xref: /netbsd-src/sys/dev/ic/clmpcc.c (revision ce2c90c7c172d95d2402a5b3d96d8f8e6d138a21)
1 /*	$NetBSD: clmpcc.c,v 1.31 2006/10/01 20:31:50 elad Exp $ */
2 
3 /*-
4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Steve C. Woodford.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Cirrus Logic CD2400/CD2401 Four Channel Multi-Protocol Comms. Controller.
41  */
42 
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: clmpcc.c,v 1.31 2006/10/01 20:31:50 elad Exp $");
45 
46 #include "opt_ddb.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/ioctl.h>
51 #include <sys/select.h>
52 #include <sys/tty.h>
53 #include <sys/proc.h>
54 #include <sys/user.h>
55 #include <sys/conf.h>
56 #include <sys/file.h>
57 #include <sys/uio.h>
58 #include <sys/kernel.h>
59 #include <sys/syslog.h>
60 #include <sys/device.h>
61 #include <sys/malloc.h>
62 #include <sys/kauth.h>
63 
64 #include <machine/bus.h>
65 #include <machine/intr.h>
66 #include <machine/param.h>
67 
68 #include <dev/ic/clmpccreg.h>
69 #include <dev/ic/clmpccvar.h>
70 #include <dev/cons.h>
71 
72 
73 #if defined(CLMPCC_ONLY_BYTESWAP_LOW) && defined(CLMPCC_ONLY_BYTESWAP_HIGH)
74 #error	"CLMPCC_ONLY_BYTESWAP_LOW and CLMPCC_ONLY_BYTESWAP_HIGH are mutually exclusive."
75 #endif
76 
77 
78 static int	clmpcc_init(struct clmpcc_softc *sc);
79 static void	clmpcc_shutdown(struct clmpcc_chan *);
80 static int	clmpcc_speed(struct clmpcc_softc *, speed_t, int *, int *);
81 static int	clmpcc_param(struct tty *, struct termios *);
82 static void	clmpcc_set_params(struct clmpcc_chan *);
83 static void	clmpcc_start(struct tty *);
84 static int 	clmpcc_modem_control(struct clmpcc_chan *, int, int);
85 
86 #define	CLMPCCUNIT(x)		(minor(x) & 0x7fffc)
87 #define CLMPCCCHAN(x)		(minor(x) & 0x00003)
88 #define	CLMPCCDIALOUT(x)	(minor(x) & 0x80000)
89 
90 /*
91  * These should be in a header file somewhere...
92  */
93 #define	ISCLR(v, f)	(((v) & (f)) == 0)
94 
95 extern struct cfdriver clmpcc_cd;
96 
97 dev_type_open(clmpccopen);
98 dev_type_close(clmpccclose);
99 dev_type_read(clmpccread);
100 dev_type_write(clmpccwrite);
101 dev_type_ioctl(clmpccioctl);
102 dev_type_stop(clmpccstop);
103 dev_type_tty(clmpcctty);
104 dev_type_poll(clmpccpoll);
105 
106 const struct cdevsw clmpcc_cdevsw = {
107 	clmpccopen, clmpccclose, clmpccread, clmpccwrite, clmpccioctl,
108 	clmpccstop, clmpcctty, clmpccpoll, nommap, ttykqfilter, D_TTY
109 };
110 
111 /*
112  * Make this an option variable one can patch.
113  */
114 u_int clmpcc_ibuf_size = CLMPCC_RING_SIZE;
115 
116 
117 /*
118  * Things needed when the device is used as a console
119  */
120 static struct clmpcc_softc *cons_sc = NULL;
121 static int cons_chan;
122 static int cons_rate;
123 
124 static int	clmpcc_common_getc(struct clmpcc_softc *, int);
125 static void	clmpcc_common_putc(struct clmpcc_softc *, int, int);
126 int		clmpcccngetc(dev_t);
127 void		clmpcccnputc(dev_t, int);
128 
129 
130 /*
131  * Convenience functions, inlined for speed
132  */
133 #define	integrate   static inline
134 integrate u_int8_t  clmpcc_rdreg(struct clmpcc_softc *, u_int);
135 integrate void      clmpcc_wrreg(struct clmpcc_softc *, u_int, u_int);
136 integrate u_int8_t  clmpcc_rdreg_odd(struct clmpcc_softc *, u_int);
137 integrate void      clmpcc_wrreg_odd(struct clmpcc_softc *, u_int, u_int);
138 integrate void      clmpcc_wrtx_multi(struct clmpcc_softc *, u_int8_t *,
139 					u_int);
140 integrate u_int8_t  clmpcc_select_channel(struct clmpcc_softc *, u_int);
141 integrate void      clmpcc_channel_cmd(struct clmpcc_softc *,int,int);
142 integrate void      clmpcc_enable_transmitter(struct clmpcc_chan *);
143 
144 #define clmpcc_rd_msvr(s)	clmpcc_rdreg_odd(s,CLMPCC_REG_MSVR)
145 #define clmpcc_wr_msvr(s,r,v)	clmpcc_wrreg_odd(s,r,v)
146 #define clmpcc_wr_pilr(s,r,v)	clmpcc_wrreg_odd(s,r,v)
147 #define clmpcc_rd_rxdata(s)	clmpcc_rdreg_odd(s,CLMPCC_REG_RDR)
148 #define clmpcc_wr_txdata(s,v)	clmpcc_wrreg_odd(s,CLMPCC_REG_TDR,v)
149 
150 
151 integrate u_int8_t
152 clmpcc_rdreg(sc, offset)
153 	struct clmpcc_softc *sc;
154 	u_int offset;
155 {
156 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
157 	offset ^= sc->sc_byteswap;
158 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
159 	offset ^= CLMPCC_BYTESWAP_HIGH;
160 #endif
161 	return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset);
162 }
163 
164 integrate void
165 clmpcc_wrreg(sc, offset, val)
166 	struct clmpcc_softc *sc;
167 	u_int offset;
168 	u_int val;
169 {
170 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
171 	offset ^= sc->sc_byteswap;
172 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
173 	offset ^= CLMPCC_BYTESWAP_HIGH;
174 #endif
175 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, val);
176 }
177 
178 integrate u_int8_t
179 clmpcc_rdreg_odd(sc, offset)
180 	struct clmpcc_softc *sc;
181 	u_int offset;
182 {
183 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
184 	offset ^= (sc->sc_byteswap & 2);
185 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
186 	offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
187 #endif
188 	return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset);
189 }
190 
191 integrate void
192 clmpcc_wrreg_odd(sc, offset, val)
193 	struct clmpcc_softc *sc;
194 	u_int offset;
195 	u_int val;
196 {
197 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
198 	offset ^= (sc->sc_byteswap & 2);
199 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
200 	offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
201 #endif
202 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, val);
203 }
204 
205 integrate void
206 clmpcc_wrtx_multi(sc, buff, count)
207 	struct clmpcc_softc *sc;
208 	u_int8_t *buff;
209 	u_int count;
210 {
211 	u_int offset = CLMPCC_REG_TDR;
212 
213 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
214 	offset ^= (sc->sc_byteswap & 2);
215 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
216 	offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
217 #endif
218 	bus_space_write_multi_1(sc->sc_iot, sc->sc_ioh, offset, buff, count);
219 }
220 
221 integrate u_int8_t
222 clmpcc_select_channel(sc, new_chan)
223 	struct clmpcc_softc *sc;
224 	u_int new_chan;
225 {
226 	u_int old_chan = clmpcc_rdreg_odd(sc, CLMPCC_REG_CAR);
227 
228 	clmpcc_wrreg_odd(sc, CLMPCC_REG_CAR, new_chan);
229 
230 	return old_chan;
231 }
232 
233 integrate void
234 clmpcc_channel_cmd(sc, chan, cmd)
235 	struct clmpcc_softc *sc;
236 	int chan;
237 	int cmd;
238 {
239 	int i;
240 
241 	for (i = 5000; i; i--) {
242 		if ( clmpcc_rdreg(sc, CLMPCC_REG_CCR) == 0 )
243 			break;
244 		delay(1);
245 	}
246 
247 	if ( i == 0 )
248 		printf("%s: channel %d command timeout (idle)\n",
249 			sc->sc_dev.dv_xname, chan);
250 
251 	clmpcc_wrreg(sc, CLMPCC_REG_CCR, cmd);
252 }
253 
254 integrate void
255 clmpcc_enable_transmitter(ch)
256 	struct clmpcc_chan *ch;
257 {
258 	u_int old;
259 	int s;
260 
261 	old = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
262 
263 	s = splserial();
264 	clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER,
265 		clmpcc_rdreg(ch->ch_sc, CLMPCC_REG_IER) | CLMPCC_IER_TX_EMPTY);
266 	SET(ch->ch_tty->t_state, TS_BUSY);
267 	splx(s);
268 
269 	clmpcc_select_channel(ch->ch_sc, old);
270 }
271 
272 static int
273 clmpcc_speed(sc, speed, cor, bpr)
274 	struct clmpcc_softc *sc;
275 	speed_t speed;
276 	int *cor, *bpr;
277 {
278 	int c, co, br;
279 
280 	for (co = 0, c = 8; c <= 2048; co++, c *= 4) {
281 		br = ((sc->sc_clk / c) / speed) - 1;
282 		if ( br < 0x100 ) {
283 			*cor = co;
284 			*bpr = br;
285 			return 0;
286 		}
287 	}
288 
289 	return -1;
290 }
291 
292 void
293 clmpcc_attach(sc)
294 	struct clmpcc_softc *sc;
295 {
296 	struct clmpcc_chan *ch;
297 	struct tty *tp;
298 	int chan;
299 
300 	if ( cons_sc != NULL &&
301 	     sc->sc_iot == cons_sc->sc_iot && sc->sc_ioh == cons_sc->sc_ioh )
302 		cons_sc = sc;
303 
304 	/* Initialise the chip */
305 	clmpcc_init(sc);
306 
307 	printf(": Cirrus Logic CD240%c Serial Controller\n",
308 		(clmpcc_rd_msvr(sc) & CLMPCC_MSVR_PORT_ID) ? '0' : '1');
309 
310 #ifndef __HAVE_GENERIC_SOFT_INTERRUPTS
311 	sc->sc_soft_running = 0;
312 #else
313 	sc->sc_softintr_cookie =
314 	    softintr_establish(IPL_SOFTSERIAL, clmpcc_softintr, sc);
315 #ifdef DEBUG
316 	if (sc->sc_softintr_cookie == NULL)
317 		panic("clmpcc_attach: softintr_establish");
318 #endif
319 #endif
320 	memset(&(sc->sc_chans[0]), 0, sizeof(sc->sc_chans));
321 
322 	for (chan = 0; chan < CLMPCC_NUM_CHANS; chan++) {
323 		ch = &sc->sc_chans[chan];
324 
325 		ch->ch_sc = sc;
326 		ch->ch_car = chan;
327 
328 		tp = ttymalloc();
329 		tp->t_oproc = clmpcc_start;
330 		tp->t_param = clmpcc_param;
331 
332 		ch->ch_tty = tp;
333 
334 		ch->ch_ibuf = malloc(clmpcc_ibuf_size * 2, M_DEVBUF, M_NOWAIT);
335 		if ( ch->ch_ibuf == NULL ) {
336 			printf("%s(%d): unable to allocate ring buffer\n",
337 		    		sc->sc_dev.dv_xname, chan);
338 			return;
339 		}
340 
341 		ch->ch_ibuf_end = &(ch->ch_ibuf[clmpcc_ibuf_size * 2]);
342 		ch->ch_ibuf_rd = ch->ch_ibuf_wr = ch->ch_ibuf;
343 
344 		tty_attach(tp);
345 	}
346 
347 	printf("%s: %d channels available", sc->sc_dev.dv_xname,
348 					    CLMPCC_NUM_CHANS);
349 	if ( cons_sc == sc ) {
350 		printf(", console on channel %d.\n", cons_chan);
351 		SET(sc->sc_chans[cons_chan].ch_flags, CLMPCC_FLG_IS_CONSOLE);
352 		SET(sc->sc_chans[cons_chan].ch_openflags, TIOCFLAG_SOFTCAR);
353 	} else
354 		printf(".\n");
355 }
356 
357 static int
358 clmpcc_init(sc)
359 	struct clmpcc_softc *sc;
360 {
361 	u_int tcor, tbpr;
362 	u_int rcor, rbpr;
363 	u_int msvr_rts, msvr_dtr;
364 	u_int ccr;
365 	int is_console;
366 	int i;
367 
368 	/*
369 	 * All we're really concerned about here is putting the chip
370 	 * into a quiescent state so that it won't do anything until
371 	 * clmpccopen() is called. (Except the console channel.)
372 	 */
373 
374 	/*
375 	 * If the chip is acting as console, set all channels to the supplied
376 	 * console baud rate. Otherwise, plump for 9600.
377 	 */
378 	if ( cons_sc &&
379 	     sc->sc_ioh == cons_sc->sc_ioh && sc->sc_iot == cons_sc->sc_iot ) {
380 		clmpcc_speed(sc, cons_rate, &tcor, &tbpr);
381 		clmpcc_speed(sc, cons_rate, &rcor, &rbpr);
382 		is_console = 1;
383 	} else {
384 		clmpcc_speed(sc, 9600, &tcor, &tbpr);
385 		clmpcc_speed(sc, 9600, &rcor, &rbpr);
386 		is_console = 0;
387 	}
388 
389 	/* Allow any pending output to be sent */
390 	delay(10000);
391 
392 	/* Send the Reset All command  to channel 0 (resets all channels!) */
393 	clmpcc_channel_cmd(sc, 0, CLMPCC_CCR_T0_RESET_ALL);
394 
395 	delay(1000);
396 
397 	/*
398 	 * The chip will set it's firmware revision register to a non-zero
399 	 * value to indicate completion of reset.
400 	 */
401 	for (i = 10000; clmpcc_rdreg(sc, CLMPCC_REG_GFRCR) == 0 && i; i--)
402 		delay(1);
403 
404 	if ( i == 0 ) {
405 		/*
406 		 * Watch out... If this chip is console, the message
407 		 * probably won't be sent since we just reset it!
408 		 */
409 		printf("%s: Failed to reset chip\n", sc->sc_dev.dv_xname);
410 		return -1;
411 	}
412 
413 	for (i = 0; i < CLMPCC_NUM_CHANS; i++) {
414 		clmpcc_select_channel(sc, i);
415 
416 		/* All interrupts are disabled to begin with */
417 		clmpcc_wrreg(sc, CLMPCC_REG_IER, 0);
418 
419 		/* Make sure the channel interrupts on the correct vectors */
420 		clmpcc_wrreg(sc, CLMPCC_REG_LIVR, sc->sc_vector_base);
421 		clmpcc_wr_pilr(sc, CLMPCC_REG_RPILR, sc->sc_rpilr);
422 		clmpcc_wr_pilr(sc, CLMPCC_REG_TPILR, sc->sc_tpilr);
423 		clmpcc_wr_pilr(sc, CLMPCC_REG_MPILR, sc->sc_mpilr);
424 
425 		/* Receive timer prescaler set to 1ms */
426 		clmpcc_wrreg(sc, CLMPCC_REG_TPR,
427 				 CLMPCC_MSEC_TO_TPR(sc->sc_clk, 1));
428 
429 		/* We support Async mode only */
430 		clmpcc_wrreg(sc, CLMPCC_REG_CMR, CLMPCC_CMR_ASYNC);
431 
432 		/* Set the required baud rate */
433 		clmpcc_wrreg(sc, CLMPCC_REG_TCOR, CLMPCC_TCOR_CLK(tcor));
434 		clmpcc_wrreg(sc, CLMPCC_REG_TBPR, tbpr);
435 		clmpcc_wrreg(sc, CLMPCC_REG_RCOR, CLMPCC_RCOR_CLK(rcor));
436 		clmpcc_wrreg(sc, CLMPCC_REG_RBPR, rbpr);
437 
438 		/* Always default to 8N1 (XXX what about console?) */
439 		clmpcc_wrreg(sc, CLMPCC_REG_COR1, CLMPCC_COR1_CHAR_8BITS |
440 						  CLMPCC_COR1_NO_PARITY |
441 						  CLMPCC_COR1_IGNORE_PAR);
442 
443 		clmpcc_wrreg(sc, CLMPCC_REG_COR2, 0);
444 
445 		clmpcc_wrreg(sc, CLMPCC_REG_COR3, CLMPCC_COR3_STOP_1);
446 
447 		clmpcc_wrreg(sc, CLMPCC_REG_COR4, CLMPCC_COR4_DSRzd |
448 						  CLMPCC_COR4_CDzd |
449 						  CLMPCC_COR4_CTSzd);
450 
451 		clmpcc_wrreg(sc, CLMPCC_REG_COR5, CLMPCC_COR5_DSRod |
452 						  CLMPCC_COR5_CDod |
453 						  CLMPCC_COR5_CTSod |
454 						  CLMPCC_COR5_FLOW_NORM);
455 
456 		clmpcc_wrreg(sc, CLMPCC_REG_COR6, 0);
457 		clmpcc_wrreg(sc, CLMPCC_REG_COR7, 0);
458 
459 		/* Set the receive FIFO timeout */
460 		clmpcc_wrreg(sc, CLMPCC_REG_RTPRl, CLMPCC_RTPR_DEFAULT);
461 		clmpcc_wrreg(sc, CLMPCC_REG_RTPRh, 0);
462 
463 		/* At this point, we set up the console differently */
464 		if ( is_console && i == cons_chan ) {
465 			msvr_rts = CLMPCC_MSVR_RTS;
466 			msvr_dtr = CLMPCC_MSVR_DTR;
467 			ccr = CLMPCC_CCR_T0_RX_EN | CLMPCC_CCR_T0_TX_EN;
468 		} else {
469 			msvr_rts = 0;
470 			msvr_dtr = 0;
471 			ccr = CLMPCC_CCR_T0_RX_DIS | CLMPCC_CCR_T0_TX_DIS;
472 		}
473 
474 		clmpcc_wrreg(sc, CLMPCC_REG_MSVR_RTS, msvr_rts);
475 		clmpcc_wrreg(sc, CLMPCC_REG_MSVR_DTR, msvr_dtr);
476 		clmpcc_channel_cmd(sc, i, CLMPCC_CCR_T0_INIT | ccr);
477 		delay(100);
478 	}
479 
480 	return 0;
481 }
482 
483 static void
484 clmpcc_shutdown(ch)
485 	struct clmpcc_chan *ch;
486 {
487 	int oldch;
488 
489 	oldch = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
490 
491 	/* Turn off interrupts. */
492 	clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER, 0);
493 
494 	if ( ISCLR(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
495 		/* Disable the transmitter and receiver */
496 		clmpcc_channel_cmd(ch->ch_sc, ch->ch_car, CLMPCC_CCR_T0_RX_DIS |
497 							  CLMPCC_CCR_T0_TX_DIS);
498 
499 		/* Drop RTS and DTR */
500 		clmpcc_modem_control(ch, TIOCM_RTS | TIOCM_DTR, DMBIS);
501 	}
502 
503 	clmpcc_select_channel(ch->ch_sc, oldch);
504 }
505 
506 int
507 clmpccopen(dev, flag, mode, l)
508 	dev_t dev;
509 	int flag, mode;
510 	struct lwp *l;
511 {
512 	struct clmpcc_softc *sc;
513 	struct clmpcc_chan *ch;
514 	struct tty *tp;
515 	int oldch;
516 	int error;
517 
518 	sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
519 	if (sc == NULL)
520 		return (ENXIO);
521 
522 	ch = &sc->sc_chans[CLMPCCCHAN(dev)];
523 
524 	tp = ch->ch_tty;
525 
526 	if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
527 		return EBUSY;
528 
529 	/*
530 	 * Do the following iff this is a first open.
531 	 */
532 	if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
533 
534 		ttychars(tp);
535 
536 		tp->t_dev = dev;
537 		tp->t_iflag = TTYDEF_IFLAG;
538 		tp->t_oflag = TTYDEF_OFLAG;
539 		tp->t_lflag = TTYDEF_LFLAG;
540 		tp->t_cflag = TTYDEF_CFLAG;
541 		tp->t_ospeed = tp->t_ispeed = TTYDEF_SPEED;
542 
543 		if ( ISSET(ch->ch_openflags, TIOCFLAG_CLOCAL) )
544 			SET(tp->t_cflag, CLOCAL);
545 		if ( ISSET(ch->ch_openflags, TIOCFLAG_CRTSCTS) )
546 			SET(tp->t_cflag, CRTSCTS);
547 		if ( ISSET(ch->ch_openflags, TIOCFLAG_MDMBUF) )
548 			SET(tp->t_cflag, MDMBUF);
549 
550 		/*
551 		 * Override some settings if the channel is being
552 		 * used as the console.
553 		 */
554 		if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
555 			tp->t_ospeed = tp->t_ispeed = cons_rate;
556 			SET(tp->t_cflag, CLOCAL);
557 			CLR(tp->t_cflag, CRTSCTS);
558 			CLR(tp->t_cflag, HUPCL);
559 		}
560 
561 		ch->ch_control = 0;
562 
563 		clmpcc_param(tp, &tp->t_termios);
564 		ttsetwater(tp);
565 
566 		/* Clear the input ring */
567 		ch->ch_ibuf_rd = ch->ch_ibuf_wr = ch->ch_ibuf;
568 
569 		/* Select the channel */
570 		oldch = clmpcc_select_channel(sc, ch->ch_car);
571 
572 		/* Reset it */
573 		clmpcc_channel_cmd(sc, ch->ch_car, CLMPCC_CCR_T0_CLEAR |
574 						   CLMPCC_CCR_T0_RX_EN |
575 						   CLMPCC_CCR_T0_TX_EN);
576 
577 		/* Enable receiver and modem change interrupts. */
578 		clmpcc_wrreg(sc, CLMPCC_REG_IER, CLMPCC_IER_MODEM |
579 						 CLMPCC_IER_RET |
580 						 CLMPCC_IER_RX_FIFO);
581 
582 		/* Raise RTS and DTR */
583 		clmpcc_modem_control(ch, TIOCM_RTS | TIOCM_DTR, DMBIS);
584 
585 		clmpcc_select_channel(sc, oldch);
586 	}
587 
588 	error = ttyopen(tp, CLMPCCDIALOUT(dev), ISSET(flag, O_NONBLOCK));
589 	if (error)
590 		goto bad;
591 
592 	error = (*tp->t_linesw->l_open)(dev, tp);
593 	if (error)
594 		goto bad;
595 
596 	return 0;
597 
598 bad:
599 	if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
600 		/*
601 		 * We failed to open the device, and nobody else had it opened.
602 		 * Clean up the state as appropriate.
603 		 */
604 		clmpcc_shutdown(ch);
605 	}
606 
607 	return error;
608 }
609 
610 int
611 clmpccclose(dev, flag, mode, l)
612 	dev_t dev;
613 	int flag, mode;
614 	struct lwp *l;
615 {
616 	struct clmpcc_softc	*sc =
617 		device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
618 	struct clmpcc_chan	*ch = &sc->sc_chans[CLMPCCCHAN(dev)];
619 	struct tty		*tp = ch->ch_tty;
620 	int s;
621 
622 	if ( ISCLR(tp->t_state, TS_ISOPEN) )
623 		return 0;
624 
625 	(*tp->t_linesw->l_close)(tp, flag);
626 
627 	s = spltty();
628 
629 	if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
630 		/*
631 		 * Although we got a last close, the device may still be in
632 		 * use; e.g. if this was the dialout node, and there are still
633 		 * processes waiting for carrier on the non-dialout node.
634 		 */
635 		clmpcc_shutdown(ch);
636 	}
637 
638 	ttyclose(tp);
639 
640 	splx(s);
641 
642 	return 0;
643 }
644 
645 int
646 clmpccread(dev, uio, flag)
647 	dev_t dev;
648 	struct uio *uio;
649 	int flag;
650 {
651 	struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
652 	struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
653 
654 	return ((*tp->t_linesw->l_read)(tp, uio, flag));
655 }
656 
657 int
658 clmpccwrite(dev, uio, flag)
659 	dev_t dev;
660 	struct uio *uio;
661 	int flag;
662 {
663 	struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
664 	struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
665 
666 	return ((*tp->t_linesw->l_write)(tp, uio, flag));
667 }
668 
669 int
670 clmpccpoll(dev, events, l)
671 	dev_t dev;
672 	int events;
673 	struct lwp *l;
674 {
675 	struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
676 	struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
677 
678 	return ((*tp->t_linesw->l_poll)(tp, events, l));
679 }
680 
681 struct tty *
682 clmpcctty(dev)
683 	dev_t dev;
684 {
685 	struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
686 
687 	return (sc->sc_chans[CLMPCCCHAN(dev)].ch_tty);
688 }
689 
690 int
691 clmpccioctl(dev, cmd, data, flag, l)
692 	dev_t dev;
693 	u_long cmd;
694 	caddr_t data;
695 	int flag;
696 	struct lwp *l;
697 {
698 	struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
699 	struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(dev)];
700 	struct tty *tp = ch->ch_tty;
701 	int error;
702 
703 	error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
704 	if (error != EPASSTHROUGH)
705 		return error;
706 
707 	error = ttioctl(tp, cmd, data, flag, l);
708 	if (error != EPASSTHROUGH)
709 		return error;
710 
711 	error = 0;
712 
713 	switch (cmd) {
714 	case TIOCSBRK:
715 		SET(ch->ch_flags, CLMPCC_FLG_START_BREAK);
716 		clmpcc_enable_transmitter(ch);
717 		break;
718 
719 	case TIOCCBRK:
720 		SET(ch->ch_flags, CLMPCC_FLG_END_BREAK);
721 		clmpcc_enable_transmitter(ch);
722 		break;
723 
724 	case TIOCSDTR:
725 		clmpcc_modem_control(ch, TIOCM_DTR, DMBIS);
726 		break;
727 
728 	case TIOCCDTR:
729 		clmpcc_modem_control(ch, TIOCM_DTR, DMBIC);
730 		break;
731 
732 	case TIOCMSET:
733 		clmpcc_modem_control(ch, *((int *)data), DMSET);
734 		break;
735 
736 	case TIOCMBIS:
737 		clmpcc_modem_control(ch, *((int *)data), DMBIS);
738 		break;
739 
740 	case TIOCMBIC:
741 		clmpcc_modem_control(ch, *((int *)data), DMBIC);
742 		break;
743 
744 	case TIOCMGET:
745 		*((int *)data) = clmpcc_modem_control(ch, 0, DMGET);
746 		break;
747 
748 	case TIOCGFLAGS:
749 		*((int *)data) = ch->ch_openflags;
750 		break;
751 
752 	case TIOCSFLAGS:
753 		error = kauth_authorize_device_tty(l->l_cred,
754 		    KAUTH_DEVICE_TTY_PRIVSET, tp);
755 		if ( error )
756 			break;
757 		ch->ch_openflags = *((int *)data) &
758 			(TIOCFLAG_SOFTCAR | TIOCFLAG_CLOCAL |
759 			 TIOCFLAG_CRTSCTS | TIOCFLAG_MDMBUF);
760 		if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) )
761 			SET(ch->ch_openflags, TIOCFLAG_SOFTCAR);
762 		break;
763 
764 	default:
765 		error = EPASSTHROUGH;
766 		break;
767 	}
768 
769 	return error;
770 }
771 
772 int
773 clmpcc_modem_control(ch, bits, howto)
774 	struct clmpcc_chan *ch;
775 	int bits;
776 	int howto;
777 {
778 	struct clmpcc_softc *sc = ch->ch_sc;
779 	struct tty *tp = ch->ch_tty;
780 	int oldch;
781 	int msvr;
782 	int rbits = 0;
783 
784 	oldch = clmpcc_select_channel(sc, ch->ch_car);
785 
786 	switch ( howto ) {
787 	case DMGET:
788 		msvr = clmpcc_rd_msvr(sc);
789 
790 		if ( sc->sc_swaprtsdtr ) {
791 			rbits |= (msvr & CLMPCC_MSVR_RTS) ? TIOCM_DTR : 0;
792 			rbits |= (msvr & CLMPCC_MSVR_DTR) ? TIOCM_RTS : 0;
793 		} else {
794 			rbits |= (msvr & CLMPCC_MSVR_RTS) ? TIOCM_RTS : 0;
795 			rbits |= (msvr & CLMPCC_MSVR_DTR) ? TIOCM_DTR : 0;
796 		}
797 
798 		rbits |= (msvr & CLMPCC_MSVR_CTS) ? TIOCM_CTS : 0;
799 		rbits |= (msvr & CLMPCC_MSVR_CD)  ? TIOCM_CD  : 0;
800 		rbits |= (msvr & CLMPCC_MSVR_DSR) ? TIOCM_DSR : 0;
801 		break;
802 
803 	case DMSET:
804 		if ( sc->sc_swaprtsdtr ) {
805 		    if ( ISCLR(tp->t_cflag, CRTSCTS) )
806 			clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR,
807 					bits & TIOCM_RTS ? CLMPCC_MSVR_DTR : 0);
808 		    clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS,
809 				bits & TIOCM_DTR ? CLMPCC_MSVR_RTS : 0);
810 		} else {
811 		    if ( ISCLR(tp->t_cflag, CRTSCTS) )
812 			clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS,
813 					bits & TIOCM_RTS ? CLMPCC_MSVR_RTS : 0);
814 		    clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR,
815 				bits & TIOCM_DTR ? CLMPCC_MSVR_DTR : 0);
816 		}
817 		break;
818 
819 	case DMBIS:
820 		if ( sc->sc_swaprtsdtr ) {
821 		    if ( ISCLR(tp->t_cflag, CRTSCTS) && ISSET(bits, TIOCM_RTS) )
822 			clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_DTR, CLMPCC_MSVR_DTR);
823 		    if ( ISSET(bits, TIOCM_DTR) )
824 			clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_RTS, CLMPCC_MSVR_RTS);
825 		} else {
826 		    if ( ISCLR(tp->t_cflag, CRTSCTS) && ISSET(bits, TIOCM_RTS) )
827 			clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_RTS, CLMPCC_MSVR_RTS);
828 		    if ( ISSET(bits, TIOCM_DTR) )
829 			clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_DTR, CLMPCC_MSVR_DTR);
830 		}
831 		break;
832 
833 	case DMBIC:
834 		if ( sc->sc_swaprtsdtr ) {
835 		    if ( ISCLR(tp->t_cflag, CRTSCTS) && ISCLR(bits, TIOCM_RTS) )
836 			clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR, 0);
837 		    if ( ISCLR(bits, TIOCM_DTR) )
838 			clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS, 0);
839 		} else {
840 		    if ( ISCLR(tp->t_cflag, CRTSCTS) && ISCLR(bits, TIOCM_RTS) )
841 			clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS, 0);
842 		    if ( ISCLR(bits, TIOCM_DTR) )
843 			clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR, 0);
844 		}
845 		break;
846 	}
847 
848 	clmpcc_select_channel(sc, oldch);
849 
850 	return rbits;
851 }
852 
853 static int
854 clmpcc_param(tp, t)
855 	struct tty *tp;
856 	struct termios *t;
857 {
858 	struct clmpcc_softc *sc =
859 	    device_lookup(&clmpcc_cd, CLMPCCUNIT(tp->t_dev));
860 	struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
861 	u_char cor;
862 	u_char oldch;
863 	int oclk, obpr;
864 	int iclk, ibpr;
865 	int s;
866 
867 	/* Check requested parameters. */
868 	if ( t->c_ospeed && clmpcc_speed(sc, t->c_ospeed, &oclk, &obpr) < 0 )
869 		return EINVAL;
870 
871 	if ( t->c_ispeed && clmpcc_speed(sc, t->c_ispeed, &iclk, &ibpr) < 0 )
872 		return EINVAL;
873 
874 	/*
875 	 * For the console, always force CLOCAL and !HUPCL, so that the port
876 	 * is always active.
877 	 */
878 	if ( ISSET(ch->ch_openflags, TIOCFLAG_SOFTCAR) ||
879 	     ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
880 		SET(t->c_cflag, CLOCAL);
881 		CLR(t->c_cflag, HUPCL);
882 	}
883 
884 	CLR(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS);
885 
886 	/* If ospeed it zero, hangup the line */
887 	clmpcc_modem_control(ch, TIOCM_DTR, t->c_ospeed == 0 ? DMBIC : DMBIS);
888 
889 	if ( t->c_ospeed ) {
890 		ch->ch_tcor = CLMPCC_TCOR_CLK(oclk);
891 		ch->ch_tbpr = obpr;
892 	} else {
893 		ch->ch_tcor = 0;
894 		ch->ch_tbpr = 0;
895 	}
896 
897 	if ( t->c_ispeed ) {
898 		ch->ch_rcor = CLMPCC_RCOR_CLK(iclk);
899 		ch->ch_rbpr = ibpr;
900 	} else {
901 		ch->ch_rcor = 0;
902 		ch->ch_rbpr = 0;
903 	}
904 
905 	/* Work out value to use for COR1 */
906 	cor = 0;
907 	if ( ISSET(t->c_cflag, PARENB) ) {
908 		cor |= CLMPCC_COR1_NORM_PARITY;
909 		if ( ISSET(t->c_cflag, PARODD) )
910 			cor |= CLMPCC_COR1_ODD_PARITY;
911 	}
912 
913 	if ( ISCLR(t->c_cflag, INPCK) )
914 		cor |= CLMPCC_COR1_IGNORE_PAR;
915 
916 	switch ( t->c_cflag & CSIZE ) {
917 	  case CS5:
918 		cor |= CLMPCC_COR1_CHAR_5BITS;
919 		break;
920 
921 	  case CS6:
922 		cor |= CLMPCC_COR1_CHAR_6BITS;
923 		break;
924 
925 	  case CS7:
926 		cor |= CLMPCC_COR1_CHAR_7BITS;
927 		break;
928 
929 	  case CS8:
930 		cor |= CLMPCC_COR1_CHAR_8BITS;
931 		break;
932 	}
933 
934 	ch->ch_cor1 = cor;
935 
936 	/*
937 	 * The only interesting bit in COR2 is 'CTS Automatic Enable'
938 	 * when hardware flow control is in effect.
939 	 */
940 	ch->ch_cor2 = ISSET(t->c_cflag, CRTSCTS) ? CLMPCC_COR2_CtsAE : 0;
941 
942 	/* COR3 needs to be set to the number of stop bits... */
943 	ch->ch_cor3 = ISSET(t->c_cflag, CSTOPB) ? CLMPCC_COR3_STOP_2 :
944 						  CLMPCC_COR3_STOP_1;
945 
946 	/*
947 	 * COR4 contains the FIFO threshold setting.
948 	 * We adjust the threshold depending on the input speed...
949 	 */
950 	if ( t->c_ispeed <= 1200 )
951 		ch->ch_cor4 = CLMPCC_COR4_FIFO_LOW;
952 	else if ( t->c_ispeed <= 19200 )
953 		ch->ch_cor4 = CLMPCC_COR4_FIFO_MED;
954 	else
955 		ch->ch_cor4 = CLMPCC_COR4_FIFO_HIGH;
956 
957 	/*
958 	 * If chip is used with CTS and DTR swapped, we can enable
959 	 * automatic hardware flow control.
960 	 */
961 	if ( sc->sc_swaprtsdtr && ISSET(t->c_cflag, CRTSCTS) )
962 		ch->ch_cor5 = CLMPCC_COR5_FLOW_NORM;
963 	else
964 		ch->ch_cor5 = 0;
965 
966 	s = splserial();
967 	oldch = clmpcc_select_channel(sc, ch->ch_car);
968 
969 	/*
970 	 * COR2 needs to be set immediately otherwise we might never get
971 	 * a Tx EMPTY interrupt to change the other parameters.
972 	 */
973 	if ( clmpcc_rdreg(sc, CLMPCC_REG_COR2) != ch->ch_cor2 )
974 		clmpcc_wrreg(sc, CLMPCC_REG_COR2, ch->ch_cor2);
975 
976 	if ( ISCLR(ch->ch_tty->t_state, TS_BUSY) )
977 		clmpcc_set_params(ch);
978 	else
979 		SET(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS);
980 
981 	clmpcc_select_channel(sc, oldch);
982 
983 	splx(s);
984 
985 	return 0;
986 }
987 
988 static void
989 clmpcc_set_params(ch)
990 	struct clmpcc_chan *ch;
991 {
992 	struct clmpcc_softc *sc = ch->ch_sc;
993 	u_char r1;
994 	u_char r2;
995 
996 	if ( ch->ch_tcor || ch->ch_tbpr ) {
997 		r1 = clmpcc_rdreg(sc, CLMPCC_REG_TCOR);
998 		r2 = clmpcc_rdreg(sc, CLMPCC_REG_TBPR);
999 		/* Only write Tx rate if it really has changed */
1000 		if ( ch->ch_tcor != r1 || ch->ch_tbpr != r2 ) {
1001 			clmpcc_wrreg(sc, CLMPCC_REG_TCOR, ch->ch_tcor);
1002 			clmpcc_wrreg(sc, CLMPCC_REG_TBPR, ch->ch_tbpr);
1003 		}
1004 	}
1005 
1006 	if ( ch->ch_rcor || ch->ch_rbpr ) {
1007 		r1 = clmpcc_rdreg(sc, CLMPCC_REG_RCOR);
1008 		r2 = clmpcc_rdreg(sc, CLMPCC_REG_RBPR);
1009 		/* Only write Rx rate if it really has changed */
1010 		if ( ch->ch_rcor != r1 || ch->ch_rbpr != r2 ) {
1011 			clmpcc_wrreg(sc, CLMPCC_REG_RCOR, ch->ch_rcor);
1012 			clmpcc_wrreg(sc, CLMPCC_REG_RBPR, ch->ch_rbpr);
1013 		}
1014 	}
1015 
1016 	if ( clmpcc_rdreg(sc, CLMPCC_REG_COR1) != ch->ch_cor1 ) {
1017 		clmpcc_wrreg(sc, CLMPCC_REG_COR1, ch->ch_cor1);
1018 		/* Any change to COR1 requires an INIT command */
1019 		SET(ch->ch_flags, CLMPCC_FLG_NEED_INIT);
1020 	}
1021 
1022 	if ( clmpcc_rdreg(sc, CLMPCC_REG_COR3) != ch->ch_cor3 )
1023 		clmpcc_wrreg(sc, CLMPCC_REG_COR3, ch->ch_cor3);
1024 
1025 	r1 = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
1026 	if ( ch->ch_cor4 != (r1 & CLMPCC_COR4_FIFO_MASK) ) {
1027 		/*
1028 		 * Note: If the FIFO has changed, we always set it to
1029 		 * zero here and disable the Receive Timeout interrupt.
1030 		 * It's up to the Rx Interrupt handler to pick the
1031 		 * appropriate moment to write the new FIFO length.
1032 		 */
1033 		clmpcc_wrreg(sc, CLMPCC_REG_COR4, r1 & ~CLMPCC_COR4_FIFO_MASK);
1034 		r1 = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1035 		clmpcc_wrreg(sc, CLMPCC_REG_IER, r1 & ~CLMPCC_IER_RET);
1036 		SET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
1037 	}
1038 
1039 	r1 = clmpcc_rdreg(sc, CLMPCC_REG_COR5);
1040 	if ( ch->ch_cor5 != (r1 & CLMPCC_COR5_FLOW_MASK) ) {
1041 		r1 &= ~CLMPCC_COR5_FLOW_MASK;
1042 		clmpcc_wrreg(sc, CLMPCC_REG_COR5, r1 | ch->ch_cor5);
1043 	}
1044 }
1045 
1046 static void
1047 clmpcc_start(tp)
1048 	struct tty *tp;
1049 {
1050 	struct clmpcc_softc *sc =
1051 	    device_lookup(&clmpcc_cd, CLMPCCUNIT(tp->t_dev));
1052 	struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
1053 	u_int oldch;
1054 	int s;
1055 
1056 	s = spltty();
1057 
1058 	if ( ISCLR(tp->t_state, TS_TTSTOP | TS_TIMEOUT | TS_BUSY) ) {
1059 		if ( tp->t_outq.c_cc <= tp->t_lowat ) {
1060 			if ( ISSET(tp->t_state, TS_ASLEEP) ) {
1061 				CLR(tp->t_state, TS_ASLEEP);
1062 				wakeup(&tp->t_outq);
1063 			}
1064 			selwakeup(&tp->t_wsel);
1065 		}
1066 
1067 		if ( ISSET(ch->ch_flags, CLMPCC_FLG_START_BREAK |
1068 					 CLMPCC_FLG_END_BREAK) ||
1069 		     tp->t_outq.c_cc > 0 ) {
1070 
1071 			if ( ISCLR(ch->ch_flags, CLMPCC_FLG_START_BREAK |
1072 						 CLMPCC_FLG_END_BREAK) ) {
1073 				ch->ch_obuf_addr = tp->t_outq.c_cf;
1074 				ch->ch_obuf_size = ndqb(&tp->t_outq, 0);
1075 			}
1076 
1077 			/* Enable TX empty interrupts */
1078 			oldch = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
1079 			clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER,
1080 				clmpcc_rdreg(ch->ch_sc, CLMPCC_REG_IER) |
1081 					     CLMPCC_IER_TX_EMPTY);
1082 			clmpcc_select_channel(ch->ch_sc, oldch);
1083 			SET(tp->t_state, TS_BUSY);
1084 		}
1085 	}
1086 
1087 	splx(s);
1088 }
1089 
1090 /*
1091  * Stop output on a line.
1092  */
1093 void
1094 clmpccstop(tp, flag)
1095 	struct tty *tp;
1096 	int flag;
1097 {
1098 	struct clmpcc_softc *sc =
1099 	    device_lookup(&clmpcc_cd, CLMPCCUNIT(tp->t_dev));
1100 	struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
1101 	int s;
1102 
1103 	s = splserial();
1104 
1105 	if ( ISSET(tp->t_state, TS_BUSY) ) {
1106 		if ( ISCLR(tp->t_state, TS_TTSTOP) )
1107 			SET(tp->t_state, TS_FLUSH);
1108 		ch->ch_obuf_size = 0;
1109 	}
1110 	splx(s);
1111 }
1112 
1113 /*
1114  * RX interrupt routine
1115  */
1116 int
1117 clmpcc_rxintr(arg)
1118 	void *arg;
1119 {
1120 	struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1121 	struct clmpcc_chan *ch;
1122 	u_int8_t *put, *end, rxd;
1123 	u_char errstat;
1124 	u_char fc, tc;
1125 	u_char risr;
1126 	u_char rir;
1127 #ifdef DDB
1128 	int saw_break = 0;
1129 #endif
1130 
1131 	/* Receive interrupt active? */
1132 	rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1133 
1134 	/*
1135 	 * If we're using auto-vectored interrupts, we have to
1136 	 * verify if the chip is generating the interrupt.
1137 	 */
1138 	if ( sc->sc_vector_base == 0 && (rir & CLMPCC_RIR_RACT) == 0 )
1139 		return 0;
1140 
1141 	/* Get pointer to interrupting channel's data structure */
1142 	ch = &sc->sc_chans[rir & CLMPCC_RIR_RCN_MASK];
1143 
1144 	/* Get the interrupt status register */
1145 	risr = clmpcc_rdreg(sc, CLMPCC_REG_RISRl);
1146 	if ( risr & CLMPCC_RISR_TIMEOUT ) {
1147 		u_char reg;
1148 		/*
1149 		 * Set the FIFO threshold to zero, and disable
1150 		 * further receive timeout interrupts.
1151 		 */
1152 		reg = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
1153 		clmpcc_wrreg(sc, CLMPCC_REG_COR4, reg & ~CLMPCC_COR4_FIFO_MASK);
1154 		reg = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1155 		clmpcc_wrreg(sc, CLMPCC_REG_IER, reg & ~CLMPCC_IER_RET);
1156 		clmpcc_wrreg(sc, CLMPCC_REG_REOIR, CLMPCC_REOIR_NO_TRANS);
1157 		SET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
1158 		return 1;
1159 	}
1160 
1161 	/* How many bytes are waiting in the FIFO?  */
1162 	fc = tc = clmpcc_rdreg(sc, CLMPCC_REG_RFOC) & CLMPCC_RFOC_MASK;
1163 
1164 #ifdef DDB
1165 	/*
1166 	 * Allow BREAK on the console to drop to the debugger.
1167 	 */
1168 	if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) &&
1169 	     risr & CLMPCC_RISR_BREAK ) {
1170 		saw_break = 1;
1171 	}
1172 #endif
1173 
1174 	if ( ISCLR(ch->ch_tty->t_state, TS_ISOPEN) && fc ) {
1175 		/* Just get rid of the data */
1176 		while ( fc-- )
1177 			(void) clmpcc_rd_rxdata(sc);
1178 		goto rx_done;
1179 	}
1180 
1181 	put = ch->ch_ibuf_wr;
1182 	end = ch->ch_ibuf_end;
1183 
1184 	/*
1185 	 * Note: The chip is completely hosed WRT these error
1186 	 *       conditions; there seems to be no way to associate
1187 	 *       the error with the correct character in the FIFO.
1188 	 *       We compromise by tagging the first character we read
1189 	 *       with the error. Not perfect, but there's no other way.
1190 	 */
1191 	errstat = 0;
1192 	if ( risr & CLMPCC_RISR_PARITY )
1193 		errstat |= TTY_PE;
1194 	if ( risr & (CLMPCC_RISR_FRAMING | CLMPCC_RISR_BREAK) )
1195 		errstat |= TTY_FE;
1196 
1197 	/*
1198 	 * As long as there are characters in the FIFO, and we
1199 	 * have space for them...
1200 	 */
1201 	while ( fc > 0 ) {
1202 
1203 		*put++ = rxd = clmpcc_rd_rxdata(sc);
1204 		*put++ = errstat;
1205 
1206 		if ( put >= end )
1207 			put = ch->ch_ibuf;
1208 
1209 		if ( put == ch->ch_ibuf_rd ) {
1210 			put -= 2;
1211 			if ( put < ch->ch_ibuf )
1212 				put = end - 2;
1213 		}
1214 
1215 		errstat = 0;
1216 		fc--;
1217 	}
1218 
1219 	ch->ch_ibuf_wr = put;
1220 
1221 #if 0
1222 	if ( sc->sc_swaprtsdtr == 0 &&
1223 	     ISSET(cy->cy_tty->t_cflag, CRTSCTS) && cc < ch->ch_r_hiwat) {
1224 		/*
1225 		 * If RTS/DTR are not physically swapped, we have to
1226 		 * do hardware flow control manually
1227 		 */
1228 		clmpcc_wr_msvr(sc, CLMPCC_MSVR_RTS, 0);
1229 	}
1230 #endif
1231 
1232 rx_done:
1233 	if ( fc != tc ) {
1234 		if ( ISSET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR) ) {
1235 			u_char reg;
1236 			/*
1237 			 * Set the FIFO threshold to the preset value,
1238 			 * and enable receive timeout interrupts.
1239 			 */
1240 			reg = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
1241 			reg = (reg & ~CLMPCC_COR4_FIFO_MASK) | ch->ch_cor4;
1242 			clmpcc_wrreg(sc, CLMPCC_REG_COR4, reg);
1243 			reg = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1244 			clmpcc_wrreg(sc, CLMPCC_REG_IER, reg | CLMPCC_IER_RET);
1245 			CLR(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
1246 		}
1247 
1248 		clmpcc_wrreg(sc, CLMPCC_REG_REOIR, 0);
1249 #ifndef __HAVE_GENERIC_SOFT_INTERRUPTS
1250 		if ( sc->sc_soft_running == 0 ) {
1251 			sc->sc_soft_running = 1;
1252 			(sc->sc_softhook)(sc);
1253 		}
1254 #else
1255 		softintr_schedule(sc->sc_softintr_cookie);
1256 #endif
1257 	} else
1258 		clmpcc_wrreg(sc, CLMPCC_REG_REOIR, CLMPCC_REOIR_NO_TRANS);
1259 
1260 #ifdef DDB
1261 	/*
1262 	 * Only =after= we write REOIR is it safe to drop to the debugger.
1263 	 */
1264 	if ( saw_break )
1265 		Debugger();
1266 #endif
1267 
1268 	return 1;
1269 }
1270 
1271 /*
1272  * Tx interrupt routine
1273  */
1274 int
1275 clmpcc_txintr(arg)
1276 	void *arg;
1277 {
1278 	struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1279 	struct clmpcc_chan *ch;
1280 	struct tty *tp;
1281 	u_char ftc, oftc;
1282 	u_char tir, teoir;
1283 	int etcmode = 0;
1284 
1285 	/* Tx interrupt active? */
1286 	tir = clmpcc_rdreg(sc, CLMPCC_REG_TIR);
1287 
1288 	/*
1289 	 * If we're using auto-vectored interrupts, we have to
1290 	 * verify if the chip is generating the interrupt.
1291 	 */
1292 	if ( sc->sc_vector_base == 0 && (tir & CLMPCC_TIR_TACT) == 0 )
1293 		return 0;
1294 
1295 	/* Get pointer to interrupting channel's data structure */
1296 	ch = &sc->sc_chans[tir & CLMPCC_TIR_TCN_MASK];
1297 	tp = ch->ch_tty;
1298 
1299 	/* Dummy read of the interrupt status register */
1300 	(void) clmpcc_rdreg(sc, CLMPCC_REG_TISR);
1301 
1302 	/* Make sure embedded transmit commands are disabled */
1303 	clmpcc_wrreg(sc, CLMPCC_REG_COR2, ch->ch_cor2);
1304 
1305 	ftc = oftc = clmpcc_rdreg(sc, CLMPCC_REG_TFTC);
1306 
1307 	/* Handle a delayed parameter change */
1308 	if ( ISSET(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS) ) {
1309 		CLR(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS);
1310 		clmpcc_set_params(ch);
1311 	}
1312 
1313 	if ( ch->ch_obuf_size > 0 ) {
1314 		u_int n = min(ch->ch_obuf_size, ftc);
1315 
1316 		clmpcc_wrtx_multi(sc, ch->ch_obuf_addr, n);
1317 
1318 		ftc -= n;
1319 		ch->ch_obuf_size -= n;
1320 		ch->ch_obuf_addr += n;
1321 
1322 	} else {
1323 		/*
1324 		 * Check if we should start/stop a break
1325 		 */
1326 		if ( ISSET(ch->ch_flags, CLMPCC_FLG_START_BREAK) ) {
1327 			CLR(ch->ch_flags, CLMPCC_FLG_START_BREAK);
1328 			/* Enable embedded transmit commands */
1329 			clmpcc_wrreg(sc, CLMPCC_REG_COR2,
1330 					ch->ch_cor2 | CLMPCC_COR2_ETC);
1331 			clmpcc_wr_txdata(sc, CLMPCC_ETC_MAGIC);
1332 			clmpcc_wr_txdata(sc, CLMPCC_ETC_SEND_BREAK);
1333 			ftc -= 2;
1334 			etcmode = 1;
1335 		}
1336 
1337 		if ( ISSET(ch->ch_flags, CLMPCC_FLG_END_BREAK) ) {
1338 			CLR(ch->ch_flags, CLMPCC_FLG_END_BREAK);
1339 			/* Enable embedded transmit commands */
1340 			clmpcc_wrreg(sc, CLMPCC_REG_COR2,
1341 					ch->ch_cor2 | CLMPCC_COR2_ETC);
1342 			clmpcc_wr_txdata(sc, CLMPCC_ETC_MAGIC);
1343 			clmpcc_wr_txdata(sc, CLMPCC_ETC_STOP_BREAK);
1344 			ftc -= 2;
1345 			etcmode = 1;
1346 		}
1347 	}
1348 
1349 	tir = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1350 
1351 	if ( ftc != oftc ) {
1352 		/*
1353 		 * Enable/disable the Tx FIFO threshold interrupt
1354 		 * according to how much data is in the FIFO.
1355 		 * However, always disable the FIFO threshold if
1356 		 * we've left the channel in 'Embedded Transmit
1357 		 * Command' mode.
1358 		 */
1359 		if ( etcmode || ftc >= ch->ch_cor4 )
1360 			tir &= ~CLMPCC_IER_TX_FIFO;
1361 		else
1362 			tir |= CLMPCC_IER_TX_FIFO;
1363 		teoir = 0;
1364 	} else {
1365 		/*
1366 		 * No data was sent.
1367 		 * Disable transmit interrupt.
1368 		 */
1369 		tir &= ~(CLMPCC_IER_TX_EMPTY|CLMPCC_IER_TX_FIFO);
1370 		teoir = CLMPCC_TEOIR_NO_TRANS;
1371 
1372 		/*
1373 		 * Request Tx processing in the soft interrupt handler
1374 		 */
1375 		ch->ch_tx_done = 1;
1376 #ifndef __HAVE_GENERIC_SOFT_INTERRUPTS
1377 		if ( sc->sc_soft_running == 0 ) {
1378 			sc->sc_soft_running = 1;
1379 			(sc->sc_softhook)(sc);
1380 		}
1381 #else
1382 		softintr_schedule(sc->sc_softintr_cookie);
1383 #endif
1384 	}
1385 
1386 	clmpcc_wrreg(sc, CLMPCC_REG_IER, tir);
1387 	clmpcc_wrreg(sc, CLMPCC_REG_TEOIR, teoir);
1388 
1389 	return 1;
1390 }
1391 
1392 /*
1393  * Modem change interrupt routine
1394  */
1395 int
1396 clmpcc_mdintr(arg)
1397 	void *arg;
1398 {
1399 	struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1400 	u_char mir;
1401 
1402 	/* Modem status interrupt active? */
1403 	mir = clmpcc_rdreg(sc, CLMPCC_REG_MIR);
1404 
1405 	/*
1406 	 * If we're using auto-vectored interrupts, we have to
1407 	 * verify if the chip is generating the interrupt.
1408 	 */
1409 	if ( sc->sc_vector_base == 0 && (mir & CLMPCC_MIR_MACT) == 0 )
1410 		return 0;
1411 
1412 	/* Dummy read of the interrupt status register */
1413 	(void) clmpcc_rdreg(sc, CLMPCC_REG_MISR);
1414 
1415 	/* Retrieve current status of modem lines. */
1416 	sc->sc_chans[mir & CLMPCC_MIR_MCN_MASK].ch_control |=
1417 		clmpcc_rd_msvr(sc) & CLMPCC_MSVR_CD;
1418 
1419 	clmpcc_wrreg(sc, CLMPCC_REG_MEOIR, 0);
1420 
1421 #ifndef __HAVE_GENERIC_SOFT_INTERRUPTS
1422 	if ( sc->sc_soft_running == 0 ) {
1423 		sc->sc_soft_running = 1;
1424 		(sc->sc_softhook)(sc);
1425 	}
1426 #else
1427 	softintr_schedule(sc->sc_softintr_cookie);
1428 #endif
1429 
1430 	return 1;
1431 }
1432 
1433 void
1434 clmpcc_softintr(arg)
1435 	void *arg;
1436 {
1437 	struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1438 	struct clmpcc_chan *ch;
1439 	struct tty *tp;
1440 	int (*rint)(int, struct tty *);
1441 	u_char *get;
1442 	u_char reg;
1443 	u_int c;
1444 	int chan;
1445 
1446 #ifndef __HAVE_GENERIC_SOFT_INTERRUPTS
1447 	sc->sc_soft_running = 0;
1448 #endif
1449 
1450 	/* Handle Modem state changes too... */
1451 
1452 	for (chan = 0; chan < CLMPCC_NUM_CHANS; chan++) {
1453 		ch = &sc->sc_chans[chan];
1454 		tp = ch->ch_tty;
1455 
1456 		get = ch->ch_ibuf_rd;
1457 		rint = tp->t_linesw->l_rint;
1458 
1459 		/* Squirt buffered incoming data into the tty layer */
1460 		while ( get != ch->ch_ibuf_wr ) {
1461 			c = get[0];
1462 			c |= ((u_int)get[1]) << 8;
1463 			if ( (rint)(c, tp) == -1 ) {
1464 				ch->ch_ibuf_rd = ch->ch_ibuf_wr;
1465 				break;
1466 			}
1467 
1468 			get += 2;
1469 			if ( get == ch->ch_ibuf_end )
1470 				get = ch->ch_ibuf;
1471 
1472 			ch->ch_ibuf_rd = get;
1473 		}
1474 
1475 		/*
1476 		 * Is the transmitter idle and in need of attention?
1477 		 */
1478 		if ( ch->ch_tx_done ) {
1479 			ch->ch_tx_done = 0;
1480 
1481 			if ( ISSET(ch->ch_flags, CLMPCC_FLG_NEED_INIT) ) {
1482 				clmpcc_channel_cmd(sc, ch->ch_car,
1483 						       CLMPCC_CCR_T0_INIT  |
1484 						       CLMPCC_CCR_T0_RX_EN |
1485 					   	       CLMPCC_CCR_T0_TX_EN);
1486 				CLR(ch->ch_flags, CLMPCC_FLG_NEED_INIT);
1487 
1488 				/*
1489 				 * Allow time for the channel to initialise.
1490 				 * (Empirically derived duration; there must
1491 				 * be another way to determine the command
1492 				 * has completed without busy-waiting...)
1493 				 */
1494 				delay(800);
1495 
1496 				/*
1497 				 * Update the tty layer's idea of the carrier
1498 				 * bit, in case we changed CLOCAL or MDMBUF.
1499 				 * We don't hang up here; we only do that by
1500 				 * explicit request.
1501 				 */
1502 				reg = clmpcc_rd_msvr(sc) & CLMPCC_MSVR_CD;
1503 				(*tp->t_linesw->l_modem)(tp, reg != 0);
1504 			}
1505 
1506 			CLR(tp->t_state, TS_BUSY);
1507 			if ( ISSET(tp->t_state, TS_FLUSH) )
1508 				CLR(tp->t_state, TS_FLUSH);
1509 			else
1510 				ndflush(&tp->t_outq,
1511 				     (int)(ch->ch_obuf_addr - tp->t_outq.c_cf));
1512 
1513 			(*tp->t_linesw->l_start)(tp);
1514 		}
1515 	}
1516 }
1517 
1518 
1519 /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1520 /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1521 /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1522 /*
1523  * Following are all routines needed for a cd240x channel to act as console
1524  */
1525 int
1526 clmpcc_cnattach(sc, chan, rate)
1527 	struct clmpcc_softc *sc;
1528 	int chan;
1529 	int rate;
1530 {
1531 	cons_sc = sc;
1532 	cons_chan = chan;
1533 	cons_rate = rate;
1534 
1535 	return (clmpcc_init(sc));
1536 }
1537 
1538 /*
1539  * The following functions are polled getc and putc routines, for console use.
1540  */
1541 static int
1542 clmpcc_common_getc(sc, chan)
1543 	struct clmpcc_softc *sc;
1544 	int chan;
1545 {
1546 	u_char old_chan;
1547 	u_char old_ier;
1548 	u_char ch, rir, risr;
1549 	int s;
1550 
1551 	s = splhigh();
1552 
1553 	/* Save the currently active channel */
1554 	old_chan = clmpcc_select_channel(sc, chan);
1555 
1556 	/*
1557 	 * We have to put the channel into RX interrupt mode before
1558 	 * trying to read the Rx data register. So save the previous
1559 	 * interrupt mode.
1560 	 */
1561 	old_ier = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1562 	clmpcc_wrreg(sc, CLMPCC_REG_IER, CLMPCC_IER_RX_FIFO);
1563 
1564 	/* Loop until we get a character */
1565 	for (;;) {
1566 		/*
1567 		 * The REN bit will be set in the Receive Interrupt Register
1568 		 * when the CD240x has a character to process. Remember,
1569 		 * the RACT bit won't be set until we generate an interrupt
1570 		 * acknowledge cycle via the MD front-end.
1571 		 */
1572 		rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1573 		if ( (rir & CLMPCC_RIR_REN) == 0 )
1574 			continue;
1575 
1576 		/* Acknowledge the request */
1577 		if ( sc->sc_iackhook )
1578 			(sc->sc_iackhook)(sc, CLMPCC_IACK_RX);
1579 
1580 		/*
1581 		 * Determine if the interrupt is for the required channel
1582 		 * and if valid data is available.
1583 		 */
1584 		rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1585 		risr = clmpcc_rdreg(sc, CLMPCC_REG_RISR);
1586 		if ( (rir & CLMPCC_RIR_RCN_MASK) != chan ||
1587 		     risr != 0 ) {
1588 			/* Rx error, or BREAK */
1589 			clmpcc_wrreg(sc, CLMPCC_REG_REOIR,
1590 					 CLMPCC_REOIR_NO_TRANS);
1591 		} else {
1592 			/* Dummy read of the FIFO count register */
1593 			(void) clmpcc_rdreg(sc, CLMPCC_REG_RFOC);
1594 
1595 			/* Fetch the received character */
1596 			ch = clmpcc_rd_rxdata(sc);
1597 
1598 			clmpcc_wrreg(sc, CLMPCC_REG_REOIR, 0);
1599 			break;
1600 		}
1601 	}
1602 
1603 	/* Restore the original IER and CAR register contents */
1604 	clmpcc_wrreg(sc, CLMPCC_REG_IER, old_ier);
1605 	clmpcc_select_channel(sc, old_chan);
1606 
1607 	splx(s);
1608 	return ch;
1609 }
1610 
1611 
1612 static void
1613 clmpcc_common_putc(sc, chan, c)
1614 	struct clmpcc_softc *sc;
1615 	int chan;
1616 	int c;
1617 {
1618 	u_char old_chan;
1619 	int s = splhigh();
1620 
1621 	/* Save the currently active channel */
1622 	old_chan = clmpcc_select_channel(sc, chan);
1623 
1624 	/*
1625 	 * Since we can only access the Tx Data register from within
1626 	 * the interrupt handler, the easiest way to get console data
1627 	 * onto the wire is using one of the Special Transmit Character
1628 	 * registers.
1629 	 */
1630 	clmpcc_wrreg(sc, CLMPCC_REG_SCHR4, c);
1631 	clmpcc_wrreg(sc, CLMPCC_REG_STCR, CLMPCC_STCR_SSPC(4) |
1632 					  CLMPCC_STCR_SND_SPC);
1633 
1634 	/* Wait until the "Send Special Character" command is accepted */
1635 	while ( clmpcc_rdreg(sc, CLMPCC_REG_STCR) != 0 )
1636 		;
1637 
1638 	/* Restore the previous channel selected */
1639 	clmpcc_select_channel(sc, old_chan);
1640 
1641 	splx(s);
1642 }
1643 
1644 int
1645 clmpcccngetc(dev)
1646 	dev_t dev;
1647 {
1648 	return clmpcc_common_getc(cons_sc, cons_chan);
1649 }
1650 
1651 /*
1652  * Console kernel output character routine.
1653  */
1654 void
1655 clmpcccnputc(dev, c)
1656 	dev_t dev;
1657 	int c;
1658 {
1659 	if ( c == '\n' )
1660 		clmpcc_common_putc(cons_sc, cons_chan, '\r');
1661 
1662 	clmpcc_common_putc(cons_sc, cons_chan, c);
1663 }
1664