xref: /netbsd-src/sys/dev/ic/aic6915.c (revision be6f2fcee7fefd8149c125c7283a8c03adc8149e)
1 /*	$NetBSD: aic6915.c,v 1.47 2024/06/29 12:11:11 riastradh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Device driver for the Adaptec AIC-6915 (``Starfire'')
34  * 10/100 Ethernet controller.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: aic6915.c,v 1.47 2024/06/29 12:11:11 riastradh Exp $");
39 
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/kernel.h>
46 #include <sys/socket.h>
47 #include <sys/ioctl.h>
48 #include <sys/errno.h>
49 #include <sys/device.h>
50 
51 #include <net/if.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_ether.h>
55 
56 #include <net/bpf.h>
57 
58 #include <sys/bus.h>
59 #include <sys/intr.h>
60 
61 #include <dev/mii/miivar.h>
62 
63 #include <dev/ic/aic6915reg.h>
64 #include <dev/ic/aic6915var.h>
65 
66 static void	sf_start(struct ifnet *);
67 static void	sf_watchdog(struct ifnet *);
68 static int	sf_ioctl(struct ifnet *, u_long, void *);
69 static int	sf_init(struct ifnet *);
70 static void	sf_stop(struct ifnet *, int);
71 
72 static bool	sf_shutdown(device_t, int);
73 
74 static void	sf_txintr(struct sf_softc *);
75 static void	sf_rxintr(struct sf_softc *);
76 static void	sf_stats_update(struct sf_softc *);
77 
78 static void	sf_reset(struct sf_softc *);
79 static void	sf_macreset(struct sf_softc *);
80 static void	sf_rxdrain(struct sf_softc *);
81 static int	sf_add_rxbuf(struct sf_softc *, int);
82 static uint8_t	sf_read_eeprom(struct sf_softc *, int);
83 static void	sf_set_filter(struct sf_softc *);
84 
85 static int	sf_mii_read(device_t, int, int, uint16_t *);
86 static int	sf_mii_write(device_t, int, int, uint16_t);
87 static void	sf_mii_statchg(struct ifnet *);
88 
89 static void	sf_tick(void *);
90 
91 #define	sf_funcreg_read(sc, reg)					\
92 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh_func, (reg))
93 #define	sf_funcreg_write(sc, reg, val)					\
94 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh_func, (reg), (val))
95 
96 static inline uint32_t
sf_reg_read(struct sf_softc * sc,bus_addr_t reg)97 sf_reg_read(struct sf_softc *sc, bus_addr_t reg)
98 {
99 
100 	if (__predict_false(sc->sc_iomapped)) {
101 		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoAccess,
102 		    reg);
103 		return (bus_space_read_4(sc->sc_st, sc->sc_sh,
104 		    SF_IndirectIoDataPort));
105 	}
106 
107 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, reg));
108 }
109 
110 static inline void
sf_reg_write(struct sf_softc * sc,bus_addr_t reg,uint32_t val)111 sf_reg_write(struct sf_softc *sc, bus_addr_t reg, uint32_t val)
112 {
113 
114 	if (__predict_false(sc->sc_iomapped)) {
115 		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoAccess,
116 		    reg);
117 		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoDataPort,
118 		    val);
119 		return;
120 	}
121 
122 	bus_space_write_4(sc->sc_st, sc->sc_sh, reg, val);
123 }
124 
125 #define	sf_genreg_read(sc, reg)						\
126 	sf_reg_read((sc), (reg) + SF_GENREG_OFFSET)
127 #define	sf_genreg_write(sc, reg, val)					\
128 	sf_reg_write((sc), (reg) + SF_GENREG_OFFSET, (val))
129 
130 /*
131  * sf_attach:
132  *
133  *	Attach a Starfire interface to the system.
134  */
135 void
sf_attach(struct sf_softc * sc)136 sf_attach(struct sf_softc *sc)
137 {
138 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
139 	struct mii_data * const mii = &sc->sc_mii;
140 	int i, rseg, error;
141 	bus_dma_segment_t seg;
142 	uint8_t enaddr[ETHER_ADDR_LEN];
143 
144 	callout_init(&sc->sc_tick_callout, 0);
145 	callout_setfunc(&sc->sc_tick_callout, sf_tick, sc);
146 
147 	/*
148 	 * If we're I/O mapped, the functional register handle is
149 	 * the same as the base handle.  If we're memory mapped,
150 	 * carve off a chunk of the register space for the functional
151 	 * registers, to save on arithmetic later.
152 	 */
153 	if (sc->sc_iomapped)
154 		sc->sc_sh_func = sc->sc_sh;
155 	else {
156 		if ((error = bus_space_subregion(sc->sc_st, sc->sc_sh,
157 		    SF_GENREG_OFFSET, SF_FUNCREG_SIZE, &sc->sc_sh_func)) != 0) {
158 			aprint_error_dev(sc->sc_dev, "unable to sub-region "
159 			    "functional registers, error = %d\n", error);
160 			return;
161 		}
162 	}
163 
164 	/*
165 	 * Initialize the transmit threshold for this interface.  The
166 	 * manual describes the default as 4 * 16 bytes.  We start out
167 	 * at 10 * 16 bytes, to avoid a bunch of initial underruns on
168 	 * several platforms.
169 	 */
170 	sc->sc_txthresh = 10;
171 
172 	/*
173 	 * Allocate the control data structures, and create and load the
174 	 * DMA map for it.
175 	 */
176 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
177 	    sizeof(struct sf_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
178 	    BUS_DMA_NOWAIT)) != 0) {
179 		aprint_error_dev(sc->sc_dev,
180 		    "unable to allocate control data, error = %d\n", error);
181 		goto fail_0;
182 	}
183 
184 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
185 	    sizeof(struct sf_control_data), (void **)&sc->sc_control_data,
186 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
187 		aprint_error_dev(sc->sc_dev,
188 		    "unable to map control data, error = %d\n", error);
189 		goto fail_1;
190 	}
191 
192 	if ((error = bus_dmamap_create(sc->sc_dmat,
193 	    sizeof(struct sf_control_data), 1,
194 	    sizeof(struct sf_control_data), 0, BUS_DMA_NOWAIT,
195 	    &sc->sc_cddmamap)) != 0) {
196 		aprint_error_dev(sc->sc_dev, "unable to create control data "
197 		    "DMA map, error = %d\n", error);
198 		goto fail_2;
199 	}
200 
201 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
202 	    sc->sc_control_data, sizeof(struct sf_control_data), NULL,
203 	    BUS_DMA_NOWAIT)) != 0) {
204 		aprint_error_dev(sc->sc_dev, "unable to load control data "
205 		    "DMA map, error = %d\n", error);
206 		goto fail_3;
207 	}
208 
209 	/*
210 	 * Create the transmit buffer DMA maps.
211 	 */
212 	for (i = 0; i < SF_NTXDESC; i++) {
213 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
214 		    SF_NTXFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
215 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
216 			aprint_error_dev(sc->sc_dev,
217 			    "unable to create tx DMA map %d, error = %d\n", i,
218 			    error);
219 			goto fail_4;
220 		}
221 	}
222 
223 	/*
224 	 * Create the receive buffer DMA maps.
225 	 */
226 	for (i = 0; i < SF_NRXDESC; i++) {
227 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
228 		    MCLBYTES, 0, BUS_DMA_NOWAIT,
229 		    &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
230 			aprint_error_dev(sc->sc_dev,
231 			    "unable to create rx DMA map %d, error = %d\n", i,
232 			    error);
233 			goto fail_5;
234 		}
235 	}
236 
237 	/*
238 	 * Reset the chip to a known state.
239 	 */
240 	sf_reset(sc);
241 
242 	/*
243 	 * Read the Ethernet address from the EEPROM.
244 	 */
245 	for (i = 0; i < ETHER_ADDR_LEN; i++)
246 		enaddr[i] = sf_read_eeprom(sc, (15 + (ETHER_ADDR_LEN - 1)) - i);
247 
248 	printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
249 	    ether_sprintf(enaddr));
250 
251 	if (sf_funcreg_read(sc, SF_PciDeviceConfig) & PDC_System64)
252 		printf("%s: 64-bit PCI slot detected\n",
253 		    device_xname(sc->sc_dev));
254 
255 	/*
256 	 * Initialize our media structures and probe the MII.
257 	 */
258 	mii->mii_ifp = ifp;
259 	mii->mii_readreg = sf_mii_read;
260 	mii->mii_writereg = sf_mii_write;
261 	mii->mii_statchg = sf_mii_statchg;
262 	sc->sc_ethercom.ec_mii = mii;
263 	ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
264 	    ether_mediastatus);
265 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
266 	    MII_OFFSET_ANY, 0);
267 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
268 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
269 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
270 	} else
271 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
272 
273 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
274 	ifp->if_softc = sc;
275 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
276 	ifp->if_ioctl = sf_ioctl;
277 	ifp->if_start = sf_start;
278 	ifp->if_watchdog = sf_watchdog;
279 	ifp->if_init = sf_init;
280 	ifp->if_stop = sf_stop;
281 	IFQ_SET_READY(&ifp->if_snd);
282 
283 	/*
284 	 * Attach the interface.
285 	 */
286 	if_attach(ifp);
287 	if_deferred_start_init(ifp, NULL);
288 	ether_ifattach(ifp, enaddr);
289 
290 	/*
291 	 * Make sure the interface is shutdown during reboot.
292 	 */
293 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, sf_shutdown))
294 		pmf_class_network_register(sc->sc_dev, ifp);
295 	else
296 		aprint_error_dev(sc->sc_dev,
297 		    "couldn't establish power handler\n");
298 	return;
299 
300 	/*
301 	 * Free any resources we've allocated during the failed attach
302 	 * attempt.  Do this in reverse order an fall through.
303 	 */
304  fail_5:
305 	for (i = 0; i < SF_NRXDESC; i++) {
306 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
307 			bus_dmamap_destroy(sc->sc_dmat,
308 			    sc->sc_rxsoft[i].ds_dmamap);
309 	}
310  fail_4:
311 	for (i = 0; i < SF_NTXDESC; i++) {
312 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
313 			bus_dmamap_destroy(sc->sc_dmat,
314 			    sc->sc_txsoft[i].ds_dmamap);
315 	}
316 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
317  fail_3:
318 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
319  fail_2:
320 	bus_dmamem_unmap(sc->sc_dmat, (void *) sc->sc_control_data,
321 	    sizeof(struct sf_control_data));
322  fail_1:
323 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
324  fail_0:
325 	return;
326 }
327 
328 /*
329  * sf_shutdown:
330  *
331  *	Shutdown hook -- make sure the interface is stopped at reboot.
332  */
333 static bool
sf_shutdown(device_t self,int howto)334 sf_shutdown(device_t self, int howto)
335 {
336 	struct sf_softc *sc;
337 
338 	sc = device_private(self);
339 	sf_stop(&sc->sc_ethercom.ec_if, 1);
340 
341 	return true;
342 }
343 
344 /*
345  * sf_start:		[ifnet interface function]
346  *
347  *	Start packet transmission on the interface.
348  */
349 static void
sf_start(struct ifnet * ifp)350 sf_start(struct ifnet *ifp)
351 {
352 	struct sf_softc *sc = ifp->if_softc;
353 	struct mbuf *m0, *m;
354 	struct sf_txdesc0 *txd;
355 	struct sf_descsoft *ds;
356 	bus_dmamap_t dmamap;
357 	int error, producer, last = -1, opending, seg;
358 
359 	/*
360 	 * Remember the previous number of pending transmits.
361 	 */
362 	opending = sc->sc_txpending;
363 
364 	/*
365 	 * Find out where we're sitting.
366 	 */
367 	producer = SF_TXDINDEX_TO_HOST(
368 	    TDQPI_HiPrTxProducerIndex_get(
369 	    sf_funcreg_read(sc, SF_TxDescQueueProducerIndex)));
370 
371 	/*
372 	 * Loop through the send queue, setting up transmit descriptors
373 	 * until we drain the queue, or use up all available transmit
374 	 * descriptors.  Leave a blank one at the end for sanity's sake.
375 	 */
376 	while (sc->sc_txpending < (SF_NTXDESC - 1)) {
377 		/*
378 		 * Grab a packet off the queue.
379 		 */
380 		IFQ_POLL(&ifp->if_snd, m0);
381 		if (m0 == NULL)
382 			break;
383 		m = NULL;
384 
385 		/*
386 		 * Get the transmit descriptor.
387 		 */
388 		txd = &sc->sc_txdescs[producer];
389 		ds = &sc->sc_txsoft[producer];
390 		dmamap = ds->ds_dmamap;
391 
392 		/*
393 		 * Load the DMA map.  If this fails, the packet either
394 		 * didn't fit in the allotted number of frags, or we were
395 		 * short on resources.  In this case, we'll copy and try
396 		 * again.
397 		 */
398 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
399 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
400 			MGETHDR(m, M_DONTWAIT, MT_DATA);
401 			if (m == NULL) {
402 				aprint_error_dev(sc->sc_dev,
403 				    "unable to allocate Tx mbuf\n");
404 				break;
405 			}
406 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
407 			if (m0->m_pkthdr.len > MHLEN) {
408 				MCLGET(m, M_DONTWAIT);
409 				if ((m->m_flags & M_EXT) == 0) {
410 					aprint_error_dev(sc->sc_dev,
411 					    "unable to allocate Tx cluster\n");
412 					m_freem(m);
413 					break;
414 				}
415 			}
416 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
417 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
418 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
419 			    m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
420 			if (error) {
421 				aprint_error_dev(sc->sc_dev,
422 				    "unable to load Tx buffer, error = %d\n",
423 				    error);
424 				break;
425 			}
426 		}
427 
428 		/*
429 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
430 		 */
431 		IFQ_DEQUEUE(&ifp->if_snd, m0);
432 		if (m != NULL) {
433 			m_freem(m0);
434 			m0 = m;
435 		}
436 
437 		/* Initialize the descriptor. */
438 		txd->td_word0 =
439 		    htole32(TD_W0_ID | TD_W0_CRCEN | m0->m_pkthdr.len);
440 		if (producer == (SF_NTXDESC - 1))
441 			txd->td_word0 |= TD_W0_END;
442 		txd->td_word1 = htole32(dmamap->dm_nsegs);
443 		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
444 			txd->td_frags[seg].fr_addr =
445 			    htole32(dmamap->dm_segs[seg].ds_addr);
446 			txd->td_frags[seg].fr_len =
447 			    htole32(dmamap->dm_segs[seg].ds_len);
448 		}
449 
450 		/* Sync the descriptor and the DMA map. */
451 		SF_CDTXDSYNC(sc, producer, BUS_DMASYNC_PREWRITE);
452 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
453 		    BUS_DMASYNC_PREWRITE);
454 
455 		/*
456 		 * Store a pointer to the packet so we can free it later.
457 		 */
458 		ds->ds_mbuf = m0;
459 
460 		/* Advance the Tx pointer. */
461 		sc->sc_txpending++;
462 		last = producer;
463 		producer = SF_NEXTTX(producer);
464 
465 		/*
466 		 * Pass the packet to any BPF listeners.
467 		 */
468 		bpf_mtap(ifp, m0, BPF_D_OUT);
469 	}
470 
471 	if (sc->sc_txpending != opending) {
472 		KASSERT(last != -1);
473 		/*
474 		 * We enqueued packets.  Cause a transmit interrupt to
475 		 * happen on the last packet we enqueued, and give the
476 		 * new descriptors to the chip by writing the new
477 		 * producer index.
478 		 */
479 		sc->sc_txdescs[last].td_word0 |= TD_W0_INTR;
480 		SF_CDTXDSYNC(sc, last, BUS_DMASYNC_PREWRITE);
481 
482 		sf_funcreg_write(sc, SF_TxDescQueueProducerIndex,
483 		    TDQPI_HiPrTxProducerIndex(SF_TXDINDEX_TO_CHIP(producer)));
484 
485 		/* Set a watchdog timer in case the chip flakes out. */
486 		ifp->if_timer = 5;
487 	}
488 }
489 
490 /*
491  * sf_watchdog:		[ifnet interface function]
492  *
493  *	Watchdog timer handler.
494  */
495 static void
sf_watchdog(struct ifnet * ifp)496 sf_watchdog(struct ifnet *ifp)
497 {
498 	struct sf_softc *sc = ifp->if_softc;
499 
500 	printf("%s: device timeout\n", device_xname(sc->sc_dev));
501 	if_statinc(ifp, if_oerrors);
502 
503 	(void) sf_init(ifp);
504 
505 	/* Try to get more packets going. */
506 	sf_start(ifp);
507 }
508 
509 /*
510  * sf_ioctl:		[ifnet interface function]
511  *
512  *	Handle control requests from the operator.
513  */
514 static int
sf_ioctl(struct ifnet * ifp,u_long cmd,void * data)515 sf_ioctl(struct ifnet *ifp, u_long cmd, void *data)
516 {
517 	struct sf_softc *sc = ifp->if_softc;
518 	int s, error;
519 
520 	s = splnet();
521 
522 	error = ether_ioctl(ifp, cmd, data);
523 	if (error == ENETRESET) {
524 		/*
525 		 * Multicast list has changed; set the hardware filter
526 		 * accordingly.
527 		 */
528 		if (ifp->if_flags & IFF_RUNNING)
529 			sf_set_filter(sc);
530 		error = 0;
531 	}
532 
533 	/* Try to get more packets going. */
534 	sf_start(ifp);
535 
536 	splx(s);
537 	return (error);
538 }
539 
540 /*
541  * sf_intr:
542  *
543  *	Interrupt service routine.
544  */
545 int
sf_intr(void * arg)546 sf_intr(void *arg)
547 {
548 	struct sf_softc *sc = arg;
549 	uint32_t isr;
550 	int handled = 0, wantinit = 0;
551 
552 	for (;;) {
553 		/* Reading clears all interrupts we're interested in. */
554 		isr = sf_funcreg_read(sc, SF_InterruptStatus);
555 		if ((isr & IS_PCIPadInt) == 0)
556 			break;
557 
558 		handled = 1;
559 
560 		/* Handle receive interrupts. */
561 		if (isr & IS_RxQ1DoneInt)
562 			sf_rxintr(sc);
563 
564 		/* Handle transmit completion interrupts. */
565 		if (isr & (IS_TxDmaDoneInt | IS_TxQueueDoneInt))
566 			sf_txintr(sc);
567 
568 		/* Handle abnormal interrupts. */
569 		if (isr & IS_AbnormalInterrupt) {
570 			/* Statistics. */
571 			if (isr & IS_StatisticWrapInt)
572 				sf_stats_update(sc);
573 
574 			/* DMA errors. */
575 			if (isr & IS_DmaErrInt) {
576 				wantinit = 1;
577 				aprint_error_dev(sc->sc_dev,
578 				    "WARNING: DMA error\n");
579 			}
580 
581 			/* Transmit FIFO underruns. */
582 			if (isr & IS_TxDataLowInt) {
583 				if (sc->sc_txthresh < 0xff)
584 					sc->sc_txthresh++;
585 				printf("%s: transmit FIFO underrun, new "
586 				    "threshold: %d bytes\n",
587 				    device_xname(sc->sc_dev),
588 				    sc->sc_txthresh * 16);
589 				sf_funcreg_write(sc, SF_TransmitFrameCSR,
590 				    sc->sc_TransmitFrameCSR |
591 				    TFCSR_TransmitThreshold(sc->sc_txthresh));
592 				sf_funcreg_write(sc, SF_TxDescQueueCtrl,
593 				    sc->sc_TxDescQueueCtrl |
594 				    TDQC_TxHighPriorityFifoThreshold(
595 							sc->sc_txthresh));
596 			}
597 		}
598 	}
599 
600 	if (handled) {
601 		/* Reset the interface, if necessary. */
602 		if (wantinit)
603 			sf_init(&sc->sc_ethercom.ec_if);
604 
605 		/* Try and get more packets going. */
606 		if_schedule_deferred_start(&sc->sc_ethercom.ec_if);
607 	}
608 
609 	return (handled);
610 }
611 
612 /*
613  * sf_txintr:
614  *
615  *	Helper -- handle transmit completion interrupts.
616  */
617 static void
sf_txintr(struct sf_softc * sc)618 sf_txintr(struct sf_softc *sc)
619 {
620 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
621 	struct sf_descsoft *ds;
622 	uint32_t cqci, tcd;
623 	int consumer, producer, txidx;
624 
625  try_again:
626 	cqci = sf_funcreg_read(sc, SF_CompletionQueueConsumerIndex);
627 
628 	consumer = CQCI_TxCompletionConsumerIndex_get(cqci);
629 	producer = CQPI_TxCompletionProducerIndex_get(
630 	    sf_funcreg_read(sc, SF_CompletionQueueProducerIndex));
631 
632 	if (consumer == producer)
633 		return;
634 
635 	while (consumer != producer) {
636 		SF_CDTXCSYNC(sc, consumer, BUS_DMASYNC_POSTREAD);
637 		tcd = le32toh(sc->sc_txcomp[consumer].tcd_word0);
638 
639 		txidx = SF_TCD_INDEX_TO_HOST(TCD_INDEX(tcd));
640 #ifdef DIAGNOSTIC
641 		if ((tcd & TCD_PR) == 0)
642 			aprint_error_dev(sc->sc_dev,
643 			    "Tx queue mismatch, index %d\n", txidx);
644 #endif
645 		/*
646 		 * NOTE: stats are updated later.  We're just
647 		 * releasing packets that have been DMA'd to
648 		 * the chip.
649 		 */
650 		ds = &sc->sc_txsoft[txidx];
651 		SF_CDTXDSYNC(sc, txidx, BUS_DMASYNC_POSTWRITE);
652 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
653 		    0, ds->ds_dmamap->dm_mapsize,
654 		    BUS_DMASYNC_POSTWRITE);
655 		m_freem(ds->ds_mbuf);
656 		ds->ds_mbuf = NULL;
657 
658 		consumer = SF_NEXTTCD(consumer);
659 		sc->sc_txpending--;
660 	}
661 
662 	/* XXXJRT -- should be KDASSERT() */
663 	KASSERT(sc->sc_txpending >= 0);
664 
665 	/* If all packets are done, cancel the watchdog timer. */
666 	if (sc->sc_txpending == 0)
667 		ifp->if_timer = 0;
668 
669 	/* Update the consumer index. */
670 	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
671 	    (cqci & ~CQCI_TxCompletionConsumerIndex(0x7ff)) |
672 	     CQCI_TxCompletionConsumerIndex(consumer));
673 
674 	/* Double check for new completions. */
675 	goto try_again;
676 }
677 
678 /*
679  * sf_rxintr:
680  *
681  *	Helper -- handle receive interrupts.
682  */
683 static void
sf_rxintr(struct sf_softc * sc)684 sf_rxintr(struct sf_softc *sc)
685 {
686 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
687 	struct sf_descsoft *ds;
688 	struct sf_rcd_full *rcd;
689 	struct mbuf *m;
690 	uint32_t cqci, word0;
691 	int consumer, producer, bufproducer, rxidx, len;
692 
693  try_again:
694 	cqci = sf_funcreg_read(sc, SF_CompletionQueueConsumerIndex);
695 
696 	consumer = CQCI_RxCompletionQ1ConsumerIndex_get(cqci);
697 	producer = CQPI_RxCompletionQ1ProducerIndex_get(
698 	    sf_funcreg_read(sc, SF_CompletionQueueProducerIndex));
699 	bufproducer = RXQ1P_RxDescQ1Producer_get(
700 	    sf_funcreg_read(sc, SF_RxDescQueue1Ptrs));
701 
702 	if (consumer == producer)
703 		return;
704 
705 	while (consumer != producer) {
706 		rcd = &sc->sc_rxcomp[consumer];
707 		SF_CDRXCSYNC(sc, consumer,
708 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
709 		SF_CDRXCSYNC(sc, consumer,
710 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
711 
712 		word0 = le32toh(rcd->rcd_word0);
713 		rxidx = RCD_W0_EndIndex(word0);
714 
715 		ds = &sc->sc_rxsoft[rxidx];
716 
717 		consumer = SF_NEXTRCD(consumer);
718 		bufproducer = SF_NEXTRX(bufproducer);
719 
720 		if ((word0 & RCD_W0_OK) == 0) {
721 			SF_INIT_RXDESC(sc, rxidx);
722 			continue;
723 		}
724 
725 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
726 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
727 
728 		/*
729 		 * No errors; receive the packet.  Note that we have
730 		 * configured the Starfire to NOT transfer the CRC
731 		 * with the packet.
732 		 */
733 		len = RCD_W0_Length(word0);
734 
735 #ifdef __NO_STRICT_ALIGNMENT
736 		/*
737 		 * Allocate a new mbuf cluster.  If that fails, we are
738 		 * out of memory, and must drop the packet and recycle
739 		 * the buffer that's already attached to this descriptor.
740 		 */
741 		m = ds->ds_mbuf;
742 		if (sf_add_rxbuf(sc, rxidx) != 0) {
743 			if_statinc(ifp, if_ierrors);
744 			SF_INIT_RXDESC(sc, rxidx);
745 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
746 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
747 			continue;
748 		}
749 #else
750 		/*
751 		 * The Starfire's receive buffer must be 4-byte aligned.
752 		 * But this means that the data after the Ethernet header
753 		 * is misaligned.  We must allocate a new buffer and
754 		 * copy the data, shifted forward 2 bytes.
755 		 */
756 		MGETHDR(m, M_DONTWAIT, MT_DATA);
757 		if (m == NULL) {
758  dropit:
759 			if_statinc(ifp, if_ierrors);
760 			SF_INIT_RXDESC(sc, rxidx);
761 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
762 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
763 			continue;
764 		}
765 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
766 		if (len > (MHLEN - 2)) {
767 			MCLGET(m, M_DONTWAIT);
768 			if ((m->m_flags & M_EXT) == 0) {
769 				m_freem(m);
770 				goto dropit;
771 			}
772 		}
773 		m->m_data += 2;
774 
775 		/*
776 		 * Note that we use cluster for incoming frames, so the
777 		 * buffer is virtually contiguous.
778 		 */
779 		memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *), len);
780 
781 		/* Allow the receive descriptor to continue using its mbuf. */
782 		SF_INIT_RXDESC(sc, rxidx);
783 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
784 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
785 #endif /* __NO_STRICT_ALIGNMENT */
786 
787 		m_set_rcvif(m, ifp);
788 		m->m_pkthdr.len = m->m_len = len;
789 
790 		/* Pass it on. */
791 		if_percpuq_enqueue(ifp->if_percpuq, m);
792 	}
793 
794 	/* Update the chip's pointers. */
795 	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
796 	    (cqci & ~CQCI_RxCompletionQ1ConsumerIndex(0x7ff)) |
797 	     CQCI_RxCompletionQ1ConsumerIndex(consumer));
798 	sf_funcreg_write(sc, SF_RxDescQueue1Ptrs,
799 	    RXQ1P_RxDescQ1Producer(bufproducer));
800 
801 	/* Double-check for any new completions. */
802 	goto try_again;
803 }
804 
805 /*
806  * sf_tick:
807  *
808  *	One second timer, used to tick the MII and update stats.
809  */
810 static void
sf_tick(void * arg)811 sf_tick(void *arg)
812 {
813 	struct sf_softc *sc = arg;
814 	int s;
815 
816 	s = splnet();
817 	mii_tick(&sc->sc_mii);
818 	sf_stats_update(sc);
819 	splx(s);
820 
821 	callout_schedule(&sc->sc_tick_callout, hz);
822 }
823 
824 /*
825  * sf_stats_update:
826  *
827  *	Read the statistics counters.
828  */
829 static void
sf_stats_update(struct sf_softc * sc)830 sf_stats_update(struct sf_softc *sc)
831 {
832 	struct sf_stats stats;
833 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
834 	uint32_t *p;
835 	u_int i;
836 
837 	p = &stats.TransmitOKFrames;
838 	for (i = 0; i < (sizeof(stats) / sizeof(uint32_t)); i++) {
839 		*p++ = sf_genreg_read(sc,
840 		    SF_STATS_BASE + (i * sizeof(uint32_t)));
841 		sf_genreg_write(sc, SF_STATS_BASE + (i * sizeof(uint32_t)), 0);
842 	}
843 
844 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
845 
846 	if_statadd_ref(ifp, nsr, if_opackets, stats.TransmitOKFrames);
847 
848 	if_statadd_ref(ifp, nsr, if_collisions,
849 	    stats.SingleCollisionFrames +
850 	    stats.MultipleCollisionFrames);
851 
852 	if_statadd_ref(ifp, nsr, if_oerrors,
853 	    stats.TransmitAbortDueToExcessiveCollisions +
854 	    stats.TransmitAbortDueToExcessingDeferral +
855 	    stats.FramesLostDueToInternalTransmitErrors);
856 
857 	if_statadd_ref(ifp, nsr, if_ierrors,
858 	    stats.ReceiveCRCErrors + stats.AlignmentErrors +
859 	    stats.ReceiveFramesTooLong + stats.ReceiveFramesTooShort +
860 	    stats.ReceiveFramesJabbersError +
861 	    stats.FramesLostDueToInternalReceiveErrors);
862 
863 	IF_STAT_PUTREF(ifp);
864 }
865 
866 /*
867  * sf_reset:
868  *
869  *	Perform a soft reset on the Starfire.
870  */
871 static void
sf_reset(struct sf_softc * sc)872 sf_reset(struct sf_softc *sc)
873 {
874 	int i;
875 
876 	sf_funcreg_write(sc, SF_GeneralEthernetCtrl, 0);
877 
878 	sf_macreset(sc);
879 
880 	sf_funcreg_write(sc, SF_PciDeviceConfig, PDC_SoftReset);
881 	for (i = 0; i < 1000; i++) {
882 		delay(10);
883 		if ((sf_funcreg_read(sc, SF_PciDeviceConfig) &
884 		     PDC_SoftReset) == 0)
885 			break;
886 	}
887 
888 	if (i == 1000) {
889 		aprint_error_dev(sc->sc_dev, "reset failed to complete\n");
890 		sf_funcreg_write(sc, SF_PciDeviceConfig, 0);
891 	}
892 
893 	delay(1000);
894 }
895 
896 /*
897  * sf_macreset:
898  *
899  *	Reset the MAC portion of the Starfire.
900  */
901 static void
sf_macreset(struct sf_softc * sc)902 sf_macreset(struct sf_softc *sc)
903 {
904 
905 	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1 | MC1_SoftRst);
906 	delay(1000);
907 	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1);
908 }
909 
910 /*
911  * sf_init:		[ifnet interface function]
912  *
913  *	Initialize the interface.  Must be called at splnet().
914  */
915 static int
sf_init(struct ifnet * ifp)916 sf_init(struct ifnet *ifp)
917 {
918 	struct sf_softc *sc = ifp->if_softc;
919 	struct sf_descsoft *ds;
920 	int error = 0;
921 	u_int i;
922 
923 	/*
924 	 * Cancel any pending I/O.
925 	 */
926 	sf_stop(ifp, 0);
927 
928 	/*
929 	 * Reset the Starfire to a known state.
930 	 */
931 	sf_reset(sc);
932 
933 	/* Clear the stat counters. */
934 	for (i = 0; i < sizeof(struct sf_stats); i += sizeof(uint32_t))
935 		sf_genreg_write(sc, SF_STATS_BASE + i, 0);
936 
937 	/*
938 	 * Initialize the transmit descriptor ring.
939 	 */
940 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
941 	sf_funcreg_write(sc, SF_TxDescQueueHighAddr, 0);
942 	sf_funcreg_write(sc, SF_HiPrTxDescQueueBaseAddr, SF_CDTXDADDR(sc, 0));
943 	sf_funcreg_write(sc, SF_LoPrTxDescQueueBaseAddr, 0);
944 
945 	/*
946 	 * Initialize the transmit completion ring.
947 	 */
948 	for (i = 0; i < SF_NTCD; i++) {
949 		sc->sc_txcomp[i].tcd_word0 = TCD_DMA_ID;
950 		SF_CDTXCSYNC(sc, i, BUS_DMASYNC_PREREAD |BUS_DMASYNC_PREWRITE);
951 	}
952 	sf_funcreg_write(sc, SF_CompletionQueueHighAddr, 0);
953 	sf_funcreg_write(sc, SF_TxCompletionQueueCtrl, SF_CDTXCADDR(sc, 0));
954 
955 	/*
956 	 * Initialize the receive descriptor ring.
957 	 */
958 	for (i = 0; i < SF_NRXDESC; i++) {
959 		ds = &sc->sc_rxsoft[i];
960 		if (ds->ds_mbuf == NULL) {
961 			if ((error = sf_add_rxbuf(sc, i)) != 0) {
962 				aprint_error_dev(sc->sc_dev,
963 				    "unable to allocate or map rx buffer %d, "
964 				    "error = %d\n", i, error);
965 				/*
966 				 * XXX Should attempt to run with fewer receive
967 				 * XXX buffers instead of just failing.
968 				 */
969 				sf_rxdrain(sc);
970 				goto out;
971 			}
972 		} else
973 			SF_INIT_RXDESC(sc, i);
974 	}
975 	sf_funcreg_write(sc, SF_RxDescQueueHighAddress, 0);
976 	sf_funcreg_write(sc, SF_RxDescQueue1LowAddress, SF_CDRXDADDR(sc, 0));
977 	sf_funcreg_write(sc, SF_RxDescQueue2LowAddress, 0);
978 
979 	/*
980 	 * Initialize the receive completion ring.
981 	 */
982 	for (i = 0; i < SF_NRCD; i++) {
983 		sc->sc_rxcomp[i].rcd_word0 = RCD_W0_ID;
984 		sc->sc_rxcomp[i].rcd_word1 = 0;
985 		sc->sc_rxcomp[i].rcd_word2 = 0;
986 		sc->sc_rxcomp[i].rcd_timestamp = 0;
987 		SF_CDRXCSYNC(sc, i, BUS_DMASYNC_PREREAD |BUS_DMASYNC_PREWRITE);
988 	}
989 	sf_funcreg_write(sc, SF_RxCompletionQueue1Ctrl, SF_CDRXCADDR(sc, 0) |
990 	    RCQ1C_RxCompletionQ1Type(3));
991 	sf_funcreg_write(sc, SF_RxCompletionQueue2Ctrl, 0);
992 
993 	/*
994 	 * Initialize the Tx CSR.
995 	 */
996 	sc->sc_TransmitFrameCSR = 0;
997 	sf_funcreg_write(sc, SF_TransmitFrameCSR,
998 	    sc->sc_TransmitFrameCSR |
999 	    TFCSR_TransmitThreshold(sc->sc_txthresh));
1000 
1001 	/*
1002 	 * Initialize the Tx descriptor control register.
1003 	 */
1004 	sc->sc_TxDescQueueCtrl = TDQC_SkipLength(0) |
1005 	    TDQC_TxDmaBurstSize(4) |	/* default */
1006 	    TDQC_MinFrameSpacing(3) |	/* 128 bytes */
1007 	    TDQC_TxDescType(0);
1008 	sf_funcreg_write(sc, SF_TxDescQueueCtrl,
1009 	    sc->sc_TxDescQueueCtrl |
1010 	    TDQC_TxHighPriorityFifoThreshold(sc->sc_txthresh));
1011 
1012 	/*
1013 	 * Initialize the Rx descriptor control registers.
1014 	 */
1015 	sf_funcreg_write(sc, SF_RxDescQueue1Ctrl,
1016 	    RDQ1C_RxQ1BufferLength(MCLBYTES) |
1017 	    RDQ1C_RxDescSpacing(0));
1018 	sf_funcreg_write(sc, SF_RxDescQueue2Ctrl, 0);
1019 
1020 	/*
1021 	 * Initialize the Tx descriptor producer indices.
1022 	 */
1023 	sf_funcreg_write(sc, SF_TxDescQueueProducerIndex,
1024 	    TDQPI_HiPrTxProducerIndex(0) |
1025 	    TDQPI_LoPrTxProducerIndex(0));
1026 
1027 	/*
1028 	 * Initialize the Rx descriptor producer indices.
1029 	 */
1030 	sf_funcreg_write(sc, SF_RxDescQueue1Ptrs,
1031 	    RXQ1P_RxDescQ1Producer(SF_NRXDESC - 1));
1032 	sf_funcreg_write(sc, SF_RxDescQueue2Ptrs,
1033 	    RXQ2P_RxDescQ2Producer(0));
1034 
1035 	/*
1036 	 * Initialize the Tx and Rx completion queue consumer indices.
1037 	 */
1038 	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
1039 	    CQCI_TxCompletionConsumerIndex(0) |
1040 	    CQCI_RxCompletionQ1ConsumerIndex(0));
1041 	sf_funcreg_write(sc, SF_RxHiPrCompletionPtrs, 0);
1042 
1043 	/*
1044 	 * Initialize the Rx DMA control register.
1045 	 */
1046 	sf_funcreg_write(sc, SF_RxDmaCtrl,
1047 	    RDC_RxHighPriorityThreshold(6) |	/* default */
1048 	    RDC_RxBurstSize(4));		/* default */
1049 
1050 	/*
1051 	 * Set the receive filter.
1052 	 */
1053 	sc->sc_RxAddressFilteringCtl = 0;
1054 	sf_set_filter(sc);
1055 
1056 	/*
1057 	 * Set MacConfig1.  When we set the media, MacConfig1 will
1058 	 * actually be written and the MAC part reset.
1059 	 */
1060 	sc->sc_MacConfig1 = MC1_PadEn;
1061 
1062 	/*
1063 	 * Set the media.
1064 	 */
1065 	if ((error = ether_mediachange(ifp)) != 0)
1066 		goto out;
1067 
1068 	/*
1069 	 * Initialize the interrupt register.
1070 	 */
1071 	sc->sc_InterruptEn = IS_PCIPadInt | IS_RxQ1DoneInt |
1072 	    IS_TxQueueDoneInt | IS_TxDmaDoneInt | IS_DmaErrInt |
1073 	    IS_StatisticWrapInt;
1074 	sf_funcreg_write(sc, SF_InterruptEn, sc->sc_InterruptEn);
1075 
1076 	sf_funcreg_write(sc, SF_PciDeviceConfig, PDC_IntEnable |
1077 	    PDC_PCIMstDmaEn | (1 << PDC_FifoThreshold_SHIFT));
1078 
1079 	/*
1080 	 * Start the transmit and receive processes.
1081 	 */
1082 	sf_funcreg_write(sc, SF_GeneralEthernetCtrl,
1083 	    GEC_TxDmaEn | GEC_RxDmaEn | GEC_TransmitEn | GEC_ReceiveEn);
1084 
1085 	/* Start the on second clock. */
1086 	callout_schedule(&sc->sc_tick_callout, hz);
1087 
1088 	/*
1089 	 * Note that the interface is now running.
1090 	 */
1091 	ifp->if_flags |= IFF_RUNNING;
1092 
1093  out:
1094 	if (error) {
1095 		ifp->if_flags &= ~IFF_RUNNING;
1096 		ifp->if_timer = 0;
1097 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
1098 	}
1099 	return (error);
1100 }
1101 
1102 /*
1103  * sf_rxdrain:
1104  *
1105  *	Drain the receive queue.
1106  */
1107 static void
sf_rxdrain(struct sf_softc * sc)1108 sf_rxdrain(struct sf_softc *sc)
1109 {
1110 	struct sf_descsoft *ds;
1111 	int i;
1112 
1113 	for (i = 0; i < SF_NRXDESC; i++) {
1114 		ds = &sc->sc_rxsoft[i];
1115 		if (ds->ds_mbuf != NULL) {
1116 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1117 			m_freem(ds->ds_mbuf);
1118 			ds->ds_mbuf = NULL;
1119 		}
1120 	}
1121 }
1122 
1123 /*
1124  * sf_stop:		[ifnet interface function]
1125  *
1126  *	Stop transmission on the interface.
1127  */
1128 static void
sf_stop(struct ifnet * ifp,int disable)1129 sf_stop(struct ifnet *ifp, int disable)
1130 {
1131 	struct sf_softc *sc = ifp->if_softc;
1132 	struct sf_descsoft *ds;
1133 	int i;
1134 
1135 	/* Stop the one second clock. */
1136 	callout_stop(&sc->sc_tick_callout);
1137 
1138 	/* Down the MII. */
1139 	mii_down(&sc->sc_mii);
1140 
1141 	/* Disable interrupts. */
1142 	sf_funcreg_write(sc, SF_InterruptEn, 0);
1143 
1144 	/* Stop the transmit and receive processes. */
1145 	sf_funcreg_write(sc, SF_GeneralEthernetCtrl, 0);
1146 
1147 	/*
1148 	 * Release any queued transmit buffers.
1149 	 */
1150 	for (i = 0; i < SF_NTXDESC; i++) {
1151 		ds = &sc->sc_txsoft[i];
1152 		if (ds->ds_mbuf != NULL) {
1153 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1154 			m_freem(ds->ds_mbuf);
1155 			ds->ds_mbuf = NULL;
1156 		}
1157 	}
1158 
1159 	/*
1160 	 * Mark the interface down and cancel the watchdog timer.
1161 	 */
1162 	ifp->if_flags &= ~IFF_RUNNING;
1163 	ifp->if_timer = 0;
1164 
1165 	if (disable)
1166 		sf_rxdrain(sc);
1167 }
1168 
1169 /*
1170  * sf_read_eeprom:
1171  *
1172  *	Read from the Starfire EEPROM.
1173  */
1174 static uint8_t
sf_read_eeprom(struct sf_softc * sc,int offset)1175 sf_read_eeprom(struct sf_softc *sc, int offset)
1176 {
1177 	uint32_t reg;
1178 
1179 	reg = sf_genreg_read(sc, SF_EEPROM_BASE + (offset & ~3));
1180 
1181 	return ((reg >> (8 * (offset & 3))) & 0xff);
1182 }
1183 
1184 /*
1185  * sf_add_rxbuf:
1186  *
1187  *	Add a receive buffer to the indicated descriptor.
1188  */
1189 static int
sf_add_rxbuf(struct sf_softc * sc,int idx)1190 sf_add_rxbuf(struct sf_softc *sc, int idx)
1191 {
1192 	struct sf_descsoft *ds = &sc->sc_rxsoft[idx];
1193 	struct mbuf *m;
1194 	int error;
1195 
1196 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1197 	if (m == NULL)
1198 		return (ENOBUFS);
1199 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1200 
1201 	MCLGET(m, M_DONTWAIT);
1202 	if ((m->m_flags & M_EXT) == 0) {
1203 		m_freem(m);
1204 		return (ENOBUFS);
1205 	}
1206 
1207 	if (ds->ds_mbuf != NULL)
1208 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1209 
1210 	ds->ds_mbuf = m;
1211 
1212 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1213 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1214 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
1215 	if (error) {
1216 		aprint_error_dev(sc->sc_dev,
1217 		    "can't load rx DMA map %d, error = %d\n", idx, error);
1218 		panic("sf_add_rxbuf"); /* XXX */
1219 	}
1220 
1221 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1222 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1223 
1224 	SF_INIT_RXDESC(sc, idx);
1225 
1226 	return (0);
1227 }
1228 
1229 static void
sf_set_filter_perfect(struct sf_softc * sc,int slot,const uint8_t * enaddr)1230 sf_set_filter_perfect(struct sf_softc *sc, int slot, const uint8_t *enaddr)
1231 {
1232 	uint32_t reg0, reg1, reg2;
1233 
1234 	reg0 = enaddr[5] | (enaddr[4] << 8);
1235 	reg1 = enaddr[3] | (enaddr[2] << 8);
1236 	reg2 = enaddr[1] | (enaddr[0] << 8);
1237 
1238 	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 0, reg0);
1239 	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 4, reg1);
1240 	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 8, reg2);
1241 }
1242 
1243 static void
sf_set_filter_hash(struct sf_softc * sc,uint8_t * enaddr)1244 sf_set_filter_hash(struct sf_softc *sc, uint8_t *enaddr)
1245 {
1246 	uint32_t hash, slot, reg;
1247 
1248 	hash = ether_crc32_be(enaddr, ETHER_ADDR_LEN) >> 23;
1249 	slot = hash >> 4;
1250 
1251 	reg = sf_genreg_read(sc, SF_HASH_BASE + (slot * 0x10));
1252 	reg |= 1 << (hash & 0xf);
1253 	sf_genreg_write(sc, SF_HASH_BASE + (slot * 0x10), reg);
1254 }
1255 
1256 /*
1257  * sf_set_filter:
1258  *
1259  *	Set the Starfire receive filter.
1260  */
1261 static void
sf_set_filter(struct sf_softc * sc)1262 sf_set_filter(struct sf_softc *sc)
1263 {
1264 	struct ethercom *ec = &sc->sc_ethercom;
1265 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1266 	struct ether_multi *enm;
1267 	struct ether_multistep step;
1268 	int i;
1269 
1270 	/* Start by clearing the perfect and hash tables. */
1271 	for (i = 0; i < SF_PERFECT_SIZE; i += sizeof(uint32_t))
1272 		sf_genreg_write(sc, SF_PERFECT_BASE + i, 0);
1273 
1274 	for (i = 0; i < SF_HASH_SIZE; i += sizeof(uint32_t))
1275 		sf_genreg_write(sc, SF_HASH_BASE + i, 0);
1276 
1277 	/*
1278 	 * Clear the perfect and hash mode bits.
1279 	 */
1280 	sc->sc_RxAddressFilteringCtl &=
1281 	    ~(RAFC_PerfectFilteringMode(3) | RAFC_HashFilteringMode(3));
1282 
1283 	if (ifp->if_flags & IFF_BROADCAST)
1284 		sc->sc_RxAddressFilteringCtl |= RAFC_PassBroadcast;
1285 	else
1286 		sc->sc_RxAddressFilteringCtl &= ~RAFC_PassBroadcast;
1287 
1288 	if (ifp->if_flags & IFF_PROMISC) {
1289 		sc->sc_RxAddressFilteringCtl |= RAFC_PromiscuousMode;
1290 		goto allmulti;
1291 	} else
1292 		sc->sc_RxAddressFilteringCtl &= ~RAFC_PromiscuousMode;
1293 
1294 	/*
1295 	 * Set normal perfect filtering mode.
1296 	 */
1297 	sc->sc_RxAddressFilteringCtl |= RAFC_PerfectFilteringMode(1);
1298 
1299 	/*
1300 	 * First, write the station address to the perfect filter
1301 	 * table.
1302 	 */
1303 	sf_set_filter_perfect(sc, 0, CLLADDR(ifp->if_sadl));
1304 
1305 	/*
1306 	 * Now set the hash bits for each multicast address in our
1307 	 * list.
1308 	 */
1309 	ETHER_LOCK(ec);
1310 	ETHER_FIRST_MULTI(step, ec, enm);
1311 	if (enm == NULL) {
1312 		ETHER_UNLOCK(ec);
1313 		goto done;
1314 	}
1315 	while (enm != NULL) {
1316 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1317 			/*
1318 			 * We must listen to a range of multicast addresses.
1319 			 * For now, just accept all multicasts, rather than
1320 			 * trying to set only those filter bits needed to match
1321 			 * the range.  (At this time, the only use of address
1322 			 * ranges is for IP multicast routing, for which the
1323 			 * range is big enough to require all bits set.)
1324 			 */
1325 			ETHER_UNLOCK(ec);
1326 			goto allmulti;
1327 		}
1328 		sf_set_filter_hash(sc, enm->enm_addrlo);
1329 		ETHER_NEXT_MULTI(step, enm);
1330 	}
1331 	ETHER_UNLOCK(ec);
1332 
1333 	/*
1334 	 * Set "hash only multicast dest, match regardless of VLAN ID".
1335 	 */
1336 	sc->sc_RxAddressFilteringCtl |= RAFC_HashFilteringMode(2);
1337 	goto done;
1338 
1339  allmulti:
1340 	/*
1341 	 * XXX RAFC_PassMulticast is sub-optimal if using VLAN mode.
1342 	 */
1343 	sc->sc_RxAddressFilteringCtl |= RAFC_PassMulticast;
1344 	ifp->if_flags |= IFF_ALLMULTI;
1345 
1346  done:
1347 	sf_funcreg_write(sc, SF_RxAddressFilteringCtl,
1348 	    sc->sc_RxAddressFilteringCtl);
1349 }
1350 
1351 /*
1352  * sf_mii_read:		[mii interface function]
1353  *
1354  *	Read from the MII.
1355  */
1356 static int
sf_mii_read(device_t self,int phy,int reg,uint16_t * data)1357 sf_mii_read(device_t self, int phy, int reg, uint16_t *data)
1358 {
1359 	struct sf_softc *sc = device_private(self);
1360 	uint32_t v;
1361 	int i;
1362 
1363 	for (i = 0; i < 1000; i++) {
1364 		v = sf_genreg_read(sc, SF_MII_PHY_REG(phy, reg));
1365 		if (v & MiiDataValid)
1366 			break;
1367 		delay(1);
1368 	}
1369 
1370 	if ((v & MiiDataValid) == 0)
1371 		return -1;
1372 
1373 	if (MiiRegDataPort(v) == 0xffff)
1374 		return -1;
1375 
1376 	*data = MiiRegDataPort(v);
1377 	return 0;
1378 }
1379 
1380 /*
1381  * sf_mii_write:	[mii interface function]
1382  *
1383  *	Write to the MII.
1384  */
1385 static int
sf_mii_write(device_t self,int phy,int reg,uint16_t val)1386 sf_mii_write(device_t self, int phy, int reg, uint16_t val)
1387 {
1388 	struct sf_softc *sc = device_private(self);
1389 	int i;
1390 
1391 	sf_genreg_write(sc, SF_MII_PHY_REG(phy, reg), val);
1392 
1393 	for (i = 0; i < 1000; i++) {
1394 		if ((sf_genreg_read(sc, SF_MII_PHY_REG(phy, reg)) &
1395 		     MiiBusy) == 0)
1396 			return 0;
1397 		delay(1);
1398 	}
1399 
1400 	printf("%s: MII write timed out\n", device_xname(sc->sc_dev));
1401 	return ETIMEDOUT;
1402 }
1403 
1404 /*
1405  * sf_mii_statchg:	[mii interface function]
1406  *
1407  *	Callback from the PHY when the media changes.
1408  */
1409 static void
sf_mii_statchg(struct ifnet * ifp)1410 sf_mii_statchg(struct ifnet *ifp)
1411 {
1412 	struct sf_softc *sc = ifp->if_softc;
1413 	uint32_t ipg;
1414 
1415 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
1416 		sc->sc_MacConfig1 |= MC1_FullDuplex;
1417 		ipg = 0x15;
1418 	} else {
1419 		sc->sc_MacConfig1 &= ~MC1_FullDuplex;
1420 		ipg = 0x11;
1421 	}
1422 
1423 	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1);
1424 	sf_macreset(sc);
1425 
1426 	sf_genreg_write(sc, SF_BkToBkIPG, ipg);
1427 }
1428