xref: /netbsd-src/sys/dev/ic/nvme.c (revision 2e2322c9c07009df921d11b1268f8506affbb8ba)
1 /*	$NetBSD: nvme.c,v 1.22 2016/11/01 14:46:31 jdolecek Exp $	*/
2 /*	$OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
3 
4 /*
5  * Copyright (c) 2014 David Gwynne <dlg@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.22 2016/11/01 14:46:31 jdolecek Exp $");
22 
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/kernel.h>
26 #include <sys/atomic.h>
27 #include <sys/bus.h>
28 #include <sys/buf.h>
29 #include <sys/conf.h>
30 #include <sys/device.h>
31 #include <sys/kmem.h>
32 #include <sys/once.h>
33 #include <sys/proc.h>
34 #include <sys/queue.h>
35 #include <sys/mutex.h>
36 
37 #include <uvm/uvm_extern.h>
38 
39 #include <dev/ic/nvmereg.h>
40 #include <dev/ic/nvmevar.h>
41 #include <dev/ic/nvmeio.h>
42 
43 int nvme_adminq_size = 32;
44 int nvme_ioq_size = 1024;
45 
46 static int	nvme_print(void *, const char *);
47 
48 static int	nvme_ready(struct nvme_softc *, uint32_t);
49 static int	nvme_enable(struct nvme_softc *, u_int);
50 static int	nvme_disable(struct nvme_softc *);
51 static int	nvme_shutdown(struct nvme_softc *);
52 
53 static void	nvme_version(struct nvme_softc *, uint32_t);
54 #ifdef NVME_DEBUG
55 static void	nvme_dumpregs(struct nvme_softc *);
56 #endif
57 static int	nvme_identify(struct nvme_softc *, u_int);
58 static void	nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
59 		    void *);
60 
61 static int	nvme_ccbs_alloc(struct nvme_queue *, uint16_t);
62 static void	nvme_ccbs_free(struct nvme_queue *);
63 
64 static struct nvme_ccb *
65 		nvme_ccb_get(struct nvme_queue *);
66 static void	nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
67 
68 static int	nvme_poll(struct nvme_softc *, struct nvme_queue *,
69 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
70 		    struct nvme_ccb *, void *), int);
71 static void	nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
72 static void	nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
73 		    struct nvme_cqe *);
74 static void	nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
75 static void	nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
76 		    struct nvme_cqe *);
77 
78 static struct nvme_queue *
79 		nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
80 static int	nvme_q_create(struct nvme_softc *, struct nvme_queue *);
81 static int	nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
82 static void	nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
83 		    struct nvme_ccb *, void (*)(struct nvme_queue *,
84 		    struct nvme_ccb *, void *));
85 static int	nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
86 static void	nvme_q_free(struct nvme_softc *, struct nvme_queue *);
87 
88 static struct nvme_dmamem *
89 		nvme_dmamem_alloc(struct nvme_softc *, size_t);
90 static void	nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
91 static void	nvme_dmamem_sync(struct nvme_softc *, struct nvme_dmamem *,
92 		    int);
93 
94 static void	nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
95 		    void *);
96 static void	nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
97 		    struct nvme_cqe *);
98 static void	nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
99 		    void *);
100 static void	nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
101 		    struct nvme_cqe *);
102 
103 static void	nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
104 		    void *);
105 static void	nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
106 		    struct nvme_cqe *);
107 static int	nvme_command_passthrough(struct nvme_softc *,
108 		    struct nvme_pt_command *, uint16_t, struct lwp *, bool);
109 
110 #define NVME_TIMO_QOP		5	/* queue create and delete timeout */
111 #define NVME_TIMO_IDENT		10	/* probe identify timeout */
112 #define NVME_TIMO_PT		-1	/* passthrough cmd timeout */
113 #define NVME_TIMO_SY		60	/* sync cache timeout */
114 
115 #define nvme_read4(_s, _r) \
116 	bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
117 #define nvme_write4(_s, _r, _v) \
118 	bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
119 #ifdef __LP64__
120 #define nvme_read8(_s, _r) \
121 	bus_space_read_8((_s)->sc_iot, (_s)->sc_ioh, (_r))
122 #define nvme_write8(_s, _r, _v) \
123 	bus_space_write_8((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
124 #else /* __LP64__ */
125 static inline uint64_t
126 nvme_read8(struct nvme_softc *sc, bus_size_t r)
127 {
128 	uint64_t v;
129 	uint32_t *a = (uint32_t *)&v;
130 
131 #if _BYTE_ORDER == _LITTLE_ENDIAN
132 	a[0] = nvme_read4(sc, r);
133 	a[1] = nvme_read4(sc, r + 4);
134 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
135 	a[1] = nvme_read4(sc, r);
136 	a[0] = nvme_read4(sc, r + 4);
137 #endif
138 
139 	return v;
140 }
141 
142 static inline void
143 nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
144 {
145 	uint32_t *a = (uint32_t *)&v;
146 
147 #if _BYTE_ORDER == _LITTLE_ENDIAN
148 	nvme_write4(sc, r, a[0]);
149 	nvme_write4(sc, r + 4, a[1]);
150 #else /* _BYTE_ORDER == _LITTLE_ENDIAN */
151 	nvme_write4(sc, r, a[1]);
152 	nvme_write4(sc, r + 4, a[0]);
153 #endif
154 }
155 #endif /* __LP64__ */
156 #define nvme_barrier(_s, _r, _l, _f) \
157 	bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
158 
159 static void
160 nvme_version(struct nvme_softc *sc, uint32_t ver)
161 {
162 	const char *v = NULL;
163 
164 	switch (ver) {
165 	case NVME_VS_1_0:
166 		v = "1.0";
167 		break;
168 	case NVME_VS_1_1:
169 		v = "1.1";
170 		break;
171 	case NVME_VS_1_2:
172 		v = "1.2";
173 		break;
174 	default:
175 		aprint_error_dev(sc->sc_dev, "unknown version 0x%08x\n", ver);
176 		return;
177 	}
178 
179 	aprint_normal_dev(sc->sc_dev, "NVMe %s\n", v);
180 }
181 
182 #ifdef NVME_DEBUG
183 static __used void
184 nvme_dumpregs(struct nvme_softc *sc)
185 {
186 	uint64_t r8;
187 	uint32_t r4;
188 
189 #define	DEVNAME(_sc) device_xname((_sc)->sc_dev)
190 	r8 = nvme_read8(sc, NVME_CAP);
191 	printf("%s: cap  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
192 	printf("%s:  mpsmax %u (%u)\n", DEVNAME(sc),
193 	    (u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
194 	printf("%s:  mpsmin %u (%u)\n", DEVNAME(sc),
195 	    (u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
196 	printf("%s:  css %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CSS(r8));
197 	printf("%s:  nssrs %"PRIu64"\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
198 	printf("%s:  dstrd %"PRIu64"\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
199 	printf("%s:  to %"PRIu64" msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
200 	printf("%s:  ams %"PRIu64"\n", DEVNAME(sc), NVME_CAP_AMS(r8));
201 	printf("%s:  cqr %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CQR(r8));
202 	printf("%s:  mqes %"PRIu64"\n", DEVNAME(sc), NVME_CAP_MQES(r8));
203 
204 	printf("%s: vs   0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
205 
206 	r4 = nvme_read4(sc, NVME_CC);
207 	printf("%s: cc   0x%04x\n", DEVNAME(sc), r4);
208 	printf("%s:  iocqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4),
209 	    (1 << NVME_CC_IOCQES_R(r4)));
210 	printf("%s:  iosqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4),
211 	    (1 << NVME_CC_IOSQES_R(r4)));
212 	printf("%s:  shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
213 	printf("%s:  ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
214 	printf("%s:  mps %u (%u)\n", DEVNAME(sc), NVME_CC_MPS_R(r4),
215 	    (1 << NVME_CC_MPS_R(r4)));
216 	printf("%s:  css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
217 	printf("%s:  en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
218 
219 	r4 = nvme_read4(sc, NVME_CSTS);
220 	printf("%s: csts 0x%08x\n", DEVNAME(sc), r4);
221 	printf("%s:  rdy %u\n", DEVNAME(sc), r4 & NVME_CSTS_RDY);
222 	printf("%s:  cfs %u\n", DEVNAME(sc), r4 & NVME_CSTS_CFS);
223 	printf("%s:  shst %x\n", DEVNAME(sc), r4 & NVME_CSTS_SHST_MASK);
224 
225 	r4 = nvme_read4(sc, NVME_AQA);
226 	printf("%s: aqa  0x%08x\n", DEVNAME(sc), r4);
227 	printf("%s:  acqs %u\n", DEVNAME(sc), NVME_AQA_ACQS_R(r4));
228 	printf("%s:  asqs %u\n", DEVNAME(sc), NVME_AQA_ASQS_R(r4));
229 
230 	printf("%s: asq  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
231 	printf("%s: acq  0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
232 #undef	DEVNAME
233 }
234 #endif	/* NVME_DEBUG */
235 
236 static int
237 nvme_ready(struct nvme_softc *sc, uint32_t rdy)
238 {
239 	u_int i = 0;
240 	uint32_t cc;
241 
242 	cc = nvme_read4(sc, NVME_CC);
243 	if (((cc & NVME_CC_EN) != 0) != (rdy != 0)) {
244 		aprint_error_dev(sc->sc_dev,
245 		    "controller enabled status expected %d, found to be %d\n",
246 		    (rdy != 0), ((cc & NVME_CC_EN) != 0));
247 		return ENXIO;
248 	}
249 
250 	while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
251 		if (i++ > sc->sc_rdy_to)
252 			return ENXIO;
253 
254 		delay(1000);
255 		nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
256 	}
257 
258 	return 0;
259 }
260 
261 static int
262 nvme_enable(struct nvme_softc *sc, u_int mps)
263 {
264 	uint32_t cc, csts;
265 
266 	cc = nvme_read4(sc, NVME_CC);
267 	csts = nvme_read4(sc, NVME_CSTS);
268 
269 	if (ISSET(cc, NVME_CC_EN)) {
270 		aprint_error_dev(sc->sc_dev, "controller unexpectedly enabled, failed to stay disabled\n");
271 
272 		if (ISSET(csts, NVME_CSTS_RDY))
273 			return 1;
274 
275 		goto waitready;
276 	}
277 
278 	nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
279 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
280 	delay(5000);
281 	nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
282 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
283 	delay(5000);
284 
285 	nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
286 	    NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
287 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
288 	delay(5000);
289 
290 	CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
291 	    NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
292 	SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
293 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
294 	SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
295 	SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
296 	SET(cc, NVME_CC_MPS(mps));
297 	SET(cc, NVME_CC_EN);
298 
299 	nvme_write4(sc, NVME_CC, cc);
300 	nvme_barrier(sc, 0, sc->sc_ios,
301 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
302 	delay(5000);
303 
304     waitready:
305 	return nvme_ready(sc, NVME_CSTS_RDY);
306 }
307 
308 static int
309 nvme_disable(struct nvme_softc *sc)
310 {
311 	uint32_t cc, csts;
312 
313 	cc = nvme_read4(sc, NVME_CC);
314 	csts = nvme_read4(sc, NVME_CSTS);
315 
316 	if (ISSET(cc, NVME_CC_EN) && !ISSET(csts, NVME_CSTS_RDY))
317 		nvme_ready(sc, NVME_CSTS_RDY);
318 
319 	CLR(cc, NVME_CC_EN);
320 
321 	nvme_write4(sc, NVME_CC, cc);
322 	nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_READ);
323 
324 	delay(5000);
325 
326 	return nvme_ready(sc, 0);
327 }
328 
329 int
330 nvme_attach(struct nvme_softc *sc)
331 {
332 	uint64_t cap;
333 	uint32_t reg;
334 	u_int dstrd;
335 	u_int mps = PAGE_SHIFT;
336 	uint16_t adminq_entries = nvme_adminq_size;
337 	uint16_t ioq_entries = nvme_ioq_size;
338 	int i;
339 
340 	reg = nvme_read4(sc, NVME_VS);
341 	if (reg == 0xffffffff) {
342 		aprint_error_dev(sc->sc_dev, "invalid mapping\n");
343 		return 1;
344 	}
345 
346 	nvme_version(sc, reg);
347 
348 	cap = nvme_read8(sc, NVME_CAP);
349 	dstrd = NVME_CAP_DSTRD(cap);
350 	if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
351 		aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
352 		    "is greater than CPU page size %u\n",
353 		    1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
354 		return 1;
355 	}
356 	if (NVME_CAP_MPSMAX(cap) < mps)
357 		mps = NVME_CAP_MPSMAX(cap);
358 	if (ioq_entries > NVME_CAP_MQES(cap))
359 		ioq_entries = NVME_CAP_MQES(cap);
360 
361 	/* set initial values to be used for admin queue during probe */
362 	sc->sc_rdy_to = NVME_CAP_TO(cap);
363 	sc->sc_mps = 1 << mps;
364 	sc->sc_mdts = MAXPHYS;
365 	sc->sc_max_sgl = 2;
366 
367 	if (nvme_disable(sc) != 0) {
368 		aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
369 		return 1;
370 	}
371 
372 	sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries, dstrd);
373 	if (sc->sc_admin_q == NULL) {
374 		aprint_error_dev(sc->sc_dev,
375 		    "unable to allocate admin queue\n");
376 		return 1;
377 	}
378 	if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
379 		goto free_admin_q;
380 
381 	if (nvme_enable(sc, mps) != 0) {
382 		aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
383 		goto disestablish_admin_q;
384 	}
385 
386 	if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
387 		aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
388 		goto disable;
389 	}
390 
391 	/* we know how big things are now */
392 	sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
393 
394 	/* reallocate ccbs of admin queue with new max sgl. */
395 	nvme_ccbs_free(sc->sc_admin_q);
396 	nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
397 
398 	sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
399 	if (sc->sc_q == NULL) {
400 		aprint_error_dev(sc->sc_dev, "unable to allocate io queue\n");
401 		goto disable;
402 	}
403 	for (i = 0; i < sc->sc_nq; i++) {
404 		sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries, dstrd);
405 		if (sc->sc_q[i] == NULL) {
406 			aprint_error_dev(sc->sc_dev,
407 			    "unable to allocate io queue\n");
408 			goto free_q;
409 		}
410 		if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
411 			aprint_error_dev(sc->sc_dev,
412 			    "unable to create io queue\n");
413 			nvme_q_free(sc, sc->sc_q[i]);
414 			goto free_q;
415 		}
416 	}
417 
418 	if (!sc->sc_use_mq)
419 		nvme_write4(sc, NVME_INTMC, 1);
420 
421 	/* probe subdevices */
422 	sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
423 	    KM_SLEEP);
424 	if (sc->sc_namespaces == NULL)
425 		goto free_q;
426 	nvme_rescan(sc->sc_dev, "nvme", &i);
427 
428 	return 0;
429 
430 free_q:
431 	while (--i >= 0) {
432 		nvme_q_delete(sc, sc->sc_q[i]);
433 		nvme_q_free(sc, sc->sc_q[i]);
434 	}
435 disable:
436 	nvme_disable(sc);
437 disestablish_admin_q:
438 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
439 free_admin_q:
440 	nvme_q_free(sc, sc->sc_admin_q);
441 
442 	return 1;
443 }
444 
445 int
446 nvme_rescan(device_t self, const char *attr, const int *flags)
447 {
448 	struct nvme_softc *sc = device_private(self);
449 	struct nvme_attach_args naa;
450 	uint64_t cap;
451 	int ioq_entries = nvme_ioq_size;
452 	int i;
453 
454 	cap = nvme_read8(sc, NVME_CAP);
455 	if (ioq_entries > NVME_CAP_MQES(cap))
456 		ioq_entries = NVME_CAP_MQES(cap);
457 
458 	for (i = 0; i < sc->sc_nn; i++) {
459 		if (sc->sc_namespaces[i].dev)
460 			continue;
461 		memset(&naa, 0, sizeof(naa));
462 		naa.naa_nsid = i + 1;
463 		naa.naa_qentries = (ioq_entries - 1) * sc->sc_nq;
464 		naa.naa_maxphys = sc->sc_mdts;
465 		sc->sc_namespaces[i].dev = config_found(sc->sc_dev, &naa,
466 		    nvme_print);
467 	}
468 	return 0;
469 }
470 
471 static int
472 nvme_print(void *aux, const char *pnp)
473 {
474 	struct nvme_attach_args *naa = aux;
475 
476 	if (pnp)
477 		aprint_normal("at %s", pnp);
478 
479 	if (naa->naa_nsid > 0)
480 		aprint_normal(" nsid %d", naa->naa_nsid);
481 
482 	return UNCONF;
483 }
484 
485 int
486 nvme_detach(struct nvme_softc *sc, int flags)
487 {
488 	int i, error;
489 
490 	error = config_detach_children(sc->sc_dev, flags);
491 	if (error)
492 		return error;
493 
494 	error = nvme_shutdown(sc);
495 	if (error)
496 		return error;
497 
498 	/* from now on we are committed to detach, following will never fail */
499 	for (i = 0; i < sc->sc_nq; i++)
500 		nvme_q_free(sc, sc->sc_q[i]);
501 	kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
502 	nvme_q_free(sc, sc->sc_admin_q);
503 
504 	return 0;
505 }
506 
507 static int
508 nvme_shutdown(struct nvme_softc *sc)
509 {
510 	uint32_t cc, csts;
511 	bool disabled = false;
512 	int i;
513 
514 	if (!sc->sc_use_mq)
515 		nvme_write4(sc, NVME_INTMS, 1);
516 
517 	for (i = 0; i < sc->sc_nq; i++) {
518 		if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
519 			aprint_error_dev(sc->sc_dev,
520 			    "unable to delete io queue %d, disabling\n", i + 1);
521 			disabled = true;
522 		}
523 	}
524 	sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
525 	if (disabled)
526 		goto disable;
527 
528 	cc = nvme_read4(sc, NVME_CC);
529 	CLR(cc, NVME_CC_SHN_MASK);
530 	SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
531 	nvme_write4(sc, NVME_CC, cc);
532 
533 	for (i = 0; i < 4000; i++) {
534 		nvme_barrier(sc, 0, sc->sc_ios,
535 		    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
536 		csts = nvme_read4(sc, NVME_CSTS);
537 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
538 			return 0;
539 
540 		delay(1000);
541 	}
542 
543 	aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
544 
545 disable:
546 	nvme_disable(sc);
547 	return 0;
548 }
549 
550 void
551 nvme_childdet(device_t self, device_t child)
552 {
553 	struct nvme_softc *sc = device_private(self);
554 	int i;
555 
556 	for (i = 0; i < sc->sc_nn; i++) {
557 		if (sc->sc_namespaces[i].dev == child) {
558 			/* Already freed ns->ident. */
559 			sc->sc_namespaces[i].dev = NULL;
560 			break;
561 		}
562 	}
563 }
564 
565 int
566 nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
567 {
568 	struct nvme_sqe sqe;
569 	struct nvm_identify_namespace *identify;
570 	struct nvme_dmamem *mem;
571 	struct nvme_ccb *ccb;
572 	struct nvme_namespace *ns;
573 	int rv;
574 
575 	KASSERT(nsid > 0);
576 
577 	ccb = nvme_ccb_get(sc->sc_admin_q);
578 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
579 
580 	mem = nvme_dmamem_alloc(sc, sizeof(*identify));
581 	if (mem == NULL)
582 		return ENOMEM;
583 
584 	memset(&sqe, 0, sizeof(sqe));
585 	sqe.opcode = NVM_ADMIN_IDENTIFY;
586 	htolem32(&sqe.nsid, nsid);
587 	htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
588 	htolem32(&sqe.cdw10, 0);
589 
590 	ccb->ccb_done = nvme_empty_done;
591 	ccb->ccb_cookie = &sqe;
592 
593 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
594 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_IDENT);
595 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
596 
597 	nvme_ccb_put(sc->sc_admin_q, ccb);
598 
599 	if (rv != 0) {
600 		rv = EIO;
601 		goto done;
602 	}
603 
604 	/* commit */
605 
606 	identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
607 	*identify = *((volatile struct nvm_identify_namespace *)NVME_DMA_KVA(mem));
608 	//memcpy(identify, NVME_DMA_KVA(mem), sizeof(*identify));
609 
610 	ns = nvme_ns_get(sc, nsid);
611 	KASSERT(ns);
612 	ns->ident = identify;
613 
614 done:
615 	nvme_dmamem_free(sc, mem);
616 
617 	return rv;
618 }
619 
620 int
621 nvme_ns_dobio(struct nvme_softc *sc, uint16_t nsid, void *cookie,
622     struct buf *bp, void *data, size_t datasize,
623     int secsize, daddr_t blkno, int flags, nvme_nnc_done nnc_done)
624 {
625 	struct nvme_queue *q = nvme_get_q(sc);
626 	struct nvme_ccb *ccb;
627 	bus_dmamap_t dmap;
628 	int i, error;
629 
630 	ccb = nvme_ccb_get(q);
631 	if (ccb == NULL)
632 		return EAGAIN;
633 
634 	ccb->ccb_done = nvme_ns_io_done;
635 	ccb->ccb_cookie = cookie;
636 
637 	/* namespace context */
638 	ccb->nnc_nsid = nsid;
639 	ccb->nnc_flags = flags;
640 	ccb->nnc_buf = bp;
641 	ccb->nnc_datasize = datasize;
642 	ccb->nnc_secsize = secsize;
643 	ccb->nnc_blkno = blkno;
644 	ccb->nnc_done = nnc_done;
645 
646 	dmap = ccb->ccb_dmamap;
647 	error = bus_dmamap_load(sc->sc_dmat, dmap, data,
648 	    datasize, NULL,
649 	    (ISSET(flags, NVME_NS_CTX_F_POLL) ?
650 	      BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
651 	    (ISSET(flags, NVME_NS_CTX_F_READ) ?
652 	      BUS_DMA_READ : BUS_DMA_WRITE));
653 	if (error) {
654 		nvme_ccb_put(q, ccb);
655 		return error;
656 	}
657 
658 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
659 	    ISSET(flags, NVME_NS_CTX_F_READ) ?
660 	    BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
661 
662 	if (dmap->dm_nsegs > 2) {
663 		for (i = 1; i < dmap->dm_nsegs; i++) {
664 			htolem64(&ccb->ccb_prpl[i - 1],
665 			    dmap->dm_segs[i].ds_addr);
666 		}
667 		bus_dmamap_sync(sc->sc_dmat,
668 		    NVME_DMA_MAP(q->q_ccb_prpls),
669 		    ccb->ccb_prpl_off,
670 		    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
671 		    BUS_DMASYNC_PREWRITE);
672 	}
673 
674 	if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
675 		if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
676 			return EIO;
677 		return 0;
678 	}
679 
680 	nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
681 	return 0;
682 }
683 
684 static void
685 nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
686 {
687 	struct nvme_sqe_io *sqe = slot;
688 	bus_dmamap_t dmap = ccb->ccb_dmamap;
689 
690 	sqe->opcode = ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
691 	    NVM_CMD_READ : NVM_CMD_WRITE;
692 	htolem32(&sqe->nsid, ccb->nnc_nsid);
693 
694 	htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
695 	switch (dmap->dm_nsegs) {
696 	case 1:
697 		break;
698 	case 2:
699 		htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
700 		break;
701 	default:
702 		/* the prp list is already set up and synced */
703 		htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
704 		break;
705 	}
706 
707 	htolem64(&sqe->slba, ccb->nnc_blkno);
708 
709 	/* guaranteed by upper layers, but check just in case */
710 	KASSERT((ccb->nnc_datasize % ccb->nnc_secsize) == 0);
711 	htolem16(&sqe->nlb, (ccb->nnc_datasize / ccb->nnc_secsize) - 1);
712 }
713 
714 static void
715 nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
716     struct nvme_cqe *cqe)
717 {
718 	struct nvme_softc *sc = q->q_sc;
719 	bus_dmamap_t dmap = ccb->ccb_dmamap;
720 	void *nnc_cookie = ccb->ccb_cookie;
721 	nvme_nnc_done nnc_done = ccb->nnc_done;
722 	struct buf *bp = ccb->nnc_buf;
723 
724 	if (dmap->dm_nsegs > 2) {
725 		bus_dmamap_sync(sc->sc_dmat,
726 		    NVME_DMA_MAP(q->q_ccb_prpls),
727 		    ccb->ccb_prpl_off,
728 		    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
729 		    BUS_DMASYNC_POSTWRITE);
730 	}
731 
732 	bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
733 	    ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
734 	    BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
735 
736 	bus_dmamap_unload(sc->sc_dmat, dmap);
737 	nvme_ccb_put(q, ccb);
738 
739 	nnc_done(nnc_cookie, bp, lemtoh16(&cqe->flags));
740 }
741 
742 int
743 nvme_ns_sync(struct nvme_softc *sc, uint16_t nsid, void *cookie,
744     int flags, nvme_nnc_done nnc_done)
745 {
746 	struct nvme_queue *q = nvme_get_q(sc);
747 	struct nvme_ccb *ccb;
748 
749 	ccb = nvme_ccb_get(q);
750 	if (ccb == NULL)
751 		return EAGAIN;
752 
753 	ccb->ccb_done = nvme_ns_sync_done;
754 	ccb->ccb_cookie = cookie;
755 
756 	/* namespace context */
757 	ccb->nnc_nsid = nsid;
758 	ccb->nnc_flags = flags;
759 	ccb->nnc_done = nnc_done;
760 
761 	if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
762 		if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
763 			return EIO;
764 		return 0;
765 	}
766 
767 	nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
768 	return 0;
769 }
770 
771 static void
772 nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
773 {
774 	struct nvme_sqe *sqe = slot;
775 
776 	sqe->opcode = NVM_CMD_FLUSH;
777 	htolem32(&sqe->nsid, ccb->nnc_nsid);
778 }
779 
780 static void
781 nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
782     struct nvme_cqe *cqe)
783 {
784 	void *cookie = ccb->ccb_cookie;
785 	nvme_nnc_done nnc_done = ccb->nnc_done;
786 
787 	nvme_ccb_put(q, ccb);
788 
789 	nnc_done(cookie, NULL, lemtoh16(&cqe->flags));
790 }
791 
792 void
793 nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
794 {
795 	struct nvme_namespace *ns;
796 	struct nvm_identify_namespace *identify;
797 
798 	ns = nvme_ns_get(sc, nsid);
799 	KASSERT(ns);
800 
801 	identify = ns->ident;
802 	ns->ident = NULL;
803 	if (identify != NULL)
804 		kmem_free(identify, sizeof(*identify));
805 }
806 
807 static void
808 nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
809 {
810 	struct nvme_softc *sc = q->q_sc;
811 	struct nvme_sqe *sqe = slot;
812 	struct nvme_pt_command *pt = ccb->ccb_cookie;
813 	bus_dmamap_t dmap = ccb->ccb_dmamap;
814 	int i;
815 
816 	sqe->opcode = pt->cmd.opcode;
817 	htolem32(&sqe->nsid, pt->cmd.nsid);
818 
819 	if (pt->buf != NULL && pt->len > 0) {
820 		htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
821 		switch (dmap->dm_nsegs) {
822 		case 1:
823 			break;
824 		case 2:
825 			htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
826 			break;
827 		default:
828 			for (i = 1; i < dmap->dm_nsegs; i++) {
829 				htolem64(&ccb->ccb_prpl[i - 1],
830 				    dmap->dm_segs[i].ds_addr);
831 			}
832 			bus_dmamap_sync(sc->sc_dmat,
833 			    NVME_DMA_MAP(q->q_ccb_prpls),
834 			    ccb->ccb_prpl_off,
835 			    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
836 			    BUS_DMASYNC_PREWRITE);
837 			htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
838 			break;
839 		}
840 	}
841 
842 	htolem32(&sqe->cdw10, pt->cmd.cdw10);
843 	htolem32(&sqe->cdw11, pt->cmd.cdw11);
844 	htolem32(&sqe->cdw12, pt->cmd.cdw12);
845 	htolem32(&sqe->cdw13, pt->cmd.cdw13);
846 	htolem32(&sqe->cdw14, pt->cmd.cdw14);
847 	htolem32(&sqe->cdw15, pt->cmd.cdw15);
848 }
849 
850 static void
851 nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
852 {
853 	struct nvme_softc *sc = q->q_sc;
854 	struct nvme_pt_command *pt = ccb->ccb_cookie;
855 	bus_dmamap_t dmap = ccb->ccb_dmamap;
856 
857 	if (pt->buf != NULL && pt->len > 0) {
858 		if (dmap->dm_nsegs > 2) {
859 			bus_dmamap_sync(sc->sc_dmat,
860 			    NVME_DMA_MAP(q->q_ccb_prpls),
861 			    ccb->ccb_prpl_off,
862 			    sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
863 			    BUS_DMASYNC_POSTWRITE);
864 		}
865 
866 		bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
867 		    pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
868 		bus_dmamap_unload(sc->sc_dmat, dmap);
869 	}
870 
871 	pt->cpl.cdw0 = cqe->cdw0;
872 	pt->cpl.flags = cqe->flags & ~NVME_CQE_PHASE;
873 }
874 
875 static int
876 nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
877     uint16_t nsid, struct lwp *l, bool is_adminq)
878 {
879 	struct nvme_queue *q;
880 	struct nvme_ccb *ccb;
881 	void *buf = NULL;
882 	int error;
883 
884 	/* limit command size to maximum data transfer size */
885 	if ((pt->buf == NULL && pt->len > 0) ||
886 	    (pt->buf != NULL && (pt->len == 0 || pt->len > sc->sc_mdts)))
887 		return EINVAL;
888 
889 	q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc);
890 	ccb = nvme_ccb_get(q);
891 	if (ccb == NULL)
892 		return EBUSY;
893 
894 	if (pt->buf != NULL) {
895 		KASSERT(pt->len > 0);
896 		buf = kmem_alloc(pt->len, KM_SLEEP);
897 		if (buf == NULL) {
898 			error = ENOMEM;
899 			goto ccb_put;
900 		}
901 		if (!pt->is_read) {
902 			error = copyin(pt->buf, buf, pt->len);
903 			if (error)
904 				goto kmem_free;
905 		}
906 		error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
907 		    pt->len, NULL,
908 		    BUS_DMA_WAITOK |
909 		      (pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
910 		if (error)
911 			goto kmem_free;
912 		bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
913 		    0, ccb->ccb_dmamap->dm_mapsize,
914 		    pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
915 	}
916 
917 	ccb->ccb_done = nvme_pt_done;
918 	ccb->ccb_cookie = pt;
919 
920 	pt->cmd.nsid = nsid;
921 	if (nvme_poll(sc, q, ccb, nvme_pt_fill, NVME_TIMO_PT)) {
922 		error = EIO;
923 		goto out;
924 	}
925 
926 	error = 0;
927 out:
928 	if (buf != NULL) {
929 		if (error == 0 && pt->is_read)
930 			error = copyout(buf, pt->buf, pt->len);
931 kmem_free:
932 		kmem_free(buf, pt->len);
933 	}
934 ccb_put:
935 	nvme_ccb_put(q, ccb);
936 	return error;
937 }
938 
939 static void
940 nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
941     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
942 {
943 	struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
944 	uint32_t tail;
945 
946 	mutex_enter(&q->q_sq_mtx);
947 	tail = q->q_sq_tail;
948 	if (++q->q_sq_tail >= q->q_entries)
949 		q->q_sq_tail = 0;
950 
951 	sqe += tail;
952 
953 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
954 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
955 	memset(sqe, 0, sizeof(*sqe));
956 	(*fill)(q, ccb, sqe);
957 	sqe->cid = ccb->ccb_id;
958 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
959 	    sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
960 
961 	nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
962 	mutex_exit(&q->q_sq_mtx);
963 }
964 
965 struct nvme_poll_state {
966 	struct nvme_sqe s;
967 	struct nvme_cqe c;
968 };
969 
970 static int
971 nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
972     void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
973 {
974 	struct nvme_poll_state state;
975 	void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
976 	void *cookie;
977 	uint16_t flags;
978 	int step = 10;
979 	int maxloop = timo_sec * 1000000 / step;
980 	int error = 0;
981 
982 	memset(&state, 0, sizeof(state));
983 	(*fill)(q, ccb, &state.s);
984 
985 	done = ccb->ccb_done;
986 	cookie = ccb->ccb_cookie;
987 
988 	ccb->ccb_done = nvme_poll_done;
989 	ccb->ccb_cookie = &state;
990 
991 	nvme_q_submit(sc, q, ccb, nvme_poll_fill);
992 	while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
993 		if (nvme_q_complete(sc, q) == 0)
994 			delay(step);
995 
996 		if (timo_sec >= 0 && --maxloop <= 0) {
997 			error = ETIMEDOUT;
998 			break;
999 		}
1000 	}
1001 
1002 	ccb->ccb_cookie = cookie;
1003 	done(q, ccb, &state.c);
1004 
1005 	if (error == 0) {
1006 		flags = lemtoh16(&state.c.flags);
1007 		return flags & ~NVME_CQE_PHASE;
1008 	} else {
1009 		return 1;
1010 	}
1011 }
1012 
1013 static void
1014 nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1015 {
1016 	struct nvme_sqe *sqe = slot;
1017 	struct nvme_poll_state *state = ccb->ccb_cookie;
1018 
1019 	*sqe = state->s;
1020 }
1021 
1022 static void
1023 nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1024     struct nvme_cqe *cqe)
1025 {
1026 	struct nvme_poll_state *state = ccb->ccb_cookie;
1027 
1028 	SET(cqe->flags, htole16(NVME_CQE_PHASE));
1029 	state->c = *cqe;
1030 }
1031 
1032 static void
1033 nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1034 {
1035 	struct nvme_sqe *src = ccb->ccb_cookie;
1036 	struct nvme_sqe *dst = slot;
1037 
1038 	*dst = *src;
1039 }
1040 
1041 static void
1042 nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
1043     struct nvme_cqe *cqe)
1044 {
1045 }
1046 
1047 static int
1048 nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
1049 {
1050 	struct nvme_ccb *ccb;
1051 	struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
1052 	uint16_t flags;
1053 	int rv = 0;
1054 
1055 	mutex_enter(&q->q_cq_mtx);
1056 
1057 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1058 	for (;;) {
1059 		cqe = &ring[q->q_cq_head];
1060 		flags = lemtoh16(&cqe->flags);
1061 		if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
1062 			break;
1063 
1064 		ccb = &q->q_ccbs[cqe->cid];
1065 
1066 		if (++q->q_cq_head >= q->q_entries) {
1067 			q->q_cq_head = 0;
1068 			q->q_cq_phase ^= NVME_CQE_PHASE;
1069 		}
1070 
1071 #ifdef DEBUG
1072 		/*
1073 		 * If we get spurious completion notification, something
1074 		 * is seriously hosed up. Very likely DMA to some random
1075 		 * memory place happened, so just bail out.
1076 		 */
1077 		if ((intptr_t)ccb->ccb_cookie == NVME_CCB_FREE) {
1078 			panic("%s: invalid ccb detected",
1079 			    device_xname(sc->sc_dev));
1080 			/* NOTREACHED */
1081 		}
1082 #endif
1083 
1084 		rv++;
1085 
1086 		/*
1087 		 * Unlock the mutex before calling the ccb_done callback
1088 		 * and re-lock afterwards. The callback triggers lddone()
1089 		 * which schedules another i/o, and also calls nvme_ccb_put().
1090 		 * Unlock/relock avoids possibility of deadlock.
1091 		 */
1092 		mutex_exit(&q->q_cq_mtx);
1093 		ccb->ccb_done(q, ccb, cqe);
1094 		mutex_enter(&q->q_cq_mtx);
1095 	}
1096 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1097 
1098 	if (rv)
1099 		nvme_write4(sc, q->q_cqhdbl, q->q_cq_head);
1100 
1101 	mutex_exit(&q->q_cq_mtx);
1102 
1103 	if (rv) {
1104 		mutex_enter(&q->q_ccb_mtx);
1105 		q->q_nccbs_avail += rv;
1106 		mutex_exit(&q->q_ccb_mtx);
1107 	}
1108 
1109 	return rv;
1110 }
1111 
1112 static int
1113 nvme_identify(struct nvme_softc *sc, u_int mps)
1114 {
1115 	char sn[41], mn[81], fr[17];
1116 	struct nvm_identify_controller *identify;
1117 	struct nvme_dmamem *mem;
1118 	struct nvme_ccb *ccb;
1119 	u_int mdts;
1120 	int rv = 1;
1121 
1122 	ccb = nvme_ccb_get(sc->sc_admin_q);
1123 	KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
1124 
1125 	mem = nvme_dmamem_alloc(sc, sizeof(*identify));
1126 	if (mem == NULL)
1127 		return 1;
1128 
1129 	ccb->ccb_done = nvme_empty_done;
1130 	ccb->ccb_cookie = mem;
1131 
1132 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
1133 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
1134 	    NVME_TIMO_IDENT);
1135 	nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
1136 
1137 	nvme_ccb_put(sc->sc_admin_q, ccb);
1138 
1139 	if (rv != 0)
1140 		goto done;
1141 
1142 	identify = NVME_DMA_KVA(mem);
1143 
1144 	strnvisx(sn, sizeof(sn), (const char *)identify->sn,
1145 	    sizeof(identify->sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1146 	strnvisx(mn, sizeof(mn), (const char *)identify->mn,
1147 	    sizeof(identify->mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1148 	strnvisx(fr, sizeof(fr), (const char *)identify->fr,
1149 	    sizeof(identify->fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
1150 	aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
1151 	    sn);
1152 
1153 	if (identify->mdts > 0) {
1154 		mdts = (1 << identify->mdts) * (1 << mps);
1155 		if (mdts < sc->sc_mdts)
1156 			sc->sc_mdts = mdts;
1157 	}
1158 
1159 	sc->sc_nn = lemtoh32(&identify->nn);
1160 
1161 	memcpy(&sc->sc_identify, identify, sizeof(sc->sc_identify));
1162 
1163 done:
1164 	nvme_dmamem_free(sc, mem);
1165 
1166 	return rv;
1167 }
1168 
1169 static int
1170 nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
1171 {
1172 	struct nvme_sqe_q sqe;
1173 	struct nvme_ccb *ccb;
1174 	int rv;
1175 
1176 	if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q) != 0)
1177 		return 1;
1178 
1179 	ccb = nvme_ccb_get(sc->sc_admin_q);
1180 	KASSERT(ccb != NULL);
1181 
1182 	ccb->ccb_done = nvme_empty_done;
1183 	ccb->ccb_cookie = &sqe;
1184 
1185 	memset(&sqe, 0, sizeof(sqe));
1186 	sqe.opcode = NVM_ADMIN_ADD_IOCQ;
1187 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
1188 	htolem16(&sqe.qsize, q->q_entries - 1);
1189 	htolem16(&sqe.qid, q->q_id);
1190 	sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
1191 	if (sc->sc_use_mq)
1192 		htolem16(&sqe.cqid, q->q_id);	/* qid == vector */
1193 
1194 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1195 	if (rv != 0)
1196 		goto fail;
1197 
1198 	ccb->ccb_done = nvme_empty_done;
1199 	ccb->ccb_cookie = &sqe;
1200 
1201 	memset(&sqe, 0, sizeof(sqe));
1202 	sqe.opcode = NVM_ADMIN_ADD_IOSQ;
1203 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
1204 	htolem16(&sqe.qsize, q->q_entries - 1);
1205 	htolem16(&sqe.qid, q->q_id);
1206 	htolem16(&sqe.cqid, q->q_id);
1207 	sqe.qflags = NVM_SQE_Q_PC;
1208 
1209 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1210 	if (rv != 0)
1211 		goto fail;
1212 
1213 fail:
1214 	nvme_ccb_put(sc->sc_admin_q, ccb);
1215 	return rv;
1216 }
1217 
1218 static int
1219 nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
1220 {
1221 	struct nvme_sqe_q sqe;
1222 	struct nvme_ccb *ccb;
1223 	int rv;
1224 
1225 	ccb = nvme_ccb_get(sc->sc_admin_q);
1226 	KASSERT(ccb != NULL);
1227 
1228 	ccb->ccb_done = nvme_empty_done;
1229 	ccb->ccb_cookie = &sqe;
1230 
1231 	memset(&sqe, 0, sizeof(sqe));
1232 	sqe.opcode = NVM_ADMIN_DEL_IOSQ;
1233 	htolem16(&sqe.qid, q->q_id);
1234 
1235 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1236 	if (rv != 0)
1237 		goto fail;
1238 
1239 	ccb->ccb_done = nvme_empty_done;
1240 	ccb->ccb_cookie = &sqe;
1241 
1242 	memset(&sqe, 0, sizeof(sqe));
1243 	sqe.opcode = NVM_ADMIN_DEL_IOCQ;
1244 	htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
1245 	htolem16(&sqe.qid, q->q_id);
1246 
1247 	rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
1248 	if (rv != 0)
1249 		goto fail;
1250 
1251 fail:
1252 	nvme_ccb_put(sc->sc_admin_q, ccb);
1253 
1254 	if (rv == 0 && sc->sc_use_mq) {
1255 		if (sc->sc_intr_disestablish(sc, q->q_id))
1256 			rv = 1;
1257 	}
1258 
1259 	return rv;
1260 }
1261 
1262 static void
1263 nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
1264 {
1265 	struct nvme_sqe *sqe = slot;
1266 	struct nvme_dmamem *mem = ccb->ccb_cookie;
1267 
1268 	sqe->opcode = NVM_ADMIN_IDENTIFY;
1269 	htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(mem));
1270 	htolem32(&sqe->cdw10, 1);
1271 }
1272 
1273 static int
1274 nvme_ccbs_alloc(struct nvme_queue *q, uint16_t nccbs)
1275 {
1276 	struct nvme_softc *sc = q->q_sc;
1277 	struct nvme_ccb *ccb;
1278 	bus_addr_t off;
1279 	uint64_t *prpl;
1280 	u_int i;
1281 
1282 	mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
1283 	SIMPLEQ_INIT(&q->q_ccb_list);
1284 
1285 	q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
1286 	if (q->q_ccbs == NULL)
1287 		return 1;
1288 
1289 	q->q_nccbs = nccbs;
1290 	q->q_nccbs_avail = nccbs;
1291 	q->q_ccb_prpls = nvme_dmamem_alloc(sc,
1292 	    sizeof(*prpl) * sc->sc_max_sgl * nccbs);
1293 
1294 	prpl = NVME_DMA_KVA(q->q_ccb_prpls);
1295 	off = 0;
1296 
1297 	for (i = 0; i < nccbs; i++) {
1298 		ccb = &q->q_ccbs[i];
1299 
1300 		if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
1301 		    sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
1302 		    sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
1303 		    &ccb->ccb_dmamap) != 0)
1304 			goto free_maps;
1305 
1306 		ccb->ccb_id = i;
1307 		ccb->ccb_prpl = prpl;
1308 		ccb->ccb_prpl_off = off;
1309 		ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
1310 
1311 		SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
1312 
1313 		prpl += sc->sc_max_sgl;
1314 		off += sizeof(*prpl) * sc->sc_max_sgl;
1315 	}
1316 
1317 	return 0;
1318 
1319 free_maps:
1320 	nvme_ccbs_free(q);
1321 	return 1;
1322 }
1323 
1324 static struct nvme_ccb *
1325 nvme_ccb_get(struct nvme_queue *q)
1326 {
1327 	struct nvme_ccb *ccb = NULL;
1328 
1329 	mutex_enter(&q->q_ccb_mtx);
1330 	if (q->q_nccbs_avail > 0) {
1331 		ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
1332 		KASSERT(ccb != NULL);
1333 		q->q_nccbs_avail--;
1334 
1335 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1336 #ifdef DEBUG
1337 		ccb->ccb_cookie = NULL;
1338 #endif
1339 	}
1340 	mutex_exit(&q->q_ccb_mtx);
1341 
1342 	return ccb;
1343 }
1344 
1345 static void
1346 nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
1347 {
1348 
1349 	mutex_enter(&q->q_ccb_mtx);
1350 #ifdef DEBUG
1351 	ccb->ccb_cookie = (void *)NVME_CCB_FREE;
1352 #endif
1353 	SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
1354 	mutex_exit(&q->q_ccb_mtx);
1355 }
1356 
1357 static void
1358 nvme_ccbs_free(struct nvme_queue *q)
1359 {
1360 	struct nvme_softc *sc = q->q_sc;
1361 	struct nvme_ccb *ccb;
1362 
1363 	mutex_enter(&q->q_ccb_mtx);
1364 	while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
1365 		SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
1366 		bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
1367 	}
1368 	mutex_exit(&q->q_ccb_mtx);
1369 
1370 	nvme_dmamem_free(sc, q->q_ccb_prpls);
1371 	kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
1372 	q->q_ccbs = NULL;
1373 	mutex_destroy(&q->q_ccb_mtx);
1374 }
1375 
1376 static struct nvme_queue *
1377 nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
1378 {
1379 	struct nvme_queue *q;
1380 
1381 	q = kmem_alloc(sizeof(*q), KM_SLEEP);
1382 	if (q == NULL)
1383 		return NULL;
1384 
1385 	q->q_sc = sc;
1386 	q->q_sq_dmamem = nvme_dmamem_alloc(sc,
1387 	    sizeof(struct nvme_sqe) * entries);
1388 	if (q->q_sq_dmamem == NULL)
1389 		goto free;
1390 
1391 	q->q_cq_dmamem = nvme_dmamem_alloc(sc,
1392 	    sizeof(struct nvme_cqe) * entries);
1393 	if (q->q_cq_dmamem == NULL)
1394 		goto free_sq;
1395 
1396 	memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
1397 	memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
1398 
1399 	mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
1400 	mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
1401 	q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
1402 	q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
1403 	q->q_id = id;
1404 	q->q_entries = entries;
1405 	q->q_sq_tail = 0;
1406 	q->q_cq_head = 0;
1407 	q->q_cq_phase = NVME_CQE_PHASE;
1408 
1409 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
1410 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
1411 
1412 	/*
1413 	 * Due to definition of full and empty queue (queue is empty
1414 	 * when head == tail, full when tail is one less then head),
1415 	 * we can actually only have (entries - 1) in-flight commands.
1416 	 */
1417 	if (nvme_ccbs_alloc(q, entries - 1) != 0) {
1418 		aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
1419 		goto free_cq;
1420 	}
1421 
1422 	return q;
1423 
1424 free_cq:
1425 	nvme_dmamem_free(sc, q->q_cq_dmamem);
1426 free_sq:
1427 	nvme_dmamem_free(sc, q->q_sq_dmamem);
1428 free:
1429 	kmem_free(q, sizeof(*q));
1430 
1431 	return NULL;
1432 }
1433 
1434 static void
1435 nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
1436 {
1437 	nvme_ccbs_free(q);
1438 	mutex_destroy(&q->q_sq_mtx);
1439 	mutex_destroy(&q->q_cq_mtx);
1440 	nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
1441 	nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
1442 	nvme_dmamem_free(sc, q->q_cq_dmamem);
1443 	nvme_dmamem_free(sc, q->q_sq_dmamem);
1444 	kmem_free(q, sizeof(*q));
1445 }
1446 
1447 int
1448 nvme_intr(void *xsc)
1449 {
1450 	struct nvme_softc *sc = xsc;
1451 
1452 	/*
1453 	 * INTx is level triggered, controller deasserts the interrupt only
1454 	 * when we advance command queue head via write to the doorbell.
1455 	 * Tell the controller to block the interrupts while we process
1456 	 * the queue(s).
1457 	 */
1458 	nvme_write4(sc, NVME_INTMS, 1);
1459 
1460 	softint_schedule(sc->sc_softih[0]);
1461 
1462 	/* don't know, might not have been for us */
1463 	return 1;
1464 }
1465 
1466 void
1467 nvme_softintr_intx(void *xq)
1468 {
1469 	struct nvme_queue *q = xq;
1470 	struct nvme_softc *sc = q->q_sc;
1471 
1472 	nvme_q_complete(sc, sc->sc_admin_q);
1473 	if (sc->sc_q != NULL)
1474 	        nvme_q_complete(sc, sc->sc_q[0]);
1475 
1476 	/*
1477 	 * Processing done, tell controller to issue interrupts again. There
1478 	 * is no race, as NVMe spec requires the controller to maintain state,
1479 	 * and assert the interrupt whenever there are unacknowledged
1480 	 * completion queue entries.
1481 	 */
1482 	nvme_write4(sc, NVME_INTMC, 1);
1483 }
1484 
1485 int
1486 nvme_intr_msi(void *xq)
1487 {
1488 	struct nvme_queue *q = xq;
1489 
1490 	KASSERT(q && q->q_sc && q->q_sc->sc_softih
1491 	    && q->q_sc->sc_softih[q->q_id]);
1492 
1493 	/*
1494 	 * MSI/MSI-X are edge triggered, so can handover processing to softint
1495 	 * without masking the interrupt.
1496 	 */
1497 	softint_schedule(q->q_sc->sc_softih[q->q_id]);
1498 
1499 	return 1;
1500 }
1501 
1502 void
1503 nvme_softintr_msi(void *xq)
1504 {
1505 	struct nvme_queue *q = xq;
1506 	struct nvme_softc *sc = q->q_sc;
1507 
1508 	nvme_q_complete(sc, q);
1509 }
1510 
1511 static struct nvme_dmamem *
1512 nvme_dmamem_alloc(struct nvme_softc *sc, size_t size)
1513 {
1514 	struct nvme_dmamem *ndm;
1515 	int nsegs;
1516 
1517 	ndm = kmem_zalloc(sizeof(*ndm), KM_SLEEP);
1518 	if (ndm == NULL)
1519 		return NULL;
1520 
1521 	ndm->ndm_size = size;
1522 
1523 	if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
1524 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
1525 		goto ndmfree;
1526 
1527 	if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
1528 	    1, &nsegs, BUS_DMA_WAITOK) != 0)
1529 		goto destroy;
1530 
1531 	if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
1532 	    &ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
1533 		goto free;
1534 	memset(ndm->ndm_kva, 0, size);
1535 
1536 	if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
1537 	    NULL, BUS_DMA_WAITOK) != 0)
1538 		goto unmap;
1539 
1540 	return ndm;
1541 
1542 unmap:
1543 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
1544 free:
1545 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1546 destroy:
1547 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1548 ndmfree:
1549 	kmem_free(ndm, sizeof(*ndm));
1550 	return NULL;
1551 }
1552 
1553 static void
1554 nvme_dmamem_sync(struct nvme_softc *sc, struct nvme_dmamem *mem, int ops)
1555 {
1556 	bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(mem),
1557 	    0, NVME_DMA_LEN(mem), ops);
1558 }
1559 
1560 void
1561 nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
1562 {
1563 	bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
1564 	bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
1565 	bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
1566 	bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
1567 	kmem_free(ndm, sizeof(*ndm));
1568 }
1569 
1570 /*
1571  * ioctl
1572  */
1573 
1574 dev_type_open(nvmeopen);
1575 dev_type_close(nvmeclose);
1576 dev_type_ioctl(nvmeioctl);
1577 
1578 const struct cdevsw nvme_cdevsw = {
1579 	.d_open = nvmeopen,
1580 	.d_close = nvmeclose,
1581 	.d_read = noread,
1582 	.d_write = nowrite,
1583 	.d_ioctl = nvmeioctl,
1584 	.d_stop = nostop,
1585 	.d_tty = notty,
1586 	.d_poll = nopoll,
1587 	.d_mmap = nommap,
1588 	.d_kqfilter = nokqfilter,
1589 	.d_discard = nodiscard,
1590 	.d_flag = D_OTHER,
1591 };
1592 
1593 extern struct cfdriver nvme_cd;
1594 
1595 /*
1596  * Accept an open operation on the control device.
1597  */
1598 int
1599 nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
1600 {
1601 	struct nvme_softc *sc;
1602 	int unit = minor(dev) / 0x10000;
1603 	int nsid = minor(dev) & 0xffff;
1604 	int nsidx;
1605 
1606 	if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
1607 		return ENXIO;
1608 	if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
1609 		return ENXIO;
1610 
1611 	if (nsid == 0) {
1612 		/* controller */
1613 		if (ISSET(sc->sc_flags, NVME_F_OPEN))
1614 			return EBUSY;
1615 		SET(sc->sc_flags, NVME_F_OPEN);
1616 	} else {
1617 		/* namespace */
1618 		nsidx = nsid - 1;
1619 		if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
1620 			return ENXIO;
1621 		if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
1622 			return EBUSY;
1623 		SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
1624 	}
1625 	return 0;
1626 }
1627 
1628 /*
1629  * Accept the last close on the control device.
1630  */
1631 int
1632 nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
1633 {
1634 	struct nvme_softc *sc;
1635 	int unit = minor(dev) / 0x10000;
1636 	int nsid = minor(dev) & 0xffff;
1637 	int nsidx;
1638 
1639 	sc = device_lookup_private(&nvme_cd, unit);
1640 	if (sc == NULL)
1641 		return ENXIO;
1642 
1643 	if (nsid == 0) {
1644 		/* controller */
1645 		CLR(sc->sc_flags, NVME_F_OPEN);
1646 	} else {
1647 		/* namespace */
1648 		nsidx = nsid - 1;
1649 		if (nsidx >= sc->sc_nn)
1650 			return ENXIO;
1651 		CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
1652 	}
1653 
1654 	return 0;
1655 }
1656 
1657 /*
1658  * Handle control operations.
1659  */
1660 int
1661 nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1662 {
1663 	struct nvme_softc *sc;
1664 	int unit = minor(dev) / 0x10000;
1665 	int nsid = minor(dev) & 0xffff;
1666 	struct nvme_pt_command *pt;
1667 
1668 	sc = device_lookup_private(&nvme_cd, unit);
1669 	if (sc == NULL)
1670 		return ENXIO;
1671 
1672 	switch (cmd) {
1673 	case NVME_PASSTHROUGH_CMD:
1674 		pt = data;
1675 		return nvme_command_passthrough(sc, data,
1676 		    nsid == 0 ? pt->cmd.nsid : nsid, l, nsid == 0);
1677 	}
1678 
1679 	return ENOTTY;
1680 }
1681