xref: /netbsd-src/sys/dev/ic/clmpcc.c (revision fad4c9f71477ae11cea2ee75ec82151ac770a534)
1 /*	$NetBSD: clmpcc.c,v 1.28 2006/05/14 21:42:27 elad Exp $ */
2 
3 /*-
4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Steve C. Woodford.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Cirrus Logic CD2400/CD2401 Four Channel Multi-Protocol Comms. Controller.
41  */
42 
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: clmpcc.c,v 1.28 2006/05/14 21:42:27 elad Exp $");
45 
46 #include "opt_ddb.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/ioctl.h>
51 #include <sys/select.h>
52 #include <sys/tty.h>
53 #include <sys/proc.h>
54 #include <sys/user.h>
55 #include <sys/conf.h>
56 #include <sys/file.h>
57 #include <sys/uio.h>
58 #include <sys/kernel.h>
59 #include <sys/syslog.h>
60 #include <sys/device.h>
61 #include <sys/malloc.h>
62 #include <sys/kauth.h>
63 
64 #include <machine/bus.h>
65 #include <machine/intr.h>
66 #include <machine/param.h>
67 
68 #include <dev/ic/clmpccreg.h>
69 #include <dev/ic/clmpccvar.h>
70 #include <dev/cons.h>
71 
72 
73 #if defined(CLMPCC_ONLY_BYTESWAP_LOW) && defined(CLMPCC_ONLY_BYTESWAP_HIGH)
74 #error	"CLMPCC_ONLY_BYTESWAP_LOW and CLMPCC_ONLY_BYTESWAP_HIGH are mutually exclusive."
75 #endif
76 
77 
78 static int	clmpcc_init(struct clmpcc_softc *sc);
79 static void	clmpcc_shutdown(struct clmpcc_chan *);
80 static int	clmpcc_speed(struct clmpcc_softc *, speed_t, int *, int *);
81 static int	clmpcc_param(struct tty *, struct termios *);
82 static void	clmpcc_set_params(struct clmpcc_chan *);
83 static void	clmpcc_start(struct tty *);
84 static int 	clmpcc_modem_control(struct clmpcc_chan *, int, int);
85 
86 #define	CLMPCCUNIT(x)		(minor(x) & 0x7fffc)
87 #define CLMPCCCHAN(x)		(minor(x) & 0x00003)
88 #define	CLMPCCDIALOUT(x)	(minor(x) & 0x80000)
89 
90 /*
91  * These should be in a header file somewhere...
92  */
93 #define	ISCLR(v, f)	(((v) & (f)) == 0)
94 
95 extern struct cfdriver clmpcc_cd;
96 
97 dev_type_open(clmpccopen);
98 dev_type_close(clmpccclose);
99 dev_type_read(clmpccread);
100 dev_type_write(clmpccwrite);
101 dev_type_ioctl(clmpccioctl);
102 dev_type_stop(clmpccstop);
103 dev_type_tty(clmpcctty);
104 dev_type_poll(clmpccpoll);
105 
106 const struct cdevsw clmpcc_cdevsw = {
107 	clmpccopen, clmpccclose, clmpccread, clmpccwrite, clmpccioctl,
108 	clmpccstop, clmpcctty, clmpccpoll, nommap, ttykqfilter, D_TTY
109 };
110 
111 /*
112  * Make this an option variable one can patch.
113  */
114 u_int clmpcc_ibuf_size = CLMPCC_RING_SIZE;
115 
116 
117 /*
118  * Things needed when the device is used as a console
119  */
120 static struct clmpcc_softc *cons_sc = NULL;
121 static int cons_chan;
122 static int cons_rate;
123 
124 static int	clmpcc_common_getc(struct clmpcc_softc *, int);
125 static void	clmpcc_common_putc(struct clmpcc_softc *, int, int);
126 int		clmpcccngetc(dev_t);
127 void		clmpcccnputc(dev_t, int);
128 
129 
130 /*
131  * Convenience functions, inlined for speed
132  */
133 #define	integrate   static inline
134 integrate u_int8_t  clmpcc_rdreg(struct clmpcc_softc *, u_int);
135 integrate void      clmpcc_wrreg(struct clmpcc_softc *, u_int, u_int);
136 integrate u_int8_t  clmpcc_rdreg_odd(struct clmpcc_softc *, u_int);
137 integrate void      clmpcc_wrreg_odd(struct clmpcc_softc *, u_int, u_int);
138 integrate void      clmpcc_wrtx_multi(struct clmpcc_softc *, u_int8_t *,
139 					u_int);
140 integrate u_int8_t  clmpcc_select_channel(struct clmpcc_softc *, u_int);
141 integrate void      clmpcc_channel_cmd(struct clmpcc_softc *,int,int);
142 integrate void      clmpcc_enable_transmitter(struct clmpcc_chan *);
143 
144 #define clmpcc_rd_msvr(s)	clmpcc_rdreg_odd(s,CLMPCC_REG_MSVR)
145 #define clmpcc_wr_msvr(s,r,v)	clmpcc_wrreg_odd(s,r,v)
146 #define clmpcc_wr_pilr(s,r,v)	clmpcc_wrreg_odd(s,r,v)
147 #define clmpcc_rd_rxdata(s)	clmpcc_rdreg_odd(s,CLMPCC_REG_RDR)
148 #define clmpcc_wr_txdata(s,v)	clmpcc_wrreg_odd(s,CLMPCC_REG_TDR,v)
149 
150 
151 integrate u_int8_t
152 clmpcc_rdreg(sc, offset)
153 	struct clmpcc_softc *sc;
154 	u_int offset;
155 {
156 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
157 	offset ^= sc->sc_byteswap;
158 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
159 	offset ^= CLMPCC_BYTESWAP_HIGH;
160 #endif
161 	return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset);
162 }
163 
164 integrate void
165 clmpcc_wrreg(sc, offset, val)
166 	struct clmpcc_softc *sc;
167 	u_int offset;
168 	u_int val;
169 {
170 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
171 	offset ^= sc->sc_byteswap;
172 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
173 	offset ^= CLMPCC_BYTESWAP_HIGH;
174 #endif
175 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, val);
176 }
177 
178 integrate u_int8_t
179 clmpcc_rdreg_odd(sc, offset)
180 	struct clmpcc_softc *sc;
181 	u_int offset;
182 {
183 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
184 	offset ^= (sc->sc_byteswap & 2);
185 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
186 	offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
187 #endif
188 	return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset);
189 }
190 
191 integrate void
192 clmpcc_wrreg_odd(sc, offset, val)
193 	struct clmpcc_softc *sc;
194 	u_int offset;
195 	u_int val;
196 {
197 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
198 	offset ^= (sc->sc_byteswap & 2);
199 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
200 	offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
201 #endif
202 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, val);
203 }
204 
205 integrate void
206 clmpcc_wrtx_multi(sc, buff, count)
207 	struct clmpcc_softc *sc;
208 	u_int8_t *buff;
209 	u_int count;
210 {
211 	u_int offset = CLMPCC_REG_TDR;
212 
213 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
214 	offset ^= (sc->sc_byteswap & 2);
215 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
216 	offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
217 #endif
218 	bus_space_write_multi_1(sc->sc_iot, sc->sc_ioh, offset, buff, count);
219 }
220 
221 integrate u_int8_t
222 clmpcc_select_channel(sc, new_chan)
223 	struct clmpcc_softc *sc;
224 	u_int new_chan;
225 {
226 	u_int old_chan = clmpcc_rdreg_odd(sc, CLMPCC_REG_CAR);
227 
228 	clmpcc_wrreg_odd(sc, CLMPCC_REG_CAR, new_chan);
229 
230 	return old_chan;
231 }
232 
233 integrate void
234 clmpcc_channel_cmd(sc, chan, cmd)
235 	struct clmpcc_softc *sc;
236 	int chan;
237 	int cmd;
238 {
239 	int i;
240 
241 	for (i = 5000; i; i--) {
242 		if ( clmpcc_rdreg(sc, CLMPCC_REG_CCR) == 0 )
243 			break;
244 		delay(1);
245 	}
246 
247 	if ( i == 0 )
248 		printf("%s: channel %d command timeout (idle)\n",
249 			sc->sc_dev.dv_xname, chan);
250 
251 	clmpcc_wrreg(sc, CLMPCC_REG_CCR, cmd);
252 }
253 
254 integrate void
255 clmpcc_enable_transmitter(ch)
256 	struct clmpcc_chan *ch;
257 {
258 	u_int old;
259 	int s;
260 
261 	old = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
262 
263 	s = splserial();
264 	clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER,
265 		clmpcc_rdreg(ch->ch_sc, CLMPCC_REG_IER) | CLMPCC_IER_TX_EMPTY);
266 	SET(ch->ch_tty->t_state, TS_BUSY);
267 	splx(s);
268 
269 	clmpcc_select_channel(ch->ch_sc, old);
270 }
271 
272 static int
273 clmpcc_speed(sc, speed, cor, bpr)
274 	struct clmpcc_softc *sc;
275 	speed_t speed;
276 	int *cor, *bpr;
277 {
278 	int c, co, br;
279 
280 	for (co = 0, c = 8; c <= 2048; co++, c *= 4) {
281 		br = ((sc->sc_clk / c) / speed) - 1;
282 		if ( br < 0x100 ) {
283 			*cor = co;
284 			*bpr = br;
285 			return 0;
286 		}
287 	}
288 
289 	return -1;
290 }
291 
292 void
293 clmpcc_attach(sc)
294 	struct clmpcc_softc *sc;
295 {
296 	struct clmpcc_chan *ch;
297 	struct tty *tp;
298 	int chan;
299 
300 	if ( cons_sc != NULL &&
301 	     sc->sc_iot == cons_sc->sc_iot && sc->sc_ioh == cons_sc->sc_ioh )
302 		cons_sc = sc;
303 
304 	/* Initialise the chip */
305 	clmpcc_init(sc);
306 
307 	printf(": Cirrus Logic CD240%c Serial Controller\n",
308 		(clmpcc_rd_msvr(sc) & CLMPCC_MSVR_PORT_ID) ? '0' : '1');
309 
310 #ifndef __HAVE_GENERIC_SOFT_INTERRUPTS
311 	sc->sc_soft_running = 0;
312 #else
313 	sc->sc_softintr_cookie =
314 	    softintr_establish(IPL_SOFTSERIAL, clmpcc_softintr, sc);
315 #ifdef DEBUG
316 	if (sc->sc_softintr_cookie == NULL)
317 		panic("clmpcc_attach: softintr_establish");
318 #endif
319 #endif
320 	memset(&(sc->sc_chans[0]), 0, sizeof(sc->sc_chans));
321 
322 	for (chan = 0; chan < CLMPCC_NUM_CHANS; chan++) {
323 		ch = &sc->sc_chans[chan];
324 
325 		ch->ch_sc = sc;
326 		ch->ch_car = chan;
327 
328 		tp = ttymalloc();
329 		tp->t_oproc = clmpcc_start;
330 		tp->t_param = clmpcc_param;
331 
332 		ch->ch_tty = tp;
333 
334 		ch->ch_ibuf = malloc(clmpcc_ibuf_size * 2, M_DEVBUF, M_NOWAIT);
335 		if ( ch->ch_ibuf == NULL ) {
336 			printf("%s(%d): unable to allocate ring buffer\n",
337 		    		sc->sc_dev.dv_xname, chan);
338 			return;
339 		}
340 
341 		ch->ch_ibuf_end = &(ch->ch_ibuf[clmpcc_ibuf_size * 2]);
342 		ch->ch_ibuf_rd = ch->ch_ibuf_wr = ch->ch_ibuf;
343 
344 		tty_attach(tp);
345 	}
346 
347 	printf("%s: %d channels available", sc->sc_dev.dv_xname,
348 					    CLMPCC_NUM_CHANS);
349 	if ( cons_sc == sc ) {
350 		printf(", console on channel %d.\n", cons_chan);
351 		SET(sc->sc_chans[cons_chan].ch_flags, CLMPCC_FLG_IS_CONSOLE);
352 		SET(sc->sc_chans[cons_chan].ch_openflags, TIOCFLAG_SOFTCAR);
353 	} else
354 		printf(".\n");
355 }
356 
357 static int
358 clmpcc_init(sc)
359 	struct clmpcc_softc *sc;
360 {
361 	u_int tcor, tbpr;
362 	u_int rcor, rbpr;
363 	u_int msvr_rts, msvr_dtr;
364 	u_int ccr;
365 	int is_console;
366 	int i;
367 
368 	/*
369 	 * All we're really concerned about here is putting the chip
370 	 * into a quiescent state so that it won't do anything until
371 	 * clmpccopen() is called. (Except the console channel.)
372 	 */
373 
374 	/*
375 	 * If the chip is acting as console, set all channels to the supplied
376 	 * console baud rate. Otherwise, plump for 9600.
377 	 */
378 	if ( cons_sc &&
379 	     sc->sc_ioh == cons_sc->sc_ioh && sc->sc_iot == cons_sc->sc_iot ) {
380 		clmpcc_speed(sc, cons_rate, &tcor, &tbpr);
381 		clmpcc_speed(sc, cons_rate, &rcor, &rbpr);
382 		is_console = 1;
383 	} else {
384 		clmpcc_speed(sc, 9600, &tcor, &tbpr);
385 		clmpcc_speed(sc, 9600, &rcor, &rbpr);
386 		is_console = 0;
387 	}
388 
389 	/* Allow any pending output to be sent */
390 	delay(10000);
391 
392 	/* Send the Reset All command  to channel 0 (resets all channels!) */
393 	clmpcc_channel_cmd(sc, 0, CLMPCC_CCR_T0_RESET_ALL);
394 
395 	delay(1000);
396 
397 	/*
398 	 * The chip will set it's firmware revision register to a non-zero
399 	 * value to indicate completion of reset.
400 	 */
401 	for (i = 10000; clmpcc_rdreg(sc, CLMPCC_REG_GFRCR) == 0 && i; i--)
402 		delay(1);
403 
404 	if ( i == 0 ) {
405 		/*
406 		 * Watch out... If this chip is console, the message
407 		 * probably won't be sent since we just reset it!
408 		 */
409 		printf("%s: Failed to reset chip\n", sc->sc_dev.dv_xname);
410 		return -1;
411 	}
412 
413 	for (i = 0; i < CLMPCC_NUM_CHANS; i++) {
414 		clmpcc_select_channel(sc, i);
415 
416 		/* All interrupts are disabled to begin with */
417 		clmpcc_wrreg(sc, CLMPCC_REG_IER, 0);
418 
419 		/* Make sure the channel interrupts on the correct vectors */
420 		clmpcc_wrreg(sc, CLMPCC_REG_LIVR, sc->sc_vector_base);
421 		clmpcc_wr_pilr(sc, CLMPCC_REG_RPILR, sc->sc_rpilr);
422 		clmpcc_wr_pilr(sc, CLMPCC_REG_TPILR, sc->sc_tpilr);
423 		clmpcc_wr_pilr(sc, CLMPCC_REG_MPILR, sc->sc_mpilr);
424 
425 		/* Receive timer prescaler set to 1ms */
426 		clmpcc_wrreg(sc, CLMPCC_REG_TPR,
427 				 CLMPCC_MSEC_TO_TPR(sc->sc_clk, 1));
428 
429 		/* We support Async mode only */
430 		clmpcc_wrreg(sc, CLMPCC_REG_CMR, CLMPCC_CMR_ASYNC);
431 
432 		/* Set the required baud rate */
433 		clmpcc_wrreg(sc, CLMPCC_REG_TCOR, CLMPCC_TCOR_CLK(tcor));
434 		clmpcc_wrreg(sc, CLMPCC_REG_TBPR, tbpr);
435 		clmpcc_wrreg(sc, CLMPCC_REG_RCOR, CLMPCC_RCOR_CLK(rcor));
436 		clmpcc_wrreg(sc, CLMPCC_REG_RBPR, rbpr);
437 
438 		/* Always default to 8N1 (XXX what about console?) */
439 		clmpcc_wrreg(sc, CLMPCC_REG_COR1, CLMPCC_COR1_CHAR_8BITS |
440 						  CLMPCC_COR1_NO_PARITY |
441 						  CLMPCC_COR1_IGNORE_PAR);
442 
443 		clmpcc_wrreg(sc, CLMPCC_REG_COR2, 0);
444 
445 		clmpcc_wrreg(sc, CLMPCC_REG_COR3, CLMPCC_COR3_STOP_1);
446 
447 		clmpcc_wrreg(sc, CLMPCC_REG_COR4, CLMPCC_COR4_DSRzd |
448 						  CLMPCC_COR4_CDzd |
449 						  CLMPCC_COR4_CTSzd);
450 
451 		clmpcc_wrreg(sc, CLMPCC_REG_COR5, CLMPCC_COR5_DSRod |
452 						  CLMPCC_COR5_CDod |
453 						  CLMPCC_COR5_CTSod |
454 						  CLMPCC_COR5_FLOW_NORM);
455 
456 		clmpcc_wrreg(sc, CLMPCC_REG_COR6, 0);
457 		clmpcc_wrreg(sc, CLMPCC_REG_COR7, 0);
458 
459 		/* Set the receive FIFO timeout */
460 		clmpcc_wrreg(sc, CLMPCC_REG_RTPRl, CLMPCC_RTPR_DEFAULT);
461 		clmpcc_wrreg(sc, CLMPCC_REG_RTPRh, 0);
462 
463 		/* At this point, we set up the console differently */
464 		if ( is_console && i == cons_chan ) {
465 			msvr_rts = CLMPCC_MSVR_RTS;
466 			msvr_dtr = CLMPCC_MSVR_DTR;
467 			ccr = CLMPCC_CCR_T0_RX_EN | CLMPCC_CCR_T0_TX_EN;
468 		} else {
469 			msvr_rts = 0;
470 			msvr_dtr = 0;
471 			ccr = CLMPCC_CCR_T0_RX_DIS | CLMPCC_CCR_T0_TX_DIS;
472 		}
473 
474 		clmpcc_wrreg(sc, CLMPCC_REG_MSVR_RTS, msvr_rts);
475 		clmpcc_wrreg(sc, CLMPCC_REG_MSVR_DTR, msvr_dtr);
476 		clmpcc_channel_cmd(sc, i, CLMPCC_CCR_T0_INIT | ccr);
477 		delay(100);
478 	}
479 
480 	return 0;
481 }
482 
483 static void
484 clmpcc_shutdown(ch)
485 	struct clmpcc_chan *ch;
486 {
487 	int oldch;
488 
489 	oldch = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
490 
491 	/* Turn off interrupts. */
492 	clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER, 0);
493 
494 	if ( ISCLR(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
495 		/* Disable the transmitter and receiver */
496 		clmpcc_channel_cmd(ch->ch_sc, ch->ch_car, CLMPCC_CCR_T0_RX_DIS |
497 							  CLMPCC_CCR_T0_TX_DIS);
498 
499 		/* Drop RTS and DTR */
500 		clmpcc_modem_control(ch, TIOCM_RTS | TIOCM_DTR, DMBIS);
501 	}
502 
503 	clmpcc_select_channel(ch->ch_sc, oldch);
504 }
505 
506 int
507 clmpccopen(dev, flag, mode, l)
508 	dev_t dev;
509 	int flag, mode;
510 	struct lwp *l;
511 {
512 	struct clmpcc_softc *sc;
513 	struct clmpcc_chan *ch;
514 	struct tty *tp;
515 	int oldch;
516 	int error;
517 
518 	sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
519 	if (sc == NULL)
520 		return (ENXIO);
521 
522 	ch = &sc->sc_chans[CLMPCCCHAN(dev)];
523 
524 	tp = ch->ch_tty;
525 
526 	if ( ISSET(tp->t_state, TS_ISOPEN) &&
527 	     ISSET(tp->t_state, TS_XCLUDE) &&
528 	     kauth_authorize_generic(l->l_proc->p_cred,
529 			       KAUTH_GENERIC_ISSUSER,
530 			       &l->l_proc->p_acflag) != 0 )
531 		return EBUSY;
532 
533 	/*
534 	 * Do the following iff this is a first open.
535 	 */
536 	if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
537 
538 		ttychars(tp);
539 
540 		tp->t_dev = dev;
541 		tp->t_iflag = TTYDEF_IFLAG;
542 		tp->t_oflag = TTYDEF_OFLAG;
543 		tp->t_lflag = TTYDEF_LFLAG;
544 		tp->t_cflag = TTYDEF_CFLAG;
545 		tp->t_ospeed = tp->t_ispeed = TTYDEF_SPEED;
546 
547 		if ( ISSET(ch->ch_openflags, TIOCFLAG_CLOCAL) )
548 			SET(tp->t_cflag, CLOCAL);
549 		if ( ISSET(ch->ch_openflags, TIOCFLAG_CRTSCTS) )
550 			SET(tp->t_cflag, CRTSCTS);
551 		if ( ISSET(ch->ch_openflags, TIOCFLAG_MDMBUF) )
552 			SET(tp->t_cflag, MDMBUF);
553 
554 		/*
555 		 * Override some settings if the channel is being
556 		 * used as the console.
557 		 */
558 		if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
559 			tp->t_ospeed = tp->t_ispeed = cons_rate;
560 			SET(tp->t_cflag, CLOCAL);
561 			CLR(tp->t_cflag, CRTSCTS);
562 			CLR(tp->t_cflag, HUPCL);
563 		}
564 
565 		ch->ch_control = 0;
566 
567 		clmpcc_param(tp, &tp->t_termios);
568 		ttsetwater(tp);
569 
570 		/* Clear the input ring */
571 		ch->ch_ibuf_rd = ch->ch_ibuf_wr = ch->ch_ibuf;
572 
573 		/* Select the channel */
574 		oldch = clmpcc_select_channel(sc, ch->ch_car);
575 
576 		/* Reset it */
577 		clmpcc_channel_cmd(sc, ch->ch_car, CLMPCC_CCR_T0_CLEAR |
578 						   CLMPCC_CCR_T0_RX_EN |
579 						   CLMPCC_CCR_T0_TX_EN);
580 
581 		/* Enable receiver and modem change interrupts. */
582 		clmpcc_wrreg(sc, CLMPCC_REG_IER, CLMPCC_IER_MODEM |
583 						 CLMPCC_IER_RET |
584 						 CLMPCC_IER_RX_FIFO);
585 
586 		/* Raise RTS and DTR */
587 		clmpcc_modem_control(ch, TIOCM_RTS | TIOCM_DTR, DMBIS);
588 
589 		clmpcc_select_channel(sc, oldch);
590 	}
591 
592 	error = ttyopen(tp, CLMPCCDIALOUT(dev), ISSET(flag, O_NONBLOCK));
593 	if (error)
594 		goto bad;
595 
596 	error = (*tp->t_linesw->l_open)(dev, tp);
597 	if (error)
598 		goto bad;
599 
600 	return 0;
601 
602 bad:
603 	if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
604 		/*
605 		 * We failed to open the device, and nobody else had it opened.
606 		 * Clean up the state as appropriate.
607 		 */
608 		clmpcc_shutdown(ch);
609 	}
610 
611 	return error;
612 }
613 
614 int
615 clmpccclose(dev, flag, mode, l)
616 	dev_t dev;
617 	int flag, mode;
618 	struct lwp *l;
619 {
620 	struct clmpcc_softc	*sc =
621 		device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
622 	struct clmpcc_chan	*ch = &sc->sc_chans[CLMPCCCHAN(dev)];
623 	struct tty		*tp = ch->ch_tty;
624 	int s;
625 
626 	if ( ISCLR(tp->t_state, TS_ISOPEN) )
627 		return 0;
628 
629 	(*tp->t_linesw->l_close)(tp, flag);
630 
631 	s = spltty();
632 
633 	if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
634 		/*
635 		 * Although we got a last close, the device may still be in
636 		 * use; e.g. if this was the dialout node, and there are still
637 		 * processes waiting for carrier on the non-dialout node.
638 		 */
639 		clmpcc_shutdown(ch);
640 	}
641 
642 	ttyclose(tp);
643 
644 	splx(s);
645 
646 	return 0;
647 }
648 
649 int
650 clmpccread(dev, uio, flag)
651 	dev_t dev;
652 	struct uio *uio;
653 	int flag;
654 {
655 	struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
656 	struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
657 
658 	return ((*tp->t_linesw->l_read)(tp, uio, flag));
659 }
660 
661 int
662 clmpccwrite(dev, uio, flag)
663 	dev_t dev;
664 	struct uio *uio;
665 	int flag;
666 {
667 	struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
668 	struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
669 
670 	return ((*tp->t_linesw->l_write)(tp, uio, flag));
671 }
672 
673 int
674 clmpccpoll(dev, events, l)
675 	dev_t dev;
676 	int events;
677 	struct lwp *l;
678 {
679 	struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
680 	struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
681 
682 	return ((*tp->t_linesw->l_poll)(tp, events, l));
683 }
684 
685 struct tty *
686 clmpcctty(dev)
687 	dev_t dev;
688 {
689 	struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
690 
691 	return (sc->sc_chans[CLMPCCCHAN(dev)].ch_tty);
692 }
693 
694 int
695 clmpccioctl(dev, cmd, data, flag, l)
696 	dev_t dev;
697 	u_long cmd;
698 	caddr_t data;
699 	int flag;
700 	struct lwp *l;
701 {
702 	struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
703 	struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(dev)];
704 	struct tty *tp = ch->ch_tty;
705 	int error;
706 
707 	error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
708 	if (error != EPASSTHROUGH)
709 		return error;
710 
711 	error = ttioctl(tp, cmd, data, flag, l);
712 	if (error != EPASSTHROUGH)
713 		return error;
714 
715 	error = 0;
716 
717 	switch (cmd) {
718 	case TIOCSBRK:
719 		SET(ch->ch_flags, CLMPCC_FLG_START_BREAK);
720 		clmpcc_enable_transmitter(ch);
721 		break;
722 
723 	case TIOCCBRK:
724 		SET(ch->ch_flags, CLMPCC_FLG_END_BREAK);
725 		clmpcc_enable_transmitter(ch);
726 		break;
727 
728 	case TIOCSDTR:
729 		clmpcc_modem_control(ch, TIOCM_DTR, DMBIS);
730 		break;
731 
732 	case TIOCCDTR:
733 		clmpcc_modem_control(ch, TIOCM_DTR, DMBIC);
734 		break;
735 
736 	case TIOCMSET:
737 		clmpcc_modem_control(ch, *((int *)data), DMSET);
738 		break;
739 
740 	case TIOCMBIS:
741 		clmpcc_modem_control(ch, *((int *)data), DMBIS);
742 		break;
743 
744 	case TIOCMBIC:
745 		clmpcc_modem_control(ch, *((int *)data), DMBIC);
746 		break;
747 
748 	case TIOCMGET:
749 		*((int *)data) = clmpcc_modem_control(ch, 0, DMGET);
750 		break;
751 
752 	case TIOCGFLAGS:
753 		*((int *)data) = ch->ch_openflags;
754 		break;
755 
756 	case TIOCSFLAGS:
757 		error = kauth_authorize_generic(l->l_proc->p_cred,
758 					  KAUTH_GENERIC_ISSUSER,
759 					  &l->l_proc->p_acflag);
760 		if ( error )
761 			break;
762 		ch->ch_openflags = *((int *)data) &
763 			(TIOCFLAG_SOFTCAR | TIOCFLAG_CLOCAL |
764 			 TIOCFLAG_CRTSCTS | TIOCFLAG_MDMBUF);
765 		if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) )
766 			SET(ch->ch_openflags, TIOCFLAG_SOFTCAR);
767 		break;
768 
769 	default:
770 		error = EPASSTHROUGH;
771 		break;
772 	}
773 
774 	return error;
775 }
776 
777 int
778 clmpcc_modem_control(ch, bits, howto)
779 	struct clmpcc_chan *ch;
780 	int bits;
781 	int howto;
782 {
783 	struct clmpcc_softc *sc = ch->ch_sc;
784 	struct tty *tp = ch->ch_tty;
785 	int oldch;
786 	int msvr;
787 	int rbits = 0;
788 
789 	oldch = clmpcc_select_channel(sc, ch->ch_car);
790 
791 	switch ( howto ) {
792 	case DMGET:
793 		msvr = clmpcc_rd_msvr(sc);
794 
795 		if ( sc->sc_swaprtsdtr ) {
796 			rbits |= (msvr & CLMPCC_MSVR_RTS) ? TIOCM_DTR : 0;
797 			rbits |= (msvr & CLMPCC_MSVR_DTR) ? TIOCM_RTS : 0;
798 		} else {
799 			rbits |= (msvr & CLMPCC_MSVR_RTS) ? TIOCM_RTS : 0;
800 			rbits |= (msvr & CLMPCC_MSVR_DTR) ? TIOCM_DTR : 0;
801 		}
802 
803 		rbits |= (msvr & CLMPCC_MSVR_CTS) ? TIOCM_CTS : 0;
804 		rbits |= (msvr & CLMPCC_MSVR_CD)  ? TIOCM_CD  : 0;
805 		rbits |= (msvr & CLMPCC_MSVR_DSR) ? TIOCM_DSR : 0;
806 		break;
807 
808 	case DMSET:
809 		if ( sc->sc_swaprtsdtr ) {
810 		    if ( ISCLR(tp->t_cflag, CRTSCTS) )
811 			clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR,
812 					bits & TIOCM_RTS ? CLMPCC_MSVR_DTR : 0);
813 		    clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS,
814 				bits & TIOCM_DTR ? CLMPCC_MSVR_RTS : 0);
815 		} else {
816 		    if ( ISCLR(tp->t_cflag, CRTSCTS) )
817 			clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS,
818 					bits & TIOCM_RTS ? CLMPCC_MSVR_RTS : 0);
819 		    clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR,
820 				bits & TIOCM_DTR ? CLMPCC_MSVR_DTR : 0);
821 		}
822 		break;
823 
824 	case DMBIS:
825 		if ( sc->sc_swaprtsdtr ) {
826 		    if ( ISCLR(tp->t_cflag, CRTSCTS) && ISSET(bits, TIOCM_RTS) )
827 			clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_DTR, CLMPCC_MSVR_DTR);
828 		    if ( ISSET(bits, TIOCM_DTR) )
829 			clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_RTS, CLMPCC_MSVR_RTS);
830 		} else {
831 		    if ( ISCLR(tp->t_cflag, CRTSCTS) && ISSET(bits, TIOCM_RTS) )
832 			clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_RTS, CLMPCC_MSVR_RTS);
833 		    if ( ISSET(bits, TIOCM_DTR) )
834 			clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_DTR, CLMPCC_MSVR_DTR);
835 		}
836 		break;
837 
838 	case DMBIC:
839 		if ( sc->sc_swaprtsdtr ) {
840 		    if ( ISCLR(tp->t_cflag, CRTSCTS) && ISCLR(bits, TIOCM_RTS) )
841 			clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR, 0);
842 		    if ( ISCLR(bits, TIOCM_DTR) )
843 			clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS, 0);
844 		} else {
845 		    if ( ISCLR(tp->t_cflag, CRTSCTS) && ISCLR(bits, TIOCM_RTS) )
846 			clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS, 0);
847 		    if ( ISCLR(bits, TIOCM_DTR) )
848 			clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR, 0);
849 		}
850 		break;
851 	}
852 
853 	clmpcc_select_channel(sc, oldch);
854 
855 	return rbits;
856 }
857 
858 static int
859 clmpcc_param(tp, t)
860 	struct tty *tp;
861 	struct termios *t;
862 {
863 	struct clmpcc_softc *sc =
864 	    device_lookup(&clmpcc_cd, CLMPCCUNIT(tp->t_dev));
865 	struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
866 	u_char cor;
867 	u_char oldch;
868 	int oclk, obpr;
869 	int iclk, ibpr;
870 	int s;
871 
872 	/* Check requested parameters. */
873 	if ( t->c_ospeed && clmpcc_speed(sc, t->c_ospeed, &oclk, &obpr) < 0 )
874 		return EINVAL;
875 
876 	if ( t->c_ispeed && clmpcc_speed(sc, t->c_ispeed, &iclk, &ibpr) < 0 )
877 		return EINVAL;
878 
879 	/*
880 	 * For the console, always force CLOCAL and !HUPCL, so that the port
881 	 * is always active.
882 	 */
883 	if ( ISSET(ch->ch_openflags, TIOCFLAG_SOFTCAR) ||
884 	     ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
885 		SET(t->c_cflag, CLOCAL);
886 		CLR(t->c_cflag, HUPCL);
887 	}
888 
889 	CLR(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS);
890 
891 	/* If ospeed it zero, hangup the line */
892 	clmpcc_modem_control(ch, TIOCM_DTR, t->c_ospeed == 0 ? DMBIC : DMBIS);
893 
894 	if ( t->c_ospeed ) {
895 		ch->ch_tcor = CLMPCC_TCOR_CLK(oclk);
896 		ch->ch_tbpr = obpr;
897 	} else {
898 		ch->ch_tcor = 0;
899 		ch->ch_tbpr = 0;
900 	}
901 
902 	if ( t->c_ispeed ) {
903 		ch->ch_rcor = CLMPCC_RCOR_CLK(iclk);
904 		ch->ch_rbpr = ibpr;
905 	} else {
906 		ch->ch_rcor = 0;
907 		ch->ch_rbpr = 0;
908 	}
909 
910 	/* Work out value to use for COR1 */
911 	cor = 0;
912 	if ( ISSET(t->c_cflag, PARENB) ) {
913 		cor |= CLMPCC_COR1_NORM_PARITY;
914 		if ( ISSET(t->c_cflag, PARODD) )
915 			cor |= CLMPCC_COR1_ODD_PARITY;
916 	}
917 
918 	if ( ISCLR(t->c_cflag, INPCK) )
919 		cor |= CLMPCC_COR1_IGNORE_PAR;
920 
921 	switch ( t->c_cflag & CSIZE ) {
922 	  case CS5:
923 		cor |= CLMPCC_COR1_CHAR_5BITS;
924 		break;
925 
926 	  case CS6:
927 		cor |= CLMPCC_COR1_CHAR_6BITS;
928 		break;
929 
930 	  case CS7:
931 		cor |= CLMPCC_COR1_CHAR_7BITS;
932 		break;
933 
934 	  case CS8:
935 		cor |= CLMPCC_COR1_CHAR_8BITS;
936 		break;
937 	}
938 
939 	ch->ch_cor1 = cor;
940 
941 	/*
942 	 * The only interesting bit in COR2 is 'CTS Automatic Enable'
943 	 * when hardware flow control is in effect.
944 	 */
945 	ch->ch_cor2 = ISSET(t->c_cflag, CRTSCTS) ? CLMPCC_COR2_CtsAE : 0;
946 
947 	/* COR3 needs to be set to the number of stop bits... */
948 	ch->ch_cor3 = ISSET(t->c_cflag, CSTOPB) ? CLMPCC_COR3_STOP_2 :
949 						  CLMPCC_COR3_STOP_1;
950 
951 	/*
952 	 * COR4 contains the FIFO threshold setting.
953 	 * We adjust the threshold depending on the input speed...
954 	 */
955 	if ( t->c_ispeed <= 1200 )
956 		ch->ch_cor4 = CLMPCC_COR4_FIFO_LOW;
957 	else if ( t->c_ispeed <= 19200 )
958 		ch->ch_cor4 = CLMPCC_COR4_FIFO_MED;
959 	else
960 		ch->ch_cor4 = CLMPCC_COR4_FIFO_HIGH;
961 
962 	/*
963 	 * If chip is used with CTS and DTR swapped, we can enable
964 	 * automatic hardware flow control.
965 	 */
966 	if ( sc->sc_swaprtsdtr && ISSET(t->c_cflag, CRTSCTS) )
967 		ch->ch_cor5 = CLMPCC_COR5_FLOW_NORM;
968 	else
969 		ch->ch_cor5 = 0;
970 
971 	s = splserial();
972 	oldch = clmpcc_select_channel(sc, ch->ch_car);
973 
974 	/*
975 	 * COR2 needs to be set immediately otherwise we might never get
976 	 * a Tx EMPTY interrupt to change the other parameters.
977 	 */
978 	if ( clmpcc_rdreg(sc, CLMPCC_REG_COR2) != ch->ch_cor2 )
979 		clmpcc_wrreg(sc, CLMPCC_REG_COR2, ch->ch_cor2);
980 
981 	if ( ISCLR(ch->ch_tty->t_state, TS_BUSY) )
982 		clmpcc_set_params(ch);
983 	else
984 		SET(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS);
985 
986 	clmpcc_select_channel(sc, oldch);
987 
988 	splx(s);
989 
990 	return 0;
991 }
992 
993 static void
994 clmpcc_set_params(ch)
995 	struct clmpcc_chan *ch;
996 {
997 	struct clmpcc_softc *sc = ch->ch_sc;
998 	u_char r1;
999 	u_char r2;
1000 
1001 	if ( ch->ch_tcor || ch->ch_tbpr ) {
1002 		r1 = clmpcc_rdreg(sc, CLMPCC_REG_TCOR);
1003 		r2 = clmpcc_rdreg(sc, CLMPCC_REG_TBPR);
1004 		/* Only write Tx rate if it really has changed */
1005 		if ( ch->ch_tcor != r1 || ch->ch_tbpr != r2 ) {
1006 			clmpcc_wrreg(sc, CLMPCC_REG_TCOR, ch->ch_tcor);
1007 			clmpcc_wrreg(sc, CLMPCC_REG_TBPR, ch->ch_tbpr);
1008 		}
1009 	}
1010 
1011 	if ( ch->ch_rcor || ch->ch_rbpr ) {
1012 		r1 = clmpcc_rdreg(sc, CLMPCC_REG_RCOR);
1013 		r2 = clmpcc_rdreg(sc, CLMPCC_REG_RBPR);
1014 		/* Only write Rx rate if it really has changed */
1015 		if ( ch->ch_rcor != r1 || ch->ch_rbpr != r2 ) {
1016 			clmpcc_wrreg(sc, CLMPCC_REG_RCOR, ch->ch_rcor);
1017 			clmpcc_wrreg(sc, CLMPCC_REG_RBPR, ch->ch_rbpr);
1018 		}
1019 	}
1020 
1021 	if ( clmpcc_rdreg(sc, CLMPCC_REG_COR1) != ch->ch_cor1 ) {
1022 		clmpcc_wrreg(sc, CLMPCC_REG_COR1, ch->ch_cor1);
1023 		/* Any change to COR1 requires an INIT command */
1024 		SET(ch->ch_flags, CLMPCC_FLG_NEED_INIT);
1025 	}
1026 
1027 	if ( clmpcc_rdreg(sc, CLMPCC_REG_COR3) != ch->ch_cor3 )
1028 		clmpcc_wrreg(sc, CLMPCC_REG_COR3, ch->ch_cor3);
1029 
1030 	r1 = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
1031 	if ( ch->ch_cor4 != (r1 & CLMPCC_COR4_FIFO_MASK) ) {
1032 		/*
1033 		 * Note: If the FIFO has changed, we always set it to
1034 		 * zero here and disable the Receive Timeout interrupt.
1035 		 * It's up to the Rx Interrupt handler to pick the
1036 		 * appropriate moment to write the new FIFO length.
1037 		 */
1038 		clmpcc_wrreg(sc, CLMPCC_REG_COR4, r1 & ~CLMPCC_COR4_FIFO_MASK);
1039 		r1 = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1040 		clmpcc_wrreg(sc, CLMPCC_REG_IER, r1 & ~CLMPCC_IER_RET);
1041 		SET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
1042 	}
1043 
1044 	r1 = clmpcc_rdreg(sc, CLMPCC_REG_COR5);
1045 	if ( ch->ch_cor5 != (r1 & CLMPCC_COR5_FLOW_MASK) ) {
1046 		r1 &= ~CLMPCC_COR5_FLOW_MASK;
1047 		clmpcc_wrreg(sc, CLMPCC_REG_COR5, r1 | ch->ch_cor5);
1048 	}
1049 }
1050 
1051 static void
1052 clmpcc_start(tp)
1053 	struct tty *tp;
1054 {
1055 	struct clmpcc_softc *sc =
1056 	    device_lookup(&clmpcc_cd, CLMPCCUNIT(tp->t_dev));
1057 	struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
1058 	u_int oldch;
1059 	int s;
1060 
1061 	s = spltty();
1062 
1063 	if ( ISCLR(tp->t_state, TS_TTSTOP | TS_TIMEOUT | TS_BUSY) ) {
1064 		if ( tp->t_outq.c_cc <= tp->t_lowat ) {
1065 			if ( ISSET(tp->t_state, TS_ASLEEP) ) {
1066 				CLR(tp->t_state, TS_ASLEEP);
1067 				wakeup(&tp->t_outq);
1068 			}
1069 			selwakeup(&tp->t_wsel);
1070 		}
1071 
1072 		if ( ISSET(ch->ch_flags, CLMPCC_FLG_START_BREAK |
1073 					 CLMPCC_FLG_END_BREAK) ||
1074 		     tp->t_outq.c_cc > 0 ) {
1075 
1076 			if ( ISCLR(ch->ch_flags, CLMPCC_FLG_START_BREAK |
1077 						 CLMPCC_FLG_END_BREAK) ) {
1078 				ch->ch_obuf_addr = tp->t_outq.c_cf;
1079 				ch->ch_obuf_size = ndqb(&tp->t_outq, 0);
1080 			}
1081 
1082 			/* Enable TX empty interrupts */
1083 			oldch = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
1084 			clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER,
1085 				clmpcc_rdreg(ch->ch_sc, CLMPCC_REG_IER) |
1086 					     CLMPCC_IER_TX_EMPTY);
1087 			clmpcc_select_channel(ch->ch_sc, oldch);
1088 			SET(tp->t_state, TS_BUSY);
1089 		}
1090 	}
1091 
1092 	splx(s);
1093 }
1094 
1095 /*
1096  * Stop output on a line.
1097  */
1098 void
1099 clmpccstop(tp, flag)
1100 	struct tty *tp;
1101 	int flag;
1102 {
1103 	struct clmpcc_softc *sc =
1104 	    device_lookup(&clmpcc_cd, CLMPCCUNIT(tp->t_dev));
1105 	struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
1106 	int s;
1107 
1108 	s = splserial();
1109 
1110 	if ( ISSET(tp->t_state, TS_BUSY) ) {
1111 		if ( ISCLR(tp->t_state, TS_TTSTOP) )
1112 			SET(tp->t_state, TS_FLUSH);
1113 		ch->ch_obuf_size = 0;
1114 	}
1115 	splx(s);
1116 }
1117 
1118 /*
1119  * RX interrupt routine
1120  */
1121 int
1122 clmpcc_rxintr(arg)
1123 	void *arg;
1124 {
1125 	struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1126 	struct clmpcc_chan *ch;
1127 	u_int8_t *put, *end, rxd;
1128 	u_char errstat;
1129 	u_char fc, tc;
1130 	u_char risr;
1131 	u_char rir;
1132 #ifdef DDB
1133 	int saw_break = 0;
1134 #endif
1135 
1136 	/* Receive interrupt active? */
1137 	rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1138 
1139 	/*
1140 	 * If we're using auto-vectored interrupts, we have to
1141 	 * verify if the chip is generating the interrupt.
1142 	 */
1143 	if ( sc->sc_vector_base == 0 && (rir & CLMPCC_RIR_RACT) == 0 )
1144 		return 0;
1145 
1146 	/* Get pointer to interrupting channel's data structure */
1147 	ch = &sc->sc_chans[rir & CLMPCC_RIR_RCN_MASK];
1148 
1149 	/* Get the interrupt status register */
1150 	risr = clmpcc_rdreg(sc, CLMPCC_REG_RISRl);
1151 	if ( risr & CLMPCC_RISR_TIMEOUT ) {
1152 		u_char reg;
1153 		/*
1154 		 * Set the FIFO threshold to zero, and disable
1155 		 * further receive timeout interrupts.
1156 		 */
1157 		reg = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
1158 		clmpcc_wrreg(sc, CLMPCC_REG_COR4, reg & ~CLMPCC_COR4_FIFO_MASK);
1159 		reg = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1160 		clmpcc_wrreg(sc, CLMPCC_REG_IER, reg & ~CLMPCC_IER_RET);
1161 		clmpcc_wrreg(sc, CLMPCC_REG_REOIR, CLMPCC_REOIR_NO_TRANS);
1162 		SET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
1163 		return 1;
1164 	}
1165 
1166 	/* How many bytes are waiting in the FIFO?  */
1167 	fc = tc = clmpcc_rdreg(sc, CLMPCC_REG_RFOC) & CLMPCC_RFOC_MASK;
1168 
1169 #ifdef DDB
1170 	/*
1171 	 * Allow BREAK on the console to drop to the debugger.
1172 	 */
1173 	if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) &&
1174 	     risr & CLMPCC_RISR_BREAK ) {
1175 		saw_break = 1;
1176 	}
1177 #endif
1178 
1179 	if ( ISCLR(ch->ch_tty->t_state, TS_ISOPEN) && fc ) {
1180 		/* Just get rid of the data */
1181 		while ( fc-- )
1182 			(void) clmpcc_rd_rxdata(sc);
1183 		goto rx_done;
1184 	}
1185 
1186 	put = ch->ch_ibuf_wr;
1187 	end = ch->ch_ibuf_end;
1188 
1189 	/*
1190 	 * Note: The chip is completely hosed WRT these error
1191 	 *       conditions; there seems to be no way to associate
1192 	 *       the error with the correct character in the FIFO.
1193 	 *       We compromise by tagging the first character we read
1194 	 *       with the error. Not perfect, but there's no other way.
1195 	 */
1196 	errstat = 0;
1197 	if ( risr & CLMPCC_RISR_PARITY )
1198 		errstat |= TTY_PE;
1199 	if ( risr & (CLMPCC_RISR_FRAMING | CLMPCC_RISR_BREAK) )
1200 		errstat |= TTY_FE;
1201 
1202 	/*
1203 	 * As long as there are characters in the FIFO, and we
1204 	 * have space for them...
1205 	 */
1206 	while ( fc > 0 ) {
1207 
1208 		*put++ = rxd = clmpcc_rd_rxdata(sc);
1209 		*put++ = errstat;
1210 
1211 		if ( put >= end )
1212 			put = ch->ch_ibuf;
1213 
1214 		if ( put == ch->ch_ibuf_rd ) {
1215 			put -= 2;
1216 			if ( put < ch->ch_ibuf )
1217 				put = end - 2;
1218 		}
1219 
1220 		errstat = 0;
1221 		fc--;
1222 	}
1223 
1224 	ch->ch_ibuf_wr = put;
1225 
1226 #if 0
1227 	if ( sc->sc_swaprtsdtr == 0 &&
1228 	     ISSET(cy->cy_tty->t_cflag, CRTSCTS) && cc < ch->ch_r_hiwat) {
1229 		/*
1230 		 * If RTS/DTR are not physically swapped, we have to
1231 		 * do hardware flow control manually
1232 		 */
1233 		clmpcc_wr_msvr(sc, CLMPCC_MSVR_RTS, 0);
1234 	}
1235 #endif
1236 
1237 rx_done:
1238 	if ( fc != tc ) {
1239 		if ( ISSET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR) ) {
1240 			u_char reg;
1241 			/*
1242 			 * Set the FIFO threshold to the preset value,
1243 			 * and enable receive timeout interrupts.
1244 			 */
1245 			reg = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
1246 			reg = (reg & ~CLMPCC_COR4_FIFO_MASK) | ch->ch_cor4;
1247 			clmpcc_wrreg(sc, CLMPCC_REG_COR4, reg);
1248 			reg = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1249 			clmpcc_wrreg(sc, CLMPCC_REG_IER, reg | CLMPCC_IER_RET);
1250 			CLR(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
1251 		}
1252 
1253 		clmpcc_wrreg(sc, CLMPCC_REG_REOIR, 0);
1254 #ifndef __HAVE_GENERIC_SOFT_INTERRUPTS
1255 		if ( sc->sc_soft_running == 0 ) {
1256 			sc->sc_soft_running = 1;
1257 			(sc->sc_softhook)(sc);
1258 		}
1259 #else
1260 		softintr_schedule(sc->sc_softintr_cookie);
1261 #endif
1262 	} else
1263 		clmpcc_wrreg(sc, CLMPCC_REG_REOIR, CLMPCC_REOIR_NO_TRANS);
1264 
1265 #ifdef DDB
1266 	/*
1267 	 * Only =after= we write REOIR is it safe to drop to the debugger.
1268 	 */
1269 	if ( saw_break )
1270 		Debugger();
1271 #endif
1272 
1273 	return 1;
1274 }
1275 
1276 /*
1277  * Tx interrupt routine
1278  */
1279 int
1280 clmpcc_txintr(arg)
1281 	void *arg;
1282 {
1283 	struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1284 	struct clmpcc_chan *ch;
1285 	struct tty *tp;
1286 	u_char ftc, oftc;
1287 	u_char tir, teoir;
1288 	int etcmode = 0;
1289 
1290 	/* Tx interrupt active? */
1291 	tir = clmpcc_rdreg(sc, CLMPCC_REG_TIR);
1292 
1293 	/*
1294 	 * If we're using auto-vectored interrupts, we have to
1295 	 * verify if the chip is generating the interrupt.
1296 	 */
1297 	if ( sc->sc_vector_base == 0 && (tir & CLMPCC_TIR_TACT) == 0 )
1298 		return 0;
1299 
1300 	/* Get pointer to interrupting channel's data structure */
1301 	ch = &sc->sc_chans[tir & CLMPCC_TIR_TCN_MASK];
1302 	tp = ch->ch_tty;
1303 
1304 	/* Dummy read of the interrupt status register */
1305 	(void) clmpcc_rdreg(sc, CLMPCC_REG_TISR);
1306 
1307 	/* Make sure embedded transmit commands are disabled */
1308 	clmpcc_wrreg(sc, CLMPCC_REG_COR2, ch->ch_cor2);
1309 
1310 	ftc = oftc = clmpcc_rdreg(sc, CLMPCC_REG_TFTC);
1311 
1312 	/* Handle a delayed parameter change */
1313 	if ( ISSET(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS) ) {
1314 		CLR(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS);
1315 		clmpcc_set_params(ch);
1316 	}
1317 
1318 	if ( ch->ch_obuf_size > 0 ) {
1319 		u_int n = min(ch->ch_obuf_size, ftc);
1320 
1321 		clmpcc_wrtx_multi(sc, ch->ch_obuf_addr, n);
1322 
1323 		ftc -= n;
1324 		ch->ch_obuf_size -= n;
1325 		ch->ch_obuf_addr += n;
1326 
1327 	} else {
1328 		/*
1329 		 * Check if we should start/stop a break
1330 		 */
1331 		if ( ISSET(ch->ch_flags, CLMPCC_FLG_START_BREAK) ) {
1332 			CLR(ch->ch_flags, CLMPCC_FLG_START_BREAK);
1333 			/* Enable embedded transmit commands */
1334 			clmpcc_wrreg(sc, CLMPCC_REG_COR2,
1335 					ch->ch_cor2 | CLMPCC_COR2_ETC);
1336 			clmpcc_wr_txdata(sc, CLMPCC_ETC_MAGIC);
1337 			clmpcc_wr_txdata(sc, CLMPCC_ETC_SEND_BREAK);
1338 			ftc -= 2;
1339 			etcmode = 1;
1340 		}
1341 
1342 		if ( ISSET(ch->ch_flags, CLMPCC_FLG_END_BREAK) ) {
1343 			CLR(ch->ch_flags, CLMPCC_FLG_END_BREAK);
1344 			/* Enable embedded transmit commands */
1345 			clmpcc_wrreg(sc, CLMPCC_REG_COR2,
1346 					ch->ch_cor2 | CLMPCC_COR2_ETC);
1347 			clmpcc_wr_txdata(sc, CLMPCC_ETC_MAGIC);
1348 			clmpcc_wr_txdata(sc, CLMPCC_ETC_STOP_BREAK);
1349 			ftc -= 2;
1350 			etcmode = 1;
1351 		}
1352 	}
1353 
1354 	tir = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1355 
1356 	if ( ftc != oftc ) {
1357 		/*
1358 		 * Enable/disable the Tx FIFO threshold interrupt
1359 		 * according to how much data is in the FIFO.
1360 		 * However, always disable the FIFO threshold if
1361 		 * we've left the channel in 'Embedded Transmit
1362 		 * Command' mode.
1363 		 */
1364 		if ( etcmode || ftc >= ch->ch_cor4 )
1365 			tir &= ~CLMPCC_IER_TX_FIFO;
1366 		else
1367 			tir |= CLMPCC_IER_TX_FIFO;
1368 		teoir = 0;
1369 	} else {
1370 		/*
1371 		 * No data was sent.
1372 		 * Disable transmit interrupt.
1373 		 */
1374 		tir &= ~(CLMPCC_IER_TX_EMPTY|CLMPCC_IER_TX_FIFO);
1375 		teoir = CLMPCC_TEOIR_NO_TRANS;
1376 
1377 		/*
1378 		 * Request Tx processing in the soft interrupt handler
1379 		 */
1380 		ch->ch_tx_done = 1;
1381 #ifndef __HAVE_GENERIC_SOFT_INTERRUPTS
1382 		if ( sc->sc_soft_running == 0 ) {
1383 			sc->sc_soft_running = 1;
1384 			(sc->sc_softhook)(sc);
1385 		}
1386 #else
1387 		softintr_schedule(sc->sc_softintr_cookie);
1388 #endif
1389 	}
1390 
1391 	clmpcc_wrreg(sc, CLMPCC_REG_IER, tir);
1392 	clmpcc_wrreg(sc, CLMPCC_REG_TEOIR, teoir);
1393 
1394 	return 1;
1395 }
1396 
1397 /*
1398  * Modem change interrupt routine
1399  */
1400 int
1401 clmpcc_mdintr(arg)
1402 	void *arg;
1403 {
1404 	struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1405 	u_char mir;
1406 
1407 	/* Modem status interrupt active? */
1408 	mir = clmpcc_rdreg(sc, CLMPCC_REG_MIR);
1409 
1410 	/*
1411 	 * If we're using auto-vectored interrupts, we have to
1412 	 * verify if the chip is generating the interrupt.
1413 	 */
1414 	if ( sc->sc_vector_base == 0 && (mir & CLMPCC_MIR_MACT) == 0 )
1415 		return 0;
1416 
1417 	/* Dummy read of the interrupt status register */
1418 	(void) clmpcc_rdreg(sc, CLMPCC_REG_MISR);
1419 
1420 	/* Retrieve current status of modem lines. */
1421 	sc->sc_chans[mir & CLMPCC_MIR_MCN_MASK].ch_control |=
1422 		clmpcc_rd_msvr(sc) & CLMPCC_MSVR_CD;
1423 
1424 	clmpcc_wrreg(sc, CLMPCC_REG_MEOIR, 0);
1425 
1426 #ifndef __HAVE_GENERIC_SOFT_INTERRUPTS
1427 	if ( sc->sc_soft_running == 0 ) {
1428 		sc->sc_soft_running = 1;
1429 		(sc->sc_softhook)(sc);
1430 	}
1431 #else
1432 	softintr_schedule(sc->sc_softintr_cookie);
1433 #endif
1434 
1435 	return 1;
1436 }
1437 
1438 void
1439 clmpcc_softintr(arg)
1440 	void *arg;
1441 {
1442 	struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1443 	struct clmpcc_chan *ch;
1444 	struct tty *tp;
1445 	int (*rint)(int, struct tty *);
1446 	u_char *get;
1447 	u_char reg;
1448 	u_int c;
1449 	int chan;
1450 
1451 #ifndef __HAVE_GENERIC_SOFT_INTERRUPTS
1452 	sc->sc_soft_running = 0;
1453 #endif
1454 
1455 	/* Handle Modem state changes too... */
1456 
1457 	for (chan = 0; chan < CLMPCC_NUM_CHANS; chan++) {
1458 		ch = &sc->sc_chans[chan];
1459 		tp = ch->ch_tty;
1460 
1461 		get = ch->ch_ibuf_rd;
1462 		rint = tp->t_linesw->l_rint;
1463 
1464 		/* Squirt buffered incoming data into the tty layer */
1465 		while ( get != ch->ch_ibuf_wr ) {
1466 			c = get[0];
1467 			c |= ((u_int)get[1]) << 8;
1468 			if ( (rint)(c, tp) == -1 ) {
1469 				ch->ch_ibuf_rd = ch->ch_ibuf_wr;
1470 				break;
1471 			}
1472 
1473 			get += 2;
1474 			if ( get == ch->ch_ibuf_end )
1475 				get = ch->ch_ibuf;
1476 
1477 			ch->ch_ibuf_rd = get;
1478 		}
1479 
1480 		/*
1481 		 * Is the transmitter idle and in need of attention?
1482 		 */
1483 		if ( ch->ch_tx_done ) {
1484 			ch->ch_tx_done = 0;
1485 
1486 			if ( ISSET(ch->ch_flags, CLMPCC_FLG_NEED_INIT) ) {
1487 				clmpcc_channel_cmd(sc, ch->ch_car,
1488 						       CLMPCC_CCR_T0_INIT  |
1489 						       CLMPCC_CCR_T0_RX_EN |
1490 					   	       CLMPCC_CCR_T0_TX_EN);
1491 				CLR(ch->ch_flags, CLMPCC_FLG_NEED_INIT);
1492 
1493 				/*
1494 				 * Allow time for the channel to initialise.
1495 				 * (Empirically derived duration; there must
1496 				 * be another way to determine the command
1497 				 * has completed without busy-waiting...)
1498 				 */
1499 				delay(800);
1500 
1501 				/*
1502 				 * Update the tty layer's idea of the carrier
1503 				 * bit, in case we changed CLOCAL or MDMBUF.
1504 				 * We don't hang up here; we only do that by
1505 				 * explicit request.
1506 				 */
1507 				reg = clmpcc_rd_msvr(sc) & CLMPCC_MSVR_CD;
1508 				(*tp->t_linesw->l_modem)(tp, reg != 0);
1509 			}
1510 
1511 			CLR(tp->t_state, TS_BUSY);
1512 			if ( ISSET(tp->t_state, TS_FLUSH) )
1513 				CLR(tp->t_state, TS_FLUSH);
1514 			else
1515 				ndflush(&tp->t_outq,
1516 				     (int)(ch->ch_obuf_addr - tp->t_outq.c_cf));
1517 
1518 			(*tp->t_linesw->l_start)(tp);
1519 		}
1520 	}
1521 }
1522 
1523 
1524 /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1525 /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1526 /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1527 /*
1528  * Following are all routines needed for a cd240x channel to act as console
1529  */
1530 int
1531 clmpcc_cnattach(sc, chan, rate)
1532 	struct clmpcc_softc *sc;
1533 	int chan;
1534 	int rate;
1535 {
1536 	cons_sc = sc;
1537 	cons_chan = chan;
1538 	cons_rate = rate;
1539 
1540 	return (clmpcc_init(sc));
1541 }
1542 
1543 /*
1544  * The following functions are polled getc and putc routines, for console use.
1545  */
1546 static int
1547 clmpcc_common_getc(sc, chan)
1548 	struct clmpcc_softc *sc;
1549 	int chan;
1550 {
1551 	u_char old_chan;
1552 	u_char old_ier;
1553 	u_char ch, rir, risr;
1554 	int s;
1555 
1556 	s = splhigh();
1557 
1558 	/* Save the currently active channel */
1559 	old_chan = clmpcc_select_channel(sc, chan);
1560 
1561 	/*
1562 	 * We have to put the channel into RX interrupt mode before
1563 	 * trying to read the Rx data register. So save the previous
1564 	 * interrupt mode.
1565 	 */
1566 	old_ier = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1567 	clmpcc_wrreg(sc, CLMPCC_REG_IER, CLMPCC_IER_RX_FIFO);
1568 
1569 	/* Loop until we get a character */
1570 	for (;;) {
1571 		/*
1572 		 * The REN bit will be set in the Receive Interrupt Register
1573 		 * when the CD240x has a character to process. Remember,
1574 		 * the RACT bit won't be set until we generate an interrupt
1575 		 * acknowledge cycle via the MD front-end.
1576 		 */
1577 		rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1578 		if ( (rir & CLMPCC_RIR_REN) == 0 )
1579 			continue;
1580 
1581 		/* Acknowledge the request */
1582 		if ( sc->sc_iackhook )
1583 			(sc->sc_iackhook)(sc, CLMPCC_IACK_RX);
1584 
1585 		/*
1586 		 * Determine if the interrupt is for the required channel
1587 		 * and if valid data is available.
1588 		 */
1589 		rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1590 		risr = clmpcc_rdreg(sc, CLMPCC_REG_RISR);
1591 		if ( (rir & CLMPCC_RIR_RCN_MASK) != chan ||
1592 		     risr != 0 ) {
1593 			/* Rx error, or BREAK */
1594 			clmpcc_wrreg(sc, CLMPCC_REG_REOIR,
1595 					 CLMPCC_REOIR_NO_TRANS);
1596 		} else {
1597 			/* Dummy read of the FIFO count register */
1598 			(void) clmpcc_rdreg(sc, CLMPCC_REG_RFOC);
1599 
1600 			/* Fetch the received character */
1601 			ch = clmpcc_rd_rxdata(sc);
1602 
1603 			clmpcc_wrreg(sc, CLMPCC_REG_REOIR, 0);
1604 			break;
1605 		}
1606 	}
1607 
1608 	/* Restore the original IER and CAR register contents */
1609 	clmpcc_wrreg(sc, CLMPCC_REG_IER, old_ier);
1610 	clmpcc_select_channel(sc, old_chan);
1611 
1612 	splx(s);
1613 	return ch;
1614 }
1615 
1616 
1617 static void
1618 clmpcc_common_putc(sc, chan, c)
1619 	struct clmpcc_softc *sc;
1620 	int chan;
1621 	int c;
1622 {
1623 	u_char old_chan;
1624 	int s = splhigh();
1625 
1626 	/* Save the currently active channel */
1627 	old_chan = clmpcc_select_channel(sc, chan);
1628 
1629 	/*
1630 	 * Since we can only access the Tx Data register from within
1631 	 * the interrupt handler, the easiest way to get console data
1632 	 * onto the wire is using one of the Special Transmit Character
1633 	 * registers.
1634 	 */
1635 	clmpcc_wrreg(sc, CLMPCC_REG_SCHR4, c);
1636 	clmpcc_wrreg(sc, CLMPCC_REG_STCR, CLMPCC_STCR_SSPC(4) |
1637 					  CLMPCC_STCR_SND_SPC);
1638 
1639 	/* Wait until the "Send Special Character" command is accepted */
1640 	while ( clmpcc_rdreg(sc, CLMPCC_REG_STCR) != 0 )
1641 		;
1642 
1643 	/* Restore the previous channel selected */
1644 	clmpcc_select_channel(sc, old_chan);
1645 
1646 	splx(s);
1647 }
1648 
1649 int
1650 clmpcccngetc(dev)
1651 	dev_t dev;
1652 {
1653 	return clmpcc_common_getc(cons_sc, cons_chan);
1654 }
1655 
1656 /*
1657  * Console kernel output character routine.
1658  */
1659 void
1660 clmpcccnputc(dev, c)
1661 	dev_t dev;
1662 	int c;
1663 {
1664 	if ( c == '\n' )
1665 		clmpcc_common_putc(cons_sc, cons_chan, '\r');
1666 
1667 	clmpcc_common_putc(cons_sc, cons_chan, c);
1668 }
1669