xref: /netbsd-src/sys/dev/ic/clmpcc.c (revision 4472dbe5e3bd91ef2540bada7a7ca7384627ff9b)
1 /*	$NetBSD: clmpcc.c,v 1.10 2000/03/19 10:38:43 scw Exp $ */
2 
3 /*-
4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Steve C. Woodford.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Cirrus Logic CD2400/CD2401 Four Channel Multi-Protocol Comms. Controller.
41  */
42 
43 #include "opt_ddb.h"
44 
45 #include <sys/types.h>
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/ioctl.h>
49 #include <sys/select.h>
50 #include <sys/tty.h>
51 #include <sys/proc.h>
52 #include <sys/user.h>
53 #include <sys/conf.h>
54 #include <sys/file.h>
55 #include <sys/uio.h>
56 #include <sys/kernel.h>
57 #include <sys/syslog.h>
58 #include <sys/device.h>
59 #include <sys/malloc.h>
60 
61 #include <machine/bus.h>
62 #include <machine/param.h>
63 
64 #include <dev/ic/clmpccreg.h>
65 #include <dev/ic/clmpccvar.h>
66 #include <dev/cons.h>
67 
68 
69 #if defined(CLMPCC_ONLY_BYTESWAP_LOW) && defined(CLMPCC_ONLY_BYTESWAP_HIGH)
70 #error	"CLMPCC_ONLY_BYTESWAP_LOW and CLMPCC_ONLY_BYTESWAP_HIGH are mutually exclusive."
71 #endif
72 
73 
74 static int	clmpcc_init	__P((struct clmpcc_softc *sc));
75 static void	clmpcc_shutdown	__P((struct clmpcc_chan *));
76 static int	clmpcc_speed	__P((struct clmpcc_softc *, speed_t,
77 					int *, int *));
78 static int	clmpcc_param	__P((struct tty *, struct termios *));
79 static void	clmpcc_set_params __P((struct clmpcc_chan *));
80 static void	clmpcc_start	__P((struct tty *));
81 static int 	clmpcc_modem_control	__P((struct clmpcc_chan *, int, int));
82 
83 
84 cdev_decl(clmpcc);
85 
86 #define	CLMPCCUNIT(x)		(minor(x) & 0x7fffc)
87 #define CLMPCCCHAN(x)		(minor(x) & 0x00003)
88 #define	CLMPCCDIALOUT(x)	(minor(x) & 0x80000)
89 
90 /*
91  * These should be in a header file somewhere...
92  */
93 #define	ISSET(v, f)	(((v) & (f)) != 0)
94 #define	ISCLR(v, f)	(((v) & (f)) == 0)
95 #define SET(v, f)	(v) |= (f)
96 #define CLR(v, f)	(v) &= ~(f)
97 
98 
99 extern struct cfdriver clmpcc_cd;
100 
101 
102 /*
103  * Make this an option variable one can patch.
104  */
105 u_int clmpcc_ibuf_size = CLMPCC_RING_SIZE;
106 
107 
108 /*
109  * Things needed when the device is used as a console
110  */
111 static struct clmpcc_softc *cons_sc = NULL;
112 static int cons_chan;
113 static int cons_rate;
114 
115 static int	clmpcc_common_getc	__P((struct clmpcc_softc *, int));
116 static void	clmpcc_common_putc	__P((struct clmpcc_softc *, int, int));
117 int		clmpcccngetc	__P((dev_t));
118 void		clmpcccnputc	__P((dev_t, int));
119 
120 
121 /*
122  * Convenience functions, inlined for speed
123  */
124 #define	integrate   static inline
125 integrate u_int8_t  clmpcc_rdreg __P((struct clmpcc_softc *, u_int));
126 integrate void      clmpcc_wrreg __P((struct clmpcc_softc *, u_int, u_int));
127 integrate u_int8_t  clmpcc_rdreg_odd __P((struct clmpcc_softc *, u_int));
128 integrate void      clmpcc_wrreg_odd __P((struct clmpcc_softc *, u_int, u_int));
129 integrate void      clmpcc_wrtx_multi __P((struct clmpcc_softc *, u_int8_t *,
130 					u_int));
131 integrate u_int8_t  clmpcc_select_channel __P((struct clmpcc_softc *, u_int));
132 integrate void      clmpcc_channel_cmd __P((struct clmpcc_softc *,int,int));
133 integrate void      clmpcc_enable_transmitter __P((struct clmpcc_chan *));
134 
135 #define clmpcc_rd_msvr(s)	clmpcc_rdreg_odd(s,CLMPCC_REG_MSVR)
136 #define clmpcc_wr_msvr(s,r,v)	clmpcc_wrreg_odd(s,r,v)
137 #define clmpcc_wr_pilr(s,r,v)	clmpcc_wrreg_odd(s,r,v)
138 #define clmpcc_rd_rxdata(s)	clmpcc_rdreg_odd(s,CLMPCC_REG_RDR)
139 #define clmpcc_wr_txdata(s,v)	clmpcc_wrreg_odd(s,CLMPCC_REG_TDR,v)
140 
141 
142 integrate u_int8_t
143 clmpcc_rdreg(sc, offset)
144 	struct clmpcc_softc *sc;
145 	u_int offset;
146 {
147 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
148 	offset ^= sc->sc_byteswap;
149 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
150 	offset ^= CLMPCC_BYTESWAP_HIGH;
151 #endif
152 	return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset);
153 }
154 
155 integrate void
156 clmpcc_wrreg(sc, offset, val)
157 	struct clmpcc_softc *sc;
158 	u_int offset;
159 	u_int val;
160 {
161 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
162 	offset ^= sc->sc_byteswap;
163 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
164 	offset ^= CLMPCC_BYTESWAP_HIGH;
165 #endif
166 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, val);
167 }
168 
169 integrate u_int8_t
170 clmpcc_rdreg_odd(sc, offset)
171 	struct clmpcc_softc *sc;
172 	u_int offset;
173 {
174 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
175 	offset ^= (sc->sc_byteswap & 2);
176 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
177 	offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
178 #endif
179 	return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset);
180 }
181 
182 integrate void
183 clmpcc_wrreg_odd(sc, offset, val)
184 	struct clmpcc_softc *sc;
185 	u_int offset;
186 	u_int val;
187 {
188 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
189 	offset ^= (sc->sc_byteswap & 2);
190 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
191 	offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
192 #endif
193 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, val);
194 }
195 
196 integrate void
197 clmpcc_wrtx_multi(sc, buff, count)
198 	struct clmpcc_softc *sc;
199 	u_int8_t *buff;
200 	u_int count;
201 {
202 	u_int offset = CLMPCC_REG_TDR;
203 
204 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
205 	offset ^= (sc->sc_byteswap & 2);
206 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
207 	offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
208 #endif
209 	bus_space_write_multi_1(sc->sc_iot, sc->sc_ioh, offset, buff, count);
210 }
211 
212 integrate u_int8_t
213 clmpcc_select_channel(sc, new_chan)
214 	struct clmpcc_softc *sc;
215 	u_int new_chan;
216 {
217 	u_int old_chan = clmpcc_rdreg_odd(sc, CLMPCC_REG_CAR);
218 
219 	clmpcc_wrreg_odd(sc, CLMPCC_REG_CAR, new_chan);
220 
221 	return old_chan;
222 }
223 
224 integrate void
225 clmpcc_channel_cmd(sc, chan, cmd)
226 	struct clmpcc_softc *sc;
227 	int chan;
228 	int cmd;
229 {
230 	int i;
231 
232 	for (i = 5000; i; i--) {
233 		if ( clmpcc_rdreg(sc, CLMPCC_REG_CCR) == 0 )
234 			break;
235 		delay(1);
236 	}
237 
238 	if ( i == 0 )
239 		printf("%s: channel %d command timeout (idle)\n",
240 			sc->sc_dev.dv_xname, chan);
241 
242 	clmpcc_wrreg(sc, CLMPCC_REG_CCR, cmd);
243 }
244 
245 integrate void
246 clmpcc_enable_transmitter(ch)
247 	struct clmpcc_chan *ch;
248 {
249 	u_int old;
250 	int s;
251 
252 	old = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
253 
254 	s = splserial();
255 	clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER,
256 		clmpcc_rdreg(ch->ch_sc, CLMPCC_REG_IER) | CLMPCC_IER_TX_EMPTY);
257 	SET(ch->ch_tty->t_state, TS_BUSY);
258 	splx(s);
259 
260 	clmpcc_select_channel(ch->ch_sc, old);
261 }
262 
263 static int
264 clmpcc_speed(sc, speed, cor, bpr)
265 	struct clmpcc_softc *sc;
266 	speed_t speed;
267 	int *cor, *bpr;
268 {
269 	int c, co, br;
270 
271 	for (co = 0, c = 8; c <= 2048; co++, c *= 4) {
272 		br = ((sc->sc_clk / c) / speed) - 1;
273 		if ( br < 0x100 ) {
274 			*cor = co;
275 			*bpr = br;
276 			return 0;
277 		}
278 	}
279 
280 	return -1;
281 }
282 
283 void
284 clmpcc_attach(sc)
285 	struct clmpcc_softc *sc;
286 {
287 	struct clmpcc_chan *ch;
288 	struct tty *tp;
289 	int chan;
290 
291 	if ( cons_sc != NULL &&
292 	     sc->sc_iot == cons_sc->sc_iot && sc->sc_ioh == cons_sc->sc_ioh )
293 		cons_sc = sc;
294 
295 	/* Initialise the chip */
296 	clmpcc_init(sc);
297 
298 	printf(": Cirrus Logic CD240%c Serial Controller\n",
299 		(clmpcc_rd_msvr(sc) & CLMPCC_MSVR_PORT_ID) ? '0' : '1');
300 
301 	sc->sc_soft_running = 0;
302 	memset(&(sc->sc_chans[0]), 0, sizeof(sc->sc_chans));
303 
304 	for (chan = 0; chan < CLMPCC_NUM_CHANS; chan++) {
305 		ch = &sc->sc_chans[chan];
306 
307 		ch->ch_sc = sc;
308 		ch->ch_car = chan;
309 
310 		tp = ttymalloc();
311 		tp->t_oproc = clmpcc_start;
312 		tp->t_param = clmpcc_param;
313 
314 		ch->ch_tty = tp;
315 
316 		ch->ch_ibuf = malloc(clmpcc_ibuf_size * 2, M_DEVBUF, M_NOWAIT);
317 		if ( ch->ch_ibuf == NULL ) {
318 			printf("%s(%d): unable to allocate ring buffer\n",
319 		    		sc->sc_dev.dv_xname, chan);
320 			return;
321 		}
322 
323 		ch->ch_ibuf_end = &(ch->ch_ibuf[clmpcc_ibuf_size * 2]);
324 		ch->ch_ibuf_rd = ch->ch_ibuf_wr = ch->ch_ibuf;
325 
326 		tty_attach(tp);
327 	}
328 
329 	printf("%s: %d channels available", sc->sc_dev.dv_xname,
330 					    CLMPCC_NUM_CHANS);
331 	if ( cons_sc == sc ) {
332 		printf(", console on channel %d.\n", cons_chan);
333 		SET(sc->sc_chans[cons_chan].ch_flags, CLMPCC_FLG_IS_CONSOLE);
334 		SET(sc->sc_chans[cons_chan].ch_openflags, TIOCFLAG_SOFTCAR);
335 	} else
336 		printf(".\n");
337 }
338 
339 static int
340 clmpcc_init(sc)
341 	struct clmpcc_softc *sc;
342 {
343 	u_int tcor, tbpr;
344 	u_int rcor, rbpr;
345 	u_int msvr_rts, msvr_dtr;
346 	u_int ccr;
347 	int is_console;
348 	int i;
349 
350 	/*
351 	 * All we're really concerned about here is putting the chip
352 	 * into a quiescent state so that it won't do anything until
353 	 * clmpccopen() is called. (Except the console channel.)
354 	 */
355 
356 	/*
357 	 * If the chip is acting as console, set all channels to the supplied
358 	 * console baud rate. Otherwise, plump for 9600.
359 	 */
360 	if ( cons_sc &&
361 	     sc->sc_ioh == cons_sc->sc_ioh && sc->sc_iot == cons_sc->sc_iot ) {
362 		clmpcc_speed(sc, cons_rate, &tcor, &tbpr);
363 		clmpcc_speed(sc, cons_rate, &rcor, &rbpr);
364 		is_console = 1;
365 	} else {
366 		clmpcc_speed(sc, 9600, &tcor, &tbpr);
367 		clmpcc_speed(sc, 9600, &rcor, &rbpr);
368 		is_console = 0;
369 	}
370 
371 	/* Allow any pending output to be sent */
372 	delay(10000);
373 
374 	/* Send the Reset All command  to channel 0 (resets all channels!) */
375 	clmpcc_channel_cmd(sc, 0, CLMPCC_CCR_T0_RESET_ALL);
376 
377 	delay(1000);
378 
379 	/*
380 	 * The chip will set it's firmware revision register to a non-zero
381 	 * value to indicate completion of reset.
382 	 */
383 	for (i = 10000; clmpcc_rdreg(sc, CLMPCC_REG_GFRCR) == 0 && i; i--)
384 		delay(1);
385 
386 	if ( i == 0 ) {
387 		/*
388 		 * Watch out... If this chip is console, the message
389 		 * probably won't be sent since we just reset it!
390 		 */
391 		printf("%s: Failed to reset chip\n", sc->sc_dev.dv_xname);
392 		return -1;
393 	}
394 
395 	for (i = 0; i < CLMPCC_NUM_CHANS; i++) {
396 		clmpcc_select_channel(sc, i);
397 
398 		/* All interrupts are disabled to begin with */
399 		clmpcc_wrreg(sc, CLMPCC_REG_IER, 0);
400 
401 		/* Make sure the channel interrupts on the correct vectors */
402 		clmpcc_wrreg(sc, CLMPCC_REG_LIVR, sc->sc_vector_base);
403 		clmpcc_wr_pilr(sc, CLMPCC_REG_RPILR, sc->sc_rpilr);
404 		clmpcc_wr_pilr(sc, CLMPCC_REG_TPILR, sc->sc_tpilr);
405 		clmpcc_wr_pilr(sc, CLMPCC_REG_MPILR, sc->sc_mpilr);
406 
407 		/* Receive timer prescaler set to 1ms */
408 		clmpcc_wrreg(sc, CLMPCC_REG_TPR,
409 				 CLMPCC_MSEC_TO_TPR(sc->sc_clk, 1));
410 
411 		/* We support Async mode only */
412 		clmpcc_wrreg(sc, CLMPCC_REG_CMR, CLMPCC_CMR_ASYNC);
413 
414 		/* Set the required baud rate */
415 		clmpcc_wrreg(sc, CLMPCC_REG_TCOR, CLMPCC_TCOR_CLK(tcor));
416 		clmpcc_wrreg(sc, CLMPCC_REG_TBPR, tbpr);
417 		clmpcc_wrreg(sc, CLMPCC_REG_RCOR, CLMPCC_RCOR_CLK(rcor));
418 		clmpcc_wrreg(sc, CLMPCC_REG_RBPR, rbpr);
419 
420 		/* Always default to 8N1 (XXX what about console?) */
421 		clmpcc_wrreg(sc, CLMPCC_REG_COR1, CLMPCC_COR1_CHAR_8BITS |
422 						  CLMPCC_COR1_NO_PARITY |
423 						  CLMPCC_COR1_IGNORE_PAR);
424 
425 		clmpcc_wrreg(sc, CLMPCC_REG_COR2, 0);
426 
427 		clmpcc_wrreg(sc, CLMPCC_REG_COR3, CLMPCC_COR3_STOP_1);
428 
429 		clmpcc_wrreg(sc, CLMPCC_REG_COR4, CLMPCC_COR4_DSRzd |
430 						  CLMPCC_COR4_CDzd |
431 						  CLMPCC_COR4_CTSzd);
432 
433 		clmpcc_wrreg(sc, CLMPCC_REG_COR5, CLMPCC_COR5_DSRod |
434 						  CLMPCC_COR5_CDod |
435 						  CLMPCC_COR5_CTSod |
436 						  CLMPCC_COR5_FLOW_NORM);
437 
438 		clmpcc_wrreg(sc, CLMPCC_REG_COR6, 0);
439 		clmpcc_wrreg(sc, CLMPCC_REG_COR7, 0);
440 
441 		/* Set the receive FIFO timeout */
442 		clmpcc_wrreg(sc, CLMPCC_REG_RTPRl, CLMPCC_RTPR_DEFAULT);
443 		clmpcc_wrreg(sc, CLMPCC_REG_RTPRh, 0);
444 
445 		/* At this point, we set up the console differently */
446 		if ( is_console && i == cons_chan ) {
447 			msvr_rts = CLMPCC_MSVR_RTS;
448 			msvr_dtr = CLMPCC_MSVR_DTR;
449 			ccr = CLMPCC_CCR_T0_RX_EN | CLMPCC_CCR_T0_TX_EN;
450 		} else {
451 			msvr_rts = 0;
452 			msvr_dtr = 0;
453 			ccr = CLMPCC_CCR_T0_RX_DIS | CLMPCC_CCR_T0_TX_DIS;
454 		}
455 
456 		clmpcc_wrreg(sc, CLMPCC_REG_MSVR_RTS, msvr_rts);
457 		clmpcc_wrreg(sc, CLMPCC_REG_MSVR_DTR, msvr_dtr);
458 		clmpcc_channel_cmd(sc, i, CLMPCC_CCR_T0_INIT | ccr);
459 		delay(100);
460 	}
461 
462 	return 0;
463 }
464 
465 static void
466 clmpcc_shutdown(ch)
467 	struct clmpcc_chan *ch;
468 {
469 	int oldch;
470 
471 	oldch = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
472 
473 	/* Turn off interrupts. */
474 	clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER, 0);
475 
476 	if ( ISCLR(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
477 		/* Disable the transmitter and receiver */
478 		clmpcc_channel_cmd(ch->ch_sc, ch->ch_car, CLMPCC_CCR_T0_RX_DIS |
479 							  CLMPCC_CCR_T0_TX_DIS);
480 
481 		/* Drop RTS and DTR */
482 		clmpcc_modem_control(ch, TIOCM_RTS | TIOCM_DTR, DMBIS);
483 	}
484 
485 	clmpcc_select_channel(ch->ch_sc, oldch);
486 }
487 
488 int
489 clmpccopen(dev, flag, mode, p)
490 	dev_t dev;
491 	int flag, mode;
492 	struct proc *p;
493 {
494 	struct clmpcc_softc *sc;
495 	struct clmpcc_chan *ch;
496 	struct tty *tp;
497 	int oldch;
498 	int error;
499 	int unit;
500 
501 	if ( (unit = CLMPCCUNIT(dev)) >= clmpcc_cd.cd_ndevs ||
502 	     (sc = clmpcc_cd.cd_devs[unit]) == NULL ) {
503 		return ENXIO;
504 	}
505 
506 	ch = &sc->sc_chans[CLMPCCCHAN(dev)];
507 
508 	tp = ch->ch_tty;
509 
510 	if ( ISSET(tp->t_state, TS_ISOPEN) &&
511 	     ISSET(tp->t_state, TS_XCLUDE) && p->p_ucred->cr_uid != 0 )
512 		return EBUSY;
513 
514 	/*
515 	 * Do the following iff this is a first open.
516 	 */
517 	if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
518 
519 		ttychars(tp);
520 
521 		tp->t_dev = dev;
522 		tp->t_iflag = TTYDEF_IFLAG;
523 		tp->t_oflag = TTYDEF_OFLAG;
524 		tp->t_lflag = TTYDEF_LFLAG;
525 		tp->t_cflag = TTYDEF_CFLAG;
526 		tp->t_ospeed = tp->t_ispeed = TTYDEF_SPEED;
527 
528 		if ( ISSET(ch->ch_openflags, TIOCFLAG_CLOCAL) )
529 			SET(tp->t_cflag, CLOCAL);
530 		if ( ISSET(ch->ch_openflags, TIOCFLAG_CRTSCTS) )
531 			SET(tp->t_cflag, CRTSCTS);
532 		if ( ISSET(ch->ch_openflags, TIOCFLAG_MDMBUF) )
533 			SET(tp->t_cflag, MDMBUF);
534 
535 		/*
536 		 * Override some settings if the channel is being
537 		 * used as the console.
538 		 */
539 		if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
540 			tp->t_ospeed = tp->t_ispeed = cons_rate;
541 			SET(tp->t_cflag, CLOCAL);
542 			CLR(tp->t_cflag, CRTSCTS);
543 			CLR(tp->t_cflag, HUPCL);
544 		}
545 
546 		ch->ch_control = 0;
547 
548 		clmpcc_param(tp, &tp->t_termios);
549 		ttsetwater(tp);
550 
551 		/* Clear the input ring */
552 		ch->ch_ibuf_rd = ch->ch_ibuf_wr = ch->ch_ibuf;
553 
554 		/* Select the channel */
555 		oldch = clmpcc_select_channel(sc, ch->ch_car);
556 
557 		/* Reset it */
558 		clmpcc_channel_cmd(sc, ch->ch_car, CLMPCC_CCR_T0_CLEAR |
559 						   CLMPCC_CCR_T0_RX_EN |
560 						   CLMPCC_CCR_T0_TX_EN);
561 
562 		/* Enable receiver and modem change interrupts. */
563 		clmpcc_wrreg(sc, CLMPCC_REG_IER, CLMPCC_IER_MODEM |
564 						 CLMPCC_IER_RET |
565 						 CLMPCC_IER_RX_FIFO);
566 
567 		/* Raise RTS and DTR */
568 		clmpcc_modem_control(ch, TIOCM_RTS | TIOCM_DTR, DMBIS);
569 
570 		clmpcc_select_channel(sc, oldch);
571 	} else
572 	if ( ISSET(tp->t_state, TS_XCLUDE) && p->p_ucred->cr_uid != 0 )
573 		return EBUSY;
574 
575 	error = ttyopen(tp, CLMPCCDIALOUT(dev), ISSET(flag, O_NONBLOCK));
576 	if (error)
577 		goto bad;
578 
579 	error = (*linesw[tp->t_line].l_open)(dev, tp);
580 	if (error)
581 		goto bad;
582 
583 	return 0;
584 
585 bad:
586 	if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
587 		/*
588 		 * We failed to open the device, and nobody else had it opened.
589 		 * Clean up the state as appropriate.
590 		 */
591 		clmpcc_shutdown(ch);
592 	}
593 
594 	return error;
595 }
596 
597 int
598 clmpccclose(dev, flag, mode, p)
599 	dev_t dev;
600 	int flag, mode;
601 	struct proc *p;
602 {
603 	struct clmpcc_softc	*sc = clmpcc_cd.cd_devs[CLMPCCUNIT(dev)];
604 	struct clmpcc_chan	*ch = &sc->sc_chans[CLMPCCCHAN(dev)];
605 	struct tty		*tp = ch->ch_tty;
606 	int s;
607 
608 	if ( ISCLR(tp->t_state, TS_ISOPEN) )
609 		return 0;
610 
611 	(*linesw[tp->t_line].l_close)(tp, flag);
612 
613 	s = spltty();
614 
615 	if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
616 		/*
617 		 * Although we got a last close, the device may still be in
618 		 * use; e.g. if this was the dialout node, and there are still
619 		 * processes waiting for carrier on the non-dialout node.
620 		 */
621 		clmpcc_shutdown(ch);
622 	}
623 
624 	ttyclose(tp);
625 
626 	splx(s);
627 
628 	return 0;
629 }
630 
631 int
632 clmpccread(dev, uio, flag)
633 	dev_t dev;
634 	struct uio *uio;
635 	int flag;
636 {
637 	struct clmpcc_softc *sc = clmpcc_cd.cd_devs[CLMPCCUNIT(dev)];
638 	struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
639 
640 	return ((*linesw[tp->t_line].l_read)(tp, uio, flag));
641 }
642 
643 int
644 clmpccwrite(dev, uio, flag)
645 	dev_t dev;
646 	struct uio *uio;
647 	int flag;
648 {
649 	struct clmpcc_softc *sc = clmpcc_cd.cd_devs[CLMPCCUNIT(dev)];
650 	struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
651 
652 	return ((*linesw[tp->t_line].l_write)(tp, uio, flag));
653 }
654 
655 struct tty *
656 clmpcctty(dev)
657 	dev_t dev;
658 {
659 	struct clmpcc_softc *sc = clmpcc_cd.cd_devs[CLMPCCUNIT(dev)];
660 
661 	return (sc->sc_chans[CLMPCCCHAN(dev)].ch_tty);
662 }
663 
664 int
665 clmpccioctl(dev, cmd, data, flag, p)
666 	dev_t dev;
667 	u_long cmd;
668 	caddr_t data;
669 	int flag;
670 	struct proc *p;
671 {
672 	struct clmpcc_softc *sc = clmpcc_cd.cd_devs[CLMPCCUNIT(dev)];
673 	struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(dev)];
674 	struct tty *tp = ch->ch_tty;
675 	int error;
676 
677 	error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flag, p);
678 	if (error >= 0)
679 		return error;
680 
681 	error = ttioctl(tp, cmd, data, flag, p);
682 	if (error >= 0)
683 		return error;
684 
685 	error = 0;
686 
687 	switch (cmd) {
688 	case TIOCSBRK:
689 		SET(ch->ch_flags, CLMPCC_FLG_START_BREAK);
690 		clmpcc_enable_transmitter(ch);
691 		break;
692 
693 	case TIOCCBRK:
694 		SET(ch->ch_flags, CLMPCC_FLG_END_BREAK);
695 		clmpcc_enable_transmitter(ch);
696 		break;
697 
698 	case TIOCSDTR:
699 		clmpcc_modem_control(ch, TIOCM_DTR, DMBIS);
700 		break;
701 
702 	case TIOCCDTR:
703 		clmpcc_modem_control(ch, TIOCM_DTR, DMBIC);
704 		break;
705 
706 	case TIOCMSET:
707 		clmpcc_modem_control(ch, *((int *)data), DMSET);
708 		break;
709 
710 	case TIOCMBIS:
711 		clmpcc_modem_control(ch, *((int *)data), DMBIS);
712 		break;
713 
714 	case TIOCMBIC:
715 		clmpcc_modem_control(ch, *((int *)data), DMBIC);
716 		break;
717 
718 	case TIOCMGET:
719 		*((int *)data) = clmpcc_modem_control(ch, 0, DMGET);
720 		break;
721 
722 	case TIOCGFLAGS:
723 		*((int *)data) = ch->ch_openflags;
724 		break;
725 
726 	case TIOCSFLAGS:
727 		error = suser(p->p_ucred, &p->p_acflag);
728 		if ( error )
729 			break;
730 		ch->ch_openflags = *((int *)data) &
731 			(TIOCFLAG_SOFTCAR | TIOCFLAG_CLOCAL |
732 			 TIOCFLAG_CRTSCTS | TIOCFLAG_MDMBUF);
733 		if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) )
734 			SET(ch->ch_openflags, TIOCFLAG_SOFTCAR);
735 		break;
736 
737 	default:
738 		error = ENOTTY;
739 		break;
740 	}
741 
742 	return error;
743 }
744 
745 int
746 clmpcc_modem_control(ch, bits, howto)
747 	struct clmpcc_chan *ch;
748 	int bits;
749 	int howto;
750 {
751 	struct clmpcc_softc *sc = ch->ch_sc;
752 	struct tty *tp = ch->ch_tty;
753 	int oldch;
754 	int msvr;
755 	int rbits = 0;
756 
757 	oldch = clmpcc_select_channel(sc, ch->ch_car);
758 
759 	switch ( howto ) {
760 	case DMGET:
761 		msvr = clmpcc_rd_msvr(sc);
762 
763 		if ( sc->sc_swaprtsdtr ) {
764 			rbits |= (msvr & CLMPCC_MSVR_RTS) ? TIOCM_DTR : 0;
765 			rbits |= (msvr & CLMPCC_MSVR_DTR) ? TIOCM_RTS : 0;
766 		} else {
767 			rbits |= (msvr & CLMPCC_MSVR_RTS) ? TIOCM_RTS : 0;
768 			rbits |= (msvr & CLMPCC_MSVR_DTR) ? TIOCM_DTR : 0;
769 		}
770 
771 		rbits |= (msvr & CLMPCC_MSVR_CTS) ? TIOCM_CTS : 0;
772 		rbits |= (msvr & CLMPCC_MSVR_CD)  ? TIOCM_CD  : 0;
773 		rbits |= (msvr & CLMPCC_MSVR_DSR) ? TIOCM_DSR : 0;
774 		break;
775 
776 	case DMSET:
777 		if ( sc->sc_swaprtsdtr ) {
778 		    if ( ISCLR(tp->t_cflag, CRTSCTS) )
779 			clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR,
780 					bits & TIOCM_RTS ? CLMPCC_MSVR_DTR : 0);
781 		    clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS,
782 				bits & TIOCM_DTR ? CLMPCC_MSVR_RTS : 0);
783 		} else {
784 		    if ( ISCLR(tp->t_cflag, CRTSCTS) )
785 			clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS,
786 					bits & TIOCM_RTS ? CLMPCC_MSVR_RTS : 0);
787 		    clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR,
788 				bits & TIOCM_DTR ? CLMPCC_MSVR_DTR : 0);
789 		}
790 		break;
791 
792 	case DMBIS:
793 		if ( sc->sc_swaprtsdtr ) {
794 		    if ( ISCLR(tp->t_cflag, CRTSCTS) && ISSET(bits, TIOCM_RTS) )
795 			clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_DTR, CLMPCC_MSVR_DTR);
796 		    if ( ISSET(bits, TIOCM_DTR) )
797 			clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_RTS, CLMPCC_MSVR_RTS);
798 		} else {
799 		    if ( ISCLR(tp->t_cflag, CRTSCTS) && ISSET(bits, TIOCM_RTS) )
800 			clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_RTS, CLMPCC_MSVR_RTS);
801 		    if ( ISSET(bits, TIOCM_DTR) )
802 			clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_DTR, CLMPCC_MSVR_DTR);
803 		}
804 		break;
805 
806 	case DMBIC:
807 		if ( sc->sc_swaprtsdtr ) {
808 		    if ( ISCLR(tp->t_cflag, CRTSCTS) && ISCLR(bits, TIOCM_RTS) )
809 			clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR, 0);
810 		    if ( ISCLR(bits, TIOCM_DTR) )
811 			clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS, 0);
812 		} else {
813 		    if ( ISCLR(tp->t_cflag, CRTSCTS) && ISCLR(bits, TIOCM_RTS) )
814 			clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS, 0);
815 		    if ( ISCLR(bits, TIOCM_DTR) )
816 			clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR, 0);
817 		}
818 		break;
819 	}
820 
821 	clmpcc_select_channel(sc, oldch);
822 
823 	return rbits;
824 }
825 
826 static int
827 clmpcc_param(tp, t)
828 	struct tty *tp;
829 	struct termios *t;
830 {
831 	struct clmpcc_softc *sc = clmpcc_cd.cd_devs[CLMPCCUNIT(tp->t_dev)];
832 	struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
833 	u_char cor;
834 	u_char oldch;
835 	int oclk, obpr;
836 	int iclk, ibpr;
837 	int s;
838 
839 	/* Check requested parameters. */
840 	if ( t->c_ospeed && clmpcc_speed(sc, t->c_ospeed, &oclk, &obpr) < 0 )
841 		return EINVAL;
842 
843 	if ( t->c_ispeed && clmpcc_speed(sc, t->c_ispeed, &iclk, &ibpr) < 0 )
844 		return EINVAL;
845 
846 	/*
847 	 * For the console, always force CLOCAL and !HUPCL, so that the port
848 	 * is always active.
849 	 */
850 	if ( ISSET(ch->ch_openflags, TIOCFLAG_SOFTCAR) ||
851 	     ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
852 		SET(t->c_cflag, CLOCAL);
853 		CLR(t->c_cflag, HUPCL);
854 	}
855 
856 	CLR(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS);
857 
858 	/* If ospeed it zero, hangup the line */
859 	clmpcc_modem_control(ch, TIOCM_DTR, t->c_ospeed == 0 ? DMBIC : DMBIS);
860 
861 	if ( t->c_ospeed ) {
862 		ch->ch_tcor = CLMPCC_TCOR_CLK(oclk);
863 		ch->ch_tbpr = obpr;
864 	} else {
865 		ch->ch_tcor = 0;
866 		ch->ch_tbpr = 0;
867 	}
868 
869 	if ( t->c_ispeed ) {
870 		ch->ch_rcor = CLMPCC_RCOR_CLK(iclk);
871 		ch->ch_rbpr = ibpr;
872 	} else {
873 		ch->ch_rcor = 0;
874 		ch->ch_rbpr = 0;
875 	}
876 
877 	/* Work out value to use for COR1 */
878 	cor = 0;
879 	if ( ISSET(t->c_cflag, PARENB) ) {
880 		cor |= CLMPCC_COR1_NORM_PARITY;
881 		if ( ISSET(t->c_cflag, PARODD) )
882 			cor |= CLMPCC_COR1_ODD_PARITY;
883 	}
884 
885 	if ( ISCLR(t->c_cflag, INPCK) )
886 		cor |= CLMPCC_COR1_IGNORE_PAR;
887 
888 	switch ( t->c_cflag & CSIZE ) {
889 	  case CS5:
890 		cor |= CLMPCC_COR1_CHAR_5BITS;
891 		break;
892 
893 	  case CS6:
894 		cor |= CLMPCC_COR1_CHAR_6BITS;
895 		break;
896 
897 	  case CS7:
898 		cor |= CLMPCC_COR1_CHAR_7BITS;
899 		break;
900 
901 	  case CS8:
902 		cor |= CLMPCC_COR1_CHAR_8BITS;
903 		break;
904 	}
905 
906 	ch->ch_cor1 = cor;
907 
908 	/*
909 	 * The only interesting bit in COR2 is 'CTS Automatic Enable'
910 	 * when hardware flow control is in effect.
911 	 */
912 	ch->ch_cor2 = ISSET(t->c_cflag, CRTSCTS) ? CLMPCC_COR2_CtsAE : 0;
913 
914 	/* COR3 needs to be set to the number of stop bits... */
915 	ch->ch_cor3 = ISSET(t->c_cflag, CSTOPB) ? CLMPCC_COR3_STOP_2 :
916 						  CLMPCC_COR3_STOP_1;
917 
918 	/*
919 	 * COR4 contains the FIFO threshold setting.
920 	 * We adjust the threshold depending on the input speed...
921 	 */
922 	if ( t->c_ispeed <= 1200 )
923 		ch->ch_cor4 = CLMPCC_COR4_FIFO_LOW;
924 	else if ( t->c_ispeed <= 19200 )
925 		ch->ch_cor4 = CLMPCC_COR4_FIFO_MED;
926 	else
927 		ch->ch_cor4 = CLMPCC_COR4_FIFO_HIGH;
928 
929 	/*
930 	 * If chip is used with CTS and DTR swapped, we can enable
931 	 * automatic hardware flow control.
932 	 */
933 	if ( sc->sc_swaprtsdtr && ISSET(t->c_cflag, CRTSCTS) )
934 		ch->ch_cor5 = CLMPCC_COR5_FLOW_NORM;
935 	else
936 		ch->ch_cor5 = 0;
937 
938 	s = splserial();
939 	oldch = clmpcc_select_channel(sc, ch->ch_car);
940 
941 	/*
942 	 * COR2 needs to be set immediately otherwise we might never get
943 	 * a Tx EMPTY interrupt to change the other parameters.
944 	 */
945 	if ( clmpcc_rdreg(sc, CLMPCC_REG_COR2) != ch->ch_cor2 )
946 		clmpcc_wrreg(sc, CLMPCC_REG_COR2, ch->ch_cor2);
947 
948 	if ( ISCLR(ch->ch_tty->t_state, TS_BUSY) )
949 		clmpcc_set_params(ch);
950 	else
951 		SET(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS);
952 
953 	clmpcc_select_channel(sc, oldch);
954 
955 	splx(s);
956 
957 	return 0;
958 }
959 
960 static void
961 clmpcc_set_params(ch)
962 	struct clmpcc_chan *ch;
963 {
964 	struct clmpcc_softc *sc = ch->ch_sc;
965 	u_char r1;
966 	u_char r2;
967 
968 	if ( ch->ch_tcor || ch->ch_tbpr ) {
969 		r1 = clmpcc_rdreg(sc, CLMPCC_REG_TCOR);
970 		r2 = clmpcc_rdreg(sc, CLMPCC_REG_TBPR);
971 		/* Only write Tx rate if it really has changed */
972 		if ( ch->ch_tcor != r1 || ch->ch_tbpr != r2 ) {
973 			clmpcc_wrreg(sc, CLMPCC_REG_TCOR, ch->ch_tcor);
974 			clmpcc_wrreg(sc, CLMPCC_REG_TBPR, ch->ch_tbpr);
975 		}
976 	}
977 
978 	if ( ch->ch_rcor || ch->ch_rbpr ) {
979 		r1 = clmpcc_rdreg(sc, CLMPCC_REG_RCOR);
980 		r2 = clmpcc_rdreg(sc, CLMPCC_REG_RBPR);
981 		/* Only write Rx rate if it really has changed */
982 		if ( ch->ch_rcor != r1 || ch->ch_rbpr != r2 ) {
983 			clmpcc_wrreg(sc, CLMPCC_REG_RCOR, ch->ch_rcor);
984 			clmpcc_wrreg(sc, CLMPCC_REG_RBPR, ch->ch_rbpr);
985 		}
986 	}
987 
988 	if ( clmpcc_rdreg(sc, CLMPCC_REG_COR1) != ch->ch_cor1 ) {
989 		clmpcc_wrreg(sc, CLMPCC_REG_COR1, ch->ch_cor1);
990 		/* Any change to COR1 requires an INIT command */
991 		SET(ch->ch_flags, CLMPCC_FLG_NEED_INIT);
992 	}
993 
994 	if ( clmpcc_rdreg(sc, CLMPCC_REG_COR3) != ch->ch_cor3 )
995 		clmpcc_wrreg(sc, CLMPCC_REG_COR3, ch->ch_cor3);
996 
997 	r1 = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
998 	if ( ch->ch_cor4 != (r1 & CLMPCC_COR4_FIFO_MASK) ) {
999 		/*
1000 		 * Note: If the FIFO has changed, we always set it to
1001 		 * zero here and disable the Receive Timeout interrupt.
1002 		 * It's up to the Rx Interrupt handler to pick the
1003 		 * appropriate moment to write the new FIFO length.
1004 		 */
1005 		clmpcc_wrreg(sc, CLMPCC_REG_COR4, r1 & ~CLMPCC_COR4_FIFO_MASK);
1006 		r1 = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1007 		clmpcc_wrreg(sc, CLMPCC_REG_IER, r1 & ~CLMPCC_IER_RET);
1008 		SET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
1009 	}
1010 
1011 	r1 = clmpcc_rdreg(sc, CLMPCC_REG_COR5);
1012 	if ( ch->ch_cor5 != (r1 & CLMPCC_COR5_FLOW_MASK) ) {
1013 		r1 &= ~CLMPCC_COR5_FLOW_MASK;
1014 		clmpcc_wrreg(sc, CLMPCC_REG_COR5, r1 | ch->ch_cor5);
1015 	}
1016 }
1017 
1018 static void
1019 clmpcc_start(tp)
1020 	struct tty *tp;
1021 {
1022 	struct clmpcc_softc *sc = clmpcc_cd.cd_devs[CLMPCCUNIT(tp->t_dev)];
1023 	struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
1024 	u_int oldch;
1025 	int s;
1026 
1027 	s = spltty();
1028 
1029 	if ( ISCLR(tp->t_state, TS_TTSTOP | TS_TIMEOUT | TS_BUSY) ) {
1030 		if ( tp->t_outq.c_cc <= tp->t_lowat ) {
1031 			if ( ISSET(tp->t_state, TS_ASLEEP) ) {
1032 				CLR(tp->t_state, TS_ASLEEP);
1033 				wakeup(&tp->t_outq);
1034 			}
1035 			selwakeup(&tp->t_wsel);
1036 		}
1037 
1038 		if ( ISSET(ch->ch_flags, CLMPCC_FLG_START_BREAK |
1039 					 CLMPCC_FLG_END_BREAK) ||
1040 		     tp->t_outq.c_cc > 0 ) {
1041 
1042 			if ( ISCLR(ch->ch_flags, CLMPCC_FLG_START_BREAK |
1043 						 CLMPCC_FLG_END_BREAK) ) {
1044 				ch->ch_obuf_addr = tp->t_outq.c_cf;
1045 				ch->ch_obuf_size = ndqb(&tp->t_outq, 0);
1046 			}
1047 
1048 			/* Enable TX empty interrupts */
1049 			oldch = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
1050 			clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER,
1051 				clmpcc_rdreg(ch->ch_sc, CLMPCC_REG_IER) |
1052 					     CLMPCC_IER_TX_EMPTY);
1053 			clmpcc_select_channel(ch->ch_sc, oldch);
1054 			SET(tp->t_state, TS_BUSY);
1055 		}
1056 	}
1057 
1058 	splx(s);
1059 }
1060 
1061 /*
1062  * Stop output on a line.
1063  */
1064 void
1065 clmpccstop(tp, flag)
1066 	struct tty *tp;
1067 	int flag;
1068 {
1069 	struct clmpcc_softc *sc = clmpcc_cd.cd_devs[CLMPCCUNIT(tp->t_dev)];
1070 	struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
1071 	int s;
1072 
1073 	s = splserial();
1074 
1075 	if ( ISSET(tp->t_state, TS_BUSY) ) {
1076 		if ( ISCLR(tp->t_state, TS_TTSTOP) )
1077 			SET(tp->t_state, TS_FLUSH);
1078 		ch->ch_obuf_size = 0;
1079 	}
1080 	splx(s);
1081 }
1082 
1083 /*
1084  * RX interrupt routine
1085  */
1086 int
1087 clmpcc_rxintr(arg)
1088 	void *arg;
1089 {
1090 	struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1091 	struct clmpcc_chan *ch;
1092 	u_int8_t *put, *end, rxd;
1093 	u_char errstat;
1094 	u_char fc, tc;
1095 	u_char risr;
1096 	u_char rir;
1097 #ifdef DDB
1098 	int saw_break = 0;
1099 #endif
1100 
1101 	/* Receive interrupt active? */
1102 	rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1103 
1104 	/*
1105 	 * If we're using auto-vectored interrupts, we have to
1106 	 * verify if the chip is generating the interrupt.
1107 	 */
1108 	if ( sc->sc_vector_base == 0 && (rir & CLMPCC_RIR_RACT) == 0 )
1109 		return 0;
1110 
1111 	/* Get pointer to interrupting channel's data structure */
1112 	ch = &sc->sc_chans[rir & CLMPCC_RIR_RCN_MASK];
1113 
1114 	/* Get the interrupt status register */
1115 	risr = clmpcc_rdreg(sc, CLMPCC_REG_RISRl);
1116 	if ( risr & CLMPCC_RISR_TIMEOUT ) {
1117 		u_char reg;
1118 		/*
1119 		 * Set the FIFO threshold to zero, and disable
1120 		 * further receive timeout interrupts.
1121 		 */
1122 		reg = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
1123 		clmpcc_wrreg(sc, CLMPCC_REG_COR4, reg & ~CLMPCC_COR4_FIFO_MASK);
1124 		reg = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1125 		clmpcc_wrreg(sc, CLMPCC_REG_IER, reg & ~CLMPCC_IER_RET);
1126 		clmpcc_wrreg(sc, CLMPCC_REG_REOIR, CLMPCC_REOIR_NO_TRANS);
1127 		SET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
1128 		return 1;
1129 	}
1130 
1131 	/* How many bytes are waiting in the FIFO?  */
1132 	fc = tc = clmpcc_rdreg(sc, CLMPCC_REG_RFOC) & CLMPCC_RFOC_MASK;
1133 
1134 #ifdef DDB
1135 	/*
1136 	 * Allow BREAK on the console to drop to the debugger.
1137 	 */
1138 	if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) &&
1139 	     risr & CLMPCC_RISR_BREAK ) {
1140 		saw_break = 1;
1141 	}
1142 #endif
1143 
1144 	if ( ISCLR(ch->ch_tty->t_state, TS_ISOPEN) && fc ) {
1145 		/* Just get rid of the data */
1146 		while ( fc-- )
1147 			(void) clmpcc_rd_rxdata(sc);
1148 		goto rx_done;
1149 	}
1150 
1151 	put = ch->ch_ibuf_wr;
1152 	end = ch->ch_ibuf_end;
1153 
1154 	/*
1155 	 * Note: The chip is completely hosed WRT these error
1156 	 *       conditions; there seems to be no way to associate
1157 	 *       the error with the correct character in the FIFO.
1158 	 *       We compromise by tagging the first character we read
1159 	 *       with the error. Not perfect, but there's no other way.
1160 	 */
1161 	errstat = 0;
1162 	if ( risr & CLMPCC_RISR_PARITY )
1163 		errstat |= TTY_PE;
1164 	if ( risr & (CLMPCC_RISR_FRAMING | CLMPCC_RISR_BREAK) )
1165 		errstat |= TTY_FE;
1166 
1167 	/*
1168 	 * As long as there are characters in the FIFO, and we
1169 	 * have space for them...
1170 	 */
1171 	while ( fc > 0 ) {
1172 
1173 		*put++ = rxd = clmpcc_rd_rxdata(sc);
1174 		*put++ = errstat;
1175 
1176 		if ( put >= end )
1177 			put = ch->ch_ibuf;
1178 
1179 		if ( put == ch->ch_ibuf_rd ) {
1180 			put -= 2;
1181 			if ( put < ch->ch_ibuf )
1182 				put = end - 2;
1183 		}
1184 
1185 		errstat = 0;
1186 		fc--;
1187 	}
1188 
1189 	ch->ch_ibuf_wr = put;
1190 
1191 #if 0
1192 	if ( sc->sc_swaprtsdtr == 0 &&
1193 	     ISSET(cy->cy_tty->t_cflag, CRTSCTS) && cc < ch->ch_r_hiwat) {
1194 		/*
1195 		 * If RTS/DTR are not physically swapped, we have to
1196 		 * do hardware flow control manually
1197 		 */
1198 		clmpcc_wr_msvr(sc, CLMPCC_MSVR_RTS, 0);
1199 	}
1200 #endif
1201 
1202 rx_done:
1203 	if ( fc != tc ) {
1204 		if ( ISSET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR) ) {
1205 			u_char reg;
1206 			/*
1207 			 * Set the FIFO threshold to the preset value,
1208 			 * and enable receive timeout interrupts.
1209 			 */
1210 			reg = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
1211 			reg = (reg & ~CLMPCC_COR4_FIFO_MASK) | ch->ch_cor4;
1212 			clmpcc_wrreg(sc, CLMPCC_REG_COR4, reg);
1213 			reg = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1214 			clmpcc_wrreg(sc, CLMPCC_REG_IER, reg | CLMPCC_IER_RET);
1215 			CLR(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
1216 		}
1217 
1218 		clmpcc_wrreg(sc, CLMPCC_REG_REOIR, 0);
1219 		if ( sc->sc_soft_running == 0 ) {
1220 			sc->sc_soft_running = 1;
1221 			(sc->sc_softhook)(sc);
1222 		}
1223 	} else
1224 		clmpcc_wrreg(sc, CLMPCC_REG_REOIR, CLMPCC_REOIR_NO_TRANS);
1225 
1226 #ifdef DDB
1227 	/*
1228 	 * Only =after= we write REOIR is it safe to drop to the debugger.
1229 	 */
1230 	if ( saw_break )
1231 		Debugger();
1232 #endif
1233 
1234 	return 1;
1235 }
1236 
1237 /*
1238  * Tx interrupt routine
1239  */
1240 int
1241 clmpcc_txintr(arg)
1242 	void *arg;
1243 {
1244 	struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1245 	struct clmpcc_chan *ch;
1246 	struct tty *tp;
1247 	u_char ftc, oftc;
1248 	u_char tir, teoir;
1249 	int etcmode = 0;
1250 
1251 	/* Tx interrupt active? */
1252 	tir = clmpcc_rdreg(sc, CLMPCC_REG_TIR);
1253 
1254 	/*
1255 	 * If we're using auto-vectored interrupts, we have to
1256 	 * verify if the chip is generating the interrupt.
1257 	 */
1258 	if ( sc->sc_vector_base == 0 && (tir & CLMPCC_TIR_TACT) == 0 )
1259 		return 0;
1260 
1261 	/* Get pointer to interrupting channel's data structure */
1262 	ch = &sc->sc_chans[tir & CLMPCC_TIR_TCN_MASK];
1263 	tp = ch->ch_tty;
1264 
1265 	/* Dummy read of the interrupt status register */
1266 	(void) clmpcc_rdreg(sc, CLMPCC_REG_TISR);
1267 
1268 	/* Make sure embedded transmit commands are disabled */
1269 	clmpcc_wrreg(sc, CLMPCC_REG_COR2, ch->ch_cor2);
1270 
1271 	ftc = oftc = clmpcc_rdreg(sc, CLMPCC_REG_TFTC);
1272 
1273 	/* Handle a delayed parameter change */
1274 	if ( ISSET(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS) ) {
1275 		CLR(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS);
1276 		clmpcc_set_params(ch);
1277 	}
1278 
1279 	if ( ch->ch_obuf_size > 0 ) {
1280 		u_int n = min(ch->ch_obuf_size, ftc);
1281 
1282 		clmpcc_wrtx_multi(sc, ch->ch_obuf_addr, n);
1283 
1284 		ftc -= n;
1285 		ch->ch_obuf_size -= n;
1286 		ch->ch_obuf_addr += n;
1287 
1288 	} else {
1289 		/*
1290 		 * Check if we should start/stop a break
1291 		 */
1292 		if ( ISSET(ch->ch_flags, CLMPCC_FLG_START_BREAK) ) {
1293 			CLR(ch->ch_flags, CLMPCC_FLG_START_BREAK);
1294 			/* Enable embedded transmit commands */
1295 			clmpcc_wrreg(sc, CLMPCC_REG_COR2,
1296 					ch->ch_cor2 | CLMPCC_COR2_ETC);
1297 			clmpcc_wr_txdata(sc, CLMPCC_ETC_MAGIC);
1298 			clmpcc_wr_txdata(sc, CLMPCC_ETC_SEND_BREAK);
1299 			ftc -= 2;
1300 			etcmode = 1;
1301 		}
1302 
1303 		if ( ISSET(ch->ch_flags, CLMPCC_FLG_END_BREAK) ) {
1304 			CLR(ch->ch_flags, CLMPCC_FLG_END_BREAK);
1305 			/* Enable embedded transmit commands */
1306 			clmpcc_wrreg(sc, CLMPCC_REG_COR2,
1307 					ch->ch_cor2 | CLMPCC_COR2_ETC);
1308 			clmpcc_wr_txdata(sc, CLMPCC_ETC_MAGIC);
1309 			clmpcc_wr_txdata(sc, CLMPCC_ETC_STOP_BREAK);
1310 			ftc -= 2;
1311 			etcmode = 1;
1312 		}
1313 	}
1314 
1315 	tir = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1316 
1317 	if ( ftc != oftc ) {
1318 		/*
1319 		 * Enable/disable the Tx FIFO threshold interrupt
1320 		 * according to how much data is in the FIFO.
1321 		 * However, always disable the FIFO threshold if
1322 		 * we've left the channel in 'Embedded Transmit
1323 		 * Command' mode.
1324 		 */
1325 		if ( etcmode || ftc >= ch->ch_cor4 )
1326 			tir &= ~CLMPCC_IER_TX_FIFO;
1327 		else
1328 			tir |= CLMPCC_IER_TX_FIFO;
1329 		teoir = 0;
1330 	} else {
1331 		/*
1332 		 * No data was sent.
1333 		 * Disable transmit interrupt.
1334 		 */
1335 		tir &= ~(CLMPCC_IER_TX_EMPTY|CLMPCC_IER_TX_FIFO);
1336 		teoir = CLMPCC_TEOIR_NO_TRANS;
1337 
1338 		/*
1339 		 * Request Tx processing in the soft interrupt handler
1340 		 */
1341 		ch->ch_tx_done = 1;
1342 		if ( ! sc->sc_soft_running ) {
1343 			sc->sc_soft_running = 1;
1344 			(sc->sc_softhook)(sc);
1345 		}
1346 	}
1347 
1348 	clmpcc_wrreg(sc, CLMPCC_REG_IER, tir);
1349 	clmpcc_wrreg(sc, CLMPCC_REG_TEOIR, teoir);
1350 
1351 	return 1;
1352 }
1353 
1354 /*
1355  * Modem change interrupt routine
1356  */
1357 int
1358 clmpcc_mdintr(arg)
1359 	void *arg;
1360 {
1361 	struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1362 	u_char mir;
1363 
1364 	/* Modem status interrupt active? */
1365 	mir = clmpcc_rdreg(sc, CLMPCC_REG_MIR);
1366 
1367 	/*
1368 	 * If we're using auto-vectored interrupts, we have to
1369 	 * verify if the chip is generating the interrupt.
1370 	 */
1371 	if ( sc->sc_vector_base == 0 && (mir & CLMPCC_MIR_MACT) == 0 )
1372 		return 0;
1373 
1374 	/* Dummy read of the interrupt status register */
1375 	(void) clmpcc_rdreg(sc, CLMPCC_REG_MISR);
1376 
1377 	/* Retrieve current status of modem lines. */
1378 	sc->sc_chans[mir & CLMPCC_MIR_MCN_MASK].ch_control |=
1379 		clmpcc_rd_msvr(sc) & CLMPCC_MSVR_CD;
1380 
1381 	clmpcc_wrreg(sc, CLMPCC_REG_MEOIR, 0);
1382 
1383 	if ( sc->sc_soft_running == 0 ) {
1384 		sc->sc_soft_running = 1;
1385 		(sc->sc_softhook)(sc);
1386 	}
1387 
1388 	return 1;
1389 }
1390 
1391 void
1392 clmpcc_softintr(arg)
1393 	void *arg;
1394 {
1395 	struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1396 	struct clmpcc_chan *ch;
1397 	struct tty *tp;
1398 	int (*rint) __P((int, struct tty *));
1399 	u_char *get;
1400 	u_char reg;
1401 	u_int c;
1402 	int chan;
1403 
1404 	sc->sc_soft_running = 0;
1405 
1406 	/* Handle Modem state changes too... */
1407 
1408 	for (chan = 0; chan < CLMPCC_NUM_CHANS; chan++) {
1409 		ch = &sc->sc_chans[chan];
1410 		tp = ch->ch_tty;
1411 
1412 		get = ch->ch_ibuf_rd;
1413 		rint = linesw[tp->t_line].l_rint;
1414 
1415 		/* Squirt buffered incoming data into the tty layer */
1416 		while ( get != ch->ch_ibuf_wr ) {
1417 			c = get[0];
1418 			c |= ((u_int)get[1]) << 8;
1419 			if ( (rint)(c, tp) == -1 ) {
1420 				ch->ch_ibuf_rd = ch->ch_ibuf_wr;
1421 				break;
1422 			}
1423 
1424 			get += 2;
1425 			if ( get == ch->ch_ibuf_end )
1426 				get = ch->ch_ibuf;
1427 
1428 			ch->ch_ibuf_rd = get;
1429 		}
1430 
1431 		/*
1432 		 * Is the transmitter idle and in need of attention?
1433 		 */
1434 		if ( ch->ch_tx_done ) {
1435 			ch->ch_tx_done = 0;
1436 
1437 			if ( ISSET(ch->ch_flags, CLMPCC_FLG_NEED_INIT) ) {
1438 				clmpcc_channel_cmd(sc, ch->ch_car,
1439 						       CLMPCC_CCR_T0_INIT  |
1440 						       CLMPCC_CCR_T0_RX_EN |
1441 					   	       CLMPCC_CCR_T0_TX_EN);
1442 				CLR(ch->ch_flags, CLMPCC_FLG_NEED_INIT);
1443 
1444 				/*
1445 				 * Allow time for the channel to initialise.
1446 				 * (Empirically derived duration; there must
1447 				 * be another way to determine the command
1448 				 * has completed without busy-waiting...)
1449 				 */
1450 				delay(800);
1451 
1452 				/*
1453 				 * Update the tty layer's idea of the carrier
1454 				 * bit, in case we changed CLOCAL or MDMBUF.
1455 				 * We don't hang up here; we only do that by
1456 				 * explicit request.
1457 				 */
1458 				reg = clmpcc_rd_msvr(sc) & CLMPCC_MSVR_CD;
1459 				(*linesw[tp->t_line].l_modem)(tp, reg != 0);
1460 			}
1461 
1462 			CLR(tp->t_state, TS_BUSY);
1463 			if ( ISSET(tp->t_state, TS_FLUSH) )
1464 				CLR(tp->t_state, TS_FLUSH);
1465 			else
1466 				ndflush(&tp->t_outq,
1467 				     (int)(ch->ch_obuf_addr - tp->t_outq.c_cf));
1468 
1469 			(*linesw[tp->t_line].l_start)(tp);
1470 		}
1471 	}
1472 }
1473 
1474 
1475 /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1476 /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1477 /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1478 /*
1479  * Following are all routines needed for a cd240x channel to act as console
1480  */
1481 int
1482 clmpcc_cnattach(sc, chan, rate)
1483 	struct clmpcc_softc *sc;
1484 	int chan;
1485 	int rate;
1486 {
1487 	cons_sc = sc;
1488 	cons_chan = chan;
1489 	cons_rate = rate;
1490 
1491 	return 0;
1492 }
1493 
1494 /*
1495  * The following functions are polled getc and putc routines, for console use.
1496  */
1497 static int
1498 clmpcc_common_getc(sc, chan)
1499 	struct clmpcc_softc *sc;
1500 	int chan;
1501 {
1502 	u_char old_chan;
1503 	u_char old_ier;
1504 	u_char ch, rir, risr;
1505 	int s;
1506 
1507 	s = splhigh();
1508 
1509 	/* Save the currently active channel */
1510 	old_chan = clmpcc_select_channel(sc, chan);
1511 
1512 	/*
1513 	 * We have to put the channel into RX interrupt mode before
1514 	 * trying to read the Rx data register. So save the previous
1515 	 * interrupt mode.
1516 	 */
1517 	old_ier = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1518 	clmpcc_wrreg(sc, CLMPCC_REG_IER, CLMPCC_IER_RX_FIFO);
1519 
1520 	/* Loop until we get a character */
1521 	for (;;) {
1522 		/*
1523 		 * The REN bit will be set in the Receive Interrupt Register
1524 		 * when the CD240x has a character to process. Remember,
1525 		 * the RACT bit won't be set until we generate an interrupt
1526 		 * acknowledge cycle via the MD front-end.
1527 		 */
1528 		rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1529 		if ( (rir & CLMPCC_RIR_REN) == 0 )
1530 			continue;
1531 
1532 		/* Acknowledge the request */
1533 		if ( sc->sc_iackhook )
1534 			(sc->sc_iackhook)(sc, CLMPCC_IACK_RX);
1535 
1536 		/*
1537 		 * Determine if the interrupt is for the required channel
1538 		 * and if valid data is available.
1539 		 */
1540 		rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1541 		risr = clmpcc_rdreg(sc, CLMPCC_REG_RISR);
1542 		if ( (rir & CLMPCC_RIR_RCN_MASK) != chan ||
1543 		     risr != 0 ) {
1544 			/* Rx error, or BREAK */
1545 			clmpcc_wrreg(sc, CLMPCC_REG_REOIR,
1546 					 CLMPCC_REOIR_NO_TRANS);
1547 		} else {
1548 			/* Dummy read of the FIFO count register */
1549 			(void) clmpcc_rdreg(sc, CLMPCC_REG_RFOC);
1550 
1551 			/* Fetch the received character */
1552 			ch = clmpcc_rd_rxdata(sc);
1553 
1554 			clmpcc_wrreg(sc, CLMPCC_REG_REOIR, 0);
1555 			break;
1556 		}
1557 	}
1558 
1559 	/* Restore the original IER and CAR register contents */
1560 	clmpcc_wrreg(sc, CLMPCC_REG_IER, old_ier);
1561 	clmpcc_select_channel(sc, old_chan);
1562 
1563 	splx(s);
1564 	return ch;
1565 }
1566 
1567 
1568 static void
1569 clmpcc_common_putc(sc, chan, c)
1570 	struct clmpcc_softc *sc;
1571 	int chan;
1572 	int c;
1573 {
1574 	u_char old_chan;
1575 	int s = splhigh();
1576 
1577 	/* Save the currently active channel */
1578 	old_chan = clmpcc_select_channel(sc, chan);
1579 
1580 	/*
1581 	 * Since we can only access the Tx Data register from within
1582 	 * the interrupt handler, the easiest way to get console data
1583 	 * onto the wire is using one of the Special Transmit Character
1584 	 * registers.
1585 	 */
1586 	clmpcc_wrreg(sc, CLMPCC_REG_SCHR4, c);
1587 	clmpcc_wrreg(sc, CLMPCC_REG_STCR, CLMPCC_STCR_SSPC(4) |
1588 					  CLMPCC_STCR_SND_SPC);
1589 
1590 	/* Wait until the "Send Special Character" command is accepted */
1591 	while ( clmpcc_rdreg(sc, CLMPCC_REG_STCR) != 0 )
1592 		;
1593 
1594 	/* Restore the previous channel selected */
1595 	clmpcc_select_channel(sc, old_chan);
1596 
1597 	splx(s);
1598 }
1599 
1600 int
1601 clmpcccngetc(dev)
1602 	dev_t dev;
1603 {
1604 	return clmpcc_common_getc(cons_sc, cons_chan);
1605 }
1606 
1607 /*
1608  * Console kernel output character routine.
1609  */
1610 void
1611 clmpcccnputc(dev, c)
1612 	dev_t dev;
1613 	int c;
1614 {
1615 	if ( c == '\n' )
1616 		clmpcc_common_putc(cons_sc, cons_chan, '\r');
1617 
1618 	clmpcc_common_putc(cons_sc, cons_chan, c);
1619 }
1620