q_sc = sc;
1943 	q->q_sq_dmamem = nvme_dmamem_alloc(sc,
1944 	    sizeof(struct nvme_sqe) * entries);
1945 	if (q->q_sq_dmamem == NULL)
1946 		goto free;
1947 
1948 	q->q_cq_dmamem = nvme_dmamem_alloc(sc,
1949 	    sizeof(struct nvme_cqe) * entries);
1950 	if (q->q_cq_dmamem == NULL)
1951 		goto free_sq;
1952 
1953 	memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
1954 	memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
1955 
1956 	mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
1957 	mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
1958 	q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
1959 	q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
1960 	q->q_id = id;
1961 	q->q_entries = entries;
1962 	q->q_sq_tail = 0;
1963 	q->q_cq_head = 0;
1964 	q->q_cq_phase = NVME_CQE_PHASE;
1965 
1966 	if (sc->sc_ops->op_q_alloc != NULL) {
1967 		if (sc->sc_ops->op_q_alloc(sc, q) != 0)
1968 			goto free_cq;
1969 	}
1970 
1971 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
1972 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1973 
1974 	/*
1975 	 * Due to definition of full and empty queue (queue is empty
1976 	 * when head == tail, full when tail is one less then head),
1977 	 * we can actually only have (entries - 1) in-flight commands.
1978 	 */
1979 	if (nvme_ccbs_alloc(q, entries - 1) != 0) {
1980 		aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
1981 		goto free_cq;
1982 	}
1983 
1984 	return q;
1985 
1986 free_cq:
1987 	nvme_dmamem_free(sc, q->q_cq_dmamem);
1988 free_sq:
1989 	nvme_dmamem_free(sc, q->q_sq_dmamem);
1990 free:
1991 	kmem_free(q, sizeof(*q));
1992 
1993 	return NULL;
1994 }
1995 
1996 static void
nvme_q_reset(struct nvme_softc * sc,struct nvme_queue * q)1997 nvme_q_reset(struct nvme_softc *sc, struct nvme_queue *q)
1998 {
1999 
2000 	memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
2001 	memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
2002 
2003 	q->q_sq_tail = 0;
2004 	q->q_cq_head = 0;
2005 	q->q_cq_phase = NVME_CQE_PHASE;
2006 
2007 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
2008 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
2009 }
2010 
2011 static void
nvme_q_free(struct nvme_softc * sc,struct nvme_queue * q)2012 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
2013 {
2014 	nvme_ccbs_free(q);
2015 	mutex_destroy(&q->q_sq_mtx);
2016 	mutex_destroy(&q->q_cq_mtx);
2017 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
2018 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
2019 
2020 	if (sc->sc_ops->op_q_alloc != NULL)
2021 		sc->sc_ops->op_q_free(sc, q);
2022 
2023 	nvme_dmamem_free(sc, q->q_cq_dmamem);
2024 	nvme_dmamem_free(sc, q->q_sq_dmamem);
2025 	kmem_free(q, sizeof(*q));
2026 }
2027 
2028 int
nvme_intr(void * xsc)2029 nvme_intr(void *xsc)
2030 {
2031 	struct nvme_softc *sc = xsc;
2032 
2033 	KASSERT(!sc->sc_use_mq);
2034 
2035 	/*
2036 	 * INTx is level triggered, controller deasserts the interrupt only
2037 	 * when we advance command queue head via write to the doorbell.
2038 	 * Tell the controller to block the interrupts while we process
2039 	 * the queue(s).
2040 	 */
2041 	nvme_write4(sc, NVME_INTMS, 1);
2042 
2043 	softint_schedule(sc->sc_softih[0]);
2044 
2045 	/* don't know, might not have been for us */
2046 	return 1;
2047 }
2048 
2049 void
nvme_softintr_intx(void * xq)2050 nvme_softintr_intx(void *xq)
2051 {
2052 	struct nvme_queue *q = xq;
2053 	struct nvme_softc *sc = q->q_sc;
2054 
2055 	KASSERT(!sc->sc_use_mq);
2056 
2057 	nvme_q_complete(sc, sc->sc_admin_q);
2058 	if (sc->sc_q != NULL)
2059 	        nvme_q_complete(sc, sc->sc_q[0]);
2060 
2061 	/*
2062 	 * Processing done, tell controller to issue interrupts again. There
2063 	 * is no race, as NVMe spec requires the controller to maintain state,
2064 	 * and assert the interrupt whenever there are unacknowledged
2065 	 * completion queue entries.
2066 	 */
2067 	nvme_write4(sc, NVME_INTMC, 1);
2068 }
2069 
2070 int
nvme_intr_msi(void * xq)2071 nvme_intr_msi(void *xq)
2072 {
2073 	struct nvme_queue *q = xq;
2074 
2075 	KASSERT(q);
2076 	KASSERT(q->q_sc);
2077 	KASSERT(q->q_sc->sc_softih);
2078 	KASSERT(q->q_sc->sc_softih[q->q_id]);
2079 
2080 	/*
2081 	 * MSI/MSI-X are edge triggered, so can handover processing to softint
2082 	 * without masking the interrupt.
2083 	 */
2084 	softint_schedule(q->q_sc->sc_softih[q->q_id]);
2085 
2086 	return 1;
2087 }
2088 
2089 void
nvme_softintr_msi(void * xq)2090 nvme_softintr_msi(void *xq)
2091 {
2092 	struct nvme_queue *q = xq;
2093 	struct nvme_softc *sc = q->q_sc;
2094 
2095 	nvme_q_complete(sc, q);
2096 }
2097 
2098 struct nvme_dmamem *
nvme_dmamem_alloc(struct nvme_softc * sc,size_t size)2099 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size)
2100 {
2101 	struct nvme_dmamem *ndm;
2102 	int nsegs;
2103 
2104 	ndm = kmem_zalloc(sizeof(*ndm), KM_SLEEP);
2105 	if (ndm == NULL)
2106 		return NULL;
2107 
2108 	ndm->ndm_size = size;
2109 
2110 	if (bus_dmamap_create(sc->sc_dmat, size, btoc(round_page(size)), size, 0,
2111 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
2112 		goto ndmfree;
2113 
2114 	if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
2115 	    1, &nsegs, BUS_DMA_WAITOK) != 0)
2116 		goto destroy;
2117 
2118 	if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
2119 	    &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
2120 		goto free;
2121 
2122 	if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
2123 	    NULL, BUS_DMA_WAITOK) != 0)
2124 		goto unmap;
2125 
2126 	memset(ndm->ndm_kva, 0, size);
2127 	bus_dmamap_sync(sc->sc_dmat, ndm->ndm_map, 0, size, BUS_DMASYNC_PREREAD);
2128 
2129 	return ndm;
2130 
2131 unmap:
2132 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
2133 free:
2134 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
2135 destroy:
2136 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
2137 ndmfree:
2138 	kmem_free(ndm, sizeof(*ndm));
2139 	return NULL;
2140 }
2141 
2142 void
nvme_dmamem_sync(struct nvme_softc * sc,struct nvme_dmamem * mem,int ops)2143 nvme_dmamem_sync(struct nvme_softc *sc, struct nvme_dmamem *mem, int ops)
2144 {
2145 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(mem),
2146 	    0, NVME_DMA_LEN(mem), ops);
2147 }
2148 
2149 void
nvme_dmamem_free(struct nvme_softc * sc,struct nvme_dmamem * ndm)2150 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
2151 {
2152 	bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
2153 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
2154 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
2155 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
2156 	kmem_free(ndm, sizeof(*ndm));
2157 }
2158 
2159 /*
2160  * ioctl
2161  */
2162 
2163 dev_type_open(nvmeopen);
2164 dev_type_close(nvmeclose);
2165 dev_type_ioctl(nvmeioctl);
2166 
2167 const struct cdevsw nvme_cdevsw = {
2168 	.d_open = nvmeopen,
2169 	.d_close = nvmeclose,
2170 	.d_read = noread,
2171 	.d_write = nowrite,
2172 	.d_ioctl = nvmeioctl,
2173 	.d_stop = nostop,
2174 	.d_tty = notty,
2175 	.d_poll = nopoll,
2176 	.d_mmap = nommap,
2177 	.d_kqfilter = nokqfilter,
2178 	.d_discard = nodiscard,
2179 	.d_flag = D_OTHER,
2180 };
2181 
2182 /*
2183  * Accept an open operation on the control device.
2184  */
2185 int
nvmeopen(dev_t dev,int flag,int mode,struct lwp * l)2186 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
2187 {
2188 	struct nvme_softc *sc;
2189 	int unit = minor(dev) / 0x10000;
2190 	int nsid = minor(dev) & 0xffff;
2191 	int nsidx;
2192 
2193 	if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
2194 		return ENXIO;
2195 	if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
2196 		return ENXIO;
2197 
2198 	if (nsid == 0) {
2199 		/* controller */
2200 		if (ISSET(sc->sc_flags, NVME_F_OPEN))
2201 			return EBUSY;
2202 		SET(sc->sc_flags, NVME_F_OPEN);
2203 	} else {
2204 		/* namespace */
2205 		nsidx = nsid - 1;
2206 		if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
2207 			return ENXIO;
2208 		if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
2209 			return EBUSY;
2210 		SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
2211 	}
2212 	return 0;
2213 }
2214 
2215 /*
2216  * Accept the last close on the control device.
2217  */
2218 int
nvmeclose(dev_t dev,int flag,int mode,struct lwp * l)2219 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
2220 {
2221 	struct nvme_softc *sc;
2222 	int unit = minor(dev) / 0x10000;
2223 	int nsid = minor(dev) & 0xffff;
2224 	int nsidx;
2225 
2226 	sc = device_lookup_private(&nvme_cd, unit);
2227 	if (sc == NULL)
2228 		return ENXIO;
2229 
2230 	if (nsid == 0) {
2231 		/* controller */
2232 		CLR(sc->sc_flags, NVME_F_OPEN);
2233 	} else {
2234 		/* namespace */
2235 		nsidx = nsid - 1;
2236 		if (nsidx >= sc->sc_nn)
2237 			return ENXIO;
2238 		CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
2239 	}
2240 
2241 	return 0;
2242 }
2243 
2244 /*
2245  * Handle control operations.
2246  */
2247 int
nvmeioctl(dev_t dev,u_long cmd,void * data,int flag,struct lwp * l)2248 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
2249 {
2250 	struct nvme_softc *sc;
2251 	int unit = minor(dev) / 0x10000;
2252 	int nsid = minor(dev) & 0xffff;
2253 	struct nvme_pt_command *pt;
2254 
2255 	sc = device_lookup_private(&nvme_cd, unit);
2256 	if (sc == NULL)
2257 		return ENXIO;
2258 
2259 	switch (cmd) {
2260 	case NVME_PASSTHROUGH_CMD:
2261 		pt = data;
2262 		return nvme_command_passthrough(sc, data,
2263 		    nsid == 0 ? pt->cmd.nsid : (uint32_t)nsid, l, nsid == 0);
2264 	}
2265 
2266 	return ENOTTY;
2267 }
2268