xref: /netbsd-src/sys/dev/ic/arn9285.c (revision 13d4bb4cc874de96add7fc4227d38a1d656b03d1)
1 /*	$NetBSD: arn9285.c,v 1.5 2022/09/25 18:43:32 thorpej Exp $	*/
2 /*	$OpenBSD: ar9285.c,v 1.19 2012/06/10 21:23:36 kettenis Exp $	*/
3 
4 /*-
5  * Copyright (c) 2009-2010 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2008-2010 Atheros Communications Inc.
7  *
8  * Permission to use, copy, modify, and/or distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for Atheros 802.11a/g/n chipsets.
23  * Routines for AR9285 and AR9271 chipsets.
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: arn9285.c,v 1.5 2022/09/25 18:43:32 thorpej Exp $");
28 
29 #ifndef _MODULE
30 #include "athn_usb.h"
31 #endif
32 
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/socket.h>
38 #include <sys/systm.h>
39 #include <sys/queue.h>
40 #include <sys/callout.h>
41 #include <sys/conf.h>
42 #include <sys/device.h>
43 
44 #include <sys/bus.h>
45 #include <sys/endian.h>
46 #include <sys/intr.h>
47 
48 #include <net/bpf.h>
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_ether.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60 
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_amrr.h>
63 #include <net80211/ieee80211_radiotap.h>
64 
65 #include <dev/ic/athnreg.h>
66 #include <dev/ic/athnvar.h>
67 #include <dev/ic/arn9285.h>
68 
69 #include <dev/ic/arn5008reg.h>
70 #include <dev/ic/arn9280reg.h>
71 #include <dev/ic/arn9285reg.h>
72 
73 #include <dev/ic/arn5008.h>
74 #include <dev/ic/arn9280.h>
75 #include <dev/ic/arn9285.h>
76 
77 #define Static static
78 
79 Static int	ar9285_cl_cal(struct athn_softc *, struct ieee80211_channel *,
80 		    struct ieee80211_channel *);
81 Static void	ar9285_get_pdadcs(struct athn_softc *,
82 		    struct ieee80211_channel *, int, uint8_t, uint8_t *,
83 		    uint8_t *);
84 Static const struct ar_spur_chan *
85 		ar9285_get_spur_chans(struct athn_softc *, int);
86 Static void	ar9285_init_from_rom(struct athn_softc *,
87 		    struct ieee80211_channel *, struct ieee80211_channel *);
88 Static void	ar9285_set_power_calib(struct athn_softc *,
89 		    struct ieee80211_channel *);
90 Static void	ar9285_set_txpower(struct athn_softc *,
91 		    struct ieee80211_channel *, struct ieee80211_channel *);
92 Static void	ar9285_setup(struct athn_softc *);
93 Static void	ar9285_swap_rom(struct athn_softc *);
94 
95 PUBLIC int
ar9285_attach(struct athn_softc * sc)96 ar9285_attach(struct athn_softc *sc)
97 {
98 
99 	sc->sc_eep_base = AR9285_EEP_START_LOC;
100 	sc->sc_eep_size = sizeof(struct ar9285_eeprom);
101 	sc->sc_def_nf = AR9285_PHY_CCA_MAX_GOOD_VALUE;
102 	sc->sc_ngpiopins = (sc->sc_flags & ATHN_FLAG_USB) ? 16 : 12;
103 	sc->sc_led_pin = (sc->sc_flags & ATHN_FLAG_USB) ? 15 : 1;
104 	sc->sc_workaround = AR9285_WA_DEFAULT;
105 	sc->sc_ops.setup = ar9285_setup;
106 	sc->sc_ops.swap_rom = ar9285_swap_rom;
107 	sc->sc_ops.init_from_rom = ar9285_init_from_rom;
108 	sc->sc_ops.set_txpower = ar9285_set_txpower;
109 	sc->sc_ops.set_synth = ar9280_set_synth;
110 	sc->sc_ops.spur_mitigate = ar9280_spur_mitigate;
111 	sc->sc_ops.get_spur_chans = ar9285_get_spur_chans;
112 #if NATHN_USB > 0
113 	if (AR_SREV_9271(sc))
114 		sc->sc_ini = &ar9271_ini;
115 	else
116 #endif
117 		sc->sc_ini = &ar9285_1_2_ini;
118 	sc->sc_serdes = &ar9280_2_0_serdes;
119 
120 	return ar5008_attach(sc);
121 }
122 
123 Static void
ar9285_setup(struct athn_softc * sc)124 ar9285_setup(struct athn_softc *sc)
125 {
126 	const struct ar9285_eeprom *eep = sc->sc_eep;
127 	uint8_t type;
128 
129 	/* Select initialization values based on ROM. */
130 	type = eep->baseEepHeader.txGainType;
131 	DPRINTFN(DBG_TX, sc, "Tx gain type=0x%x\n", type);
132 #if NATHN_USB > 0
133 	if (AR_SREV_9271(sc)) {
134 		if (type == AR_EEP_TXGAIN_HIGH_POWER)
135 			sc->sc_tx_gain = &ar9271_tx_gain_high_power;
136 		else
137 			sc->sc_tx_gain = &ar9271_tx_gain;
138 	}
139 	else
140 #endif	/* NATHN_USB */
141 	if ((AR_READ(sc, AR_AN_SYNTH9) & 0x7) == 0x1) {	/* XE rev. */
142 		if (type == AR_EEP_TXGAIN_HIGH_POWER)
143 			sc->sc_tx_gain = &ar9285_2_0_tx_gain_high_power;
144 		else
145 			sc->sc_tx_gain = &ar9285_2_0_tx_gain;
146 	}
147 	else {
148 		if (type == AR_EEP_TXGAIN_HIGH_POWER)
149 			sc->sc_tx_gain = &ar9285_1_2_tx_gain_high_power;
150 		else
151 			sc->sc_tx_gain = &ar9285_1_2_tx_gain;
152 	}
153 }
154 
155 Static void
ar9285_swap_rom(struct athn_softc * sc)156 ar9285_swap_rom(struct athn_softc *sc)
157 {
158 	struct ar9285_eeprom *eep = sc->sc_eep;
159 	int i;
160 
161 	eep->modalHeader.antCtrlCommon =
162 	    bswap32(eep->modalHeader.antCtrlCommon);
163 	eep->modalHeader.antCtrlChain =
164 	    bswap32(eep->modalHeader.antCtrlChain);
165 
166 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
167 		eep->modalHeader.spurChans[i].spurChan =
168 		    bswap16(eep->modalHeader.spurChans[i].spurChan);
169 	}
170 }
171 
172 Static const struct ar_spur_chan *
ar9285_get_spur_chans(struct athn_softc * sc,int is2ghz)173 ar9285_get_spur_chans(struct athn_softc *sc, int is2ghz)
174 {
175 	const struct ar9285_eeprom *eep = sc->sc_eep;
176 
177 	KASSERT(is2ghz);
178 	return eep->modalHeader.spurChans;
179 }
180 
181 Static void
ar9285_init_from_rom(struct athn_softc * sc,struct ieee80211_channel * c,struct ieee80211_channel * extc)182 ar9285_init_from_rom(struct athn_softc *sc, struct ieee80211_channel *c,
183     struct ieee80211_channel *extc)
184 {
185 	const struct ar9285_eeprom *eep = sc->sc_eep;
186 	const struct ar9285_modal_eep_header *modal = &eep->modalHeader;
187 	uint32_t reg, offset = 0x1000;
188 	uint8_t ob[5], db1[5], db2[5];
189 	uint8_t txRxAtten;
190 
191 	AR_WRITE(sc, AR_PHY_SWITCH_COM, modal->antCtrlCommon);
192 	AR_WRITE(sc, AR_PHY_SWITCH_CHAIN_0, modal->antCtrlChain);
193 
194 	reg = AR_READ(sc, AR_PHY_TIMING_CTRL4_0);
195 	reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, modal->iqCalI);
196 	reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, modal->iqCalQ);
197 	AR_WRITE(sc, AR_PHY_TIMING_CTRL4_0, reg);
198 
199 	if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_3) {
200 		reg = AR_READ(sc, AR_PHY_GAIN_2GHZ);
201 		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
202 		    modal->bswMargin);
203 		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_DB,
204 		    modal->bswAtten);
205 		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
206 		    modal->xatten2Margin);
207 		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_DB,
208 		    modal->xatten2Db);
209 		AR_WRITE(sc, AR_PHY_GAIN_2GHZ, reg);
210 
211 		/* Duplicate values of chain 0 for chain 1. */
212 		reg = AR_READ(sc, AR_PHY_GAIN_2GHZ + offset);
213 		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
214 		    modal->bswMargin);
215 		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_DB,
216 		    modal->bswAtten);
217 		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
218 		    modal->xatten2Margin);
219 		reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_DB,
220 		    modal->xatten2Db);
221 		AR_WRITE(sc, AR_PHY_GAIN_2GHZ + offset, reg);
222 	}
223 	if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_3)
224 		txRxAtten = modal->txRxAtten;
225 	else	/* Workaround for ROM versions < 14.3. */
226 		txRxAtten = 23;
227 	reg = AR_READ(sc, AR_PHY_RXGAIN);
228 	reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAtten);
229 	reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_MARGIN, modal->rxTxMargin);
230 	AR_WRITE(sc, AR_PHY_RXGAIN, reg);
231 
232 	/* Duplicate values of chain 0 for chain 1. */
233 	reg = AR_READ(sc, AR_PHY_RXGAIN + offset);
234 	reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAtten);
235 	reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_MARGIN, modal->rxTxMargin);
236 	AR_WRITE(sc, AR_PHY_RXGAIN + offset, reg);
237 
238 	if (modal->version >= 3) {
239 		/* Setup antenna diversity from ROM. */
240 		reg = AR_READ(sc, AR_PHY_MULTICHAIN_GAIN_CTL);
241 		reg = RW(reg, AR9285_PHY_ANT_DIV_CTL_ALL, 0);
242 		reg = RW(reg, AR9285_PHY_ANT_DIV_CTL,
243 		    (modal->ob_234  >> 12) & 0x1);
244 		reg = RW(reg, AR9285_PHY_ANT_DIV_ALT_LNACONF,
245 		    (modal->db1_234 >> 12) & 0x3);
246 		reg = RW(reg, AR9285_PHY_ANT_DIV_MAIN_LNACONF,
247 		    (modal->db1_234 >> 14) & 0x3);
248 		reg = RW(reg, AR9285_PHY_ANT_DIV_ALT_GAINTB,
249 		    (modal->ob_234  >> 13) & 0x1);
250 		reg = RW(reg, AR9285_PHY_ANT_DIV_MAIN_GAINTB,
251 		    (modal->ob_234  >> 14) & 0x1);
252 		AR_WRITE(sc, AR_PHY_MULTICHAIN_GAIN_CTL, reg);
253 		reg = AR_READ(sc, AR_PHY_MULTICHAIN_GAIN_CTL);	/* Flush. */
254 
255 		reg = AR_READ(sc, AR_PHY_CCK_DETECT);
256 		if (modal->ob_234 & (1 << 15))
257 			reg |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
258 		else
259 			reg &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
260 		AR_WRITE(sc, AR_PHY_CCK_DETECT, reg);
261 		reg = AR_READ(sc, AR_PHY_CCK_DETECT);		/* Flush. */
262 	}
263 	if (modal->version >= 2) {
264 		ob [0] = (modal->ob_01   >> 0) & 0xf;
265 		ob [1] = (modal->ob_01   >> 4) & 0xf;
266 		ob [2] = (modal->ob_234  >> 0) & 0xf;
267 		ob [3] = (modal->ob_234  >> 4) & 0xf;
268 		ob [4] = (modal->ob_234  >> 8) & 0xf;
269 
270 		db1[0] = (modal->db1_01  >> 0) & 0xf;
271 		db1[1] = (modal->db1_01  >> 4) & 0xf;
272 		db1[2] = (modal->db1_234 >> 0) & 0xf;
273 		db1[3] = (modal->db1_234 >> 4) & 0xf;
274 		db1[4] = (modal->db1_234 >> 8) & 0xf;
275 
276 		db2[0] = (modal->db2_01  >> 0) & 0xf;
277 		db2[1] = (modal->db2_01  >> 4) & 0xf;
278 		db2[2] = (modal->db2_234 >> 0) & 0xf;
279 		db2[3] = (modal->db2_234 >> 4) & 0xf;
280 		db2[4] = (modal->db2_234 >> 8) & 0xf;
281 
282 	}
283 	else if (modal->version == 1) {
284 		ob [0] = (modal->ob_01   >> 0) & 0xf;
285 		ob [1] = (modal->ob_01   >> 4) & 0xf;
286 		/* Field ob_234 does not exist, use ob_01. */
287 		ob [2] = ob [3] = ob [4] = ob [1];
288 
289 		db1[0] = (modal->db1_01  >> 0) & 0xf;
290 		db1[1] = (modal->db1_01  >> 4) & 0xf;
291 		/* Field db1_234 does not exist, use db1_01. */
292 		db1[2] = db1[3] = db1[4] = db1[1];
293 
294 		db2[0] = (modal->db2_01  >> 0) & 0xf;
295 		db2[1] = (modal->db2_01  >> 4) & 0xf;
296 		/* Field db2_234 does not exist, use db2_01. */
297 		db2[2] = db2[3] = db2[4] = db2[1];
298 
299 	}
300 	else {
301 		ob [0] = modal->ob_01;
302 		ob [1] = ob [2] = ob [3] = ob [4] = ob [0];
303 
304 		db1[0] = modal->db1_01;
305 		db1[1] = db1[2] = db1[3] = db1[4] = db1[0];
306 
307 		/* Field db2_01 does not exist, use db1_01. */
308 		db2[0] = modal->db1_01;
309 		db2[1] = db2[2] = db2[3] = db2[4] = db2[0];
310 	}
311 #if NATHN_USB > 0
312 	if (AR_SREV_9271(sc)) {
313 		reg = AR_READ(sc, AR9285_AN_RF2G3);
314 		reg = RW(reg, AR9271_AN_RF2G3_OB_CCK, ob [0]);
315 		reg = RW(reg, AR9271_AN_RF2G3_OB_PSK, ob [1]);
316 		reg = RW(reg, AR9271_AN_RF2G3_OB_QAM, ob [2]);
317 		reg = RW(reg, AR9271_AN_RF2G3_DB1,    db1[0]);
318 		AR_WRITE(sc, AR9285_AN_RF2G3, reg);
319 		AR_WRITE_BARRIER(sc);
320 		DELAY(100);
321 		reg = AR_READ(sc, AR9285_AN_RF2G4);
322 		reg = RW(reg, AR9271_AN_RF2G4_DB2, (uint32_t)db2[0]);
323 		AR_WRITE(sc, AR9285_AN_RF2G4, reg);
324 		AR_WRITE_BARRIER(sc);
325 		DELAY(100);
326 	}
327 	else
328 #endif	/* ATHN_USB */
329 	{
330 		reg = AR_READ(sc, AR9285_AN_RF2G3);
331 		reg = RW(reg, AR9285_AN_RF2G3_OB_0,  ob [0]);
332 		reg = RW(reg, AR9285_AN_RF2G3_OB_1,  ob [1]);
333 		reg = RW(reg, AR9285_AN_RF2G3_OB_2,  ob [2]);
334 		reg = RW(reg, AR9285_AN_RF2G3_OB_3,  ob [3]);
335 		reg = RW(reg, AR9285_AN_RF2G3_OB_4,  ob [4]);
336 		reg = RW(reg, AR9285_AN_RF2G3_DB1_0, db1[0]);
337 		reg = RW(reg, AR9285_AN_RF2G3_DB1_1, db1[1]);
338 		reg = RW(reg, AR9285_AN_RF2G3_DB1_2, db1[2]);
339 		AR_WRITE(sc, AR9285_AN_RF2G3, reg);
340 		AR_WRITE_BARRIER(sc);
341 		DELAY(100);
342 		reg = AR_READ(sc, AR9285_AN_RF2G4);
343 		reg = RW(reg, AR9285_AN_RF2G4_DB1_3, db1[3]);
344 		reg = RW(reg, AR9285_AN_RF2G4_DB1_4, db1[4]);
345 		reg = RW(reg, AR9285_AN_RF2G4_DB2_0, db2[0]);
346 		reg = RW(reg, AR9285_AN_RF2G4_DB2_1, db2[1]);
347 		reg = RW(reg, AR9285_AN_RF2G4_DB2_2, db2[2]);
348 		reg = RW(reg, AR9285_AN_RF2G4_DB2_3, db2[3]);
349 		reg = RW(reg, AR9285_AN_RF2G4_DB2_4, db2[4]);
350 		AR_WRITE(sc, AR9285_AN_RF2G4, reg);
351 		AR_WRITE_BARRIER(sc);
352 		DELAY(100);
353 	}
354 
355 	reg = AR_READ(sc, AR_PHY_SETTLING);
356 	reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->switchSettling);
357 	AR_WRITE(sc, AR_PHY_SETTLING, reg);
358 
359 	reg = AR_READ(sc, AR_PHY_DESIRED_SZ);
360 	reg = RW(reg, AR_PHY_DESIRED_SZ_ADC, modal->adcDesiredSize);
361 	AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg);
362 
363 	reg =  SM(AR_PHY_RF_CTL4_TX_END_XPAA_OFF, modal->txEndToXpaOff);
364 	reg |= SM(AR_PHY_RF_CTL4_TX_END_XPAB_OFF, modal->txEndToXpaOff);
365 	reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAA_ON, modal->txFrameToXpaOn);
366 	reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAB_ON, modal->txFrameToXpaOn);
367 	AR_WRITE(sc, AR_PHY_RF_CTL4, reg);
368 
369 	reg = AR_READ(sc, AR_PHY_RF_CTL3);
370 	reg = RW(reg, AR_PHY_TX_END_TO_A2_RX_ON, modal->txEndToRxOn);
371 	AR_WRITE(sc, AR_PHY_RF_CTL3, reg);
372 
373 	reg = AR_READ(sc, AR_PHY_CCA(0));
374 	reg = RW(reg, AR9280_PHY_CCA_THRESH62, modal->thresh62);
375 	AR_WRITE(sc, AR_PHY_CCA(0), reg);
376 
377 	reg = AR_READ(sc, AR_PHY_EXT_CCA0);
378 	reg = RW(reg, AR_PHY_EXT_CCA0_THRESH62, modal->thresh62);
379 	AR_WRITE(sc, AR_PHY_EXT_CCA0, reg);
380 
381 	if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_2) {
382 		reg = AR_READ(sc, AR_PHY_RF_CTL2);
383 		reg = RW(reg, AR_PHY_TX_END_PA_ON,
384 		    modal->txFrameToPaOn);
385 		reg = RW(reg, AR_PHY_TX_END_DATA_START,
386 		    modal->txFrameToDataStart);
387 		AR_WRITE(sc, AR_PHY_RF_CTL2, reg);
388 	}
389 #ifndef IEEE80211_NO_HT
390 	if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_3 && extc != NULL) {
391 		reg = AR_READ(sc, AR_PHY_SETTLING);
392 		reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->swSettleHt40);
393 		AR_WRITE(sc, AR_PHY_SETTLING, reg);
394 	}
395 #endif
396 	AR_WRITE_BARRIER(sc);
397 }
398 
399 PUBLIC void
ar9285_pa_calib(struct athn_softc * sc)400 ar9285_pa_calib(struct athn_softc *sc)
401 {
402 	/* List of registers that need to be saved/restored. */
403 	static const uint16_t regs[] = {
404 		AR9285_AN_TOP3,
405 		AR9285_AN_RXTXBB1,
406 		AR9285_AN_RF2G1,
407 		AR9285_AN_RF2G2,
408 		AR9285_AN_TOP2,
409 		AR9285_AN_RF2G8,
410 		AR9285_AN_RF2G7
411 	};
412 	uint32_t svg[7], reg, ccomp_svg;
413 	size_t i;
414 
415 	/* No PA calibration needed for high power solutions. */
416 	if (AR_SREV_9285(sc) &&
417 	    ((struct ar9285_base_eep_header *)sc->sc_eep)->txGainType ==
418 	     AR_EEP_TXGAIN_HIGH_POWER)	/* XXX AR9287? */
419 		return;
420 
421 	/* Save registers. */
422 	for (i = 0; i < __arraycount(regs); i++)
423 		svg[i] = AR_READ(sc, regs[i]);
424 
425 	AR_CLRBITS(sc, AR9285_AN_RF2G6, 1);
426 	AR_SETBITS(sc, AR_PHY(2), 1 << 27);
427 
428 	AR_SETBITS(sc, AR9285_AN_TOP3, AR9285_AN_TOP3_PWDDAC);
429 	AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDRXTXBB1);
430 	AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDV2I);
431 	AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDDACIF);
432 	AR_CLRBITS(sc, AR9285_AN_RF2G2, AR9285_AN_RF2G2_OFFCAL);
433 	AR_CLRBITS(sc, AR9285_AN_RF2G7, AR9285_AN_RF2G7_PWDDB);
434 	AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_ENPACAL);
435 	/* Power down PA drivers. */
436 	AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV1);
437 	AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV2);
438 	AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPAOUT);
439 
440 	reg = AR_READ(sc, AR9285_AN_RF2G8);
441 	reg = RW(reg, AR9285_AN_RF2G8_PADRVGN2TAB0, 7);
442 	AR_WRITE(sc, AR9285_AN_RF2G8, reg);
443 
444 	reg = AR_READ(sc, AR9285_AN_RF2G7);
445 	reg = RW(reg, AR9285_AN_RF2G7_PADRVGN2TAB0, 0);
446 	AR_WRITE(sc, AR9285_AN_RF2G7, reg);
447 
448 	reg = AR_READ(sc, AR9285_AN_RF2G6);
449 	/* Save compensation capacitor value. */
450 	ccomp_svg = MS(reg, AR9285_AN_RF2G6_CCOMP);
451 	/* Program compensation capacitor for dynamic PA. */
452 	reg = RW(reg, AR9285_AN_RF2G6_CCOMP, 0xf);
453 	AR_WRITE(sc, AR9285_AN_RF2G6, reg);
454 
455 	AR_WRITE(sc, AR9285_AN_TOP2, AR9285_AN_TOP2_DEFAULT);
456 	AR_WRITE_BARRIER(sc);
457 	DELAY(30);
458 
459 	/* Clear offsets 6-1. */
460 	AR_CLRBITS(sc, AR9285_AN_RF2G6, AR9285_AN_RF2G6_OFFS_6_1);
461 	/* Clear offset 0. */
462 	AR_CLRBITS(sc, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP);
463 	/* Set offsets 6-1. */
464 	for (i = 6; i >= 1; i--) {
465 		AR_SETBITS(sc, AR9285_AN_RF2G6, AR9285_AN_RF2G6_OFFS(i));
466 		AR_WRITE_BARRIER(sc);
467 		DELAY(1);
468 		if (AR_READ(sc, AR9285_AN_RF2G9) & AR9285_AN_RXTXBB1_SPARE9) {
469 			AR_SETBITS(sc, AR9285_AN_RF2G6,
470 			    AR9285_AN_RF2G6_OFFS(i));
471 		}
472 		else {
473 			AR_CLRBITS(sc, AR9285_AN_RF2G6,
474 			    AR9285_AN_RF2G6_OFFS(i));
475 		}
476 	}
477 	/* Set offset 0. */
478 	AR_SETBITS(sc, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP);
479 	AR_WRITE_BARRIER(sc);
480 	DELAY(1);
481 	if (AR_READ(sc, AR9285_AN_RF2G9) & AR9285_AN_RXTXBB1_SPARE9)
482 		AR_SETBITS(sc, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP);
483 	else
484 		AR_CLRBITS(sc, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP);
485 
486 	AR_WRITE_BARRIER(sc);
487 
488 	AR_SETBITS(sc, AR9285_AN_RF2G6, 1);
489 	AR_CLRBITS(sc, AR_PHY(2), 1 << 27);
490 
491 	/* Restore registers. */
492 	for (i = 0; i < __arraycount(regs); i++)
493 		AR_WRITE(sc, regs[i], svg[i]);
494 
495 	/* Restore compensation capacitor value. */
496 	reg = AR_READ(sc, AR9285_AN_RF2G6);
497 	reg = RW(reg, AR9285_AN_RF2G6_CCOMP, ccomp_svg);
498 	AR_WRITE(sc, AR9285_AN_RF2G6, reg);
499 	AR_WRITE_BARRIER(sc);
500 }
501 
502 PUBLIC void
ar9271_pa_calib(struct athn_softc * sc)503 ar9271_pa_calib(struct athn_softc *sc)
504 {
505 #if NATHN_USB > 0
506 	/* List of registers that need to be saved/restored. */
507 	static const uint16_t regs[] = {
508 		AR9285_AN_TOP3,
509 		AR9285_AN_RXTXBB1,
510 		AR9285_AN_RF2G1,
511 		AR9285_AN_RF2G2,
512 		AR9285_AN_TOP2,
513 		AR9285_AN_RF2G8,
514 		AR9285_AN_RF2G7
515 	};
516 	uint32_t svg[7], reg, rf2g3_svg;
517 	size_t i;
518 
519 	/* Save registers. */
520 	for (i = 0; i < __arraycount(regs); i++)
521 		svg[i] = AR_READ(sc, regs[i]);
522 
523 	AR_CLRBITS(sc, AR9285_AN_RF2G6, 1);
524 	AR_SETBITS(sc, AR_PHY(2), 1 << 27);
525 
526 	AR_SETBITS(sc, AR9285_AN_TOP3, AR9285_AN_TOP3_PWDDAC);
527 	AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDRXTXBB1);
528 	AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDV2I);
529 	AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDDACIF);
530 	AR_CLRBITS(sc, AR9285_AN_RF2G2, AR9285_AN_RF2G2_OFFCAL);
531 	AR_CLRBITS(sc, AR9285_AN_RF2G7, AR9285_AN_RF2G7_PWDDB);
532 	AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_ENPACAL);
533 	/* Power down PA drivers. */
534 	AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV1);
535 	AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV2);
536 	AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPAOUT);
537 
538 	reg = AR_READ(sc, AR9285_AN_RF2G8);
539 	reg = RW(reg, AR9285_AN_RF2G8_PADRVGN2TAB0, 7);
540 	AR_WRITE(sc, AR9285_AN_RF2G8, reg);
541 
542 	reg = AR_READ(sc, AR9285_AN_RF2G7);
543 	reg = RW(reg, AR9285_AN_RF2G7_PADRVGN2TAB0, 0);
544 	AR_WRITE(sc, AR9285_AN_RF2G7, reg);
545 
546 	/* Save compensation capacitor value. */
547 	reg = rf2g3_svg = AR_READ(sc, AR9285_AN_RF2G3);
548 	/* Program compensation capacitor for dynamic PA. */
549 	reg = RW(reg, AR9271_AN_RF2G3_CCOMP, 0xfff);
550 	AR_WRITE(sc, AR9285_AN_RF2G3, reg);
551 
552 	AR_WRITE(sc, AR9285_AN_TOP2, AR9285_AN_TOP2_DEFAULT);
553 	AR_WRITE_BARRIER(sc);
554 	DELAY(30);
555 
556 	/* Clear offsets 6-0. */
557 	AR_CLRBITS(sc, AR9285_AN_RF2G6, AR9271_AN_RF2G6_OFFS_6_0);
558 	/* Set offsets 6-1. */
559 	for (i = 6; i >= 1; i--) {
560 		reg = AR_READ(sc, AR9285_AN_RF2G6);
561 		reg |= AR9271_AN_RF2G6_OFFS(i);
562 		AR_WRITE(sc, AR9285_AN_RF2G6, reg);
563 		AR_WRITE_BARRIER(sc);
564 		DELAY(1);
565 		if (!(AR_READ(sc, AR9285_AN_RF2G9) & AR9285_AN_RXTXBB1_SPARE9))
566 			reg &= ~AR9271_AN_RF2G6_OFFS(i);
567 		AR_WRITE(sc, AR9285_AN_RF2G6, reg);
568 	}
569 	AR_WRITE_BARRIER(sc);
570 
571 	AR_SETBITS(sc, AR9285_AN_RF2G6, 1);
572 	AR_CLRBITS(sc, AR_PHY(2), 1 << 27);
573 
574 	/* Restore registers. */
575 	for (i = 0; i < __arraycount(regs); i++)
576 		AR_WRITE(sc, regs[i], svg[i]);
577 
578 	/* Restore compensation capacitor value. */
579 	AR_WRITE(sc, AR9285_AN_RF2G3, rf2g3_svg);
580 	AR_WRITE_BARRIER(sc);
581 #endif	/* NATHN_USB */
582 }
583 
584 /*
585  * Carrier Leakage Calibration.
586  */
587 int
ar9285_cl_cal(struct athn_softc * sc,struct ieee80211_channel * c,struct ieee80211_channel * extc)588 ar9285_cl_cal(struct athn_softc *sc, struct ieee80211_channel *c,
589     struct ieee80211_channel *extc)
590 {
591 	int ntries;
592 
593 	AR_SETBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE);
594 #ifndef IEEE80211_NO_HT
595 	if (0 && extc == NULL) {	/* XXX IS_CHAN_HT20!! */
596 		AR_SETBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_PARALLEL_CAL_ENABLE);
597 		AR_SETBITS(sc, AR_PHY_TURBO, AR_PHY_FC_DYN2040_EN);
598 		AR_CLRBITS(sc, AR_PHY_AGC_CONTROL,
599 		    AR_PHY_AGC_CONTROL_FLTR_CAL);
600 		AR_CLRBITS(sc, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_CAL_ENABLE);
601 		AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL);
602 		for (ntries = 0; ntries < 10000; ntries++) {
603 			if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) &
604 			    AR_PHY_AGC_CONTROL_CAL))
605 				break;
606 			DELAY(10);
607 		}
608 		if (ntries == 10000)
609 			return ETIMEDOUT;
610 		AR_CLRBITS(sc, AR_PHY_TURBO, AR_PHY_FC_DYN2040_EN);
611 		AR_CLRBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_PARALLEL_CAL_ENABLE);
612 		AR_CLRBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE);
613 	}
614 #endif
615 	AR_CLRBITS(sc, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC);
616 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_FLTR_CAL);
617 	AR_SETBITS(sc, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_CAL_ENABLE);
618 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL);
619 	for (ntries = 0; ntries < 10000; ntries++) {
620 		if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) &
621 		    AR_PHY_AGC_CONTROL_CAL))
622 			break;
623 		DELAY(10);
624 	}
625 	if (ntries == 10000)
626 		return ETIMEDOUT;
627 	AR_SETBITS(sc, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC);
628 	AR_CLRBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE);
629 	AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_FLTR_CAL);
630 	AR_WRITE_BARRIER(sc);
631 	return 0;
632 }
633 
634 PUBLIC void
ar9271_load_ani(struct athn_softc * sc)635 ar9271_load_ani(struct athn_softc *sc)
636 {
637 
638 #if NATHN_USB > 0
639 	/* Write ANI registers. */
640 	AR_WRITE(sc, AR_PHY_DESIRED_SZ, 0x6d4000e2);
641 	AR_WRITE(sc, AR_PHY_AGC_CTL1,   0x3139605e);
642 	AR_WRITE(sc, AR_PHY_FIND_SIG,   0x7ec84d2e);
643 	AR_WRITE(sc, AR_PHY_SFCORR_LOW, 0x06903881);
644 	AR_WRITE(sc, AR_PHY_SFCORR,     0x5ac640d0);
645 	AR_WRITE(sc, AR_PHY_CCK_DETECT, 0x803e68c8);
646 	AR_WRITE(sc, AR_PHY_TIMING5,    0xd00a8007);
647 	AR_WRITE(sc, AR_PHY_SFCORR_EXT, 0x05eea6d4);
648 	AR_WRITE_BARRIER(sc);
649 #endif	/* NATHN_USB */
650 }
651 
652 int
ar9285_init_calib(struct athn_softc * sc,struct ieee80211_channel * c,struct ieee80211_channel * extc)653 ar9285_init_calib(struct athn_softc *sc, struct ieee80211_channel *c,
654     struct ieee80211_channel *extc)
655 {
656 	uint32_t reg, mask, clcgain, rf2g5_svg;
657 	int i, maxgain, nclcs, thresh, error;
658 
659 	/* Do carrier leakage calibration. */
660 	if ((error = ar9285_cl_cal(sc, c, extc)) != 0)
661 		return error;
662 
663 	/* Workaround for high temperature is not applicable on AR9271. */
664 	if (AR_SREV_9271(sc))
665 		return 0;
666 
667 	mask = 0;
668 	nclcs = 0;
669 	reg = AR_READ(sc, AR_PHY_TX_PWRCTRL7);
670 	maxgain = MS(reg, AR_PHY_TX_PWRCTRL_TX_GAIN_TAB_MAX);
671 	for (i = 0; i <= maxgain; i++) {
672 		reg = AR_READ(sc, AR_PHY_TX_GAIN_TBL(i));
673 		clcgain = MS(reg, AR_PHY_TX_GAIN_CLC);
674 		/* NB: clcgain <= 0xf. */
675 		if (!(mask & (1 << clcgain))) {
676 			mask |= 1 << clcgain;
677 			nclcs++;
678 		}
679 	}
680 	thresh = 0;
681 	for (i = 0; i < nclcs; i++) {
682 		reg = AR_READ(sc, AR_PHY_CLC_TBL(i));
683 		if (MS(reg, AR_PHY_CLC_I0) == 0)
684 			thresh++;
685 		if (MS(reg, AR_PHY_CLC_Q0) == 0)
686 			thresh++;
687 	}
688 	if (thresh <= AR9285_CL_CAL_REDO_THRESH)
689 		return 0;	/* No need to redo. */
690 
691 	/* Threshold reached, redo carrier leakage calibration. */
692 	DPRINTFN(DBG_INIT, sc, "CLC threshold=%d\n", thresh);
693 	rf2g5_svg = reg = AR_READ(sc, AR9285_AN_RF2G5);
694 	if ((AR_READ(sc, AR_AN_SYNTH9) & 0x7) == 0x1)	/* XE rev. */
695 		reg = RW(reg, AR9285_AN_RF2G5_IC50TX, 0x5);
696 	else
697 		reg = RW(reg, AR9285_AN_RF2G5_IC50TX, 0x4);
698 	AR_WRITE(sc, AR9285_AN_RF2G5, reg);
699 	AR_WRITE_BARRIER(sc);
700 	error = ar9285_cl_cal(sc, c, extc);
701 	AR_WRITE(sc, AR9285_AN_RF2G5, rf2g5_svg);
702 	AR_WRITE_BARRIER(sc);
703 	return error;
704 }
705 
706 Static void
ar9285_get_pdadcs(struct athn_softc * sc,struct ieee80211_channel * c,int nxpdgains,uint8_t overlap,uint8_t * boundaries,uint8_t * pdadcs)707 ar9285_get_pdadcs(struct athn_softc *sc, struct ieee80211_channel *c,
708     int nxpdgains, uint8_t overlap, uint8_t *boundaries, uint8_t *pdadcs)
709 {
710 	const struct ar9285_eeprom *eep = sc->sc_eep;
711 	const struct ar9285_cal_data_per_freq *pierdata;
712 	const uint8_t *pierfreq;
713 	struct athn_pier lopier, hipier;
714 	uint8_t fbin;
715 	int i, lo, hi, npiers;
716 
717 	pierfreq = eep->calFreqPier2G;
718 	pierdata = eep->calPierData2G;
719 	npiers = AR9285_NUM_2G_CAL_PIERS;
720 
721 	/* Find channel in ROM pier table. */
722 	fbin = athn_chan2fbin(c);
723 	athn_get_pier_ival(fbin, pierfreq, npiers, &lo, &hi);
724 
725 	lopier.fbin = pierfreq[lo];
726 	hipier.fbin = pierfreq[hi];
727 	for (i = 0; i < nxpdgains; i++) {
728 		lopier.pwr[i] = pierdata[lo].pwrPdg[i];
729 		lopier.vpd[i] = pierdata[lo].vpdPdg[i];
730 		hipier.pwr[i] = pierdata[lo].pwrPdg[i];
731 		hipier.vpd[i] = pierdata[lo].vpdPdg[i];
732 	}
733 	ar5008_get_pdadcs(sc, fbin, &lopier, &hipier, nxpdgains,
734 	    AR9285_PD_GAIN_ICEPTS, overlap, boundaries, pdadcs);
735 }
736 
737 Static void
ar9285_set_power_calib(struct athn_softc * sc,struct ieee80211_channel * c)738 ar9285_set_power_calib(struct athn_softc *sc, struct ieee80211_channel *c)
739 {
740 	const struct ar9285_eeprom *eep = sc->sc_eep;
741 	uint8_t boundaries[AR_PD_GAINS_IN_MASK];
742 	uint8_t pdadcs[AR_NUM_PDADC_VALUES];
743 	uint8_t xpdgains[AR9285_NUM_PD_GAINS];
744 	uint8_t overlap;
745 	uint32_t reg;
746 	int i, nxpdgains;
747 
748 	if (sc->sc_eep_rev < AR_EEP_MINOR_VER_2) {
749 		overlap = MS(AR_READ(sc, AR_PHY_TPCRG5),
750 		    AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
751 	}
752 	else
753 		overlap = eep->modalHeader.pdGainOverlap;
754 
755 	nxpdgains = 0;
756 	memset(xpdgains, 0, sizeof(xpdgains));
757 	for (i = AR9285_PD_GAINS_IN_MASK - 1; i >= 0; i--) {
758 		if (nxpdgains >= AR9285_NUM_PD_GAINS)
759 			break;
760 		if (eep->modalHeader.xpdGain & (1 << i))
761 			xpdgains[nxpdgains++] = i;
762 	}
763 	reg = AR_READ(sc, AR_PHY_TPCRG1);
764 	reg = RW(reg, AR_PHY_TPCRG1_NUM_PD_GAIN, nxpdgains - 1);
765 	reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_1, xpdgains[0]);
766 	reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_2, xpdgains[1]);
767 	AR_WRITE(sc, AR_PHY_TPCRG1, reg);
768 
769 	/* NB: No open loop power control for AR9285. */
770 	ar9285_get_pdadcs(sc, c, nxpdgains, overlap, boundaries, pdadcs);
771 
772 	/* Write boundaries. */
773 	reg  = SM(AR_PHY_TPCRG5_PD_GAIN_OVERLAP, overlap);
774 	reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1, boundaries[0]);
775 	reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2, boundaries[1]);
776 	reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3, boundaries[2]);
777 	reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4, boundaries[3]);
778 	AR_WRITE(sc, AR_PHY_TPCRG5, reg);
779 
780 	/* Write PDADC values. */
781 	for (i = 0; i < AR_NUM_PDADC_VALUES; i += 4) {
782 		AR_WRITE(sc, AR_PHY_PDADC_TBL_BASE + i,
783 		    pdadcs[i + 0] <<  0 |
784 		    pdadcs[i + 1] <<  8 |
785 		    pdadcs[i + 2] << 16 |
786 		    (uint32_t)pdadcs[i + 3] << 24);
787 	}
788 	AR_WRITE_BARRIER(sc);
789 }
790 
791 Static void
ar9285_set_txpower(struct athn_softc * sc,struct ieee80211_channel * c,struct ieee80211_channel * extc)792 ar9285_set_txpower(struct athn_softc *sc, struct ieee80211_channel *c,
793     struct ieee80211_channel *extc)
794 {
795 	const struct ar9285_eeprom *eep = sc->sc_eep;
796 #ifdef notyet
797 	const struct ar9285_modal_eep_header *modal = &eep->modalHeader;
798 #endif
799 	uint8_t tpow_cck[4], tpow_ofdm[4];
800 #ifndef IEEE80211_NO_HT
801 	uint8_t tpow_cck_ext[4], tpow_ofdm_ext[4];
802 	uint8_t tpow_ht20[8], tpow_ht40[8];
803 	uint8_t ht40inc;
804 #endif
805 	int16_t power[ATHN_POWER_COUNT];
806 	int i;
807 
808 	ar9285_set_power_calib(sc, c);
809 
810 #ifdef notyet
811 	/* Compute transmit power reduction due to antenna gain. */
812 	uint16_t max_ant_gain = modal->antennaGain;
813 	/* XXX */
814 #endif
815 
816 	/* Get CCK target powers. */
817 	ar5008_get_lg_tpow(sc, c, AR_CTL_11B, eep->calTargetPowerCck,
818 	    AR9285_NUM_2G_CCK_TARGET_POWERS, tpow_cck);
819 
820 	/* Get OFDM target powers. */
821 	ar5008_get_lg_tpow(sc, c, AR_CTL_11G, eep->calTargetPower2G,
822 	    AR9285_NUM_2G_20_TARGET_POWERS, tpow_ofdm);
823 
824 #ifndef IEEE80211_NO_HT
825 	/* Get HT-20 target powers. */
826 	ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT20, eep->calTargetPower2GHT20,
827 	    AR9285_NUM_2G_20_TARGET_POWERS, tpow_ht20);
828 
829 	if (extc != NULL) {
830 		/* Get HT-40 target powers. */
831 		ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT40,
832 		    eep->calTargetPower2GHT40, AR9285_NUM_2G_40_TARGET_POWERS,
833 		    tpow_ht40);
834 
835 		/* Get secondary channel CCK target powers. */
836 		ar5008_get_lg_tpow(sc, extc, AR_CTL_11B,
837 		    eep->calTargetPowerCck, AR9285_NUM_2G_CCK_TARGET_POWERS,
838 		    tpow_cck_ext);
839 
840 		/* Get secondary channel OFDM target powers. */
841 		ar5008_get_lg_tpow(sc, extc, AR_CTL_11G,
842 		    eep->calTargetPower2G, AR9285_NUM_2G_20_TARGET_POWERS,
843 		    tpow_ofdm_ext);
844 	}
845 #endif
846 
847 	memset(power, 0, sizeof(power));
848 	/* Shuffle target powers accross transmit rates. */
849 	power[ATHN_POWER_OFDM6   ] =
850 	power[ATHN_POWER_OFDM9   ] =
851 	power[ATHN_POWER_OFDM12  ] =
852 	power[ATHN_POWER_OFDM18  ] =
853 	power[ATHN_POWER_OFDM24  ] = tpow_ofdm[0];
854 	power[ATHN_POWER_OFDM36  ] = tpow_ofdm[1];
855 	power[ATHN_POWER_OFDM48  ] = tpow_ofdm[2];
856 	power[ATHN_POWER_OFDM54  ] = tpow_ofdm[3];
857 	power[ATHN_POWER_XR      ] = tpow_ofdm[0];
858 	power[ATHN_POWER_CCK1_LP ] = tpow_cck[0];
859 	power[ATHN_POWER_CCK2_LP ] =
860 	power[ATHN_POWER_CCK2_SP ] = tpow_cck[1];
861 	power[ATHN_POWER_CCK55_LP] =
862 	power[ATHN_POWER_CCK55_SP] = tpow_cck[2];
863 	power[ATHN_POWER_CCK11_LP] =
864 	power[ATHN_POWER_CCK11_SP] = tpow_cck[3];
865 #ifndef IEEE80211_NO_HT
866 	for (i = 0; i < __arraycount(tpow_ht20); i++)
867 		power[ATHN_POWER_HT20(i)] = tpow_ht20[i];
868 	if (extc != NULL) {
869 		/* Correct PAR difference between HT40 and HT20/Legacy. */
870 		if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_2)
871 			ht40inc = modal->ht40PowerIncForPdadc;
872 		else
873 			ht40inc = AR_HT40_POWER_INC_FOR_PDADC;
874 		for (i = 0; i < __arraycount(tpow_ht40); i++)
875 			power[ATHN_POWER_HT40(i)] = tpow_ht40[i] + ht40inc;
876 		power[ATHN_POWER_OFDM_DUP] = tpow_ht40[0];
877 		power[ATHN_POWER_CCK_DUP ] = tpow_ht40[0];
878 		power[ATHN_POWER_OFDM_EXT] = tpow_ofdm_ext[0];
879 		power[ATHN_POWER_CCK_EXT ] = tpow_cck_ext[0];
880 	}
881 #endif
882 
883 	for (i = 0; i < ATHN_POWER_COUNT; i++) {
884 		power[i] -= AR_PWR_TABLE_OFFSET_DB * 2;	/* In half dB. */
885 		if (power[i] > AR_MAX_RATE_POWER)
886 			power[i] = AR_MAX_RATE_POWER;
887 	}
888 
889 	/* Commit transmit power values to hardware. */
890 	ar5008_write_txpower(sc, power);
891 }
892