xref: /netbsd-src/sys/dev/ic/aic6915.c (revision d710132b4b8ce7f7cccaaf660cb16aa16b4077a0)
1 /*	$NetBSD: aic6915.c,v 1.9 2002/12/21 16:15:28 kristerw Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Device driver for the Adaptec AIC-6915 (``Starfire'')
41  * 10/100 Ethernet controller.
42  */
43 
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: aic6915.c,v 1.9 2002/12/21 16:15:28 kristerw Exp $");
46 
47 #include "bpfilter.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/socket.h>
56 #include <sys/ioctl.h>
57 #include <sys/errno.h>
58 #include <sys/device.h>
59 
60 #include <uvm/uvm_extern.h>
61 
62 #include <net/if.h>
63 #include <net/if_dl.h>
64 #include <net/if_media.h>
65 #include <net/if_ether.h>
66 
67 #if NBPFILTER > 0
68 #include <net/bpf.h>
69 #endif
70 
71 #include <machine/bus.h>
72 #include <machine/intr.h>
73 
74 #include <dev/mii/miivar.h>
75 
76 #include <dev/ic/aic6915reg.h>
77 #include <dev/ic/aic6915var.h>
78 
79 void	sf_start(struct ifnet *);
80 void	sf_watchdog(struct ifnet *);
81 int	sf_ioctl(struct ifnet *, u_long, caddr_t);
82 int	sf_init(struct ifnet *);
83 void	sf_stop(struct ifnet *, int);
84 
85 void	sf_shutdown(void *);
86 
87 void	sf_txintr(struct sf_softc *);
88 void	sf_rxintr(struct sf_softc *);
89 void	sf_stats_update(struct sf_softc *);
90 
91 void	sf_reset(struct sf_softc *);
92 void	sf_macreset(struct sf_softc *);
93 void	sf_rxdrain(struct sf_softc *);
94 int	sf_add_rxbuf(struct sf_softc *, int);
95 uint8_t	sf_read_eeprom(struct sf_softc *, int);
96 void	sf_set_filter(struct sf_softc *);
97 
98 int	sf_mii_read(struct device *, int, int);
99 void	sf_mii_write(struct device *, int, int, int);
100 void	sf_mii_statchg(struct device *);
101 
102 void	sf_tick(void *);
103 
104 int	sf_mediachange(struct ifnet *);
105 void	sf_mediastatus(struct ifnet *, struct ifmediareq *);
106 
107 #define	sf_funcreg_read(sc, reg)					\
108 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh_func, (reg))
109 #define	sf_funcreg_write(sc, reg, val)					\
110 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh_func, (reg), (val))
111 
112 static __inline uint32_t
113 sf_reg_read(struct sf_softc *sc, bus_addr_t reg)
114 {
115 
116 	if (__predict_false(sc->sc_iomapped)) {
117 		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoAccess,
118 		    reg);
119 		return (bus_space_read_4(sc->sc_st, sc->sc_sh,
120 		    SF_IndirectIoDataPort));
121 	}
122 
123 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, reg));
124 }
125 
126 static __inline void
127 sf_reg_write(struct sf_softc *sc, bus_addr_t reg, uint32_t val)
128 {
129 
130 	if (__predict_false(sc->sc_iomapped)) {
131 		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoAccess,
132 		    reg);
133 		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoDataPort,
134 		    val);
135 		return;
136 	}
137 
138 	bus_space_write_4(sc->sc_st, sc->sc_sh, reg, val);
139 }
140 
141 #define	sf_genreg_read(sc, reg)						\
142 	sf_reg_read((sc), (reg) + SF_GENREG_OFFSET)
143 #define	sf_genreg_write(sc, reg, val)					\
144 	sf_reg_write((sc), (reg) + SF_GENREG_OFFSET, (val))
145 
146 /*
147  * sf_attach:
148  *
149  *	Attach a Starfire interface to the system.
150  */
151 void
152 sf_attach(struct sf_softc *sc)
153 {
154 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
155 	int i, rseg, error;
156 	bus_dma_segment_t seg;
157 	u_int8_t enaddr[ETHER_ADDR_LEN];
158 
159 	callout_init(&sc->sc_tick_callout);
160 
161 	/*
162 	 * If we're I/O mapped, the functional register handle is
163 	 * the same as the base handle.  If we're memory mapped,
164 	 * carve off a chunk of the register space for the functional
165 	 * registers, to save on arithmetic later.
166 	 */
167 	if (sc->sc_iomapped)
168 		sc->sc_sh_func = sc->sc_sh;
169 	else {
170 		if ((error = bus_space_subregion(sc->sc_st, sc->sc_sh,
171 		    SF_GENREG_OFFSET, SF_FUNCREG_SIZE, &sc->sc_sh_func)) != 0) {
172 			printf("%s: unable to sub-region functional "
173 			    "registers, error = %d\n", sc->sc_dev.dv_xname,
174 			    error);
175 			return;
176 		}
177 	}
178 
179 	/*
180 	 * Initialize the transmit threshold for this interface.  The
181 	 * manual describes the default as 4 * 16 bytes.  We start out
182 	 * at 10 * 16 bytes, to avoid a bunch of initial underruns on
183 	 * several platforms.
184 	 */
185 	sc->sc_txthresh = 10;
186 
187 	/*
188 	 * Allocate the control data structures, and create and load the
189 	 * DMA map for it.
190 	 */
191 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
192 	    sizeof(struct sf_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
193 	    BUS_DMA_NOWAIT)) != 0) {
194 		printf("%s: unable to allocate control data, error = %d\n",
195 		    sc->sc_dev.dv_xname, error);
196 		goto fail_0;
197 	}
198 
199 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
200 	    sizeof(struct sf_control_data), (caddr_t *)&sc->sc_control_data,
201 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
202 		printf("%s: unable to map control data, error = %d\n",
203 		    sc->sc_dev.dv_xname, error);
204 		goto fail_1;
205 	}
206 
207 	if ((error = bus_dmamap_create(sc->sc_dmat,
208 	    sizeof(struct sf_control_data), 1,
209 	    sizeof(struct sf_control_data), 0, BUS_DMA_NOWAIT,
210 	    &sc->sc_cddmamap)) != 0) {
211 		printf("%s: unable to create control data DMA map, "
212 		    "error = %d\n", sc->sc_dev.dv_xname, error);
213 		goto fail_2;
214 	}
215 
216 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
217 	    sc->sc_control_data, sizeof(struct sf_control_data), NULL,
218 	    BUS_DMA_NOWAIT)) != 0) {
219 		printf("%s: unable to load control data DMA map, error = %d\n",
220 		    sc->sc_dev.dv_xname, error);
221 		goto fail_3;
222 	}
223 
224 	/*
225 	 * Create the transmit buffer DMA maps.
226 	 */
227 	for (i = 0; i < SF_NTXDESC; i++) {
228 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
229 		    SF_NTXFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
230 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
231 			printf("%s: unable to create tx DMA map %d, "
232 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
233 			goto fail_4;
234 		}
235 	}
236 
237 	/*
238 	 * Create the receive buffer DMA maps.
239 	 */
240 	for (i = 0; i < SF_NRXDESC; i++) {
241 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
242 		    MCLBYTES, 0, BUS_DMA_NOWAIT,
243 		    &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
244 			printf("%s: unable to create rx DMA map %d, "
245 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
246 			goto fail_5;
247 		}
248 	}
249 
250 	/*
251 	 * Reset the chip to a known state.
252 	 */
253 	sf_reset(sc);
254 
255 	/*
256 	 * Read the Ethernet address from the EEPROM.
257 	 */
258 	for (i = 0; i < ETHER_ADDR_LEN; i++)
259 		enaddr[i] = sf_read_eeprom(sc, (15 + (ETHER_ADDR_LEN - 1)) - i);
260 
261 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
262 	    ether_sprintf(enaddr));
263 
264 	if (sf_funcreg_read(sc, SF_PciDeviceConfig) & PDC_System64)
265 		printf("%s: 64-bit PCI slot detected\n", sc->sc_dev.dv_xname);
266 
267 	/*
268 	 * Initialize our media structures and probe the MII.
269 	 */
270 	sc->sc_mii.mii_ifp = ifp;
271 	sc->sc_mii.mii_readreg = sf_mii_read;
272 	sc->sc_mii.mii_writereg = sf_mii_write;
273 	sc->sc_mii.mii_statchg = sf_mii_statchg;
274 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, sf_mediachange,
275 	    sf_mediastatus);
276 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
277 	    MII_OFFSET_ANY, 0);
278 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
279 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
280 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
281 	} else
282 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
283 
284 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
285 	ifp->if_softc = sc;
286 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
287 	ifp->if_ioctl = sf_ioctl;
288 	ifp->if_start = sf_start;
289 	ifp->if_watchdog = sf_watchdog;
290 	ifp->if_init = sf_init;
291 	ifp->if_stop = sf_stop;
292 	IFQ_SET_READY(&ifp->if_snd);
293 
294 	/*
295 	 * Attach the interface.
296 	 */
297 	if_attach(ifp);
298 	ether_ifattach(ifp, enaddr);
299 
300 	/*
301 	 * Make sure the interface is shutdown during reboot.
302 	 */
303 	sc->sc_sdhook = shutdownhook_establish(sf_shutdown, sc);
304 	if (sc->sc_sdhook == NULL)
305 		printf("%s: WARNING: unable to establish shutdown hook\n",
306 		    sc->sc_dev.dv_xname);
307 	return;
308 
309 	/*
310 	 * Free any resources we've allocated during the failed attach
311 	 * attempt.  Do this in reverse order an fall through.
312 	 */
313  fail_5:
314 	for (i = 0; i < SF_NRXDESC; i++) {
315 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
316 			bus_dmamap_destroy(sc->sc_dmat,
317 			    sc->sc_rxsoft[i].ds_dmamap);
318 	}
319  fail_4:
320 	for (i = 0; i < SF_NTXDESC; i++) {
321 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
322 			bus_dmamap_destroy(sc->sc_dmat,
323 			    sc->sc_txsoft[i].ds_dmamap);
324 	}
325 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
326  fail_3:
327 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
328  fail_2:
329 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t) sc->sc_control_data,
330 	    sizeof(struct sf_control_data));
331  fail_1:
332 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
333  fail_0:
334 	return;
335 }
336 
337 /*
338  * sf_shutdown:
339  *
340  *	Shutdown hook -- make sure the interface is stopped at reboot.
341  */
342 void
343 sf_shutdown(void *arg)
344 {
345 	struct sf_softc *sc = arg;
346 
347 	sf_stop(&sc->sc_ethercom.ec_if, 1);
348 }
349 
350 /*
351  * sf_start:		[ifnet interface function]
352  *
353  *	Start packet transmission on the interface.
354  */
355 void
356 sf_start(struct ifnet *ifp)
357 {
358 	struct sf_softc *sc = ifp->if_softc;
359 	struct mbuf *m0, *m;
360 	struct sf_txdesc0 *txd;
361 	struct sf_descsoft *ds;
362 	bus_dmamap_t dmamap;
363 	int error, producer, last, opending, seg;
364 
365 	/*
366 	 * Remember the previous number of pending transmits.
367 	 */
368 	opending = sc->sc_txpending;
369 
370 	/*
371 	 * Find out where we're sitting.
372 	 */
373 	producer = SF_TXDINDEX_TO_HOST(
374 	    TDQPI_HiPrTxProducerIndex_get(
375 	    sf_funcreg_read(sc, SF_TxDescQueueProducerIndex)));
376 
377 	/*
378 	 * Loop through the send queue, setting up transmit descriptors
379 	 * until we drain the queue, or use up all available transmit
380 	 * descriptors.  Leave a blank one at the end for sanity's sake.
381 	 */
382 	while (sc->sc_txpending < (SF_NTXDESC - 1)) {
383 		/*
384 		 * Grab a packet off the queue.
385 		 */
386 		IFQ_POLL(&ifp->if_snd, m0);
387 		if (m0 == NULL)
388 			break;
389 		m = NULL;
390 
391 		/*
392 		 * Get the transmit descriptor.
393 		 */
394 		txd = &sc->sc_txdescs[producer];
395 		ds = &sc->sc_txsoft[producer];
396 		dmamap = ds->ds_dmamap;
397 
398 		/*
399 		 * Load the DMA map.  If this fails, the packet either
400 		 * didn't fit in the allotted number of frags, or we were
401 		 * short on resources.  In this case, we'll copy and try
402 		 * again.
403 		 */
404 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
405 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
406 			MGETHDR(m, M_DONTWAIT, MT_DATA);
407 			if (m == NULL) {
408 				printf("%s: unable to allocate Tx mbuf\n",
409 				    sc->sc_dev.dv_xname);
410 				break;
411 			}
412 			if (m0->m_pkthdr.len > MHLEN) {
413 				MCLGET(m, M_DONTWAIT);
414 				if ((m->m_flags & M_EXT) == 0) {
415 					printf("%s: unable to allocate Tx "
416 					    "cluster\n", sc->sc_dev.dv_xname);
417 					m_freem(m);
418 					break;
419 				}
420 			}
421 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
422 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
423 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
424 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
425 			if (error) {
426 				printf("%s: unable to load Tx buffer, "
427 				    "error = %d\n", sc->sc_dev.dv_xname, error);
428 				break;
429 			}
430 		}
431 
432 		/*
433 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
434 		 */
435 		IFQ_DEQUEUE(&ifp->if_snd, m0);
436 		if (m != NULL) {
437 			m_freem(m0);
438 			m0 = m;
439 		}
440 
441 		/* Initialize the descriptor. */
442 		txd->td_word0 =
443 		    htole32(TD_W0_ID | TD_W0_CRCEN | m0->m_pkthdr.len);
444 		if (producer == (SF_NTXDESC - 1))
445 			txd->td_word0 |= TD_W0_END;
446 		txd->td_word1 = htole32(dmamap->dm_nsegs);
447 		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
448 			txd->td_frags[seg].fr_addr =
449 			    htole32(dmamap->dm_segs[seg].ds_addr);
450 			txd->td_frags[seg].fr_len =
451 			    htole32(dmamap->dm_segs[seg].ds_len);
452 		}
453 
454 		/* Sync the descriptor and the DMA map. */
455 		SF_CDTXDSYNC(sc, producer, BUS_DMASYNC_PREWRITE);
456 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
457 		    BUS_DMASYNC_PREWRITE);
458 
459 		/*
460 		 * Store a pointer to the packet so we can free it later.
461 		 */
462 		ds->ds_mbuf = m0;
463 
464 		/* Advance the Tx pointer. */
465 		sc->sc_txpending++;
466 		last = producer;
467 		producer = SF_NEXTTX(producer);
468 
469 #if NBPFILTER > 0
470 		/*
471 		 * Pass the packet to any BPF listeners.
472 		 */
473 		if (ifp->if_bpf)
474 			bpf_mtap(ifp->if_bpf, m0);
475 #endif
476 	}
477 
478 	if (sc->sc_txpending == (SF_NTXDESC - 1)) {
479 		/* No more slots left; notify upper layer. */
480 		ifp->if_flags |= IFF_OACTIVE;
481 	}
482 
483 	if (sc->sc_txpending != opending) {
484 		/*
485 		 * We enqueued packets.  Cause a transmit interrupt to
486 		 * happen on the last packet we enqueued, and give the
487 		 * new descriptors to the chip by writing the new
488 		 * producer index.
489 		 */
490 		sc->sc_txdescs[last].td_word0 |= TD_W0_INTR;
491 		SF_CDTXDSYNC(sc, last, BUS_DMASYNC_PREWRITE);
492 
493 		sf_funcreg_write(sc, SF_TxDescQueueProducerIndex,
494 		    TDQPI_HiPrTxProducerIndex(SF_TXDINDEX_TO_CHIP(producer)));
495 
496 		/* Set a watchdog timer in case the chip flakes out. */
497 		ifp->if_timer = 5;
498 	}
499 }
500 
501 /*
502  * sf_watchdog:		[ifnet interface function]
503  *
504  *	Watchdog timer handler.
505  */
506 void
507 sf_watchdog(struct ifnet *ifp)
508 {
509 	struct sf_softc *sc = ifp->if_softc;
510 
511 	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
512 	ifp->if_oerrors++;
513 
514 	(void) sf_init(ifp);
515 
516 	/* Try to get more packets going. */
517 	sf_start(ifp);
518 }
519 
520 /*
521  * sf_ioctl:		[ifnet interface function]
522  *
523  *	Handle control requests from the operator.
524  */
525 int
526 sf_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
527 {
528 	struct sf_softc *sc = ifp->if_softc;
529 	struct ifreq *ifr = (struct ifreq *) data;
530 	int s, error;
531 
532 	s = splnet();
533 
534 	switch (cmd) {
535 	case SIOCSIFMEDIA:
536 	case SIOCGIFMEDIA:
537 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
538 		break;
539 
540 	default:
541 		error = ether_ioctl(ifp, cmd, data);
542 		if (error == ENETRESET) {
543 			/*
544 			 * Multicast list has changed; set the hardware filter
545 			 * accordingly.
546 			 */
547 			sf_set_filter(sc);
548 			error = 0;
549 		}
550 		break;
551 	}
552 
553 	/* Try to get more packets going. */
554 	sf_start(ifp);
555 
556 	splx(s);
557 	return (error);
558 }
559 
560 /*
561  * sf_intr:
562  *
563  *	Interrupt service routine.
564  */
565 int
566 sf_intr(void *arg)
567 {
568 	struct sf_softc *sc = arg;
569 	uint32_t isr;
570 	int handled = 0, wantinit = 0;
571 
572 	for (;;) {
573 		/* Reading clears all interrupts we're interested in. */
574 		isr = sf_funcreg_read(sc, SF_InterruptStatus);
575 		if ((isr & IS_PCIPadInt) == 0)
576 			break;
577 
578 		handled = 1;
579 
580 		/* Handle receive interrupts. */
581 		if (isr & IS_RxQ1DoneInt)
582 			sf_rxintr(sc);
583 
584 		/* Handle transmit completion interrupts. */
585 		if (isr & (IS_TxDmaDoneInt|IS_TxQueueDoneInt))
586 			sf_txintr(sc);
587 
588 		/* Handle abnormal interrupts. */
589 		if (isr & IS_AbnormalInterrupt) {
590 			/* Statistics. */
591 			if (isr & IS_StatisticWrapInt)
592 				sf_stats_update(sc);
593 
594 			/* DMA errors. */
595 			if (isr & IS_DmaErrInt) {
596 				wantinit = 1;
597 				printf("%s: WARNING: DMA error\n",
598 				    sc->sc_dev.dv_xname);
599 			}
600 
601 			/* Transmit FIFO underruns. */
602 			if (isr & IS_TxDataLowInt) {
603 				if (sc->sc_txthresh < 0xff)
604 					sc->sc_txthresh++;
605 				printf("%s: transmit FIFO underrun, new "
606 				    "threshold: %d bytes\n",
607 				    sc->sc_dev.dv_xname,
608 				    sc->sc_txthresh * 16);
609 				sf_funcreg_write(sc, SF_TransmitFrameCSR,
610 				    sc->sc_TransmitFrameCSR |
611 				    TFCSR_TransmitThreshold(sc->sc_txthresh));
612 				sf_funcreg_write(sc, SF_TxDescQueueCtrl,
613 				    sc->sc_TxDescQueueCtrl |
614 				    TDQC_TxHighPriorityFifoThreshold(
615 							sc->sc_txthresh));
616 			}
617 		}
618 	}
619 
620 	if (handled) {
621 		/* Reset the interface, if necessary. */
622 		if (wantinit)
623 			sf_init(&sc->sc_ethercom.ec_if);
624 
625 		/* Try and get more packets going. */
626 		sf_start(&sc->sc_ethercom.ec_if);
627 	}
628 
629 	return (handled);
630 }
631 
632 /*
633  * sf_txintr:
634  *
635  *	Helper -- handle transmit completion interrupts.
636  */
637 void
638 sf_txintr(struct sf_softc *sc)
639 {
640 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
641 	struct sf_descsoft *ds;
642 	uint32_t cqci, tcd;
643 	int consumer, producer, txidx;
644 
645  try_again:
646 	cqci = sf_funcreg_read(sc, SF_CompletionQueueConsumerIndex);
647 
648 	consumer = CQCI_TxCompletionConsumerIndex_get(cqci);
649 	producer = CQPI_TxCompletionProducerIndex_get(
650 	    sf_funcreg_read(sc, SF_CompletionQueueProducerIndex));
651 
652 	if (consumer == producer)
653 		return;
654 
655 	ifp->if_flags &= ~IFF_OACTIVE;
656 
657 	while (consumer != producer) {
658 		SF_CDTXCSYNC(sc, consumer, BUS_DMASYNC_POSTREAD);
659 		tcd = le32toh(sc->sc_txcomp[consumer].tcd_word0);
660 
661 		txidx = SF_TCD_INDEX_TO_HOST(TCD_INDEX(tcd));
662 #ifdef DIAGNOSTIC
663 		if ((tcd & TCD_PR) == 0)
664 			printf("%s: Tx queue mismatch, index %d\n",
665 			    sc->sc_dev.dv_xname, txidx);
666 #endif
667 		/*
668 		 * NOTE: stats are updated later.  We're just
669 		 * releasing packets that have been DMA'd to
670 		 * the chip.
671 		 */
672 		ds = &sc->sc_txsoft[txidx];
673 		SF_CDTXDSYNC(sc, txidx, BUS_DMASYNC_POSTWRITE);
674 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
675 		    0, ds->ds_dmamap->dm_mapsize,
676 		    BUS_DMASYNC_POSTWRITE);
677 		m_freem(ds->ds_mbuf);
678 		ds->ds_mbuf = NULL;
679 
680 		consumer = SF_NEXTTCD(consumer);
681 		sc->sc_txpending--;
682 	}
683 
684 	/* XXXJRT -- should be KDASSERT() */
685 	KASSERT(sc->sc_txpending >= 0);
686 
687 	/* If all packets are done, cancel the watchdog timer. */
688 	if (sc->sc_txpending == 0)
689 		ifp->if_timer = 0;
690 
691 	/* Update the consumer index. */
692 	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
693 	    (cqci & ~CQCI_TxCompletionConsumerIndex(0x7ff)) |
694 	     CQCI_TxCompletionConsumerIndex(consumer));
695 
696 	/* Double check for new completions. */
697 	goto try_again;
698 }
699 
700 /*
701  * sf_rxintr:
702  *
703  *	Helper -- handle receive interrupts.
704  */
705 void
706 sf_rxintr(struct sf_softc *sc)
707 {
708 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
709 	struct sf_descsoft *ds;
710 	struct sf_rcd_full *rcd;
711 	struct mbuf *m;
712 	uint32_t cqci, word0;
713 	int consumer, producer, bufproducer, rxidx, len;
714 
715  try_again:
716 	cqci = sf_funcreg_read(sc, SF_CompletionQueueConsumerIndex);
717 
718 	consumer = CQCI_RxCompletionQ1ConsumerIndex_get(cqci);
719 	producer = CQPI_RxCompletionQ1ProducerIndex_get(
720 	    sf_funcreg_read(sc, SF_CompletionQueueProducerIndex));
721 	bufproducer = RXQ1P_RxDescQ1Producer_get(
722 	    sf_funcreg_read(sc, SF_RxDescQueue1Ptrs));
723 
724 	if (consumer == producer)
725 		return;
726 
727 	while (consumer != producer) {
728 		rcd = &sc->sc_rxcomp[consumer];
729 		SF_CDRXCSYNC(sc, consumer,
730 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
731 		SF_CDRXCSYNC(sc, consumer,
732 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
733 
734 		word0 = le32toh(rcd->rcd_word0);
735 		rxidx = RCD_W0_EndIndex(word0);
736 
737 		ds = &sc->sc_rxsoft[rxidx];
738 
739 		consumer = SF_NEXTRCD(consumer);
740 		bufproducer = SF_NEXTRX(bufproducer);
741 
742 		if ((word0 & RCD_W0_OK) == 0) {
743 			SF_INIT_RXDESC(sc, rxidx);
744 			continue;
745 		}
746 
747 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
748 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
749 
750 		/*
751 		 * No errors; receive the packet.  Note that we have
752 		 * configured the Starfire to NOT transfer the CRC
753 		 * with the packet.
754 		 */
755 		len = RCD_W0_Length(word0);
756 
757 #ifdef __NO_STRICT_ALIGNMENT
758 		/*
759 		 * Allocate a new mbuf cluster.  If that fails, we are
760 		 * out of memory, and must drop the packet and recycle
761 		 * the buffer that's already attached to this descriptor.
762 		 */
763 		m = ds->ds_mbuf;
764 		if (sf_add_rxbuf(sc, rxidx) != 0) {
765 			ifp->if_ierrors++;
766 			SF_INIT_RXDESC(sc, rxidx);
767 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
768 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
769 			continue;
770 		}
771 #else
772 		/*
773 		 * The Starfire's receive buffer must be 4-byte aligned.
774 		 * But this means that the data after the Ethernet header
775 		 * is misaligned.  We must allocate a new buffer and
776 		 * copy the data, shifted forward 2 bytes.
777 		 */
778 		MGETHDR(m, M_DONTWAIT, MT_DATA);
779 		if (m == NULL) {
780  dropit:
781 			ifp->if_ierrors++;
782 			SF_INIT_RXDESC(sc, rxidx);
783 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
784 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
785 			continue;
786 		}
787 		if (len > (MHLEN - 2)) {
788 			MCLGET(m, M_DONTWAIT);
789 			if ((m->m_flags & M_EXT) == 0) {
790 				m_freem(m);
791 				goto dropit;
792 			}
793 		}
794 		m->m_data += 2;
795 
796 		/*
797 		 * Note that we use cluster for incoming frames, so the
798 		 * buffer is virtually contiguous.
799 		 */
800 		memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t), len);
801 
802 		/* Allow the receive descriptor to continue using its mbuf. */
803 		SF_INIT_RXDESC(sc, rxidx);
804 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
805 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
806 #endif /* __NO_STRICT_ALIGNMENT */
807 
808 		m->m_pkthdr.rcvif = ifp;
809 		m->m_pkthdr.len = m->m_len = len;
810 
811 #if NBPFILTER > 0
812 		/*
813 		 * Pass this up to any BPF listeners.
814 		 */
815 		if (ifp->if_bpf)
816 			bpf_mtap(ifp->if_bpf, m);
817 #endif /* NBPFILTER > 0 */
818 
819 		/* Pass it on. */
820 		(*ifp->if_input)(ifp, m);
821 	}
822 
823 	/* Update the chip's pointers. */
824 	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
825 	    (cqci & ~CQCI_RxCompletionQ1ConsumerIndex(0x7ff)) |
826 	     CQCI_RxCompletionQ1ConsumerIndex(consumer));
827 	sf_funcreg_write(sc, SF_RxDescQueue1Ptrs,
828 	    RXQ1P_RxDescQ1Producer(bufproducer));
829 
830 	/* Double-check for any new completions. */
831 	goto try_again;
832 }
833 
834 /*
835  * sf_tick:
836  *
837  *	One second timer, used to tick the MII and update stats.
838  */
839 void
840 sf_tick(void *arg)
841 {
842 	struct sf_softc *sc = arg;
843 	int s;
844 
845 	s = splnet();
846 	mii_tick(&sc->sc_mii);
847 	sf_stats_update(sc);
848 	splx(s);
849 
850 	callout_reset(&sc->sc_tick_callout, hz, sf_tick, sc);
851 }
852 
853 /*
854  * sf_stats_update:
855  *
856  *	Read the statitistics counters.
857  */
858 void
859 sf_stats_update(struct sf_softc *sc)
860 {
861 	struct sf_stats stats;
862 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
863 	uint32_t *p;
864 	u_int i;
865 
866 	p = &stats.TransmitOKFrames;
867 	for (i = 0; i < (sizeof(stats) / sizeof(uint32_t)); i++) {
868 		*p++ = sf_genreg_read(sc,
869 		    SF_STATS_BASE + (i * sizeof(uint32_t)));
870 		sf_genreg_write(sc, SF_STATS_BASE + (i * sizeof(uint32_t)), 0);
871 	}
872 
873 	ifp->if_opackets += stats.TransmitOKFrames;
874 
875 	ifp->if_collisions += stats.SingleCollisionFrames +
876 	    stats.MultipleCollisionFrames;
877 
878 	ifp->if_oerrors += stats.TransmitAbortDueToExcessiveCollisions +
879 	    stats.TransmitAbortDueToExcessingDeferral +
880 	    stats.FramesLostDueToInternalTransmitErrors;
881 
882 	ifp->if_ipackets += stats.ReceiveOKFrames;
883 
884 	ifp->if_ierrors += stats.ReceiveCRCErrors + stats.AlignmentErrors +
885 	    stats.ReceiveFramesTooLong + stats.ReceiveFramesTooShort +
886 	    stats.ReceiveFramesJabbersError +
887 	    stats.FramesLostDueToInternalReceiveErrors;
888 }
889 
890 /*
891  * sf_reset:
892  *
893  *	Perform a soft reset on the Starfire.
894  */
895 void
896 sf_reset(struct sf_softc *sc)
897 {
898 	int i;
899 
900 	sf_funcreg_write(sc, SF_GeneralEthernetCtrl, 0);
901 
902 	sf_macreset(sc);
903 
904 	sf_funcreg_write(sc, SF_PciDeviceConfig, PDC_SoftReset);
905 	for (i = 0; i < 1000; i++) {
906 		delay(10);
907 		if ((sf_funcreg_read(sc, SF_PciDeviceConfig) &
908 		     PDC_SoftReset) == 0)
909 			break;
910 	}
911 
912 	if (i == 1000) {
913 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
914 		sf_funcreg_write(sc, SF_PciDeviceConfig, 0);
915 	}
916 
917 	delay(1000);
918 }
919 
920 /*
921  * sf_macreset:
922  *
923  *	Reset the MAC portion of the Starfire.
924  */
925 void
926 sf_macreset(struct sf_softc *sc)
927 {
928 
929 	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1 | MC1_SoftRst);
930 	delay(1000);
931 	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1);
932 }
933 
934 /*
935  * sf_init:		[ifnet interface function]
936  *
937  *	Initialize the interface.  Must be called at splnet().
938  */
939 int
940 sf_init(struct ifnet *ifp)
941 {
942 	struct sf_softc *sc = ifp->if_softc;
943 	struct sf_descsoft *ds;
944 	int error = 0;
945 	u_int i;
946 
947 	/*
948 	 * Cancel any pending I/O.
949 	 */
950 	sf_stop(ifp, 0);
951 
952 	/*
953 	 * Reset the Starfire to a known state.
954 	 */
955 	sf_reset(sc);
956 
957 	/* Clear the stat counters. */
958 	for (i = 0; i < sizeof(struct sf_stats); i += sizeof(uint32_t))
959 		sf_genreg_write(sc, SF_STATS_BASE + i, 0);
960 
961 	/*
962 	 * Initialize the transmit descriptor ring.
963 	 */
964 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
965 	sf_funcreg_write(sc, SF_TxDescQueueHighAddr, 0);
966 	sf_funcreg_write(sc, SF_HiPrTxDescQueueBaseAddr, SF_CDTXDADDR(sc, 0));
967 	sf_funcreg_write(sc, SF_LoPrTxDescQueueBaseAddr, 0);
968 
969 	/*
970 	 * Initialize the transmit completion ring.
971 	 */
972 	for (i = 0; i < SF_NTCD; i++) {
973 		sc->sc_txcomp[i].tcd_word0 = TCD_DMA_ID;
974 		SF_CDTXCSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
975 	}
976 	sf_funcreg_write(sc, SF_CompletionQueueHighAddr, 0);
977 	sf_funcreg_write(sc, SF_TxCompletionQueueCtrl, SF_CDTXCADDR(sc, 0));
978 
979 	/*
980 	 * Initialize the receive descriptor ring.
981 	 */
982 	for (i = 0; i < SF_NRXDESC; i++) {
983 		ds = &sc->sc_rxsoft[i];
984 		if (ds->ds_mbuf == NULL) {
985 			if ((error = sf_add_rxbuf(sc, i)) != 0) {
986 				printf("%s: unable to allocate or map rx "
987 				    "buffer %d, error = %d\n",
988 				    sc->sc_dev.dv_xname, i, error);
989 				/*
990 				 * XXX Should attempt to run with fewer receive
991 				 * XXX buffers instead of just failing.
992 				 */
993 				sf_rxdrain(sc);
994 				goto out;
995 			}
996 		} else
997 			SF_INIT_RXDESC(sc, i);
998 	}
999 	sf_funcreg_write(sc, SF_RxDescQueueHighAddress, 0);
1000 	sf_funcreg_write(sc, SF_RxDescQueue1LowAddress, SF_CDRXDADDR(sc, 0));
1001 	sf_funcreg_write(sc, SF_RxDescQueue2LowAddress, 0);
1002 
1003 	/*
1004 	 * Initialize the receive completion ring.
1005 	 */
1006 	for (i = 0; i < SF_NRCD; i++) {
1007 		sc->sc_rxcomp[i].rcd_word0 = RCD_W0_ID;
1008 		sc->sc_rxcomp[i].rcd_word1 = 0;
1009 		sc->sc_rxcomp[i].rcd_word2 = 0;
1010 		sc->sc_rxcomp[i].rcd_timestamp = 0;
1011 		SF_CDRXCSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1012 	}
1013 	sf_funcreg_write(sc, SF_RxCompletionQueue1Ctrl, SF_CDRXCADDR(sc, 0) |
1014 	    RCQ1C_RxCompletionQ1Type(3));
1015 	sf_funcreg_write(sc, SF_RxCompletionQueue2Ctrl, 0);
1016 
1017 	/*
1018 	 * Initialize the Tx CSR.
1019 	 */
1020 	sc->sc_TransmitFrameCSR = 0;
1021 	sf_funcreg_write(sc, SF_TransmitFrameCSR,
1022 	    sc->sc_TransmitFrameCSR |
1023 	    TFCSR_TransmitThreshold(sc->sc_txthresh));
1024 
1025 	/*
1026 	 * Initialize the Tx descriptor control register.
1027 	 */
1028 	sc->sc_TxDescQueueCtrl = TDQC_SkipLength(0) |
1029 	    TDQC_TxDmaBurstSize(4) |	/* default */
1030 	    TDQC_MinFrameSpacing(3) |	/* 128 bytes */
1031 	    TDQC_TxDescType(0);
1032 	sf_funcreg_write(sc, SF_TxDescQueueCtrl,
1033 	    sc->sc_TxDescQueueCtrl |
1034 	    TDQC_TxHighPriorityFifoThreshold(sc->sc_txthresh));
1035 
1036 	/*
1037 	 * Initialize the Rx descriptor control registers.
1038 	 */
1039 	sf_funcreg_write(sc, SF_RxDescQueue1Ctrl,
1040 	    RDQ1C_RxQ1BufferLength(MCLBYTES) |
1041 	    RDQ1C_RxDescSpacing(0));
1042 	sf_funcreg_write(sc, SF_RxDescQueue2Ctrl, 0);
1043 
1044 	/*
1045 	 * Initialize the Tx descriptor producer indices.
1046 	 */
1047 	sf_funcreg_write(sc, SF_TxDescQueueProducerIndex,
1048 	    TDQPI_HiPrTxProducerIndex(0) |
1049 	    TDQPI_LoPrTxProducerIndex(0));
1050 
1051 	/*
1052 	 * Initialize the Rx descriptor producer indices.
1053 	 */
1054 	sf_funcreg_write(sc, SF_RxDescQueue1Ptrs,
1055 	    RXQ1P_RxDescQ1Producer(SF_NRXDESC - 1));
1056 	sf_funcreg_write(sc, SF_RxDescQueue2Ptrs,
1057 	    RXQ2P_RxDescQ2Producer(0));
1058 
1059 	/*
1060 	 * Initialize the Tx and Rx completion queue consumer indices.
1061 	 */
1062 	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
1063 	    CQCI_TxCompletionConsumerIndex(0) |
1064 	    CQCI_RxCompletionQ1ConsumerIndex(0));
1065 	sf_funcreg_write(sc, SF_RxHiPrCompletionPtrs, 0);
1066 
1067 	/*
1068 	 * Initialize the Rx DMA control register.
1069 	 */
1070 	sf_funcreg_write(sc, SF_RxDmaCtrl,
1071 	    RDC_RxHighPriorityThreshold(6) |	/* default */
1072 	    RDC_RxBurstSize(4));		/* default */
1073 
1074 	/*
1075 	 * Set the receive filter.
1076 	 */
1077 	sc->sc_RxAddressFilteringCtl = 0;
1078 	sf_set_filter(sc);
1079 
1080 	/*
1081 	 * Set MacConfig1.  When we set the media, MacConfig1 will
1082 	 * actually be written and the MAC part reset.
1083 	 */
1084 	sc->sc_MacConfig1 = MC1_PadEn;
1085 
1086 	/*
1087 	 * Set the media.
1088 	 */
1089 	mii_mediachg(&sc->sc_mii);
1090 
1091 	/*
1092 	 * Initialize the interrupt register.
1093 	 */
1094 	sc->sc_InterruptEn = IS_PCIPadInt | IS_RxQ1DoneInt |
1095 	    IS_TxQueueDoneInt | IS_TxDmaDoneInt | IS_DmaErrInt |
1096 	    IS_StatisticWrapInt;
1097 	sf_funcreg_write(sc, SF_InterruptEn, sc->sc_InterruptEn);
1098 
1099 	sf_funcreg_write(sc, SF_PciDeviceConfig, PDC_IntEnable |
1100 	    PDC_PCIMstDmaEn | (1 << PDC_FifoThreshold_SHIFT));
1101 
1102 	/*
1103 	 * Start the transmit and receive processes.
1104 	 */
1105 	sf_funcreg_write(sc, SF_GeneralEthernetCtrl,
1106 	    GEC_TxDmaEn|GEC_RxDmaEn|GEC_TransmitEn|GEC_ReceiveEn);
1107 
1108 	/* Start the on second clock. */
1109 	callout_reset(&sc->sc_tick_callout, hz, sf_tick, sc);
1110 
1111 	/*
1112 	 * Note that the interface is now running.
1113 	 */
1114 	ifp->if_flags |= IFF_RUNNING;
1115 	ifp->if_flags &= ~IFF_OACTIVE;
1116 
1117  out:
1118 	if (error) {
1119 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1120 		ifp->if_timer = 0;
1121 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1122 	}
1123 	return (error);
1124 }
1125 
1126 /*
1127  * sf_rxdrain:
1128  *
1129  *	Drain the receive queue.
1130  */
1131 void
1132 sf_rxdrain(struct sf_softc *sc)
1133 {
1134 	struct sf_descsoft *ds;
1135 	int i;
1136 
1137 	for (i = 0; i < SF_NRXDESC; i++) {
1138 		ds = &sc->sc_rxsoft[i];
1139 		if (ds->ds_mbuf != NULL) {
1140 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1141 			m_freem(ds->ds_mbuf);
1142 			ds->ds_mbuf = NULL;
1143 		}
1144 	}
1145 }
1146 
1147 /*
1148  * sf_stop:		[ifnet interface function]
1149  *
1150  *	Stop transmission on the interface.
1151  */
1152 void
1153 sf_stop(struct ifnet *ifp, int disable)
1154 {
1155 	struct sf_softc *sc = ifp->if_softc;
1156 	struct sf_descsoft *ds;
1157 	int i;
1158 
1159 	/* Stop the one second clock. */
1160 	callout_stop(&sc->sc_tick_callout);
1161 
1162 	/* Down the MII. */
1163 	mii_down(&sc->sc_mii);
1164 
1165 	/* Disable interrupts. */
1166 	sf_funcreg_write(sc, SF_InterruptEn, 0);
1167 
1168 	/* Stop the transmit and receive processes. */
1169 	sf_funcreg_write(sc, SF_GeneralEthernetCtrl, 0);
1170 
1171 	/*
1172 	 * Release any queued transmit buffers.
1173 	 */
1174 	for (i = 0; i < SF_NTXDESC; i++) {
1175 		ds = &sc->sc_txsoft[i];
1176 		if (ds->ds_mbuf != NULL) {
1177 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1178 			m_freem(ds->ds_mbuf);
1179 			ds->ds_mbuf = NULL;
1180 		}
1181 	}
1182 
1183 	if (disable)
1184 		sf_rxdrain(sc);
1185 
1186 	/*
1187 	 * Mark the interface down and cancel the watchdog timer.
1188 	 */
1189 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1190 	ifp->if_timer = 0;
1191 }
1192 
1193 /*
1194  * sf_read_eeprom:
1195  *
1196  *	Read from the Starfire EEPROM.
1197  */
1198 uint8_t
1199 sf_read_eeprom(struct sf_softc *sc, int offset)
1200 {
1201 	uint32_t reg;
1202 
1203 	reg = sf_genreg_read(sc, SF_EEPROM_BASE + (offset & ~3));
1204 
1205 	return ((reg >> (8 * (offset & 3))) & 0xff);
1206 }
1207 
1208 /*
1209  * sf_add_rxbuf:
1210  *
1211  *	Add a receive buffer to the indicated descriptor.
1212  */
1213 int
1214 sf_add_rxbuf(struct sf_softc *sc, int idx)
1215 {
1216 	struct sf_descsoft *ds = &sc->sc_rxsoft[idx];
1217 	struct mbuf *m;
1218 	int error;
1219 
1220 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1221 	if (m == NULL)
1222 		return (ENOBUFS);
1223 
1224 	MCLGET(m, M_DONTWAIT);
1225 	if ((m->m_flags & M_EXT) == 0) {
1226 		m_freem(m);
1227 		return (ENOBUFS);
1228 	}
1229 
1230 	if (ds->ds_mbuf != NULL)
1231 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1232 
1233 	ds->ds_mbuf = m;
1234 
1235 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1236 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1237 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1238 	if (error) {
1239 		printf("%s: can't load rx DMA map %d, error = %d\n",
1240 		    sc->sc_dev.dv_xname, idx, error);
1241 		panic("sf_add_rxbuf"); /* XXX */
1242 	}
1243 
1244 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1245 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1246 
1247 	SF_INIT_RXDESC(sc, idx);
1248 
1249 	return (0);
1250 }
1251 
1252 static void
1253 sf_set_filter_perfect(struct sf_softc *sc, int slot, uint8_t *enaddr)
1254 {
1255 	uint32_t reg0, reg1, reg2;
1256 
1257 	reg0 = enaddr[5] | (enaddr[4] << 8);
1258 	reg1 = enaddr[3] | (enaddr[2] << 8);
1259 	reg2 = enaddr[1] | (enaddr[0] << 8);
1260 
1261 	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 0, reg0);
1262 	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 4, reg1);
1263 	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 8, reg2);
1264 }
1265 
1266 static void
1267 sf_set_filter_hash(struct sf_softc *sc, uint8_t *enaddr)
1268 {
1269 	uint32_t hash, slot, reg;
1270 
1271 	hash = ether_crc32_be(enaddr, ETHER_ADDR_LEN) >> 23;
1272 	slot = hash >> 4;
1273 
1274 	reg = sf_genreg_read(sc, SF_HASH_BASE + (slot * 0x10));
1275 	reg |= 1 << (hash & 0xf);
1276 	sf_genreg_write(sc, SF_HASH_BASE + (slot * 0x10), reg);
1277 }
1278 
1279 /*
1280  * sf_set_filter:
1281  *
1282  *	Set the Starfire receive filter.
1283  */
1284 void
1285 sf_set_filter(struct sf_softc *sc)
1286 {
1287 	struct ethercom *ec = &sc->sc_ethercom;
1288 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1289 	struct ether_multi *enm;
1290 	struct ether_multistep step;
1291 	int i;
1292 
1293 	/* Start by clearing the perfect and hash tables. */
1294 	for (i = 0; i < SF_PERFECT_SIZE; i += sizeof(uint32_t))
1295 		sf_genreg_write(sc, SF_PERFECT_BASE + i, 0);
1296 
1297 	for (i = 0; i < SF_HASH_SIZE; i += sizeof(uint32_t))
1298 		sf_genreg_write(sc, SF_HASH_BASE + i, 0);
1299 
1300 	/*
1301 	 * Clear the perfect and hash mode bits.
1302 	 */
1303 	sc->sc_RxAddressFilteringCtl &=
1304 	    ~(RAFC_PerfectFilteringMode(3) | RAFC_HashFilteringMode(3));
1305 
1306 	if (ifp->if_flags & IFF_BROADCAST)
1307 		sc->sc_RxAddressFilteringCtl |= RAFC_PassBroadcast;
1308 	else
1309 		sc->sc_RxAddressFilteringCtl &= ~RAFC_PassBroadcast;
1310 
1311 	if (ifp->if_flags & IFF_PROMISC) {
1312 		sc->sc_RxAddressFilteringCtl |= RAFC_PromiscuousMode;
1313 		goto allmulti;
1314 	} else
1315 		sc->sc_RxAddressFilteringCtl &= ~RAFC_PromiscuousMode;
1316 
1317 	/*
1318 	 * Set normal perfect filtering mode.
1319 	 */
1320 	sc->sc_RxAddressFilteringCtl |= RAFC_PerfectFilteringMode(1);
1321 
1322 	/*
1323 	 * First, write the station address to the perfect filter
1324 	 * table.
1325 	 */
1326 	sf_set_filter_perfect(sc, 0, LLADDR(ifp->if_sadl));
1327 
1328 	/*
1329 	 * Now set the hash bits for each multicast address in our
1330 	 * list.
1331 	 */
1332 	ETHER_FIRST_MULTI(step, ec, enm);
1333 	if (enm == NULL)
1334 		goto done;
1335 	while (enm != NULL) {
1336 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1337 			/*
1338 			 * We must listen to a range of multicast addresses.
1339 			 * For now, just accept all multicasts, rather than
1340 			 * trying to set only those filter bits needed to match
1341 			 * the range.  (At this time, the only use of address
1342 			 * ranges is for IP multicast routing, for which the
1343 			 * range is big enough to require all bits set.)
1344 			 */
1345 			goto allmulti;
1346 		}
1347 		sf_set_filter_hash(sc, enm->enm_addrlo);
1348 		ETHER_NEXT_MULTI(step, enm);
1349 	}
1350 
1351 	/*
1352 	 * Set "hash only multicast dest, match regardless of VLAN ID".
1353 	 */
1354 	sc->sc_RxAddressFilteringCtl |= RAFC_HashFilteringMode(2);
1355 	goto done;
1356 
1357  allmulti:
1358 	/*
1359 	 * XXX RAFC_PassMulticast is sub-optimal if using VLAN mode.
1360 	 */
1361 	sc->sc_RxAddressFilteringCtl |= RAFC_PassMulticast;
1362 	ifp->if_flags |= IFF_ALLMULTI;
1363 
1364  done:
1365 	sf_funcreg_write(sc, SF_RxAddressFilteringCtl,
1366 	    sc->sc_RxAddressFilteringCtl);
1367 }
1368 
1369 /*
1370  * sf_mii_read:		[mii interface function]
1371  *
1372  *	Read from the MII.
1373  */
1374 int
1375 sf_mii_read(struct device *self, int phy, int reg)
1376 {
1377 	struct sf_softc *sc = (void *) self;
1378 	uint32_t v;
1379 	int i;
1380 
1381 	for (i = 0; i < 1000; i++) {
1382 		v = sf_genreg_read(sc, SF_MII_PHY_REG(phy, reg));
1383 		if (v & MiiDataValid)
1384 			break;
1385 		delay(1);
1386 	}
1387 
1388 	if ((v & MiiDataValid) == 0)
1389 		return (0);
1390 
1391 	if (MiiRegDataPort(v) == 0xffff)
1392 		return (0);
1393 
1394 	return (MiiRegDataPort(v));
1395 }
1396 
1397 /*
1398  * sf_mii_write:	[mii interface function]
1399  *
1400  *	Write to the MII.
1401  */
1402 void
1403 sf_mii_write(struct device *self, int phy, int reg, int val)
1404 {
1405 	struct sf_softc *sc = (void *) self;
1406 	int i;
1407 
1408 	sf_genreg_write(sc, SF_MII_PHY_REG(phy, reg), val);
1409 
1410 	for (i = 0; i < 1000; i++) {
1411 		if ((sf_genreg_read(sc, SF_MII_PHY_REG(phy, reg)) &
1412 		     MiiBusy) == 0)
1413 			return;
1414 		delay(1);
1415 	}
1416 
1417 	printf("%s: MII write timed out\n", sc->sc_dev.dv_xname);
1418 }
1419 
1420 /*
1421  * sf_mii_statchg:	[mii interface function]
1422  *
1423  *	Callback from the PHY when the media changes.
1424  */
1425 void
1426 sf_mii_statchg(struct device *self)
1427 {
1428 	struct sf_softc *sc = (void *) self;
1429 	uint32_t ipg;
1430 
1431 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
1432 		sc->sc_MacConfig1 |= MC1_FullDuplex;
1433 		ipg = 0x15;
1434 	} else {
1435 		sc->sc_MacConfig1 &= ~MC1_FullDuplex;
1436 		ipg = 0x11;
1437 	}
1438 
1439 	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1);
1440 	sf_macreset(sc);
1441 
1442 	sf_genreg_write(sc, SF_BkToBkIPG, ipg);
1443 }
1444 
1445 /*
1446  * sf_mediastatus:	[ifmedia interface function]
1447  *
1448  *	Callback from ifmedia to request current media status.
1449  */
1450 void
1451 sf_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1452 {
1453 	struct sf_softc *sc = ifp->if_softc;
1454 
1455 	mii_pollstat(&sc->sc_mii);
1456 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1457 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1458 }
1459 
1460 /*
1461  * sf_mediachange:	[ifmedia interface function]
1462  *
1463  *	Callback from ifmedia to request new media setting.
1464  */
1465 int
1466 sf_mediachange(struct ifnet *ifp)
1467 {
1468 	struct sf_softc *sc = ifp->if_softc;
1469 
1470 	if (ifp->if_flags & IFF_UP)
1471 		mii_mediachg(&sc->sc_mii);
1472 	return (0);
1473 }
1474