xref: /netbsd-src/sys/dev/ic/arn9285.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: arn9285.c,v 1.3 2013/10/17 21:24:24 christos Exp $	*/
2 /*	$OpenBSD: ar9285.c,v 1.19 2012/06/10 21:23:36 kettenis Exp $	*/
3 
4 /*-
5  * Copyright (c) 2009-2010 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2008-2010 Atheros Communications Inc.
7  *
8  * Permission to use, copy, modify, and/or distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for Atheros 802.11a/g/n chipsets.
23  * Routines for AR9285 and AR9271 chipsets.
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: arn9285.c,v 1.3 2013/10/17 21:24:24 christos Exp $");
28 
29 #ifndef _MODULE
30 #include "athn_usb.h"
31 #endif
32 
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/socket.h>
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40 #include <sys/queue.h>
41 #include <sys/callout.h>
42 #include <sys/conf.h>
43 #include <sys/device.h>
44 
45 #include <sys/bus.h>
46 #include <sys/endian.h>
47 #include <sys/intr.h>
48 
49 #include <net/bpf.h>
50 #include <net/if.h>
51 #include <net/if_arp.h>
52 #include <net/if_dl.h>
53 #include <net/if_ether.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <netinet/ip.h>
61 
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65 
66 #include <dev/ic/athnreg.h>
67 #include <dev/ic/athnvar.h>
68 #include <dev/ic/arn9285.h>
69 
70 #include <dev/ic/arn5008reg.h>
71 #include <dev/ic/arn9280reg.h>
72 #include <dev/ic/arn9285reg.h>
73 
74 #include <dev/ic/arn5008.h>
75 #include <dev/ic/arn9280.h>
76 #include <dev/ic/arn9285.h>
77 
78 #define Static static
79 
80 Static int	ar9285_cl_cal(struct athn_softc *, struct ieee80211_channel *,
81 		    struct ieee80211_channel *);
82 Static void	ar9285_get_pdadcs(struct athn_softc *,
83 		    struct ieee80211_channel *, int, uint8_t, uint8_t *,
84 		    uint8_t *);
85 Static const struct ar_spur_chan *
86 		ar9285_get_spur_chans(struct athn_softc *, int);
87 Static void	ar9285_init_from_rom(struct athn_softc *,
88 		    struct ieee80211_channel *, struct ieee80211_channel *);
89 Static void	ar9285_set_power_calib(struct athn_softc *,
90 		    struct ieee80211_channel *);
91 Static void	ar9285_set_txpower(struct athn_softc *,
92 		    struct ieee80211_channel *, struct ieee80211_channel *);
93 Static void	ar9285_setup(struct athn_softc *);
94 Static void	ar9285_swap_rom(struct athn_softc *);
95 
96 PUBLIC int
97 ar9285_attach(struct athn_softc *sc)
98 {
99 
100 	sc->sc_eep_base = AR9285_EEP_START_LOC;
101 	sc->sc_eep_size = sizeof(struct ar9285_eeprom);
102 	sc->sc_def_nf = AR9285_PHY_CCA_MAX_GOOD_VALUE;
103 	sc->sc_ngpiopins = (sc->sc_flags & ATHN_FLAG_USB) ? 16 : 12;
104 	sc->sc_led_pin = (sc->sc_flags & ATHN_FLAG_USB) ? 15 : 1;
105 	sc->sc_workaround = AR9285_WA_DEFAULT;
106 	sc->sc_ops.setup = ar9285_setup;
107 	sc->sc_ops.swap_rom = ar9285_swap_rom;
108 	sc->sc_ops.init_from_rom = ar9285_init_from_rom;
109 	sc->sc_ops.set_txpower = ar9285_set_txpower;
110 	sc->sc_ops.set_synth = ar9280_set_synth;
111 	sc->sc_ops.spur_mitigate = ar9280_spur_mitigate;
112 	sc->sc_ops.get_spur_chans = ar9285_get_spur_chans;
113 #if NATHN_USB > 0
114 	if (AR_SREV_9271(sc))
115 		sc->sc_ini = &ar9271_ini;
116 	else
117 #endif
118 		sc->sc_ini = &ar9285_1_2_ini;
119 	sc->sc_serdes = &ar9280_2_0_serdes;
120 
121 	return ar5008_attach(sc);
122 }
123 
124 Static void
125 ar9285_setup(struct athn_softc *sc)
126 {
127 	const struct ar9285_eeprom *eep = sc->sc_eep;
128 	uint8_t type;
129 
130 	/* Select initialization values based on ROM. */
131 	type = eep->baseEepHeader.txGainType;
132 	DPRINTFN(DBG_TX, sc, "Tx gain type=0x%x\n", type);
133 #if NATHN_USB > 0
134 	if (AR_SREV_9271(sc)) {
135 		if (type == AR_EEP_TXGAIN_HIGH_POWER)
136 			sc->sc_tx_gain = &ar9271_tx_gain_high_power;
137 		else
138 			sc->sc_tx_gain = &ar9271_tx_gain;
139 	}
140 	else
141 #endif	/* NATHN_USB */
142 	if ((AR_READ(sc, AR_AN_SYNTH9) & 0x7) == 0x1) {	/* XE rev. */
143 		if (type == AR_EEP_TXGAIN_HIGH_POWER)
144 			sc->sc_tx_gain = &ar9285_2_0_tx_gain_high_power;
145 		else
146 			sc->sc_tx_gain = &ar9285_2_0_tx_gain;
147 	}
148 	else {
149 		if (type == AR_EEP_TXGAIN_HIGH_POWER)
150 			sc->sc_tx_gain = &ar9285_1_2_tx_gain_high_power;
151 		else
152 			sc->sc_tx_gain = &ar9285_1_2_tx_gain;
153 	}
154 }
155 
156 Static void
157 ar9285_swap_rom(struct athn_softc *sc)
158 {
159 	struct ar9285_eeprom *eep = sc->sc_eep;
160 	int i;
161 
162 	eep->modalHeader.antCtrlCommon =
163 	    bswap32(eep->modalHeader.antCtrlCommon);
164 	eep->modalHeader.antCtrlChain =
165 	    bswap32(eep->modalHeader.antCtrlChain);
166 
167 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
168 		eep->modalHeader.spurChans[i].spurChan =
169 		    bswap16(eep->modalHeader.spurChans[i].spurChan);
170 	}
171 }
172 
173 Static const struct ar_spur_chan *
174 ar9285_get_spur_chans(struct athn_softc *sc, int is2ghz)
175 {
176 	const struct ar9285_eeprom *eep = sc->sc_eep;
177 
178 	KASSERT(is2ghz);
179 	return eep->modalHeader.spurChans;
180 }
181 
182 Static void
183 ar9285_init_from_rom(struct athn_softc *sc, struct ieee80211_channel *c,
184     struct ieee80211_channel *extc)
185 {
186 	const struct ar9285_eeprom *eep = sc->sc_eep;
187 	const struct ar9285_modal_eep_header *modal = &eep->modalHeader;
188 	uint32_t reg, offset = 0x1000;
189 	uint8_t ob[5], db1[5], db2[5];
190 	uint8_t txRxAtten;
191 
192 	AR_WRITE(sc, AR_PHY_SWITCH_COM, modal->antCtrlCommon);
193 	AR_WRITE(sc, AR_PHY_SWITCH_CHAIN_0, modal->antCtrlChain);
194 
195 	reg = AR_READ(sc, AR_PHY_TIMING_CTRL4_0);
196 	reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, modal->iqCalI);
197 	reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, modal->iqCalQ);
198 	AR_WRITE(sc, AR_PHY_TIMING_CTRL4_0, reg);
199 
200 	if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_3) {
201 		reg = AR_READ(sc, AR_PHY_GAIN_2GHZ);
202 		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
203 		    modal->bswMargin);
204 		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_DB,
205 		    modal->bswAtten);
206 		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
207 		    modal->xatten2Margin);
208 		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_DB,
209 		    modal->xatten2Db);
210 		AR_WRITE(sc, AR_PHY_GAIN_2GHZ, reg);
211 
212 		/* Duplicate values of chain 0 for chain 1. */
213 		reg = AR_READ(sc, AR_PHY_GAIN_2GHZ + offset);
214 		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
215 		    modal->bswMargin);
216 		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_DB,
217 		    modal->bswAtten);
218 		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
219 		    modal->xatten2Margin);
220 		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_DB,
221 		    modal->xatten2Db);
222 		AR_WRITE(sc, AR_PHY_GAIN_2GHZ + offset, reg);
223 	}
224 	if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_3)
225 		txRxAtten = modal->txRxAtten;
226 	else	/* Workaround for ROM versions < 14.3. */
227 		txRxAtten = 23;
228 	reg = AR_READ(sc, AR_PHY_RXGAIN);
229 	reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAtten);
230 	reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_MARGIN, modal->rxTxMargin);
231 	AR_WRITE(sc, AR_PHY_RXGAIN, reg);
232 
233 	/* Duplicate values of chain 0 for chain 1. */
234 	reg = AR_READ(sc, AR_PHY_RXGAIN + offset);
235 	reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAtten);
236 	reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_MARGIN, modal->rxTxMargin);
237 	AR_WRITE(sc, AR_PHY_RXGAIN + offset, reg);
238 
239 	if (modal->version >= 3) {
240 		/* Setup antenna diversity from ROM. */
241 		reg = AR_READ(sc, AR_PHY_MULTICHAIN_GAIN_CTL);
242 		reg = RW(reg, AR9285_PHY_ANT_DIV_CTL_ALL, 0);
243 		reg = RW(reg, AR9285_PHY_ANT_DIV_CTL,
244 		    (modal->ob_234  >> 12) & 0x1);
245 		reg = RW(reg, AR9285_PHY_ANT_DIV_ALT_LNACONF,
246 		    (modal->db1_234 >> 12) & 0x3);
247 		reg = RW(reg, AR9285_PHY_ANT_DIV_MAIN_LNACONF,
248 		    (modal->db1_234 >> 14) & 0x3);
249 		reg = RW(reg, AR9285_PHY_ANT_DIV_ALT_GAINTB,
250 		    (modal->ob_234  >> 13) & 0x1);
251 		reg = RW(reg, AR9285_PHY_ANT_DIV_MAIN_GAINTB,
252 		    (modal->ob_234  >> 14) & 0x1);
253 		AR_WRITE(sc, AR_PHY_MULTICHAIN_GAIN_CTL, reg);
254 		reg = AR_READ(sc, AR_PHY_MULTICHAIN_GAIN_CTL);	/* Flush. */
255 
256 		reg = AR_READ(sc, AR_PHY_CCK_DETECT);
257 		if (modal->ob_234 & (1 << 15))
258 			reg |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
259 		else
260 			reg &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
261 		AR_WRITE(sc, AR_PHY_CCK_DETECT, reg);
262 		reg = AR_READ(sc, AR_PHY_CCK_DETECT);		/* Flush. */
263 	}
264 	if (modal->version >= 2) {
265 		ob [0] = (modal->ob_01   >> 0) & 0xf;
266 		ob [1] = (modal->ob_01   >> 4) & 0xf;
267 		ob [2] = (modal->ob_234  >> 0) & 0xf;
268 		ob [3] = (modal->ob_234  >> 4) & 0xf;
269 		ob [4] = (modal->ob_234  >> 8) & 0xf;
270 
271 		db1[0] = (modal->db1_01  >> 0) & 0xf;
272 		db1[1] = (modal->db1_01  >> 4) & 0xf;
273 		db1[2] = (modal->db1_234 >> 0) & 0xf;
274 		db1[3] = (modal->db1_234 >> 4) & 0xf;
275 		db1[4] = (modal->db1_234 >> 8) & 0xf;
276 
277 		db2[0] = (modal->db2_01  >> 0) & 0xf;
278 		db2[1] = (modal->db2_01  >> 4) & 0xf;
279 		db2[2] = (modal->db2_234 >> 0) & 0xf;
280 		db2[3] = (modal->db2_234 >> 4) & 0xf;
281 		db2[4] = (modal->db2_234 >> 8) & 0xf;
282 
283 	}
284 	else if (modal->version == 1) {
285 		ob [0] = (modal->ob_01   >> 0) & 0xf;
286 		ob [1] = (modal->ob_01   >> 4) & 0xf;
287 		/* Field ob_234 does not exist, use ob_01. */
288 		ob [2] = ob [3] = ob [4] = ob [1];
289 
290 		db1[0] = (modal->db1_01  >> 0) & 0xf;
291 		db1[1] = (modal->db1_01  >> 4) & 0xf;
292 		/* Field db1_234 does not exist, use db1_01. */
293 		db1[2] = db1[3] = db1[4] = db1[1];
294 
295 		db2[0] = (modal->db2_01  >> 0) & 0xf;
296 		db2[1] = (modal->db2_01  >> 4) & 0xf;
297 		/* Field db2_234 does not exist, use db2_01. */
298 		db2[2] = db2[3] = db2[4] = db2[1];
299 
300 	}
301 	else {
302 		ob [0] = modal->ob_01;
303 		ob [1] = ob [2] = ob [3] = ob [4] = ob [0];
304 
305 		db1[0] = modal->db1_01;
306 		db1[1] = db1[2] = db1[3] = db1[4] = db1[0];
307 
308 		/* Field db2_01 does not exist, use db1_01. */
309 		db2[0] = modal->db1_01;
310 		db2[1] = db2[2] = db2[3] = db2[4] = db2[0];
311 	}
312 #if NATHN_USB > 0
313 	if (AR_SREV_9271(sc)) {
314 		reg = AR_READ(sc, AR9285_AN_RF2G3);
315 		reg = RW(reg, AR9271_AN_RF2G3_OB_CCK, ob [0]);
316 		reg = RW(reg, AR9271_AN_RF2G3_OB_PSK, ob [1]);
317 		reg = RW(reg, AR9271_AN_RF2G3_OB_QAM, ob [2]);
318 		reg = RW(reg, AR9271_AN_RF2G3_DB1,    db1[0]);
319 		AR_WRITE(sc, AR9285_AN_RF2G3, reg);
320 		AR_WRITE_BARRIER(sc);
321 		DELAY(100);
322 		reg = AR_READ(sc, AR9285_AN_RF2G4);
323 		reg = RW(reg, AR9271_AN_RF2G4_DB2,    db2[0]);
324 		AR_WRITE(sc, AR9285_AN_RF2G4, reg);
325 		AR_WRITE_BARRIER(sc);
326 		DELAY(100);
327 	}
328 	else
329 #endif	/* ATHN_USB */
330 	{
331 		reg = AR_READ(sc, AR9285_AN_RF2G3);
332 		reg = RW(reg, AR9285_AN_RF2G3_OB_0,  ob [0]);
333 		reg = RW(reg, AR9285_AN_RF2G3_OB_1,  ob [1]);
334 		reg = RW(reg, AR9285_AN_RF2G3_OB_2,  ob [2]);
335 		reg = RW(reg, AR9285_AN_RF2G3_OB_3,  ob [3]);
336 		reg = RW(reg, AR9285_AN_RF2G3_OB_4,  ob [4]);
337 		reg = RW(reg, AR9285_AN_RF2G3_DB1_0, db1[0]);
338 		reg = RW(reg, AR9285_AN_RF2G3_DB1_1, db1[1]);
339 		reg = RW(reg, AR9285_AN_RF2G3_DB1_2, db1[2]);
340 		AR_WRITE(sc, AR9285_AN_RF2G3, reg);
341 		AR_WRITE_BARRIER(sc);
342 		DELAY(100);
343 		reg = AR_READ(sc, AR9285_AN_RF2G4);
344 		reg = RW(reg, AR9285_AN_RF2G4_DB1_3, db1[3]);
345 		reg = RW(reg, AR9285_AN_RF2G4_DB1_4, db1[4]);
346 		reg = RW(reg, AR9285_AN_RF2G4_DB2_0, db2[0]);
347 		reg = RW(reg, AR9285_AN_RF2G4_DB2_1, db2[1]);
348 		reg = RW(reg, AR9285_AN_RF2G4_DB2_2, db2[2]);
349 		reg = RW(reg, AR9285_AN_RF2G4_DB2_3, db2[3]);
350 		reg = RW(reg, AR9285_AN_RF2G4_DB2_4, db2[4]);
351 		AR_WRITE(sc, AR9285_AN_RF2G4, reg);
352 		AR_WRITE_BARRIER(sc);
353 		DELAY(100);
354 	}
355 
356 	reg = AR_READ(sc, AR_PHY_SETTLING);
357 	reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->switchSettling);
358 	AR_WRITE(sc, AR_PHY_SETTLING, reg);
359 
360 	reg = AR_READ(sc, AR_PHY_DESIRED_SZ);
361 	reg = RW(reg, AR_PHY_DESIRED_SZ_ADC, modal->adcDesiredSize);
362 	AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg);
363 
364 	reg =  SM(AR_PHY_RF_CTL4_TX_END_XPAA_OFF, modal->txEndToXpaOff);
365 	reg |= SM(AR_PHY_RF_CTL4_TX_END_XPAB_OFF, modal->txEndToXpaOff);
366 	reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAA_ON, modal->txFrameToXpaOn);
367 	reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAB_ON, modal->txFrameToXpaOn);
368 	AR_WRITE(sc, AR_PHY_RF_CTL4, reg);
369 
370 	reg = AR_READ(sc, AR_PHY_RF_CTL3);
371 	reg = RW(reg, AR_PHY_TX_END_TO_A2_RX_ON, modal->txEndToRxOn);
372 	AR_WRITE(sc, AR_PHY_RF_CTL3, reg);
373 
374 	reg = AR_READ(sc, AR_PHY_CCA(0));
375 	reg = RW(reg, AR9280_PHY_CCA_THRESH62, modal->thresh62);
376 	AR_WRITE(sc, AR_PHY_CCA(0), reg);
377 
378 	reg = AR_READ(sc, AR_PHY_EXT_CCA0);
379 	reg = RW(reg, AR_PHY_EXT_CCA0_THRESH62, modal->thresh62);
380 	AR_WRITE(sc, AR_PHY_EXT_CCA0, reg);
381 
382 	if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_2) {
383 		reg = AR_READ(sc, AR_PHY_RF_CTL2);
384 		reg = RW(reg, AR_PHY_TX_END_PA_ON,
385 		    modal->txFrameToPaOn);
386 		reg = RW(reg, AR_PHY_TX_END_DATA_START,
387 		    modal->txFrameToDataStart);
388 		AR_WRITE(sc, AR_PHY_RF_CTL2, reg);
389 	}
390 #ifndef IEEE80211_NO_HT
391 	if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_3 && extc != NULL) {
392 		reg = AR_READ(sc, AR_PHY_SETTLING);
393 		reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->swSettleHt40);
394 		AR_WRITE(sc, AR_PHY_SETTLING, reg);
395 	}
396 #endif
397 	AR_WRITE_BARRIER(sc);
398 }
399 
400 PUBLIC void
401 ar9285_pa_calib(struct athn_softc *sc)
402 {
403 	/* List of registers that need to be saved/restored. */
404 	static const uint16_t regs[] = {
405 		AR9285_AN_TOP3,
406 		AR9285_AN_RXTXBB1,
407 		AR9285_AN_RF2G1,
408 		AR9285_AN_RF2G2,
409 		AR9285_AN_TOP2,
410 		AR9285_AN_RF2G8,
411 		AR9285_AN_RF2G7
412 	};
413 	uint32_t svg[7], reg, ccomp_svg;
414 	size_t i;
415 
416 	/* No PA calibration needed for high power solutions. */
417 	if (AR_SREV_9285(sc) &&
418 	    ((struct ar9285_base_eep_header *)sc->sc_eep)->txGainType ==
419 	     AR_EEP_TXGAIN_HIGH_POWER)	/* XXX AR9287? */
420 		return;
421 
422 	/* Save registers. */
423 	for (i = 0; i < __arraycount(regs); i++)
424 		svg[i] = AR_READ(sc, regs[i]);
425 
426 	AR_CLRBITS(sc, AR9285_AN_RF2G6, 1);
427 	AR_SETBITS(sc, AR_PHY(2), 1 << 27);
428 
429 	AR_SETBITS(sc, AR9285_AN_TOP3, AR9285_AN_TOP3_PWDDAC);
430 	AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDRXTXBB1);
431 	AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDV2I);
432 	AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDDACIF);
433 	AR_CLRBITS(sc, AR9285_AN_RF2G2, AR9285_AN_RF2G2_OFFCAL);
434 	AR_CLRBITS(sc, AR9285_AN_RF2G7, AR9285_AN_RF2G7_PWDDB);
435 	AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_ENPACAL);
436 	/* Power down PA drivers. */
437 	AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV1);
438 	AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV2);
439 	AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPAOUT);
440 
441 	reg = AR_READ(sc, AR9285_AN_RF2G8);
442 	reg = RW(reg, AR9285_AN_RF2G8_PADRVGN2TAB0, 7);
443 	AR_WRITE(sc, AR9285_AN_RF2G8, reg);
444 
445 	reg = AR_READ(sc, AR9285_AN_RF2G7);
446 	reg = RW(reg, AR9285_AN_RF2G7_PADRVGN2TAB0, 0);
447 	AR_WRITE(sc, AR9285_AN_RF2G7, reg);
448 
449 	reg = AR_READ(sc, AR9285_AN_RF2G6);
450 	/* Save compensation capacitor value. */
451 	ccomp_svg = MS(reg, AR9285_AN_RF2G6_CCOMP);
452 	/* Program compensation capacitor for dynamic PA. */
453 	reg = RW(reg, AR9285_AN_RF2G6_CCOMP, 0xf);
454 	AR_WRITE(sc, AR9285_AN_RF2G6, reg);
455 
456 	AR_WRITE(sc, AR9285_AN_TOP2, AR9285_AN_TOP2_DEFAULT);
457 	AR_WRITE_BARRIER(sc);
458 	DELAY(30);
459 
460 	/* Clear offsets 6-1. */
461 	AR_CLRBITS(sc, AR9285_AN_RF2G6, AR9285_AN_RF2G6_OFFS_6_1);
462 	/* Clear offset 0. */
463 	AR_CLRBITS(sc, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP);
464 	/* Set offsets 6-1. */
465 	for (i = 6; i >= 1; i--) {
466 		AR_SETBITS(sc, AR9285_AN_RF2G6, AR9285_AN_RF2G6_OFFS(i));
467 		AR_WRITE_BARRIER(sc);
468 		DELAY(1);
469 		if (AR_READ(sc, AR9285_AN_RF2G9) & AR9285_AN_RXTXBB1_SPARE9) {
470 			AR_SETBITS(sc, AR9285_AN_RF2G6,
471 			    AR9285_AN_RF2G6_OFFS(i));
472 		}
473 		else {
474 			AR_CLRBITS(sc, AR9285_AN_RF2G6,
475 			    AR9285_AN_RF2G6_OFFS(i));
476 		}
477 	}
478 	/* Set offset 0. */
479 	AR_SETBITS(sc, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP);
480 	AR_WRITE_BARRIER(sc);
481 	DELAY(1);
482 	if (AR_READ(sc, AR9285_AN_RF2G9) & AR9285_AN_RXTXBB1_SPARE9)
483 		AR_SETBITS(sc, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP);
484 	else
485 		AR_CLRBITS(sc, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP);
486 
487 	AR_WRITE_BARRIER(sc);
488 
489 	AR_SETBITS(sc, AR9285_AN_RF2G6, 1);
490 	AR_CLRBITS(sc, AR_PHY(2), 1 << 27);
491 
492 	/* Restore registers. */
493 	for (i = 0; i < __arraycount(regs); i++)
494 		AR_WRITE(sc, regs[i], svg[i]);
495 
496 	/* Restore compensation capacitor value. */
497 	reg = AR_READ(sc, AR9285_AN_RF2G6);
498 	reg = RW(reg, AR9285_AN_RF2G6_CCOMP, ccomp_svg);
499 	AR_WRITE(sc, AR9285_AN_RF2G6, reg);
500 	AR_WRITE_BARRIER(sc);
501 }
502 
503 PUBLIC void
504 ar9271_pa_calib(struct athn_softc *sc)
505 {
506 #if NATHN_USB > 0
507 	/* List of registers that need to be saved/restored. */
508 	static const uint16_t regs[] = {
509 		AR9285_AN_TOP3,
510 		AR9285_AN_RXTXBB1,
511 		AR9285_AN_RF2G1,
512 		AR9285_AN_RF2G2,
513 		AR9285_AN_TOP2,
514 		AR9285_AN_RF2G8,
515 		AR9285_AN_RF2G7
516 	};
517 	uint32_t svg[7], reg, rf2g3_svg;
518 	size_t i;
519 
520 	/* Save registers. */
521 	for (i = 0; i < __arraycount(regs); i++)
522 		svg[i] = AR_READ(sc, regs[i]);
523 
524 	AR_CLRBITS(sc, AR9285_AN_RF2G6, 1);
525 	AR_SETBITS(sc, AR_PHY(2), 1 << 27);
526 
527 	AR_SETBITS(sc, AR9285_AN_TOP3, AR9285_AN_TOP3_PWDDAC);
528 	AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDRXTXBB1);
529 	AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDV2I);
530 	AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDDACIF);
531 	AR_CLRBITS(sc, AR9285_AN_RF2G2, AR9285_AN_RF2G2_OFFCAL);
532 	AR_CLRBITS(sc, AR9285_AN_RF2G7, AR9285_AN_RF2G7_PWDDB);
533 	AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_ENPACAL);
534 	/* Power down PA drivers. */
535 	AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV1);
536 	AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV2);
537 	AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPAOUT);
538 
539 	reg = AR_READ(sc, AR9285_AN_RF2G8);
540 	reg = RW(reg, AR9285_AN_RF2G8_PADRVGN2TAB0, 7);
541 	AR_WRITE(sc, AR9285_AN_RF2G8, reg);
542 
543 	reg = AR_READ(sc, AR9285_AN_RF2G7);
544 	reg = RW(reg, AR9285_AN_RF2G7_PADRVGN2TAB0, 0);
545 	AR_WRITE(sc, AR9285_AN_RF2G7, reg);
546 
547 	/* Save compensation capacitor value. */
548 	reg = rf2g3_svg = AR_READ(sc, AR9285_AN_RF2G3);
549 	/* Program compensation capacitor for dynamic PA. */
550 	reg = RW(reg, AR9271_AN_RF2G3_CCOMP, 0xfff);
551 	AR_WRITE(sc, AR9285_AN_RF2G3, reg);
552 
553 	AR_WRITE(sc, AR9285_AN_TOP2, AR9285_AN_TOP2_DEFAULT);
554 	AR_WRITE_BARRIER(sc);
555 	DELAY(30);
556 
557 	/* Clear offsets 6-0. */
558 	AR_CLRBITS(sc, AR9285_AN_RF2G6, AR9271_AN_RF2G6_OFFS_6_0);
559 	/* Set offsets 6-1. */
560 	for (i = 6; i >= 1; i--) {
561 		reg = AR_READ(sc, AR9285_AN_RF2G6);
562 		reg |= AR9271_AN_RF2G6_OFFS(i);
563 		AR_WRITE(sc, AR9285_AN_RF2G6, reg);
564 		AR_WRITE_BARRIER(sc);
565 		DELAY(1);
566 		if (!(AR_READ(sc, AR9285_AN_RF2G9) & AR9285_AN_RXTXBB1_SPARE9))
567 			reg &= ~AR9271_AN_RF2G6_OFFS(i);
568 		AR_WRITE(sc, AR9285_AN_RF2G6, reg);
569 	}
570 	AR_WRITE_BARRIER(sc);
571 
572 	AR_SETBITS(sc, AR9285_AN_RF2G6, 1);
573 	AR_CLRBITS(sc, AR_PHY(2), 1 << 27);
574 
575 	/* Restore registers. */
576 	for (i = 0; i < __arraycount(regs); i++)
577 		AR_WRITE(sc, regs[i], svg[i]);
578 
579 	/* Restore compensation capacitor value. */
580 	AR_WRITE(sc, AR9285_AN_RF2G3, rf2g3_svg);
581 	AR_WRITE_BARRIER(sc);
582 #endif	/* NATHN_USB */
583 }
584 
585 /*
586  * Carrier Leakage Calibration.
587  */
588 int
589 ar9285_cl_cal(struct athn_softc *sc, struct ieee80211_channel *c,
590     struct ieee80211_channel *extc)
591 {
592 	int ntries;
593 
594 	AR_SETBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE);
595 #ifndef IEEE80211_NO_HT
596 	if (0 && extc == NULL) {	/* XXX IS_CHAN_HT20!! */
597 		AR_SETBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_PARALLEL_CAL_ENABLE);
598 		AR_SETBITS(sc, AR_PHY_TURBO, AR_PHY_FC_DYN2040_EN);
599 		AR_CLRBITS(sc, AR_PHY_AGC_CONTROL,
600 		    AR_PHY_AGC_CONTROL_FLTR_CAL);
601 		AR_CLRBITS(sc, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_CAL_ENABLE);
602 		AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL);
603 		for (ntries = 0; ntries < 10000; ntries++) {
604 			if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) &
605 			    AR_PHY_AGC_CONTROL_CAL))
606 				break;
607 			DELAY(10);
608 		}
609 		if (ntries == 10000)
610 			return ETIMEDOUT;
611 		AR_CLRBITS(sc, AR_PHY_TURBO, AR_PHY_FC_DYN2040_EN);
612 		AR_CLRBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_PARALLEL_CAL_ENABLE);
613 		AR_CLRBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE);
614 	}
615 #endif
616 	AR_CLRBITS(sc, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC);
617 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_FLTR_CAL);
618 	AR_SETBITS(sc, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_CAL_ENABLE);
619 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL);
620 	for (ntries = 0; ntries < 10000; ntries++) {
621 		if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) &
622 		    AR_PHY_AGC_CONTROL_CAL))
623 			break;
624 		DELAY(10);
625 	}
626 	if (ntries == 10000)
627 		return ETIMEDOUT;
628 	AR_SETBITS(sc, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC);
629 	AR_CLRBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE);
630 	AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_FLTR_CAL);
631 	AR_WRITE_BARRIER(sc);
632 	return 0;
633 }
634 
635 PUBLIC void
636 ar9271_load_ani(struct athn_softc *sc)
637 {
638 
639 #if NATHN_USB > 0
640 	/* Write ANI registers. */
641 	AR_WRITE(sc, AR_PHY_DESIRED_SZ, 0x6d4000e2);
642 	AR_WRITE(sc, AR_PHY_AGC_CTL1,   0x3139605e);
643 	AR_WRITE(sc, AR_PHY_FIND_SIG,   0x7ec84d2e);
644 	AR_WRITE(sc, AR_PHY_SFCORR_LOW, 0x06903881);
645 	AR_WRITE(sc, AR_PHY_SFCORR,     0x5ac640d0);
646 	AR_WRITE(sc, AR_PHY_CCK_DETECT, 0x803e68c8);
647 	AR_WRITE(sc, AR_PHY_TIMING5,    0xd00a8007);
648 	AR_WRITE(sc, AR_PHY_SFCORR_EXT, 0x05eea6d4);
649 	AR_WRITE_BARRIER(sc);
650 #endif	/* NATHN_USB */
651 }
652 
653 int
654 ar9285_init_calib(struct athn_softc *sc, struct ieee80211_channel *c,
655     struct ieee80211_channel *extc)
656 {
657 	uint32_t reg, mask, clcgain, rf2g5_svg;
658 	int i, maxgain, nclcs, thresh, error;
659 
660 	/* Do carrier leakage calibration. */
661 	if ((error = ar9285_cl_cal(sc, c, extc)) != 0)
662 		return error;
663 
664 	/* Workaround for high temperature is not applicable on AR9271. */
665 	if (AR_SREV_9271(sc))
666 		return 0;
667 
668 	mask = 0;
669 	nclcs = 0;
670 	reg = AR_READ(sc, AR_PHY_TX_PWRCTRL7);
671 	maxgain = MS(reg, AR_PHY_TX_PWRCTRL_TX_GAIN_TAB_MAX);
672 	for (i = 0; i <= maxgain; i++) {
673 		reg = AR_READ(sc, AR_PHY_TX_GAIN_TBL(i));
674 		clcgain = MS(reg, AR_PHY_TX_GAIN_CLC);
675 		/* NB: clcgain <= 0xf. */
676 		if (!(mask & (1 << clcgain))) {
677 			mask |= 1 << clcgain;
678 			nclcs++;
679 		}
680 	}
681 	thresh = 0;
682 	for (i = 0; i < nclcs; i++) {
683 		reg = AR_READ(sc, AR_PHY_CLC_TBL(i));
684 		if (MS(reg, AR_PHY_CLC_I0) == 0)
685 			thresh++;
686 		if (MS(reg, AR_PHY_CLC_Q0) == 0)
687 			thresh++;
688 	}
689 	if (thresh <= AR9285_CL_CAL_REDO_THRESH)
690 		return 0;	/* No need to redo. */
691 
692 	/* Threshold reached, redo carrier leakage calibration. */
693 	DPRINTFN(DBG_INIT, sc, "CLC threshold=%d\n", thresh);
694 	rf2g5_svg = reg = AR_READ(sc, AR9285_AN_RF2G5);
695 	if ((AR_READ(sc, AR_AN_SYNTH9) & 0x7) == 0x1)	/* XE rev. */
696 		reg = RW(reg, AR9285_AN_RF2G5_IC50TX, 0x5);
697 	else
698 		reg = RW(reg, AR9285_AN_RF2G5_IC50TX, 0x4);
699 	AR_WRITE(sc, AR9285_AN_RF2G5, reg);
700 	AR_WRITE_BARRIER(sc);
701 	error = ar9285_cl_cal(sc, c, extc);
702 	AR_WRITE(sc, AR9285_AN_RF2G5, rf2g5_svg);
703 	AR_WRITE_BARRIER(sc);
704 	return error;
705 }
706 
707 Static void
708 ar9285_get_pdadcs(struct athn_softc *sc, struct ieee80211_channel *c,
709     int nxpdgains, uint8_t overlap, uint8_t *boundaries, uint8_t *pdadcs)
710 {
711 	const struct ar9285_eeprom *eep = sc->sc_eep;
712 	const struct ar9285_cal_data_per_freq *pierdata;
713 	const uint8_t *pierfreq;
714 	struct athn_pier lopier, hipier;
715 	uint8_t fbin;
716 	int i, lo, hi, npiers;
717 
718 	pierfreq = eep->calFreqPier2G;
719 	pierdata = eep->calPierData2G;
720 	npiers = AR9285_NUM_2G_CAL_PIERS;
721 
722 	/* Find channel in ROM pier table. */
723 	fbin = athn_chan2fbin(c);
724 	athn_get_pier_ival(fbin, pierfreq, npiers, &lo, &hi);
725 
726 	lopier.fbin = pierfreq[lo];
727 	hipier.fbin = pierfreq[hi];
728 	for (i = 0; i < nxpdgains; i++) {
729 		lopier.pwr[i] = pierdata[lo].pwrPdg[i];
730 		lopier.vpd[i] = pierdata[lo].vpdPdg[i];
731 		hipier.pwr[i] = pierdata[lo].pwrPdg[i];
732 		hipier.vpd[i] = pierdata[lo].vpdPdg[i];
733 	}
734 	ar5008_get_pdadcs(sc, fbin, &lopier, &hipier, nxpdgains,
735 	    AR9285_PD_GAIN_ICEPTS, overlap, boundaries, pdadcs);
736 }
737 
738 Static void
739 ar9285_set_power_calib(struct athn_softc *sc, struct ieee80211_channel *c)
740 {
741 	const struct ar9285_eeprom *eep = sc->sc_eep;
742 	uint8_t boundaries[AR_PD_GAINS_IN_MASK];
743 	uint8_t pdadcs[AR_NUM_PDADC_VALUES];
744 	uint8_t xpdgains[AR9285_NUM_PD_GAINS];
745 	uint8_t overlap;
746 	uint32_t reg;
747 	int i, nxpdgains;
748 
749 	if (sc->sc_eep_rev < AR_EEP_MINOR_VER_2) {
750 		overlap = MS(AR_READ(sc, AR_PHY_TPCRG5),
751 		    AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
752 	}
753 	else
754 		overlap = eep->modalHeader.pdGainOverlap;
755 
756 	nxpdgains = 0;
757 	memset(xpdgains, 0, sizeof(xpdgains));
758 	for (i = AR9285_PD_GAINS_IN_MASK - 1; i >= 0; i--) {
759 		if (nxpdgains >= AR9285_NUM_PD_GAINS)
760 			break;
761 		if (eep->modalHeader.xpdGain & (1 << i))
762 			xpdgains[nxpdgains++] = i;
763 	}
764 	reg = AR_READ(sc, AR_PHY_TPCRG1);
765 	reg = RW(reg, AR_PHY_TPCRG1_NUM_PD_GAIN, nxpdgains - 1);
766 	reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_1, xpdgains[0]);
767 	reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_2, xpdgains[1]);
768 	AR_WRITE(sc, AR_PHY_TPCRG1, reg);
769 
770 	/* NB: No open loop power control for AR9285. */
771 	ar9285_get_pdadcs(sc, c, nxpdgains, overlap, boundaries, pdadcs);
772 
773 	/* Write boundaries. */
774 	reg  = SM(AR_PHY_TPCRG5_PD_GAIN_OVERLAP, overlap);
775 	reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1, boundaries[0]);
776 	reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2, boundaries[1]);
777 	reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3, boundaries[2]);
778 	reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4, boundaries[3]);
779 	AR_WRITE(sc, AR_PHY_TPCRG5, reg);
780 
781 	/* Write PDADC values. */
782 	for (i = 0; i < AR_NUM_PDADC_VALUES; i += 4) {
783 		AR_WRITE(sc, AR_PHY_PDADC_TBL_BASE + i,
784 		    pdadcs[i + 0] <<  0 |
785 		    pdadcs[i + 1] <<  8 |
786 		    pdadcs[i + 2] << 16 |
787 		    pdadcs[i + 3] << 24);
788 	}
789 	AR_WRITE_BARRIER(sc);
790 }
791 
792 Static void
793 ar9285_set_txpower(struct athn_softc *sc, struct ieee80211_channel *c,
794     struct ieee80211_channel *extc)
795 {
796 	const struct ar9285_eeprom *eep = sc->sc_eep;
797 #ifdef notyet
798 	const struct ar9285_modal_eep_header *modal = &eep->modalHeader;
799 #endif
800 	uint8_t tpow_cck[4], tpow_ofdm[4];
801 #ifndef IEEE80211_NO_HT
802 	uint8_t tpow_cck_ext[4], tpow_ofdm_ext[4];
803 	uint8_t tpow_ht20[8], tpow_ht40[8];
804 	uint8_t ht40inc;
805 #endif
806 	int16_t power[ATHN_POWER_COUNT];
807 	int i;
808 
809 	ar9285_set_power_calib(sc, c);
810 
811 #ifdef notyet
812 	/* Compute transmit power reduction due to antenna gain. */
813 	uint16_t max_ant_gain = modal->antennaGain;
814 	/* XXX */
815 #endif
816 
817 	/* Get CCK target powers. */
818 	ar5008_get_lg_tpow(sc, c, AR_CTL_11B, eep->calTargetPowerCck,
819 	    AR9285_NUM_2G_CCK_TARGET_POWERS, tpow_cck);
820 
821 	/* Get OFDM target powers. */
822 	ar5008_get_lg_tpow(sc, c, AR_CTL_11G, eep->calTargetPower2G,
823 	    AR9285_NUM_2G_20_TARGET_POWERS, tpow_ofdm);
824 
825 #ifndef IEEE80211_NO_HT
826 	/* Get HT-20 target powers. */
827 	ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT20, eep->calTargetPower2GHT20,
828 	    AR9285_NUM_2G_20_TARGET_POWERS, tpow_ht20);
829 
830 	if (extc != NULL) {
831 		/* Get HT-40 target powers. */
832 		ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT40,
833 		    eep->calTargetPower2GHT40, AR9285_NUM_2G_40_TARGET_POWERS,
834 		    tpow_ht40);
835 
836 		/* Get secondary channel CCK target powers. */
837 		ar5008_get_lg_tpow(sc, extc, AR_CTL_11B,
838 		    eep->calTargetPowerCck, AR9285_NUM_2G_CCK_TARGET_POWERS,
839 		    tpow_cck_ext);
840 
841 		/* Get secondary channel OFDM target powers. */
842 		ar5008_get_lg_tpow(sc, extc, AR_CTL_11G,
843 		    eep->calTargetPower2G, AR9285_NUM_2G_20_TARGET_POWERS,
844 		    tpow_ofdm_ext);
845 	}
846 #endif
847 
848 	memset(power, 0, sizeof(power));
849 	/* Shuffle target powers accross transmit rates. */
850 	power[ATHN_POWER_OFDM6   ] =
851 	power[ATHN_POWER_OFDM9   ] =
852 	power[ATHN_POWER_OFDM12  ] =
853 	power[ATHN_POWER_OFDM18  ] =
854 	power[ATHN_POWER_OFDM24  ] = tpow_ofdm[0];
855 	power[ATHN_POWER_OFDM36  ] = tpow_ofdm[1];
856 	power[ATHN_POWER_OFDM48  ] = tpow_ofdm[2];
857 	power[ATHN_POWER_OFDM54  ] = tpow_ofdm[3];
858 	power[ATHN_POWER_XR      ] = tpow_ofdm[0];
859 	power[ATHN_POWER_CCK1_LP ] = tpow_cck[0];
860 	power[ATHN_POWER_CCK2_LP ] =
861 	power[ATHN_POWER_CCK2_SP ] = tpow_cck[1];
862 	power[ATHN_POWER_CCK55_LP] =
863 	power[ATHN_POWER_CCK55_SP] = tpow_cck[2];
864 	power[ATHN_POWER_CCK11_LP] =
865 	power[ATHN_POWER_CCK11_SP] = tpow_cck[3];
866 #ifndef IEEE80211_NO_HT
867 	for (i = 0; i < __arraycount(tpow_ht20); i++)
868 		power[ATHN_POWER_HT20(i)] = tpow_ht20[i];
869 	if (extc != NULL) {
870 		/* Correct PAR difference between HT40 and HT20/Legacy. */
871 		if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_2)
872 			ht40inc = modal->ht40PowerIncForPdadc;
873 		else
874 			ht40inc = AR_HT40_POWER_INC_FOR_PDADC;
875 		for (i = 0; i < __arraycount(tpow_ht40); i++)
876 			power[ATHN_POWER_HT40(i)] = tpow_ht40[i] + ht40inc;
877 		power[ATHN_POWER_OFDM_DUP] = tpow_ht40[0];
878 		power[ATHN_POWER_CCK_DUP ] = tpow_ht40[0];
879 		power[ATHN_POWER_OFDM_EXT] = tpow_ofdm_ext[0];
880 		power[ATHN_POWER_CCK_EXT ] = tpow_cck_ext[0];
881 	}
882 #endif
883 
884 	for (i = 0; i < ATHN_POWER_COUNT; i++) {
885 		power[i] -= AR_PWR_TABLE_OFFSET_DB * 2;	/* In half dB. */
886 		if (power[i] > AR_MAX_RATE_POWER)
887 			power[i] = AR_MAX_RATE_POWER;
888 	}
889 
890 	/* Commit transmit power values to hardware. */
891 	ar5008_write_txpower(sc, power);
892 }
893