xref: /netbsd-src/sys/dev/ic/clmpcc.c (revision cd22f25e6f6d1cc1f197fe8c5468a80f51d1c4e1)
1 /*	$NetBSD: clmpcc.c,v 1.38 2008/04/28 20:23:49 martin Exp $ */
2 
3 /*-
4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Steve C. Woodford.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Cirrus Logic CD2400/CD2401 Four Channel Multi-Protocol Comms. Controller.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: clmpcc.c,v 1.38 2008/04/28 20:23:49 martin Exp $");
38 
39 #include "opt_ddb.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/ioctl.h>
44 #include <sys/select.h>
45 #include <sys/tty.h>
46 #include <sys/proc.h>
47 #include <sys/user.h>
48 #include <sys/conf.h>
49 #include <sys/file.h>
50 #include <sys/uio.h>
51 #include <sys/kernel.h>
52 #include <sys/syslog.h>
53 #include <sys/device.h>
54 #include <sys/malloc.h>
55 #include <sys/kauth.h>
56 #include <sys/intr.h>
57 
58 #include <sys/bus.h>
59 #include <machine/param.h>
60 
61 #include <dev/ic/clmpccreg.h>
62 #include <dev/ic/clmpccvar.h>
63 #include <dev/cons.h>
64 
65 
66 #if defined(CLMPCC_ONLY_BYTESWAP_LOW) && defined(CLMPCC_ONLY_BYTESWAP_HIGH)
67 #error	"CLMPCC_ONLY_BYTESWAP_LOW and CLMPCC_ONLY_BYTESWAP_HIGH are mutually exclusive."
68 #endif
69 
70 
71 static int	clmpcc_init(struct clmpcc_softc *sc);
72 static void	clmpcc_shutdown(struct clmpcc_chan *);
73 static int	clmpcc_speed(struct clmpcc_softc *, speed_t, int *, int *);
74 static int	clmpcc_param(struct tty *, struct termios *);
75 static void	clmpcc_set_params(struct clmpcc_chan *);
76 static void	clmpcc_start(struct tty *);
77 static int 	clmpcc_modem_control(struct clmpcc_chan *, int, int);
78 
79 #define	CLMPCCUNIT(x)		(minor(x) & 0x7fffc)
80 #define CLMPCCCHAN(x)		(minor(x) & 0x00003)
81 #define	CLMPCCDIALOUT(x)	(minor(x) & 0x80000)
82 
83 /*
84  * These should be in a header file somewhere...
85  */
86 #define	ISCLR(v, f)	(((v) & (f)) == 0)
87 
88 extern struct cfdriver clmpcc_cd;
89 
90 dev_type_open(clmpccopen);
91 dev_type_close(clmpccclose);
92 dev_type_read(clmpccread);
93 dev_type_write(clmpccwrite);
94 dev_type_ioctl(clmpccioctl);
95 dev_type_stop(clmpccstop);
96 dev_type_tty(clmpcctty);
97 dev_type_poll(clmpccpoll);
98 
99 const struct cdevsw clmpcc_cdevsw = {
100 	clmpccopen, clmpccclose, clmpccread, clmpccwrite, clmpccioctl,
101 	clmpccstop, clmpcctty, clmpccpoll, nommap, ttykqfilter, D_TTY
102 };
103 
104 /*
105  * Make this an option variable one can patch.
106  */
107 u_int clmpcc_ibuf_size = CLMPCC_RING_SIZE;
108 
109 
110 /*
111  * Things needed when the device is used as a console
112  */
113 static struct clmpcc_softc *cons_sc = NULL;
114 static int cons_chan;
115 static int cons_rate;
116 
117 static int	clmpcc_common_getc(struct clmpcc_softc *, int);
118 static void	clmpcc_common_putc(struct clmpcc_softc *, int, int);
119 int		clmpcccngetc(dev_t);
120 void		clmpcccnputc(dev_t, int);
121 
122 
123 /*
124  * Convenience functions, inlined for speed
125  */
126 #define	integrate   static inline
127 integrate u_int8_t  clmpcc_rdreg(struct clmpcc_softc *, u_int);
128 integrate void      clmpcc_wrreg(struct clmpcc_softc *, u_int, u_int);
129 integrate u_int8_t  clmpcc_rdreg_odd(struct clmpcc_softc *, u_int);
130 integrate void      clmpcc_wrreg_odd(struct clmpcc_softc *, u_int, u_int);
131 integrate void      clmpcc_wrtx_multi(struct clmpcc_softc *, u_int8_t *,
132 					u_int);
133 integrate u_int8_t  clmpcc_select_channel(struct clmpcc_softc *, u_int);
134 integrate void      clmpcc_channel_cmd(struct clmpcc_softc *,int,int);
135 integrate void      clmpcc_enable_transmitter(struct clmpcc_chan *);
136 
137 #define clmpcc_rd_msvr(s)	clmpcc_rdreg_odd(s,CLMPCC_REG_MSVR)
138 #define clmpcc_wr_msvr(s,r,v)	clmpcc_wrreg_odd(s,r,v)
139 #define clmpcc_wr_pilr(s,r,v)	clmpcc_wrreg_odd(s,r,v)
140 #define clmpcc_rd_rxdata(s)	clmpcc_rdreg_odd(s,CLMPCC_REG_RDR)
141 #define clmpcc_wr_txdata(s,v)	clmpcc_wrreg_odd(s,CLMPCC_REG_TDR,v)
142 
143 
144 integrate u_int8_t
145 clmpcc_rdreg(sc, offset)
146 	struct clmpcc_softc *sc;
147 	u_int offset;
148 {
149 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
150 	offset ^= sc->sc_byteswap;
151 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
152 	offset ^= CLMPCC_BYTESWAP_HIGH;
153 #endif
154 	return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset);
155 }
156 
157 integrate void
158 clmpcc_wrreg(sc, offset, val)
159 	struct clmpcc_softc *sc;
160 	u_int offset;
161 	u_int val;
162 {
163 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
164 	offset ^= sc->sc_byteswap;
165 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
166 	offset ^= CLMPCC_BYTESWAP_HIGH;
167 #endif
168 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, val);
169 }
170 
171 integrate u_int8_t
172 clmpcc_rdreg_odd(sc, offset)
173 	struct clmpcc_softc *sc;
174 	u_int offset;
175 {
176 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
177 	offset ^= (sc->sc_byteswap & 2);
178 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
179 	offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
180 #endif
181 	return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset);
182 }
183 
184 integrate void
185 clmpcc_wrreg_odd(sc, offset, val)
186 	struct clmpcc_softc *sc;
187 	u_int offset;
188 	u_int val;
189 {
190 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
191 	offset ^= (sc->sc_byteswap & 2);
192 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
193 	offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
194 #endif
195 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, val);
196 }
197 
198 integrate void
199 clmpcc_wrtx_multi(sc, buff, count)
200 	struct clmpcc_softc *sc;
201 	u_int8_t *buff;
202 	u_int count;
203 {
204 	u_int offset = CLMPCC_REG_TDR;
205 
206 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
207 	offset ^= (sc->sc_byteswap & 2);
208 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
209 	offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
210 #endif
211 	bus_space_write_multi_1(sc->sc_iot, sc->sc_ioh, offset, buff, count);
212 }
213 
214 integrate u_int8_t
215 clmpcc_select_channel(sc, new_chan)
216 	struct clmpcc_softc *sc;
217 	u_int new_chan;
218 {
219 	u_int old_chan = clmpcc_rdreg_odd(sc, CLMPCC_REG_CAR);
220 
221 	clmpcc_wrreg_odd(sc, CLMPCC_REG_CAR, new_chan);
222 
223 	return old_chan;
224 }
225 
226 integrate void
227 clmpcc_channel_cmd(sc, chan, cmd)
228 	struct clmpcc_softc *sc;
229 	int chan;
230 	int cmd;
231 {
232 	int i;
233 
234 	for (i = 5000; i; i--) {
235 		if ( clmpcc_rdreg(sc, CLMPCC_REG_CCR) == 0 )
236 			break;
237 		delay(1);
238 	}
239 
240 	if ( i == 0 )
241 		printf("%s: channel %d command timeout (idle)\n",
242 			device_xname(&sc->sc_dev), chan);
243 
244 	clmpcc_wrreg(sc, CLMPCC_REG_CCR, cmd);
245 }
246 
247 integrate void
248 clmpcc_enable_transmitter(ch)
249 	struct clmpcc_chan *ch;
250 {
251 	u_int old;
252 	int s;
253 
254 	old = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
255 
256 	s = splserial();
257 	clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER,
258 		clmpcc_rdreg(ch->ch_sc, CLMPCC_REG_IER) | CLMPCC_IER_TX_EMPTY);
259 	SET(ch->ch_tty->t_state, TS_BUSY);
260 	splx(s);
261 
262 	clmpcc_select_channel(ch->ch_sc, old);
263 }
264 
265 static int
266 clmpcc_speed(sc, speed, cor, bpr)
267 	struct clmpcc_softc *sc;
268 	speed_t speed;
269 	int *cor, *bpr;
270 {
271 	int c, co, br;
272 
273 	for (co = 0, c = 8; c <= 2048; co++, c *= 4) {
274 		br = ((sc->sc_clk / c) / speed) - 1;
275 		if ( br < 0x100 ) {
276 			*cor = co;
277 			*bpr = br;
278 			return 0;
279 		}
280 	}
281 
282 	return -1;
283 }
284 
285 void
286 clmpcc_attach(sc)
287 	struct clmpcc_softc *sc;
288 {
289 	struct clmpcc_chan *ch;
290 	struct tty *tp;
291 	int chan;
292 
293 	if ( cons_sc != NULL &&
294 	     sc->sc_iot == cons_sc->sc_iot && sc->sc_ioh == cons_sc->sc_ioh )
295 		cons_sc = sc;
296 
297 	/* Initialise the chip */
298 	clmpcc_init(sc);
299 
300 	printf(": Cirrus Logic CD240%c Serial Controller\n",
301 		(clmpcc_rd_msvr(sc) & CLMPCC_MSVR_PORT_ID) ? '0' : '1');
302 
303 	sc->sc_softintr_cookie =
304 	    softint_establish(SOFTINT_SERIAL, clmpcc_softintr, sc);
305 	if (sc->sc_softintr_cookie == NULL)
306 		panic("clmpcc_attach: softintr_establish");
307 	memset(&(sc->sc_chans[0]), 0, sizeof(sc->sc_chans));
308 
309 	for (chan = 0; chan < CLMPCC_NUM_CHANS; chan++) {
310 		ch = &sc->sc_chans[chan];
311 
312 		ch->ch_sc = sc;
313 		ch->ch_car = chan;
314 
315 		tp = ttymalloc();
316 		tp->t_oproc = clmpcc_start;
317 		tp->t_param = clmpcc_param;
318 
319 		ch->ch_tty = tp;
320 
321 		ch->ch_ibuf = malloc(clmpcc_ibuf_size * 2, M_DEVBUF, M_NOWAIT);
322 		if ( ch->ch_ibuf == NULL ) {
323 			aprint_error_dev(&sc->sc_dev, "(%d): unable to allocate ring buffer\n",
324 		    		chan);
325 			return;
326 		}
327 
328 		ch->ch_ibuf_end = &(ch->ch_ibuf[clmpcc_ibuf_size * 2]);
329 		ch->ch_ibuf_rd = ch->ch_ibuf_wr = ch->ch_ibuf;
330 
331 		tty_attach(tp);
332 	}
333 
334 	aprint_error_dev(&sc->sc_dev, "%d channels available",
335 					    CLMPCC_NUM_CHANS);
336 	if ( cons_sc == sc ) {
337 		printf(", console on channel %d.\n", cons_chan);
338 		SET(sc->sc_chans[cons_chan].ch_flags, CLMPCC_FLG_IS_CONSOLE);
339 		SET(sc->sc_chans[cons_chan].ch_openflags, TIOCFLAG_SOFTCAR);
340 	} else
341 		printf(".\n");
342 }
343 
344 static int
345 clmpcc_init(sc)
346 	struct clmpcc_softc *sc;
347 {
348 	u_int tcor, tbpr;
349 	u_int rcor, rbpr;
350 	u_int msvr_rts, msvr_dtr;
351 	u_int ccr;
352 	int is_console;
353 	int i;
354 
355 	/*
356 	 * All we're really concerned about here is putting the chip
357 	 * into a quiescent state so that it won't do anything until
358 	 * clmpccopen() is called. (Except the console channel.)
359 	 */
360 
361 	/*
362 	 * If the chip is acting as console, set all channels to the supplied
363 	 * console baud rate. Otherwise, plump for 9600.
364 	 */
365 	if ( cons_sc &&
366 	     sc->sc_ioh == cons_sc->sc_ioh && sc->sc_iot == cons_sc->sc_iot ) {
367 		clmpcc_speed(sc, cons_rate, &tcor, &tbpr);
368 		clmpcc_speed(sc, cons_rate, &rcor, &rbpr);
369 		is_console = 1;
370 	} else {
371 		clmpcc_speed(sc, 9600, &tcor, &tbpr);
372 		clmpcc_speed(sc, 9600, &rcor, &rbpr);
373 		is_console = 0;
374 	}
375 
376 	/* Allow any pending output to be sent */
377 	delay(10000);
378 
379 	/* Send the Reset All command  to channel 0 (resets all channels!) */
380 	clmpcc_channel_cmd(sc, 0, CLMPCC_CCR_T0_RESET_ALL);
381 
382 	delay(1000);
383 
384 	/*
385 	 * The chip will set it's firmware revision register to a non-zero
386 	 * value to indicate completion of reset.
387 	 */
388 	for (i = 10000; clmpcc_rdreg(sc, CLMPCC_REG_GFRCR) == 0 && i; i--)
389 		delay(1);
390 
391 	if ( i == 0 ) {
392 		/*
393 		 * Watch out... If this chip is console, the message
394 		 * probably won't be sent since we just reset it!
395 		 */
396 		aprint_error_dev(&sc->sc_dev, "Failed to reset chip\n");
397 		return -1;
398 	}
399 
400 	for (i = 0; i < CLMPCC_NUM_CHANS; i++) {
401 		clmpcc_select_channel(sc, i);
402 
403 		/* All interrupts are disabled to begin with */
404 		clmpcc_wrreg(sc, CLMPCC_REG_IER, 0);
405 
406 		/* Make sure the channel interrupts on the correct vectors */
407 		clmpcc_wrreg(sc, CLMPCC_REG_LIVR, sc->sc_vector_base);
408 		clmpcc_wr_pilr(sc, CLMPCC_REG_RPILR, sc->sc_rpilr);
409 		clmpcc_wr_pilr(sc, CLMPCC_REG_TPILR, sc->sc_tpilr);
410 		clmpcc_wr_pilr(sc, CLMPCC_REG_MPILR, sc->sc_mpilr);
411 
412 		/* Receive timer prescaler set to 1ms */
413 		clmpcc_wrreg(sc, CLMPCC_REG_TPR,
414 				 CLMPCC_MSEC_TO_TPR(sc->sc_clk, 1));
415 
416 		/* We support Async mode only */
417 		clmpcc_wrreg(sc, CLMPCC_REG_CMR, CLMPCC_CMR_ASYNC);
418 
419 		/* Set the required baud rate */
420 		clmpcc_wrreg(sc, CLMPCC_REG_TCOR, CLMPCC_TCOR_CLK(tcor));
421 		clmpcc_wrreg(sc, CLMPCC_REG_TBPR, tbpr);
422 		clmpcc_wrreg(sc, CLMPCC_REG_RCOR, CLMPCC_RCOR_CLK(rcor));
423 		clmpcc_wrreg(sc, CLMPCC_REG_RBPR, rbpr);
424 
425 		/* Always default to 8N1 (XXX what about console?) */
426 		clmpcc_wrreg(sc, CLMPCC_REG_COR1, CLMPCC_COR1_CHAR_8BITS |
427 						  CLMPCC_COR1_NO_PARITY |
428 						  CLMPCC_COR1_IGNORE_PAR);
429 
430 		clmpcc_wrreg(sc, CLMPCC_REG_COR2, 0);
431 
432 		clmpcc_wrreg(sc, CLMPCC_REG_COR3, CLMPCC_COR3_STOP_1);
433 
434 		clmpcc_wrreg(sc, CLMPCC_REG_COR4, CLMPCC_COR4_DSRzd |
435 						  CLMPCC_COR4_CDzd |
436 						  CLMPCC_COR4_CTSzd);
437 
438 		clmpcc_wrreg(sc, CLMPCC_REG_COR5, CLMPCC_COR5_DSRod |
439 						  CLMPCC_COR5_CDod |
440 						  CLMPCC_COR5_CTSod |
441 						  CLMPCC_COR5_FLOW_NORM);
442 
443 		clmpcc_wrreg(sc, CLMPCC_REG_COR6, 0);
444 		clmpcc_wrreg(sc, CLMPCC_REG_COR7, 0);
445 
446 		/* Set the receive FIFO timeout */
447 		clmpcc_wrreg(sc, CLMPCC_REG_RTPRl, CLMPCC_RTPR_DEFAULT);
448 		clmpcc_wrreg(sc, CLMPCC_REG_RTPRh, 0);
449 
450 		/* At this point, we set up the console differently */
451 		if ( is_console && i == cons_chan ) {
452 			msvr_rts = CLMPCC_MSVR_RTS;
453 			msvr_dtr = CLMPCC_MSVR_DTR;
454 			ccr = CLMPCC_CCR_T0_RX_EN | CLMPCC_CCR_T0_TX_EN;
455 		} else {
456 			msvr_rts = 0;
457 			msvr_dtr = 0;
458 			ccr = CLMPCC_CCR_T0_RX_DIS | CLMPCC_CCR_T0_TX_DIS;
459 		}
460 
461 		clmpcc_wrreg(sc, CLMPCC_REG_MSVR_RTS, msvr_rts);
462 		clmpcc_wrreg(sc, CLMPCC_REG_MSVR_DTR, msvr_dtr);
463 		clmpcc_channel_cmd(sc, i, CLMPCC_CCR_T0_INIT | ccr);
464 		delay(100);
465 	}
466 
467 	return 0;
468 }
469 
470 static void
471 clmpcc_shutdown(ch)
472 	struct clmpcc_chan *ch;
473 {
474 	int oldch;
475 
476 	oldch = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
477 
478 	/* Turn off interrupts. */
479 	clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER, 0);
480 
481 	if ( ISCLR(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
482 		/* Disable the transmitter and receiver */
483 		clmpcc_channel_cmd(ch->ch_sc, ch->ch_car, CLMPCC_CCR_T0_RX_DIS |
484 							  CLMPCC_CCR_T0_TX_DIS);
485 
486 		/* Drop RTS and DTR */
487 		clmpcc_modem_control(ch, TIOCM_RTS | TIOCM_DTR, DMBIS);
488 	}
489 
490 	clmpcc_select_channel(ch->ch_sc, oldch);
491 }
492 
493 int
494 clmpccopen(dev, flag, mode, l)
495 	dev_t dev;
496 	int flag, mode;
497 	struct lwp *l;
498 {
499 	struct clmpcc_softc *sc;
500 	struct clmpcc_chan *ch;
501 	struct tty *tp;
502 	int oldch;
503 	int error;
504 
505 	sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
506 	if (sc == NULL)
507 		return (ENXIO);
508 
509 	ch = &sc->sc_chans[CLMPCCCHAN(dev)];
510 
511 	tp = ch->ch_tty;
512 
513 	if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
514 		return EBUSY;
515 
516 	/*
517 	 * Do the following iff this is a first open.
518 	 */
519 	if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
520 
521 		ttychars(tp);
522 
523 		tp->t_dev = dev;
524 		tp->t_iflag = TTYDEF_IFLAG;
525 		tp->t_oflag = TTYDEF_OFLAG;
526 		tp->t_lflag = TTYDEF_LFLAG;
527 		tp->t_cflag = TTYDEF_CFLAG;
528 		tp->t_ospeed = tp->t_ispeed = TTYDEF_SPEED;
529 
530 		if ( ISSET(ch->ch_openflags, TIOCFLAG_CLOCAL) )
531 			SET(tp->t_cflag, CLOCAL);
532 		if ( ISSET(ch->ch_openflags, TIOCFLAG_CRTSCTS) )
533 			SET(tp->t_cflag, CRTSCTS);
534 		if ( ISSET(ch->ch_openflags, TIOCFLAG_MDMBUF) )
535 			SET(tp->t_cflag, MDMBUF);
536 
537 		/*
538 		 * Override some settings if the channel is being
539 		 * used as the console.
540 		 */
541 		if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
542 			tp->t_ospeed = tp->t_ispeed = cons_rate;
543 			SET(tp->t_cflag, CLOCAL);
544 			CLR(tp->t_cflag, CRTSCTS);
545 			CLR(tp->t_cflag, HUPCL);
546 		}
547 
548 		ch->ch_control = 0;
549 
550 		clmpcc_param(tp, &tp->t_termios);
551 		ttsetwater(tp);
552 
553 		/* Clear the input ring */
554 		ch->ch_ibuf_rd = ch->ch_ibuf_wr = ch->ch_ibuf;
555 
556 		/* Select the channel */
557 		oldch = clmpcc_select_channel(sc, ch->ch_car);
558 
559 		/* Reset it */
560 		clmpcc_channel_cmd(sc, ch->ch_car, CLMPCC_CCR_T0_CLEAR |
561 						   CLMPCC_CCR_T0_RX_EN |
562 						   CLMPCC_CCR_T0_TX_EN);
563 
564 		/* Enable receiver and modem change interrupts. */
565 		clmpcc_wrreg(sc, CLMPCC_REG_IER, CLMPCC_IER_MODEM |
566 						 CLMPCC_IER_RET |
567 						 CLMPCC_IER_RX_FIFO);
568 
569 		/* Raise RTS and DTR */
570 		clmpcc_modem_control(ch, TIOCM_RTS | TIOCM_DTR, DMBIS);
571 
572 		clmpcc_select_channel(sc, oldch);
573 	}
574 
575 	error = ttyopen(tp, CLMPCCDIALOUT(dev), ISSET(flag, O_NONBLOCK));
576 	if (error)
577 		goto bad;
578 
579 	error = (*tp->t_linesw->l_open)(dev, tp);
580 	if (error)
581 		goto bad;
582 
583 	return 0;
584 
585 bad:
586 	if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
587 		/*
588 		 * We failed to open the device, and nobody else had it opened.
589 		 * Clean up the state as appropriate.
590 		 */
591 		clmpcc_shutdown(ch);
592 	}
593 
594 	return error;
595 }
596 
597 int
598 clmpccclose(dev, flag, mode, l)
599 	dev_t dev;
600 	int flag, mode;
601 	struct lwp *l;
602 {
603 	struct clmpcc_softc	*sc =
604 		device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
605 	struct clmpcc_chan	*ch = &sc->sc_chans[CLMPCCCHAN(dev)];
606 	struct tty		*tp = ch->ch_tty;
607 	int s;
608 
609 	if ( ISCLR(tp->t_state, TS_ISOPEN) )
610 		return 0;
611 
612 	(*tp->t_linesw->l_close)(tp, flag);
613 
614 	s = spltty();
615 
616 	if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
617 		/*
618 		 * Although we got a last close, the device may still be in
619 		 * use; e.g. if this was the dialout node, and there are still
620 		 * processes waiting for carrier on the non-dialout node.
621 		 */
622 		clmpcc_shutdown(ch);
623 	}
624 
625 	ttyclose(tp);
626 
627 	splx(s);
628 
629 	return 0;
630 }
631 
632 int
633 clmpccread(dev, uio, flag)
634 	dev_t dev;
635 	struct uio *uio;
636 	int flag;
637 {
638 	struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
639 	struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
640 
641 	return ((*tp->t_linesw->l_read)(tp, uio, flag));
642 }
643 
644 int
645 clmpccwrite(dev, uio, flag)
646 	dev_t dev;
647 	struct uio *uio;
648 	int flag;
649 {
650 	struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
651 	struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
652 
653 	return ((*tp->t_linesw->l_write)(tp, uio, flag));
654 }
655 
656 int
657 clmpccpoll(dev, events, l)
658 	dev_t dev;
659 	int events;
660 	struct lwp *l;
661 {
662 	struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
663 	struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
664 
665 	return ((*tp->t_linesw->l_poll)(tp, events, l));
666 }
667 
668 struct tty *
669 clmpcctty(dev)
670 	dev_t dev;
671 {
672 	struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
673 
674 	return (sc->sc_chans[CLMPCCCHAN(dev)].ch_tty);
675 }
676 
677 int
678 clmpccioctl(dev, cmd, data, flag, l)
679 	dev_t dev;
680 	u_long cmd;
681 	void *data;
682 	int flag;
683 	struct lwp *l;
684 {
685 	struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
686 	struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(dev)];
687 	struct tty *tp = ch->ch_tty;
688 	int error;
689 
690 	error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
691 	if (error != EPASSTHROUGH)
692 		return error;
693 
694 	error = ttioctl(tp, cmd, data, flag, l);
695 	if (error != EPASSTHROUGH)
696 		return error;
697 
698 	error = 0;
699 
700 	switch (cmd) {
701 	case TIOCSBRK:
702 		SET(ch->ch_flags, CLMPCC_FLG_START_BREAK);
703 		clmpcc_enable_transmitter(ch);
704 		break;
705 
706 	case TIOCCBRK:
707 		SET(ch->ch_flags, CLMPCC_FLG_END_BREAK);
708 		clmpcc_enable_transmitter(ch);
709 		break;
710 
711 	case TIOCSDTR:
712 		clmpcc_modem_control(ch, TIOCM_DTR, DMBIS);
713 		break;
714 
715 	case TIOCCDTR:
716 		clmpcc_modem_control(ch, TIOCM_DTR, DMBIC);
717 		break;
718 
719 	case TIOCMSET:
720 		clmpcc_modem_control(ch, *((int *)data), DMSET);
721 		break;
722 
723 	case TIOCMBIS:
724 		clmpcc_modem_control(ch, *((int *)data), DMBIS);
725 		break;
726 
727 	case TIOCMBIC:
728 		clmpcc_modem_control(ch, *((int *)data), DMBIC);
729 		break;
730 
731 	case TIOCMGET:
732 		*((int *)data) = clmpcc_modem_control(ch, 0, DMGET);
733 		break;
734 
735 	case TIOCGFLAGS:
736 		*((int *)data) = ch->ch_openflags;
737 		break;
738 
739 	case TIOCSFLAGS:
740 		error = kauth_authorize_device_tty(l->l_cred,
741 		    KAUTH_DEVICE_TTY_PRIVSET, tp);
742 		if ( error )
743 			break;
744 		ch->ch_openflags = *((int *)data) &
745 			(TIOCFLAG_SOFTCAR | TIOCFLAG_CLOCAL |
746 			 TIOCFLAG_CRTSCTS | TIOCFLAG_MDMBUF);
747 		if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) )
748 			SET(ch->ch_openflags, TIOCFLAG_SOFTCAR);
749 		break;
750 
751 	default:
752 		error = EPASSTHROUGH;
753 		break;
754 	}
755 
756 	return error;
757 }
758 
759 int
760 clmpcc_modem_control(ch, bits, howto)
761 	struct clmpcc_chan *ch;
762 	int bits;
763 	int howto;
764 {
765 	struct clmpcc_softc *sc = ch->ch_sc;
766 	struct tty *tp = ch->ch_tty;
767 	int oldch;
768 	int msvr;
769 	int rbits = 0;
770 
771 	oldch = clmpcc_select_channel(sc, ch->ch_car);
772 
773 	switch ( howto ) {
774 	case DMGET:
775 		msvr = clmpcc_rd_msvr(sc);
776 
777 		if ( sc->sc_swaprtsdtr ) {
778 			rbits |= (msvr & CLMPCC_MSVR_RTS) ? TIOCM_DTR : 0;
779 			rbits |= (msvr & CLMPCC_MSVR_DTR) ? TIOCM_RTS : 0;
780 		} else {
781 			rbits |= (msvr & CLMPCC_MSVR_RTS) ? TIOCM_RTS : 0;
782 			rbits |= (msvr & CLMPCC_MSVR_DTR) ? TIOCM_DTR : 0;
783 		}
784 
785 		rbits |= (msvr & CLMPCC_MSVR_CTS) ? TIOCM_CTS : 0;
786 		rbits |= (msvr & CLMPCC_MSVR_CD)  ? TIOCM_CD  : 0;
787 		rbits |= (msvr & CLMPCC_MSVR_DSR) ? TIOCM_DSR : 0;
788 		break;
789 
790 	case DMSET:
791 		if ( sc->sc_swaprtsdtr ) {
792 		    if ( ISCLR(tp->t_cflag, CRTSCTS) )
793 			clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR,
794 					bits & TIOCM_RTS ? CLMPCC_MSVR_DTR : 0);
795 		    clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS,
796 				bits & TIOCM_DTR ? CLMPCC_MSVR_RTS : 0);
797 		} else {
798 		    if ( ISCLR(tp->t_cflag, CRTSCTS) )
799 			clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS,
800 					bits & TIOCM_RTS ? CLMPCC_MSVR_RTS : 0);
801 		    clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR,
802 				bits & TIOCM_DTR ? CLMPCC_MSVR_DTR : 0);
803 		}
804 		break;
805 
806 	case DMBIS:
807 		if ( sc->sc_swaprtsdtr ) {
808 		    if ( ISCLR(tp->t_cflag, CRTSCTS) && ISSET(bits, TIOCM_RTS) )
809 			clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_DTR, CLMPCC_MSVR_DTR);
810 		    if ( ISSET(bits, TIOCM_DTR) )
811 			clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_RTS, CLMPCC_MSVR_RTS);
812 		} else {
813 		    if ( ISCLR(tp->t_cflag, CRTSCTS) && ISSET(bits, TIOCM_RTS) )
814 			clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_RTS, CLMPCC_MSVR_RTS);
815 		    if ( ISSET(bits, TIOCM_DTR) )
816 			clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_DTR, CLMPCC_MSVR_DTR);
817 		}
818 		break;
819 
820 	case DMBIC:
821 		if ( sc->sc_swaprtsdtr ) {
822 		    if ( ISCLR(tp->t_cflag, CRTSCTS) && ISCLR(bits, TIOCM_RTS) )
823 			clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR, 0);
824 		    if ( ISCLR(bits, TIOCM_DTR) )
825 			clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS, 0);
826 		} else {
827 		    if ( ISCLR(tp->t_cflag, CRTSCTS) && ISCLR(bits, TIOCM_RTS) )
828 			clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS, 0);
829 		    if ( ISCLR(bits, TIOCM_DTR) )
830 			clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR, 0);
831 		}
832 		break;
833 	}
834 
835 	clmpcc_select_channel(sc, oldch);
836 
837 	return rbits;
838 }
839 
840 static int
841 clmpcc_param(tp, t)
842 	struct tty *tp;
843 	struct termios *t;
844 {
845 	struct clmpcc_softc *sc =
846 	    device_lookup(&clmpcc_cd, CLMPCCUNIT(tp->t_dev));
847 	struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
848 	u_char cor;
849 	u_char oldch;
850 	int oclk, obpr;
851 	int iclk, ibpr;
852 	int s;
853 
854 	/* Check requested parameters. */
855 	if ( t->c_ospeed && clmpcc_speed(sc, t->c_ospeed, &oclk, &obpr) < 0 )
856 		return EINVAL;
857 
858 	if ( t->c_ispeed && clmpcc_speed(sc, t->c_ispeed, &iclk, &ibpr) < 0 )
859 		return EINVAL;
860 
861 	/*
862 	 * For the console, always force CLOCAL and !HUPCL, so that the port
863 	 * is always active.
864 	 */
865 	if ( ISSET(ch->ch_openflags, TIOCFLAG_SOFTCAR) ||
866 	     ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
867 		SET(t->c_cflag, CLOCAL);
868 		CLR(t->c_cflag, HUPCL);
869 	}
870 
871 	CLR(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS);
872 
873 	/* If ospeed it zero, hangup the line */
874 	clmpcc_modem_control(ch, TIOCM_DTR, t->c_ospeed == 0 ? DMBIC : DMBIS);
875 
876 	if ( t->c_ospeed ) {
877 		ch->ch_tcor = CLMPCC_TCOR_CLK(oclk);
878 		ch->ch_tbpr = obpr;
879 	} else {
880 		ch->ch_tcor = 0;
881 		ch->ch_tbpr = 0;
882 	}
883 
884 	if ( t->c_ispeed ) {
885 		ch->ch_rcor = CLMPCC_RCOR_CLK(iclk);
886 		ch->ch_rbpr = ibpr;
887 	} else {
888 		ch->ch_rcor = 0;
889 		ch->ch_rbpr = 0;
890 	}
891 
892 	/* Work out value to use for COR1 */
893 	cor = 0;
894 	if ( ISSET(t->c_cflag, PARENB) ) {
895 		cor |= CLMPCC_COR1_NORM_PARITY;
896 		if ( ISSET(t->c_cflag, PARODD) )
897 			cor |= CLMPCC_COR1_ODD_PARITY;
898 	}
899 
900 	if ( ISCLR(t->c_cflag, INPCK) )
901 		cor |= CLMPCC_COR1_IGNORE_PAR;
902 
903 	switch ( t->c_cflag & CSIZE ) {
904 	  case CS5:
905 		cor |= CLMPCC_COR1_CHAR_5BITS;
906 		break;
907 
908 	  case CS6:
909 		cor |= CLMPCC_COR1_CHAR_6BITS;
910 		break;
911 
912 	  case CS7:
913 		cor |= CLMPCC_COR1_CHAR_7BITS;
914 		break;
915 
916 	  case CS8:
917 		cor |= CLMPCC_COR1_CHAR_8BITS;
918 		break;
919 	}
920 
921 	ch->ch_cor1 = cor;
922 
923 	/*
924 	 * The only interesting bit in COR2 is 'CTS Automatic Enable'
925 	 * when hardware flow control is in effect.
926 	 */
927 	ch->ch_cor2 = ISSET(t->c_cflag, CRTSCTS) ? CLMPCC_COR2_CtsAE : 0;
928 
929 	/* COR3 needs to be set to the number of stop bits... */
930 	ch->ch_cor3 = ISSET(t->c_cflag, CSTOPB) ? CLMPCC_COR3_STOP_2 :
931 						  CLMPCC_COR3_STOP_1;
932 
933 	/*
934 	 * COR4 contains the FIFO threshold setting.
935 	 * We adjust the threshold depending on the input speed...
936 	 */
937 	if ( t->c_ispeed <= 1200 )
938 		ch->ch_cor4 = CLMPCC_COR4_FIFO_LOW;
939 	else if ( t->c_ispeed <= 19200 )
940 		ch->ch_cor4 = CLMPCC_COR4_FIFO_MED;
941 	else
942 		ch->ch_cor4 = CLMPCC_COR4_FIFO_HIGH;
943 
944 	/*
945 	 * If chip is used with CTS and DTR swapped, we can enable
946 	 * automatic hardware flow control.
947 	 */
948 	if ( sc->sc_swaprtsdtr && ISSET(t->c_cflag, CRTSCTS) )
949 		ch->ch_cor5 = CLMPCC_COR5_FLOW_NORM;
950 	else
951 		ch->ch_cor5 = 0;
952 
953 	s = splserial();
954 	oldch = clmpcc_select_channel(sc, ch->ch_car);
955 
956 	/*
957 	 * COR2 needs to be set immediately otherwise we might never get
958 	 * a Tx EMPTY interrupt to change the other parameters.
959 	 */
960 	if ( clmpcc_rdreg(sc, CLMPCC_REG_COR2) != ch->ch_cor2 )
961 		clmpcc_wrreg(sc, CLMPCC_REG_COR2, ch->ch_cor2);
962 
963 	if ( ISCLR(ch->ch_tty->t_state, TS_BUSY) )
964 		clmpcc_set_params(ch);
965 	else
966 		SET(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS);
967 
968 	clmpcc_select_channel(sc, oldch);
969 
970 	splx(s);
971 
972 	return 0;
973 }
974 
975 static void
976 clmpcc_set_params(ch)
977 	struct clmpcc_chan *ch;
978 {
979 	struct clmpcc_softc *sc = ch->ch_sc;
980 	u_char r1;
981 	u_char r2;
982 
983 	if ( ch->ch_tcor || ch->ch_tbpr ) {
984 		r1 = clmpcc_rdreg(sc, CLMPCC_REG_TCOR);
985 		r2 = clmpcc_rdreg(sc, CLMPCC_REG_TBPR);
986 		/* Only write Tx rate if it really has changed */
987 		if ( ch->ch_tcor != r1 || ch->ch_tbpr != r2 ) {
988 			clmpcc_wrreg(sc, CLMPCC_REG_TCOR, ch->ch_tcor);
989 			clmpcc_wrreg(sc, CLMPCC_REG_TBPR, ch->ch_tbpr);
990 		}
991 	}
992 
993 	if ( ch->ch_rcor || ch->ch_rbpr ) {
994 		r1 = clmpcc_rdreg(sc, CLMPCC_REG_RCOR);
995 		r2 = clmpcc_rdreg(sc, CLMPCC_REG_RBPR);
996 		/* Only write Rx rate if it really has changed */
997 		if ( ch->ch_rcor != r1 || ch->ch_rbpr != r2 ) {
998 			clmpcc_wrreg(sc, CLMPCC_REG_RCOR, ch->ch_rcor);
999 			clmpcc_wrreg(sc, CLMPCC_REG_RBPR, ch->ch_rbpr);
1000 		}
1001 	}
1002 
1003 	if ( clmpcc_rdreg(sc, CLMPCC_REG_COR1) != ch->ch_cor1 ) {
1004 		clmpcc_wrreg(sc, CLMPCC_REG_COR1, ch->ch_cor1);
1005 		/* Any change to COR1 requires an INIT command */
1006 		SET(ch->ch_flags, CLMPCC_FLG_NEED_INIT);
1007 	}
1008 
1009 	if ( clmpcc_rdreg(sc, CLMPCC_REG_COR3) != ch->ch_cor3 )
1010 		clmpcc_wrreg(sc, CLMPCC_REG_COR3, ch->ch_cor3);
1011 
1012 	r1 = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
1013 	if ( ch->ch_cor4 != (r1 & CLMPCC_COR4_FIFO_MASK) ) {
1014 		/*
1015 		 * Note: If the FIFO has changed, we always set it to
1016 		 * zero here and disable the Receive Timeout interrupt.
1017 		 * It's up to the Rx Interrupt handler to pick the
1018 		 * appropriate moment to write the new FIFO length.
1019 		 */
1020 		clmpcc_wrreg(sc, CLMPCC_REG_COR4, r1 & ~CLMPCC_COR4_FIFO_MASK);
1021 		r1 = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1022 		clmpcc_wrreg(sc, CLMPCC_REG_IER, r1 & ~CLMPCC_IER_RET);
1023 		SET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
1024 	}
1025 
1026 	r1 = clmpcc_rdreg(sc, CLMPCC_REG_COR5);
1027 	if ( ch->ch_cor5 != (r1 & CLMPCC_COR5_FLOW_MASK) ) {
1028 		r1 &= ~CLMPCC_COR5_FLOW_MASK;
1029 		clmpcc_wrreg(sc, CLMPCC_REG_COR5, r1 | ch->ch_cor5);
1030 	}
1031 }
1032 
1033 static void
1034 clmpcc_start(tp)
1035 	struct tty *tp;
1036 {
1037 	struct clmpcc_softc *sc =
1038 	    device_lookup(&clmpcc_cd, CLMPCCUNIT(tp->t_dev));
1039 	struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
1040 	u_int oldch;
1041 	int s;
1042 
1043 	s = spltty();
1044 
1045 	if ( ISCLR(tp->t_state, TS_TTSTOP | TS_TIMEOUT | TS_BUSY) ) {
1046 		ttypull(tp);
1047 		if ( ISSET(ch->ch_flags, CLMPCC_FLG_START_BREAK |
1048 					 CLMPCC_FLG_END_BREAK) ||
1049 		     tp->t_outq.c_cc > 0 ) {
1050 
1051 			if ( ISCLR(ch->ch_flags, CLMPCC_FLG_START_BREAK |
1052 						 CLMPCC_FLG_END_BREAK) ) {
1053 				ch->ch_obuf_addr = tp->t_outq.c_cf;
1054 				ch->ch_obuf_size = ndqb(&tp->t_outq, 0);
1055 			}
1056 
1057 			/* Enable TX empty interrupts */
1058 			oldch = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
1059 			clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER,
1060 				clmpcc_rdreg(ch->ch_sc, CLMPCC_REG_IER) |
1061 					     CLMPCC_IER_TX_EMPTY);
1062 			clmpcc_select_channel(ch->ch_sc, oldch);
1063 			SET(tp->t_state, TS_BUSY);
1064 		}
1065 	}
1066 
1067 	splx(s);
1068 }
1069 
1070 /*
1071  * Stop output on a line.
1072  */
1073 void
1074 clmpccstop(tp, flag)
1075 	struct tty *tp;
1076 	int flag;
1077 {
1078 	struct clmpcc_softc *sc =
1079 	    device_lookup(&clmpcc_cd, CLMPCCUNIT(tp->t_dev));
1080 	struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
1081 	int s;
1082 
1083 	s = splserial();
1084 
1085 	if ( ISSET(tp->t_state, TS_BUSY) ) {
1086 		if ( ISCLR(tp->t_state, TS_TTSTOP) )
1087 			SET(tp->t_state, TS_FLUSH);
1088 		ch->ch_obuf_size = 0;
1089 	}
1090 	splx(s);
1091 }
1092 
1093 /*
1094  * RX interrupt routine
1095  */
1096 int
1097 clmpcc_rxintr(arg)
1098 	void *arg;
1099 {
1100 	struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1101 	struct clmpcc_chan *ch;
1102 	u_int8_t *put, *end, rxd;
1103 	u_char errstat;
1104 	u_char fc, tc;
1105 	u_char risr;
1106 	u_char rir;
1107 #ifdef DDB
1108 	int saw_break = 0;
1109 #endif
1110 
1111 	/* Receive interrupt active? */
1112 	rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1113 
1114 	/*
1115 	 * If we're using auto-vectored interrupts, we have to
1116 	 * verify if the chip is generating the interrupt.
1117 	 */
1118 	if ( sc->sc_vector_base == 0 && (rir & CLMPCC_RIR_RACT) == 0 )
1119 		return 0;
1120 
1121 	/* Get pointer to interrupting channel's data structure */
1122 	ch = &sc->sc_chans[rir & CLMPCC_RIR_RCN_MASK];
1123 
1124 	/* Get the interrupt status register */
1125 	risr = clmpcc_rdreg(sc, CLMPCC_REG_RISRl);
1126 	if ( risr & CLMPCC_RISR_TIMEOUT ) {
1127 		u_char reg;
1128 		/*
1129 		 * Set the FIFO threshold to zero, and disable
1130 		 * further receive timeout interrupts.
1131 		 */
1132 		reg = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
1133 		clmpcc_wrreg(sc, CLMPCC_REG_COR4, reg & ~CLMPCC_COR4_FIFO_MASK);
1134 		reg = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1135 		clmpcc_wrreg(sc, CLMPCC_REG_IER, reg & ~CLMPCC_IER_RET);
1136 		clmpcc_wrreg(sc, CLMPCC_REG_REOIR, CLMPCC_REOIR_NO_TRANS);
1137 		SET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
1138 		return 1;
1139 	}
1140 
1141 	/* How many bytes are waiting in the FIFO?  */
1142 	fc = tc = clmpcc_rdreg(sc, CLMPCC_REG_RFOC) & CLMPCC_RFOC_MASK;
1143 
1144 #ifdef DDB
1145 	/*
1146 	 * Allow BREAK on the console to drop to the debugger.
1147 	 */
1148 	if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) &&
1149 	     risr & CLMPCC_RISR_BREAK ) {
1150 		saw_break = 1;
1151 	}
1152 #endif
1153 
1154 	if ( ISCLR(ch->ch_tty->t_state, TS_ISOPEN) && fc ) {
1155 		/* Just get rid of the data */
1156 		while ( fc-- )
1157 			(void) clmpcc_rd_rxdata(sc);
1158 		goto rx_done;
1159 	}
1160 
1161 	put = ch->ch_ibuf_wr;
1162 	end = ch->ch_ibuf_end;
1163 
1164 	/*
1165 	 * Note: The chip is completely hosed WRT these error
1166 	 *       conditions; there seems to be no way to associate
1167 	 *       the error with the correct character in the FIFO.
1168 	 *       We compromise by tagging the first character we read
1169 	 *       with the error. Not perfect, but there's no other way.
1170 	 */
1171 	errstat = 0;
1172 	if ( risr & CLMPCC_RISR_PARITY )
1173 		errstat |= TTY_PE;
1174 	if ( risr & (CLMPCC_RISR_FRAMING | CLMPCC_RISR_BREAK) )
1175 		errstat |= TTY_FE;
1176 
1177 	/*
1178 	 * As long as there are characters in the FIFO, and we
1179 	 * have space for them...
1180 	 */
1181 	while ( fc > 0 ) {
1182 
1183 		*put++ = rxd = clmpcc_rd_rxdata(sc);
1184 		*put++ = errstat;
1185 
1186 		if ( put >= end )
1187 			put = ch->ch_ibuf;
1188 
1189 		if ( put == ch->ch_ibuf_rd ) {
1190 			put -= 2;
1191 			if ( put < ch->ch_ibuf )
1192 				put = end - 2;
1193 		}
1194 
1195 		errstat = 0;
1196 		fc--;
1197 	}
1198 
1199 	ch->ch_ibuf_wr = put;
1200 
1201 #if 0
1202 	if ( sc->sc_swaprtsdtr == 0 &&
1203 	     ISSET(cy->cy_tty->t_cflag, CRTSCTS) && cc < ch->ch_r_hiwat) {
1204 		/*
1205 		 * If RTS/DTR are not physically swapped, we have to
1206 		 * do hardware flow control manually
1207 		 */
1208 		clmpcc_wr_msvr(sc, CLMPCC_MSVR_RTS, 0);
1209 	}
1210 #endif
1211 
1212 rx_done:
1213 	if ( fc != tc ) {
1214 		if ( ISSET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR) ) {
1215 			u_char reg;
1216 			/*
1217 			 * Set the FIFO threshold to the preset value,
1218 			 * and enable receive timeout interrupts.
1219 			 */
1220 			reg = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
1221 			reg = (reg & ~CLMPCC_COR4_FIFO_MASK) | ch->ch_cor4;
1222 			clmpcc_wrreg(sc, CLMPCC_REG_COR4, reg);
1223 			reg = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1224 			clmpcc_wrreg(sc, CLMPCC_REG_IER, reg | CLMPCC_IER_RET);
1225 			CLR(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
1226 		}
1227 
1228 		clmpcc_wrreg(sc, CLMPCC_REG_REOIR, 0);
1229 		softint_schedule(sc->sc_softintr_cookie);
1230 	} else
1231 		clmpcc_wrreg(sc, CLMPCC_REG_REOIR, CLMPCC_REOIR_NO_TRANS);
1232 
1233 #ifdef DDB
1234 	/*
1235 	 * Only =after= we write REOIR is it safe to drop to the debugger.
1236 	 */
1237 	if ( saw_break )
1238 		Debugger();
1239 #endif
1240 
1241 	return 1;
1242 }
1243 
1244 /*
1245  * Tx interrupt routine
1246  */
1247 int
1248 clmpcc_txintr(arg)
1249 	void *arg;
1250 {
1251 	struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1252 	struct clmpcc_chan *ch;
1253 	struct tty *tp;
1254 	u_char ftc, oftc;
1255 	u_char tir, teoir;
1256 	int etcmode = 0;
1257 
1258 	/* Tx interrupt active? */
1259 	tir = clmpcc_rdreg(sc, CLMPCC_REG_TIR);
1260 
1261 	/*
1262 	 * If we're using auto-vectored interrupts, we have to
1263 	 * verify if the chip is generating the interrupt.
1264 	 */
1265 	if ( sc->sc_vector_base == 0 && (tir & CLMPCC_TIR_TACT) == 0 )
1266 		return 0;
1267 
1268 	/* Get pointer to interrupting channel's data structure */
1269 	ch = &sc->sc_chans[tir & CLMPCC_TIR_TCN_MASK];
1270 	tp = ch->ch_tty;
1271 
1272 	/* Dummy read of the interrupt status register */
1273 	(void) clmpcc_rdreg(sc, CLMPCC_REG_TISR);
1274 
1275 	/* Make sure embedded transmit commands are disabled */
1276 	clmpcc_wrreg(sc, CLMPCC_REG_COR2, ch->ch_cor2);
1277 
1278 	ftc = oftc = clmpcc_rdreg(sc, CLMPCC_REG_TFTC);
1279 
1280 	/* Handle a delayed parameter change */
1281 	if ( ISSET(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS) ) {
1282 		CLR(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS);
1283 		clmpcc_set_params(ch);
1284 	}
1285 
1286 	if ( ch->ch_obuf_size > 0 ) {
1287 		u_int n = min(ch->ch_obuf_size, ftc);
1288 
1289 		clmpcc_wrtx_multi(sc, ch->ch_obuf_addr, n);
1290 
1291 		ftc -= n;
1292 		ch->ch_obuf_size -= n;
1293 		ch->ch_obuf_addr += n;
1294 
1295 	} else {
1296 		/*
1297 		 * Check if we should start/stop a break
1298 		 */
1299 		if ( ISSET(ch->ch_flags, CLMPCC_FLG_START_BREAK) ) {
1300 			CLR(ch->ch_flags, CLMPCC_FLG_START_BREAK);
1301 			/* Enable embedded transmit commands */
1302 			clmpcc_wrreg(sc, CLMPCC_REG_COR2,
1303 					ch->ch_cor2 | CLMPCC_COR2_ETC);
1304 			clmpcc_wr_txdata(sc, CLMPCC_ETC_MAGIC);
1305 			clmpcc_wr_txdata(sc, CLMPCC_ETC_SEND_BREAK);
1306 			ftc -= 2;
1307 			etcmode = 1;
1308 		}
1309 
1310 		if ( ISSET(ch->ch_flags, CLMPCC_FLG_END_BREAK) ) {
1311 			CLR(ch->ch_flags, CLMPCC_FLG_END_BREAK);
1312 			/* Enable embedded transmit commands */
1313 			clmpcc_wrreg(sc, CLMPCC_REG_COR2,
1314 					ch->ch_cor2 | CLMPCC_COR2_ETC);
1315 			clmpcc_wr_txdata(sc, CLMPCC_ETC_MAGIC);
1316 			clmpcc_wr_txdata(sc, CLMPCC_ETC_STOP_BREAK);
1317 			ftc -= 2;
1318 			etcmode = 1;
1319 		}
1320 	}
1321 
1322 	tir = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1323 
1324 	if ( ftc != oftc ) {
1325 		/*
1326 		 * Enable/disable the Tx FIFO threshold interrupt
1327 		 * according to how much data is in the FIFO.
1328 		 * However, always disable the FIFO threshold if
1329 		 * we've left the channel in 'Embedded Transmit
1330 		 * Command' mode.
1331 		 */
1332 		if ( etcmode || ftc >= ch->ch_cor4 )
1333 			tir &= ~CLMPCC_IER_TX_FIFO;
1334 		else
1335 			tir |= CLMPCC_IER_TX_FIFO;
1336 		teoir = 0;
1337 	} else {
1338 		/*
1339 		 * No data was sent.
1340 		 * Disable transmit interrupt.
1341 		 */
1342 		tir &= ~(CLMPCC_IER_TX_EMPTY|CLMPCC_IER_TX_FIFO);
1343 		teoir = CLMPCC_TEOIR_NO_TRANS;
1344 
1345 		/*
1346 		 * Request Tx processing in the soft interrupt handler
1347 		 */
1348 		ch->ch_tx_done = 1;
1349 		softint_schedule(sc->sc_softintr_cookie);
1350 	}
1351 
1352 	clmpcc_wrreg(sc, CLMPCC_REG_IER, tir);
1353 	clmpcc_wrreg(sc, CLMPCC_REG_TEOIR, teoir);
1354 
1355 	return 1;
1356 }
1357 
1358 /*
1359  * Modem change interrupt routine
1360  */
1361 int
1362 clmpcc_mdintr(arg)
1363 	void *arg;
1364 {
1365 	struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1366 	u_char mir;
1367 
1368 	/* Modem status interrupt active? */
1369 	mir = clmpcc_rdreg(sc, CLMPCC_REG_MIR);
1370 
1371 	/*
1372 	 * If we're using auto-vectored interrupts, we have to
1373 	 * verify if the chip is generating the interrupt.
1374 	 */
1375 	if ( sc->sc_vector_base == 0 && (mir & CLMPCC_MIR_MACT) == 0 )
1376 		return 0;
1377 
1378 	/* Dummy read of the interrupt status register */
1379 	(void) clmpcc_rdreg(sc, CLMPCC_REG_MISR);
1380 
1381 	/* Retrieve current status of modem lines. */
1382 	sc->sc_chans[mir & CLMPCC_MIR_MCN_MASK].ch_control |=
1383 		clmpcc_rd_msvr(sc) & CLMPCC_MSVR_CD;
1384 
1385 	clmpcc_wrreg(sc, CLMPCC_REG_MEOIR, 0);
1386 	softint_schedule(sc->sc_softintr_cookie);
1387 
1388 	return 1;
1389 }
1390 
1391 void
1392 clmpcc_softintr(arg)
1393 	void *arg;
1394 {
1395 	struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1396 	struct clmpcc_chan *ch;
1397 	struct tty *tp;
1398 	int (*rint)(int, struct tty *);
1399 	u_char *get;
1400 	u_char reg;
1401 	u_int c;
1402 	int chan;
1403 
1404 	/* Handle Modem state changes too... */
1405 
1406 	for (chan = 0; chan < CLMPCC_NUM_CHANS; chan++) {
1407 		ch = &sc->sc_chans[chan];
1408 		tp = ch->ch_tty;
1409 
1410 		get = ch->ch_ibuf_rd;
1411 		rint = tp->t_linesw->l_rint;
1412 
1413 		/* Squirt buffered incoming data into the tty layer */
1414 		while ( get != ch->ch_ibuf_wr ) {
1415 			c = get[0];
1416 			c |= ((u_int)get[1]) << 8;
1417 			if ( (rint)(c, tp) == -1 ) {
1418 				ch->ch_ibuf_rd = ch->ch_ibuf_wr;
1419 				break;
1420 			}
1421 
1422 			get += 2;
1423 			if ( get == ch->ch_ibuf_end )
1424 				get = ch->ch_ibuf;
1425 
1426 			ch->ch_ibuf_rd = get;
1427 		}
1428 
1429 		/*
1430 		 * Is the transmitter idle and in need of attention?
1431 		 */
1432 		if ( ch->ch_tx_done ) {
1433 			ch->ch_tx_done = 0;
1434 
1435 			if ( ISSET(ch->ch_flags, CLMPCC_FLG_NEED_INIT) ) {
1436 				clmpcc_channel_cmd(sc, ch->ch_car,
1437 						       CLMPCC_CCR_T0_INIT  |
1438 						       CLMPCC_CCR_T0_RX_EN |
1439 					   	       CLMPCC_CCR_T0_TX_EN);
1440 				CLR(ch->ch_flags, CLMPCC_FLG_NEED_INIT);
1441 
1442 				/*
1443 				 * Allow time for the channel to initialise.
1444 				 * (Empirically derived duration; there must
1445 				 * be another way to determine the command
1446 				 * has completed without busy-waiting...)
1447 				 */
1448 				delay(800);
1449 
1450 				/*
1451 				 * Update the tty layer's idea of the carrier
1452 				 * bit, in case we changed CLOCAL or MDMBUF.
1453 				 * We don't hang up here; we only do that by
1454 				 * explicit request.
1455 				 */
1456 				reg = clmpcc_rd_msvr(sc) & CLMPCC_MSVR_CD;
1457 				(*tp->t_linesw->l_modem)(tp, reg != 0);
1458 			}
1459 
1460 			CLR(tp->t_state, TS_BUSY);
1461 			if ( ISSET(tp->t_state, TS_FLUSH) )
1462 				CLR(tp->t_state, TS_FLUSH);
1463 			else
1464 				ndflush(&tp->t_outq,
1465 				     (int)(ch->ch_obuf_addr - tp->t_outq.c_cf));
1466 
1467 			(*tp->t_linesw->l_start)(tp);
1468 		}
1469 	}
1470 }
1471 
1472 
1473 /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1474 /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1475 /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1476 /*
1477  * Following are all routines needed for a cd240x channel to act as console
1478  */
1479 int
1480 clmpcc_cnattach(sc, chan, rate)
1481 	struct clmpcc_softc *sc;
1482 	int chan;
1483 	int rate;
1484 {
1485 	cons_sc = sc;
1486 	cons_chan = chan;
1487 	cons_rate = rate;
1488 
1489 	return (clmpcc_init(sc));
1490 }
1491 
1492 /*
1493  * The following functions are polled getc and putc routines, for console use.
1494  */
1495 static int
1496 clmpcc_common_getc(sc, chan)
1497 	struct clmpcc_softc *sc;
1498 	int chan;
1499 {
1500 	u_char old_chan;
1501 	u_char old_ier;
1502 	u_char ch, rir, risr;
1503 	int s;
1504 
1505 	s = splhigh();
1506 
1507 	/* Save the currently active channel */
1508 	old_chan = clmpcc_select_channel(sc, chan);
1509 
1510 	/*
1511 	 * We have to put the channel into RX interrupt mode before
1512 	 * trying to read the Rx data register. So save the previous
1513 	 * interrupt mode.
1514 	 */
1515 	old_ier = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1516 	clmpcc_wrreg(sc, CLMPCC_REG_IER, CLMPCC_IER_RX_FIFO);
1517 
1518 	/* Loop until we get a character */
1519 	for (;;) {
1520 		/*
1521 		 * The REN bit will be set in the Receive Interrupt Register
1522 		 * when the CD240x has a character to process. Remember,
1523 		 * the RACT bit won't be set until we generate an interrupt
1524 		 * acknowledge cycle via the MD front-end.
1525 		 */
1526 		rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1527 		if ( (rir & CLMPCC_RIR_REN) == 0 )
1528 			continue;
1529 
1530 		/* Acknowledge the request */
1531 		if ( sc->sc_iackhook )
1532 			(sc->sc_iackhook)(sc, CLMPCC_IACK_RX);
1533 
1534 		/*
1535 		 * Determine if the interrupt is for the required channel
1536 		 * and if valid data is available.
1537 		 */
1538 		rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1539 		risr = clmpcc_rdreg(sc, CLMPCC_REG_RISR);
1540 		if ( (rir & CLMPCC_RIR_RCN_MASK) != chan ||
1541 		     risr != 0 ) {
1542 			/* Rx error, or BREAK */
1543 			clmpcc_wrreg(sc, CLMPCC_REG_REOIR,
1544 					 CLMPCC_REOIR_NO_TRANS);
1545 		} else {
1546 			/* Dummy read of the FIFO count register */
1547 			(void) clmpcc_rdreg(sc, CLMPCC_REG_RFOC);
1548 
1549 			/* Fetch the received character */
1550 			ch = clmpcc_rd_rxdata(sc);
1551 
1552 			clmpcc_wrreg(sc, CLMPCC_REG_REOIR, 0);
1553 			break;
1554 		}
1555 	}
1556 
1557 	/* Restore the original IER and CAR register contents */
1558 	clmpcc_wrreg(sc, CLMPCC_REG_IER, old_ier);
1559 	clmpcc_select_channel(sc, old_chan);
1560 
1561 	splx(s);
1562 	return ch;
1563 }
1564 
1565 
1566 static void
1567 clmpcc_common_putc(sc, chan, c)
1568 	struct clmpcc_softc *sc;
1569 	int chan;
1570 	int c;
1571 {
1572 	u_char old_chan;
1573 	int s = splhigh();
1574 
1575 	/* Save the currently active channel */
1576 	old_chan = clmpcc_select_channel(sc, chan);
1577 
1578 	/*
1579 	 * Since we can only access the Tx Data register from within
1580 	 * the interrupt handler, the easiest way to get console data
1581 	 * onto the wire is using one of the Special Transmit Character
1582 	 * registers.
1583 	 */
1584 	clmpcc_wrreg(sc, CLMPCC_REG_SCHR4, c);
1585 	clmpcc_wrreg(sc, CLMPCC_REG_STCR, CLMPCC_STCR_SSPC(4) |
1586 					  CLMPCC_STCR_SND_SPC);
1587 
1588 	/* Wait until the "Send Special Character" command is accepted */
1589 	while ( clmpcc_rdreg(sc, CLMPCC_REG_STCR) != 0 )
1590 		;
1591 
1592 	/* Restore the previous channel selected */
1593 	clmpcc_select_channel(sc, old_chan);
1594 
1595 	splx(s);
1596 }
1597 
1598 int
1599 clmpcccngetc(dev)
1600 	dev_t dev;
1601 {
1602 	return clmpcc_common_getc(cons_sc, cons_chan);
1603 }
1604 
1605 /*
1606  * Console kernel output character routine.
1607  */
1608 void
1609 clmpcccnputc(dev, c)
1610 	dev_t dev;
1611 	int c;
1612 {
1613 	if ( c == '\n' )
1614 		clmpcc_common_putc(cons_sc, cons_chan, '\r');
1615 
1616 	clmpcc_common_putc(cons_sc, cons_chan, c);
1617 }
1618