1 /* $NetBSD: arn9285.c,v 1.3 2013/10/17 21:24:24 christos Exp $ */ 2 /* $OpenBSD: ar9285.c,v 1.19 2012/06/10 21:23:36 kettenis Exp $ */ 3 4 /*- 5 * Copyright (c) 2009-2010 Damien Bergamini <damien.bergamini@free.fr> 6 * Copyright (c) 2008-2010 Atheros Communications Inc. 7 * 8 * Permission to use, copy, modify, and/or distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /* 22 * Driver for Atheros 802.11a/g/n chipsets. 23 * Routines for AR9285 and AR9271 chipsets. 24 */ 25 26 #include <sys/cdefs.h> 27 __KERNEL_RCSID(0, "$NetBSD: arn9285.c,v 1.3 2013/10/17 21:24:24 christos Exp $"); 28 29 #ifndef _MODULE 30 #include "athn_usb.h" 31 #endif 32 33 #include <sys/param.h> 34 #include <sys/sockio.h> 35 #include <sys/mbuf.h> 36 #include <sys/kernel.h> 37 #include <sys/socket.h> 38 #include <sys/systm.h> 39 #include <sys/malloc.h> 40 #include <sys/queue.h> 41 #include <sys/callout.h> 42 #include <sys/conf.h> 43 #include <sys/device.h> 44 45 #include <sys/bus.h> 46 #include <sys/endian.h> 47 #include <sys/intr.h> 48 49 #include <net/bpf.h> 50 #include <net/if.h> 51 #include <net/if_arp.h> 52 #include <net/if_dl.h> 53 #include <net/if_ether.h> 54 #include <net/if_media.h> 55 #include <net/if_types.h> 56 57 #include <netinet/in.h> 58 #include <netinet/in_systm.h> 59 #include <netinet/in_var.h> 60 #include <netinet/ip.h> 61 62 #include <net80211/ieee80211_var.h> 63 #include <net80211/ieee80211_amrr.h> 64 #include <net80211/ieee80211_radiotap.h> 65 66 #include <dev/ic/athnreg.h> 67 #include <dev/ic/athnvar.h> 68 #include <dev/ic/arn9285.h> 69 70 #include <dev/ic/arn5008reg.h> 71 #include <dev/ic/arn9280reg.h> 72 #include <dev/ic/arn9285reg.h> 73 74 #include <dev/ic/arn5008.h> 75 #include <dev/ic/arn9280.h> 76 #include <dev/ic/arn9285.h> 77 78 #define Static static 79 80 Static int ar9285_cl_cal(struct athn_softc *, struct ieee80211_channel *, 81 struct ieee80211_channel *); 82 Static void ar9285_get_pdadcs(struct athn_softc *, 83 struct ieee80211_channel *, int, uint8_t, uint8_t *, 84 uint8_t *); 85 Static const struct ar_spur_chan * 86 ar9285_get_spur_chans(struct athn_softc *, int); 87 Static void ar9285_init_from_rom(struct athn_softc *, 88 struct ieee80211_channel *, struct ieee80211_channel *); 89 Static void ar9285_set_power_calib(struct athn_softc *, 90 struct ieee80211_channel *); 91 Static void ar9285_set_txpower(struct athn_softc *, 92 struct ieee80211_channel *, struct ieee80211_channel *); 93 Static void ar9285_setup(struct athn_softc *); 94 Static void ar9285_swap_rom(struct athn_softc *); 95 96 PUBLIC int 97 ar9285_attach(struct athn_softc *sc) 98 { 99 100 sc->sc_eep_base = AR9285_EEP_START_LOC; 101 sc->sc_eep_size = sizeof(struct ar9285_eeprom); 102 sc->sc_def_nf = AR9285_PHY_CCA_MAX_GOOD_VALUE; 103 sc->sc_ngpiopins = (sc->sc_flags & ATHN_FLAG_USB) ? 16 : 12; 104 sc->sc_led_pin = (sc->sc_flags & ATHN_FLAG_USB) ? 15 : 1; 105 sc->sc_workaround = AR9285_WA_DEFAULT; 106 sc->sc_ops.setup = ar9285_setup; 107 sc->sc_ops.swap_rom = ar9285_swap_rom; 108 sc->sc_ops.init_from_rom = ar9285_init_from_rom; 109 sc->sc_ops.set_txpower = ar9285_set_txpower; 110 sc->sc_ops.set_synth = ar9280_set_synth; 111 sc->sc_ops.spur_mitigate = ar9280_spur_mitigate; 112 sc->sc_ops.get_spur_chans = ar9285_get_spur_chans; 113 #if NATHN_USB > 0 114 if (AR_SREV_9271(sc)) 115 sc->sc_ini = &ar9271_ini; 116 else 117 #endif 118 sc->sc_ini = &ar9285_1_2_ini; 119 sc->sc_serdes = &ar9280_2_0_serdes; 120 121 return ar5008_attach(sc); 122 } 123 124 Static void 125 ar9285_setup(struct athn_softc *sc) 126 { 127 const struct ar9285_eeprom *eep = sc->sc_eep; 128 uint8_t type; 129 130 /* Select initialization values based on ROM. */ 131 type = eep->baseEepHeader.txGainType; 132 DPRINTFN(DBG_TX, sc, "Tx gain type=0x%x\n", type); 133 #if NATHN_USB > 0 134 if (AR_SREV_9271(sc)) { 135 if (type == AR_EEP_TXGAIN_HIGH_POWER) 136 sc->sc_tx_gain = &ar9271_tx_gain_high_power; 137 else 138 sc->sc_tx_gain = &ar9271_tx_gain; 139 } 140 else 141 #endif /* NATHN_USB */ 142 if ((AR_READ(sc, AR_AN_SYNTH9) & 0x7) == 0x1) { /* XE rev. */ 143 if (type == AR_EEP_TXGAIN_HIGH_POWER) 144 sc->sc_tx_gain = &ar9285_2_0_tx_gain_high_power; 145 else 146 sc->sc_tx_gain = &ar9285_2_0_tx_gain; 147 } 148 else { 149 if (type == AR_EEP_TXGAIN_HIGH_POWER) 150 sc->sc_tx_gain = &ar9285_1_2_tx_gain_high_power; 151 else 152 sc->sc_tx_gain = &ar9285_1_2_tx_gain; 153 } 154 } 155 156 Static void 157 ar9285_swap_rom(struct athn_softc *sc) 158 { 159 struct ar9285_eeprom *eep = sc->sc_eep; 160 int i; 161 162 eep->modalHeader.antCtrlCommon = 163 bswap32(eep->modalHeader.antCtrlCommon); 164 eep->modalHeader.antCtrlChain = 165 bswap32(eep->modalHeader.antCtrlChain); 166 167 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { 168 eep->modalHeader.spurChans[i].spurChan = 169 bswap16(eep->modalHeader.spurChans[i].spurChan); 170 } 171 } 172 173 Static const struct ar_spur_chan * 174 ar9285_get_spur_chans(struct athn_softc *sc, int is2ghz) 175 { 176 const struct ar9285_eeprom *eep = sc->sc_eep; 177 178 KASSERT(is2ghz); 179 return eep->modalHeader.spurChans; 180 } 181 182 Static void 183 ar9285_init_from_rom(struct athn_softc *sc, struct ieee80211_channel *c, 184 struct ieee80211_channel *extc) 185 { 186 const struct ar9285_eeprom *eep = sc->sc_eep; 187 const struct ar9285_modal_eep_header *modal = &eep->modalHeader; 188 uint32_t reg, offset = 0x1000; 189 uint8_t ob[5], db1[5], db2[5]; 190 uint8_t txRxAtten; 191 192 AR_WRITE(sc, AR_PHY_SWITCH_COM, modal->antCtrlCommon); 193 AR_WRITE(sc, AR_PHY_SWITCH_CHAIN_0, modal->antCtrlChain); 194 195 reg = AR_READ(sc, AR_PHY_TIMING_CTRL4_0); 196 reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, modal->iqCalI); 197 reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, modal->iqCalQ); 198 AR_WRITE(sc, AR_PHY_TIMING_CTRL4_0, reg); 199 200 if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_3) { 201 reg = AR_READ(sc, AR_PHY_GAIN_2GHZ); 202 reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, 203 modal->bswMargin); 204 reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_DB, 205 modal->bswAtten); 206 reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, 207 modal->xatten2Margin); 208 reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_DB, 209 modal->xatten2Db); 210 AR_WRITE(sc, AR_PHY_GAIN_2GHZ, reg); 211 212 /* Duplicate values of chain 0 for chain 1. */ 213 reg = AR_READ(sc, AR_PHY_GAIN_2GHZ + offset); 214 reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, 215 modal->bswMargin); 216 reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_DB, 217 modal->bswAtten); 218 reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, 219 modal->xatten2Margin); 220 reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_DB, 221 modal->xatten2Db); 222 AR_WRITE(sc, AR_PHY_GAIN_2GHZ + offset, reg); 223 } 224 if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_3) 225 txRxAtten = modal->txRxAtten; 226 else /* Workaround for ROM versions < 14.3. */ 227 txRxAtten = 23; 228 reg = AR_READ(sc, AR_PHY_RXGAIN); 229 reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAtten); 230 reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_MARGIN, modal->rxTxMargin); 231 AR_WRITE(sc, AR_PHY_RXGAIN, reg); 232 233 /* Duplicate values of chain 0 for chain 1. */ 234 reg = AR_READ(sc, AR_PHY_RXGAIN + offset); 235 reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAtten); 236 reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_MARGIN, modal->rxTxMargin); 237 AR_WRITE(sc, AR_PHY_RXGAIN + offset, reg); 238 239 if (modal->version >= 3) { 240 /* Setup antenna diversity from ROM. */ 241 reg = AR_READ(sc, AR_PHY_MULTICHAIN_GAIN_CTL); 242 reg = RW(reg, AR9285_PHY_ANT_DIV_CTL_ALL, 0); 243 reg = RW(reg, AR9285_PHY_ANT_DIV_CTL, 244 (modal->ob_234 >> 12) & 0x1); 245 reg = RW(reg, AR9285_PHY_ANT_DIV_ALT_LNACONF, 246 (modal->db1_234 >> 12) & 0x3); 247 reg = RW(reg, AR9285_PHY_ANT_DIV_MAIN_LNACONF, 248 (modal->db1_234 >> 14) & 0x3); 249 reg = RW(reg, AR9285_PHY_ANT_DIV_ALT_GAINTB, 250 (modal->ob_234 >> 13) & 0x1); 251 reg = RW(reg, AR9285_PHY_ANT_DIV_MAIN_GAINTB, 252 (modal->ob_234 >> 14) & 0x1); 253 AR_WRITE(sc, AR_PHY_MULTICHAIN_GAIN_CTL, reg); 254 reg = AR_READ(sc, AR_PHY_MULTICHAIN_GAIN_CTL); /* Flush. */ 255 256 reg = AR_READ(sc, AR_PHY_CCK_DETECT); 257 if (modal->ob_234 & (1 << 15)) 258 reg |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV; 259 else 260 reg &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV; 261 AR_WRITE(sc, AR_PHY_CCK_DETECT, reg); 262 reg = AR_READ(sc, AR_PHY_CCK_DETECT); /* Flush. */ 263 } 264 if (modal->version >= 2) { 265 ob [0] = (modal->ob_01 >> 0) & 0xf; 266 ob [1] = (modal->ob_01 >> 4) & 0xf; 267 ob [2] = (modal->ob_234 >> 0) & 0xf; 268 ob [3] = (modal->ob_234 >> 4) & 0xf; 269 ob [4] = (modal->ob_234 >> 8) & 0xf; 270 271 db1[0] = (modal->db1_01 >> 0) & 0xf; 272 db1[1] = (modal->db1_01 >> 4) & 0xf; 273 db1[2] = (modal->db1_234 >> 0) & 0xf; 274 db1[3] = (modal->db1_234 >> 4) & 0xf; 275 db1[4] = (modal->db1_234 >> 8) & 0xf; 276 277 db2[0] = (modal->db2_01 >> 0) & 0xf; 278 db2[1] = (modal->db2_01 >> 4) & 0xf; 279 db2[2] = (modal->db2_234 >> 0) & 0xf; 280 db2[3] = (modal->db2_234 >> 4) & 0xf; 281 db2[4] = (modal->db2_234 >> 8) & 0xf; 282 283 } 284 else if (modal->version == 1) { 285 ob [0] = (modal->ob_01 >> 0) & 0xf; 286 ob [1] = (modal->ob_01 >> 4) & 0xf; 287 /* Field ob_234 does not exist, use ob_01. */ 288 ob [2] = ob [3] = ob [4] = ob [1]; 289 290 db1[0] = (modal->db1_01 >> 0) & 0xf; 291 db1[1] = (modal->db1_01 >> 4) & 0xf; 292 /* Field db1_234 does not exist, use db1_01. */ 293 db1[2] = db1[3] = db1[4] = db1[1]; 294 295 db2[0] = (modal->db2_01 >> 0) & 0xf; 296 db2[1] = (modal->db2_01 >> 4) & 0xf; 297 /* Field db2_234 does not exist, use db2_01. */ 298 db2[2] = db2[3] = db2[4] = db2[1]; 299 300 } 301 else { 302 ob [0] = modal->ob_01; 303 ob [1] = ob [2] = ob [3] = ob [4] = ob [0]; 304 305 db1[0] = modal->db1_01; 306 db1[1] = db1[2] = db1[3] = db1[4] = db1[0]; 307 308 /* Field db2_01 does not exist, use db1_01. */ 309 db2[0] = modal->db1_01; 310 db2[1] = db2[2] = db2[3] = db2[4] = db2[0]; 311 } 312 #if NATHN_USB > 0 313 if (AR_SREV_9271(sc)) { 314 reg = AR_READ(sc, AR9285_AN_RF2G3); 315 reg = RW(reg, AR9271_AN_RF2G3_OB_CCK, ob [0]); 316 reg = RW(reg, AR9271_AN_RF2G3_OB_PSK, ob [1]); 317 reg = RW(reg, AR9271_AN_RF2G3_OB_QAM, ob [2]); 318 reg = RW(reg, AR9271_AN_RF2G3_DB1, db1[0]); 319 AR_WRITE(sc, AR9285_AN_RF2G3, reg); 320 AR_WRITE_BARRIER(sc); 321 DELAY(100); 322 reg = AR_READ(sc, AR9285_AN_RF2G4); 323 reg = RW(reg, AR9271_AN_RF2G4_DB2, db2[0]); 324 AR_WRITE(sc, AR9285_AN_RF2G4, reg); 325 AR_WRITE_BARRIER(sc); 326 DELAY(100); 327 } 328 else 329 #endif /* ATHN_USB */ 330 { 331 reg = AR_READ(sc, AR9285_AN_RF2G3); 332 reg = RW(reg, AR9285_AN_RF2G3_OB_0, ob [0]); 333 reg = RW(reg, AR9285_AN_RF2G3_OB_1, ob [1]); 334 reg = RW(reg, AR9285_AN_RF2G3_OB_2, ob [2]); 335 reg = RW(reg, AR9285_AN_RF2G3_OB_3, ob [3]); 336 reg = RW(reg, AR9285_AN_RF2G3_OB_4, ob [4]); 337 reg = RW(reg, AR9285_AN_RF2G3_DB1_0, db1[0]); 338 reg = RW(reg, AR9285_AN_RF2G3_DB1_1, db1[1]); 339 reg = RW(reg, AR9285_AN_RF2G3_DB1_2, db1[2]); 340 AR_WRITE(sc, AR9285_AN_RF2G3, reg); 341 AR_WRITE_BARRIER(sc); 342 DELAY(100); 343 reg = AR_READ(sc, AR9285_AN_RF2G4); 344 reg = RW(reg, AR9285_AN_RF2G4_DB1_3, db1[3]); 345 reg = RW(reg, AR9285_AN_RF2G4_DB1_4, db1[4]); 346 reg = RW(reg, AR9285_AN_RF2G4_DB2_0, db2[0]); 347 reg = RW(reg, AR9285_AN_RF2G4_DB2_1, db2[1]); 348 reg = RW(reg, AR9285_AN_RF2G4_DB2_2, db2[2]); 349 reg = RW(reg, AR9285_AN_RF2G4_DB2_3, db2[3]); 350 reg = RW(reg, AR9285_AN_RF2G4_DB2_4, db2[4]); 351 AR_WRITE(sc, AR9285_AN_RF2G4, reg); 352 AR_WRITE_BARRIER(sc); 353 DELAY(100); 354 } 355 356 reg = AR_READ(sc, AR_PHY_SETTLING); 357 reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->switchSettling); 358 AR_WRITE(sc, AR_PHY_SETTLING, reg); 359 360 reg = AR_READ(sc, AR_PHY_DESIRED_SZ); 361 reg = RW(reg, AR_PHY_DESIRED_SZ_ADC, modal->adcDesiredSize); 362 AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg); 363 364 reg = SM(AR_PHY_RF_CTL4_TX_END_XPAA_OFF, modal->txEndToXpaOff); 365 reg |= SM(AR_PHY_RF_CTL4_TX_END_XPAB_OFF, modal->txEndToXpaOff); 366 reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAA_ON, modal->txFrameToXpaOn); 367 reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAB_ON, modal->txFrameToXpaOn); 368 AR_WRITE(sc, AR_PHY_RF_CTL4, reg); 369 370 reg = AR_READ(sc, AR_PHY_RF_CTL3); 371 reg = RW(reg, AR_PHY_TX_END_TO_A2_RX_ON, modal->txEndToRxOn); 372 AR_WRITE(sc, AR_PHY_RF_CTL3, reg); 373 374 reg = AR_READ(sc, AR_PHY_CCA(0)); 375 reg = RW(reg, AR9280_PHY_CCA_THRESH62, modal->thresh62); 376 AR_WRITE(sc, AR_PHY_CCA(0), reg); 377 378 reg = AR_READ(sc, AR_PHY_EXT_CCA0); 379 reg = RW(reg, AR_PHY_EXT_CCA0_THRESH62, modal->thresh62); 380 AR_WRITE(sc, AR_PHY_EXT_CCA0, reg); 381 382 if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_2) { 383 reg = AR_READ(sc, AR_PHY_RF_CTL2); 384 reg = RW(reg, AR_PHY_TX_END_PA_ON, 385 modal->txFrameToPaOn); 386 reg = RW(reg, AR_PHY_TX_END_DATA_START, 387 modal->txFrameToDataStart); 388 AR_WRITE(sc, AR_PHY_RF_CTL2, reg); 389 } 390 #ifndef IEEE80211_NO_HT 391 if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_3 && extc != NULL) { 392 reg = AR_READ(sc, AR_PHY_SETTLING); 393 reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->swSettleHt40); 394 AR_WRITE(sc, AR_PHY_SETTLING, reg); 395 } 396 #endif 397 AR_WRITE_BARRIER(sc); 398 } 399 400 PUBLIC void 401 ar9285_pa_calib(struct athn_softc *sc) 402 { 403 /* List of registers that need to be saved/restored. */ 404 static const uint16_t regs[] = { 405 AR9285_AN_TOP3, 406 AR9285_AN_RXTXBB1, 407 AR9285_AN_RF2G1, 408 AR9285_AN_RF2G2, 409 AR9285_AN_TOP2, 410 AR9285_AN_RF2G8, 411 AR9285_AN_RF2G7 412 }; 413 uint32_t svg[7], reg, ccomp_svg; 414 size_t i; 415 416 /* No PA calibration needed for high power solutions. */ 417 if (AR_SREV_9285(sc) && 418 ((struct ar9285_base_eep_header *)sc->sc_eep)->txGainType == 419 AR_EEP_TXGAIN_HIGH_POWER) /* XXX AR9287? */ 420 return; 421 422 /* Save registers. */ 423 for (i = 0; i < __arraycount(regs); i++) 424 svg[i] = AR_READ(sc, regs[i]); 425 426 AR_CLRBITS(sc, AR9285_AN_RF2G6, 1); 427 AR_SETBITS(sc, AR_PHY(2), 1 << 27); 428 429 AR_SETBITS(sc, AR9285_AN_TOP3, AR9285_AN_TOP3_PWDDAC); 430 AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDRXTXBB1); 431 AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDV2I); 432 AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDDACIF); 433 AR_CLRBITS(sc, AR9285_AN_RF2G2, AR9285_AN_RF2G2_OFFCAL); 434 AR_CLRBITS(sc, AR9285_AN_RF2G7, AR9285_AN_RF2G7_PWDDB); 435 AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_ENPACAL); 436 /* Power down PA drivers. */ 437 AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV1); 438 AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV2); 439 AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPAOUT); 440 441 reg = AR_READ(sc, AR9285_AN_RF2G8); 442 reg = RW(reg, AR9285_AN_RF2G8_PADRVGN2TAB0, 7); 443 AR_WRITE(sc, AR9285_AN_RF2G8, reg); 444 445 reg = AR_READ(sc, AR9285_AN_RF2G7); 446 reg = RW(reg, AR9285_AN_RF2G7_PADRVGN2TAB0, 0); 447 AR_WRITE(sc, AR9285_AN_RF2G7, reg); 448 449 reg = AR_READ(sc, AR9285_AN_RF2G6); 450 /* Save compensation capacitor value. */ 451 ccomp_svg = MS(reg, AR9285_AN_RF2G6_CCOMP); 452 /* Program compensation capacitor for dynamic PA. */ 453 reg = RW(reg, AR9285_AN_RF2G6_CCOMP, 0xf); 454 AR_WRITE(sc, AR9285_AN_RF2G6, reg); 455 456 AR_WRITE(sc, AR9285_AN_TOP2, AR9285_AN_TOP2_DEFAULT); 457 AR_WRITE_BARRIER(sc); 458 DELAY(30); 459 460 /* Clear offsets 6-1. */ 461 AR_CLRBITS(sc, AR9285_AN_RF2G6, AR9285_AN_RF2G6_OFFS_6_1); 462 /* Clear offset 0. */ 463 AR_CLRBITS(sc, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP); 464 /* Set offsets 6-1. */ 465 for (i = 6; i >= 1; i--) { 466 AR_SETBITS(sc, AR9285_AN_RF2G6, AR9285_AN_RF2G6_OFFS(i)); 467 AR_WRITE_BARRIER(sc); 468 DELAY(1); 469 if (AR_READ(sc, AR9285_AN_RF2G9) & AR9285_AN_RXTXBB1_SPARE9) { 470 AR_SETBITS(sc, AR9285_AN_RF2G6, 471 AR9285_AN_RF2G6_OFFS(i)); 472 } 473 else { 474 AR_CLRBITS(sc, AR9285_AN_RF2G6, 475 AR9285_AN_RF2G6_OFFS(i)); 476 } 477 } 478 /* Set offset 0. */ 479 AR_SETBITS(sc, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP); 480 AR_WRITE_BARRIER(sc); 481 DELAY(1); 482 if (AR_READ(sc, AR9285_AN_RF2G9) & AR9285_AN_RXTXBB1_SPARE9) 483 AR_SETBITS(sc, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP); 484 else 485 AR_CLRBITS(sc, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP); 486 487 AR_WRITE_BARRIER(sc); 488 489 AR_SETBITS(sc, AR9285_AN_RF2G6, 1); 490 AR_CLRBITS(sc, AR_PHY(2), 1 << 27); 491 492 /* Restore registers. */ 493 for (i = 0; i < __arraycount(regs); i++) 494 AR_WRITE(sc, regs[i], svg[i]); 495 496 /* Restore compensation capacitor value. */ 497 reg = AR_READ(sc, AR9285_AN_RF2G6); 498 reg = RW(reg, AR9285_AN_RF2G6_CCOMP, ccomp_svg); 499 AR_WRITE(sc, AR9285_AN_RF2G6, reg); 500 AR_WRITE_BARRIER(sc); 501 } 502 503 PUBLIC void 504 ar9271_pa_calib(struct athn_softc *sc) 505 { 506 #if NATHN_USB > 0 507 /* List of registers that need to be saved/restored. */ 508 static const uint16_t regs[] = { 509 AR9285_AN_TOP3, 510 AR9285_AN_RXTXBB1, 511 AR9285_AN_RF2G1, 512 AR9285_AN_RF2G2, 513 AR9285_AN_TOP2, 514 AR9285_AN_RF2G8, 515 AR9285_AN_RF2G7 516 }; 517 uint32_t svg[7], reg, rf2g3_svg; 518 size_t i; 519 520 /* Save registers. */ 521 for (i = 0; i < __arraycount(regs); i++) 522 svg[i] = AR_READ(sc, regs[i]); 523 524 AR_CLRBITS(sc, AR9285_AN_RF2G6, 1); 525 AR_SETBITS(sc, AR_PHY(2), 1 << 27); 526 527 AR_SETBITS(sc, AR9285_AN_TOP3, AR9285_AN_TOP3_PWDDAC); 528 AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDRXTXBB1); 529 AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDV2I); 530 AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDDACIF); 531 AR_CLRBITS(sc, AR9285_AN_RF2G2, AR9285_AN_RF2G2_OFFCAL); 532 AR_CLRBITS(sc, AR9285_AN_RF2G7, AR9285_AN_RF2G7_PWDDB); 533 AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_ENPACAL); 534 /* Power down PA drivers. */ 535 AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV1); 536 AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV2); 537 AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPAOUT); 538 539 reg = AR_READ(sc, AR9285_AN_RF2G8); 540 reg = RW(reg, AR9285_AN_RF2G8_PADRVGN2TAB0, 7); 541 AR_WRITE(sc, AR9285_AN_RF2G8, reg); 542 543 reg = AR_READ(sc, AR9285_AN_RF2G7); 544 reg = RW(reg, AR9285_AN_RF2G7_PADRVGN2TAB0, 0); 545 AR_WRITE(sc, AR9285_AN_RF2G7, reg); 546 547 /* Save compensation capacitor value. */ 548 reg = rf2g3_svg = AR_READ(sc, AR9285_AN_RF2G3); 549 /* Program compensation capacitor for dynamic PA. */ 550 reg = RW(reg, AR9271_AN_RF2G3_CCOMP, 0xfff); 551 AR_WRITE(sc, AR9285_AN_RF2G3, reg); 552 553 AR_WRITE(sc, AR9285_AN_TOP2, AR9285_AN_TOP2_DEFAULT); 554 AR_WRITE_BARRIER(sc); 555 DELAY(30); 556 557 /* Clear offsets 6-0. */ 558 AR_CLRBITS(sc, AR9285_AN_RF2G6, AR9271_AN_RF2G6_OFFS_6_0); 559 /* Set offsets 6-1. */ 560 for (i = 6; i >= 1; i--) { 561 reg = AR_READ(sc, AR9285_AN_RF2G6); 562 reg |= AR9271_AN_RF2G6_OFFS(i); 563 AR_WRITE(sc, AR9285_AN_RF2G6, reg); 564 AR_WRITE_BARRIER(sc); 565 DELAY(1); 566 if (!(AR_READ(sc, AR9285_AN_RF2G9) & AR9285_AN_RXTXBB1_SPARE9)) 567 reg &= ~AR9271_AN_RF2G6_OFFS(i); 568 AR_WRITE(sc, AR9285_AN_RF2G6, reg); 569 } 570 AR_WRITE_BARRIER(sc); 571 572 AR_SETBITS(sc, AR9285_AN_RF2G6, 1); 573 AR_CLRBITS(sc, AR_PHY(2), 1 << 27); 574 575 /* Restore registers. */ 576 for (i = 0; i < __arraycount(regs); i++) 577 AR_WRITE(sc, regs[i], svg[i]); 578 579 /* Restore compensation capacitor value. */ 580 AR_WRITE(sc, AR9285_AN_RF2G3, rf2g3_svg); 581 AR_WRITE_BARRIER(sc); 582 #endif /* NATHN_USB */ 583 } 584 585 /* 586 * Carrier Leakage Calibration. 587 */ 588 int 589 ar9285_cl_cal(struct athn_softc *sc, struct ieee80211_channel *c, 590 struct ieee80211_channel *extc) 591 { 592 int ntries; 593 594 AR_SETBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE); 595 #ifndef IEEE80211_NO_HT 596 if (0 && extc == NULL) { /* XXX IS_CHAN_HT20!! */ 597 AR_SETBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_PARALLEL_CAL_ENABLE); 598 AR_SETBITS(sc, AR_PHY_TURBO, AR_PHY_FC_DYN2040_EN); 599 AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, 600 AR_PHY_AGC_CONTROL_FLTR_CAL); 601 AR_CLRBITS(sc, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_CAL_ENABLE); 602 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL); 603 for (ntries = 0; ntries < 10000; ntries++) { 604 if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) & 605 AR_PHY_AGC_CONTROL_CAL)) 606 break; 607 DELAY(10); 608 } 609 if (ntries == 10000) 610 return ETIMEDOUT; 611 AR_CLRBITS(sc, AR_PHY_TURBO, AR_PHY_FC_DYN2040_EN); 612 AR_CLRBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_PARALLEL_CAL_ENABLE); 613 AR_CLRBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE); 614 } 615 #endif 616 AR_CLRBITS(sc, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC); 617 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_FLTR_CAL); 618 AR_SETBITS(sc, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_CAL_ENABLE); 619 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL); 620 for (ntries = 0; ntries < 10000; ntries++) { 621 if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) & 622 AR_PHY_AGC_CONTROL_CAL)) 623 break; 624 DELAY(10); 625 } 626 if (ntries == 10000) 627 return ETIMEDOUT; 628 AR_SETBITS(sc, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC); 629 AR_CLRBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE); 630 AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_FLTR_CAL); 631 AR_WRITE_BARRIER(sc); 632 return 0; 633 } 634 635 PUBLIC void 636 ar9271_load_ani(struct athn_softc *sc) 637 { 638 639 #if NATHN_USB > 0 640 /* Write ANI registers. */ 641 AR_WRITE(sc, AR_PHY_DESIRED_SZ, 0x6d4000e2); 642 AR_WRITE(sc, AR_PHY_AGC_CTL1, 0x3139605e); 643 AR_WRITE(sc, AR_PHY_FIND_SIG, 0x7ec84d2e); 644 AR_WRITE(sc, AR_PHY_SFCORR_LOW, 0x06903881); 645 AR_WRITE(sc, AR_PHY_SFCORR, 0x5ac640d0); 646 AR_WRITE(sc, AR_PHY_CCK_DETECT, 0x803e68c8); 647 AR_WRITE(sc, AR_PHY_TIMING5, 0xd00a8007); 648 AR_WRITE(sc, AR_PHY_SFCORR_EXT, 0x05eea6d4); 649 AR_WRITE_BARRIER(sc); 650 #endif /* NATHN_USB */ 651 } 652 653 int 654 ar9285_init_calib(struct athn_softc *sc, struct ieee80211_channel *c, 655 struct ieee80211_channel *extc) 656 { 657 uint32_t reg, mask, clcgain, rf2g5_svg; 658 int i, maxgain, nclcs, thresh, error; 659 660 /* Do carrier leakage calibration. */ 661 if ((error = ar9285_cl_cal(sc, c, extc)) != 0) 662 return error; 663 664 /* Workaround for high temperature is not applicable on AR9271. */ 665 if (AR_SREV_9271(sc)) 666 return 0; 667 668 mask = 0; 669 nclcs = 0; 670 reg = AR_READ(sc, AR_PHY_TX_PWRCTRL7); 671 maxgain = MS(reg, AR_PHY_TX_PWRCTRL_TX_GAIN_TAB_MAX); 672 for (i = 0; i <= maxgain; i++) { 673 reg = AR_READ(sc, AR_PHY_TX_GAIN_TBL(i)); 674 clcgain = MS(reg, AR_PHY_TX_GAIN_CLC); 675 /* NB: clcgain <= 0xf. */ 676 if (!(mask & (1 << clcgain))) { 677 mask |= 1 << clcgain; 678 nclcs++; 679 } 680 } 681 thresh = 0; 682 for (i = 0; i < nclcs; i++) { 683 reg = AR_READ(sc, AR_PHY_CLC_TBL(i)); 684 if (MS(reg, AR_PHY_CLC_I0) == 0) 685 thresh++; 686 if (MS(reg, AR_PHY_CLC_Q0) == 0) 687 thresh++; 688 } 689 if (thresh <= AR9285_CL_CAL_REDO_THRESH) 690 return 0; /* No need to redo. */ 691 692 /* Threshold reached, redo carrier leakage calibration. */ 693 DPRINTFN(DBG_INIT, sc, "CLC threshold=%d\n", thresh); 694 rf2g5_svg = reg = AR_READ(sc, AR9285_AN_RF2G5); 695 if ((AR_READ(sc, AR_AN_SYNTH9) & 0x7) == 0x1) /* XE rev. */ 696 reg = RW(reg, AR9285_AN_RF2G5_IC50TX, 0x5); 697 else 698 reg = RW(reg, AR9285_AN_RF2G5_IC50TX, 0x4); 699 AR_WRITE(sc, AR9285_AN_RF2G5, reg); 700 AR_WRITE_BARRIER(sc); 701 error = ar9285_cl_cal(sc, c, extc); 702 AR_WRITE(sc, AR9285_AN_RF2G5, rf2g5_svg); 703 AR_WRITE_BARRIER(sc); 704 return error; 705 } 706 707 Static void 708 ar9285_get_pdadcs(struct athn_softc *sc, struct ieee80211_channel *c, 709 int nxpdgains, uint8_t overlap, uint8_t *boundaries, uint8_t *pdadcs) 710 { 711 const struct ar9285_eeprom *eep = sc->sc_eep; 712 const struct ar9285_cal_data_per_freq *pierdata; 713 const uint8_t *pierfreq; 714 struct athn_pier lopier, hipier; 715 uint8_t fbin; 716 int i, lo, hi, npiers; 717 718 pierfreq = eep->calFreqPier2G; 719 pierdata = eep->calPierData2G; 720 npiers = AR9285_NUM_2G_CAL_PIERS; 721 722 /* Find channel in ROM pier table. */ 723 fbin = athn_chan2fbin(c); 724 athn_get_pier_ival(fbin, pierfreq, npiers, &lo, &hi); 725 726 lopier.fbin = pierfreq[lo]; 727 hipier.fbin = pierfreq[hi]; 728 for (i = 0; i < nxpdgains; i++) { 729 lopier.pwr[i] = pierdata[lo].pwrPdg[i]; 730 lopier.vpd[i] = pierdata[lo].vpdPdg[i]; 731 hipier.pwr[i] = pierdata[lo].pwrPdg[i]; 732 hipier.vpd[i] = pierdata[lo].vpdPdg[i]; 733 } 734 ar5008_get_pdadcs(sc, fbin, &lopier, &hipier, nxpdgains, 735 AR9285_PD_GAIN_ICEPTS, overlap, boundaries, pdadcs); 736 } 737 738 Static void 739 ar9285_set_power_calib(struct athn_softc *sc, struct ieee80211_channel *c) 740 { 741 const struct ar9285_eeprom *eep = sc->sc_eep; 742 uint8_t boundaries[AR_PD_GAINS_IN_MASK]; 743 uint8_t pdadcs[AR_NUM_PDADC_VALUES]; 744 uint8_t xpdgains[AR9285_NUM_PD_GAINS]; 745 uint8_t overlap; 746 uint32_t reg; 747 int i, nxpdgains; 748 749 if (sc->sc_eep_rev < AR_EEP_MINOR_VER_2) { 750 overlap = MS(AR_READ(sc, AR_PHY_TPCRG5), 751 AR_PHY_TPCRG5_PD_GAIN_OVERLAP); 752 } 753 else 754 overlap = eep->modalHeader.pdGainOverlap; 755 756 nxpdgains = 0; 757 memset(xpdgains, 0, sizeof(xpdgains)); 758 for (i = AR9285_PD_GAINS_IN_MASK - 1; i >= 0; i--) { 759 if (nxpdgains >= AR9285_NUM_PD_GAINS) 760 break; 761 if (eep->modalHeader.xpdGain & (1 << i)) 762 xpdgains[nxpdgains++] = i; 763 } 764 reg = AR_READ(sc, AR_PHY_TPCRG1); 765 reg = RW(reg, AR_PHY_TPCRG1_NUM_PD_GAIN, nxpdgains - 1); 766 reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_1, xpdgains[0]); 767 reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_2, xpdgains[1]); 768 AR_WRITE(sc, AR_PHY_TPCRG1, reg); 769 770 /* NB: No open loop power control for AR9285. */ 771 ar9285_get_pdadcs(sc, c, nxpdgains, overlap, boundaries, pdadcs); 772 773 /* Write boundaries. */ 774 reg = SM(AR_PHY_TPCRG5_PD_GAIN_OVERLAP, overlap); 775 reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1, boundaries[0]); 776 reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2, boundaries[1]); 777 reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3, boundaries[2]); 778 reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4, boundaries[3]); 779 AR_WRITE(sc, AR_PHY_TPCRG5, reg); 780 781 /* Write PDADC values. */ 782 for (i = 0; i < AR_NUM_PDADC_VALUES; i += 4) { 783 AR_WRITE(sc, AR_PHY_PDADC_TBL_BASE + i, 784 pdadcs[i + 0] << 0 | 785 pdadcs[i + 1] << 8 | 786 pdadcs[i + 2] << 16 | 787 pdadcs[i + 3] << 24); 788 } 789 AR_WRITE_BARRIER(sc); 790 } 791 792 Static void 793 ar9285_set_txpower(struct athn_softc *sc, struct ieee80211_channel *c, 794 struct ieee80211_channel *extc) 795 { 796 const struct ar9285_eeprom *eep = sc->sc_eep; 797 #ifdef notyet 798 const struct ar9285_modal_eep_header *modal = &eep->modalHeader; 799 #endif 800 uint8_t tpow_cck[4], tpow_ofdm[4]; 801 #ifndef IEEE80211_NO_HT 802 uint8_t tpow_cck_ext[4], tpow_ofdm_ext[4]; 803 uint8_t tpow_ht20[8], tpow_ht40[8]; 804 uint8_t ht40inc; 805 #endif 806 int16_t power[ATHN_POWER_COUNT]; 807 int i; 808 809 ar9285_set_power_calib(sc, c); 810 811 #ifdef notyet 812 /* Compute transmit power reduction due to antenna gain. */ 813 uint16_t max_ant_gain = modal->antennaGain; 814 /* XXX */ 815 #endif 816 817 /* Get CCK target powers. */ 818 ar5008_get_lg_tpow(sc, c, AR_CTL_11B, eep->calTargetPowerCck, 819 AR9285_NUM_2G_CCK_TARGET_POWERS, tpow_cck); 820 821 /* Get OFDM target powers. */ 822 ar5008_get_lg_tpow(sc, c, AR_CTL_11G, eep->calTargetPower2G, 823 AR9285_NUM_2G_20_TARGET_POWERS, tpow_ofdm); 824 825 #ifndef IEEE80211_NO_HT 826 /* Get HT-20 target powers. */ 827 ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT20, eep->calTargetPower2GHT20, 828 AR9285_NUM_2G_20_TARGET_POWERS, tpow_ht20); 829 830 if (extc != NULL) { 831 /* Get HT-40 target powers. */ 832 ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT40, 833 eep->calTargetPower2GHT40, AR9285_NUM_2G_40_TARGET_POWERS, 834 tpow_ht40); 835 836 /* Get secondary channel CCK target powers. */ 837 ar5008_get_lg_tpow(sc, extc, AR_CTL_11B, 838 eep->calTargetPowerCck, AR9285_NUM_2G_CCK_TARGET_POWERS, 839 tpow_cck_ext); 840 841 /* Get secondary channel OFDM target powers. */ 842 ar5008_get_lg_tpow(sc, extc, AR_CTL_11G, 843 eep->calTargetPower2G, AR9285_NUM_2G_20_TARGET_POWERS, 844 tpow_ofdm_ext); 845 } 846 #endif 847 848 memset(power, 0, sizeof(power)); 849 /* Shuffle target powers accross transmit rates. */ 850 power[ATHN_POWER_OFDM6 ] = 851 power[ATHN_POWER_OFDM9 ] = 852 power[ATHN_POWER_OFDM12 ] = 853 power[ATHN_POWER_OFDM18 ] = 854 power[ATHN_POWER_OFDM24 ] = tpow_ofdm[0]; 855 power[ATHN_POWER_OFDM36 ] = tpow_ofdm[1]; 856 power[ATHN_POWER_OFDM48 ] = tpow_ofdm[2]; 857 power[ATHN_POWER_OFDM54 ] = tpow_ofdm[3]; 858 power[ATHN_POWER_XR ] = tpow_ofdm[0]; 859 power[ATHN_POWER_CCK1_LP ] = tpow_cck[0]; 860 power[ATHN_POWER_CCK2_LP ] = 861 power[ATHN_POWER_CCK2_SP ] = tpow_cck[1]; 862 power[ATHN_POWER_CCK55_LP] = 863 power[ATHN_POWER_CCK55_SP] = tpow_cck[2]; 864 power[ATHN_POWER_CCK11_LP] = 865 power[ATHN_POWER_CCK11_SP] = tpow_cck[3]; 866 #ifndef IEEE80211_NO_HT 867 for (i = 0; i < __arraycount(tpow_ht20); i++) 868 power[ATHN_POWER_HT20(i)] = tpow_ht20[i]; 869 if (extc != NULL) { 870 /* Correct PAR difference between HT40 and HT20/Legacy. */ 871 if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_2) 872 ht40inc = modal->ht40PowerIncForPdadc; 873 else 874 ht40inc = AR_HT40_POWER_INC_FOR_PDADC; 875 for (i = 0; i < __arraycount(tpow_ht40); i++) 876 power[ATHN_POWER_HT40(i)] = tpow_ht40[i] + ht40inc; 877 power[ATHN_POWER_OFDM_DUP] = tpow_ht40[0]; 878 power[ATHN_POWER_CCK_DUP ] = tpow_ht40[0]; 879 power[ATHN_POWER_OFDM_EXT] = tpow_ofdm_ext[0]; 880 power[ATHN_POWER_CCK_EXT ] = tpow_cck_ext[0]; 881 } 882 #endif 883 884 for (i = 0; i < ATHN_POWER_COUNT; i++) { 885 power[i] -= AR_PWR_TABLE_OFFSET_DB * 2; /* In half dB. */ 886 if (power[i] > AR_MAX_RATE_POWER) 887 power[i] = AR_MAX_RATE_POWER; 888 } 889 890 /* Commit transmit power values to hardware. */ 891 ar5008_write_txpower(sc, power); 892 } 893