xref: /netbsd-src/sys/dev/ic/aic6915.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: aic6915.c,v 1.19 2007/10/19 11:59:46 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Device driver for the Adaptec AIC-6915 (``Starfire'')
41  * 10/100 Ethernet controller.
42  */
43 
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: aic6915.c,v 1.19 2007/10/19 11:59:46 ad Exp $");
46 
47 #include "bpfilter.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/socket.h>
56 #include <sys/ioctl.h>
57 #include <sys/errno.h>
58 #include <sys/device.h>
59 
60 #include <uvm/uvm_extern.h>
61 
62 #include <net/if.h>
63 #include <net/if_dl.h>
64 #include <net/if_media.h>
65 #include <net/if_ether.h>
66 
67 #if NBPFILTER > 0
68 #include <net/bpf.h>
69 #endif
70 
71 #include <sys/bus.h>
72 #include <sys/intr.h>
73 
74 #include <dev/mii/miivar.h>
75 
76 #include <dev/ic/aic6915reg.h>
77 #include <dev/ic/aic6915var.h>
78 
79 static void	sf_start(struct ifnet *);
80 static void	sf_watchdog(struct ifnet *);
81 static int	sf_ioctl(struct ifnet *, u_long, void *);
82 static int	sf_init(struct ifnet *);
83 static void	sf_stop(struct ifnet *, int);
84 
85 static void	sf_shutdown(void *);
86 
87 static void	sf_txintr(struct sf_softc *);
88 static void	sf_rxintr(struct sf_softc *);
89 static void	sf_stats_update(struct sf_softc *);
90 
91 static void	sf_reset(struct sf_softc *);
92 static void	sf_macreset(struct sf_softc *);
93 static void	sf_rxdrain(struct sf_softc *);
94 static int	sf_add_rxbuf(struct sf_softc *, int);
95 static uint8_t	sf_read_eeprom(struct sf_softc *, int);
96 static void	sf_set_filter(struct sf_softc *);
97 
98 static int	sf_mii_read(struct device *, int, int);
99 static void	sf_mii_write(struct device *, int, int, int);
100 static void	sf_mii_statchg(struct device *);
101 
102 static void	sf_tick(void *);
103 
104 static int	sf_mediachange(struct ifnet *);
105 static void	sf_mediastatus(struct ifnet *, struct ifmediareq *);
106 
107 #define	sf_funcreg_read(sc, reg)					\
108 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh_func, (reg))
109 #define	sf_funcreg_write(sc, reg, val)					\
110 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh_func, (reg), (val))
111 
112 static inline uint32_t
113 sf_reg_read(struct sf_softc *sc, bus_addr_t reg)
114 {
115 
116 	if (__predict_false(sc->sc_iomapped)) {
117 		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoAccess,
118 		    reg);
119 		return (bus_space_read_4(sc->sc_st, sc->sc_sh,
120 		    SF_IndirectIoDataPort));
121 	}
122 
123 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, reg));
124 }
125 
126 static inline void
127 sf_reg_write(struct sf_softc *sc, bus_addr_t reg, uint32_t val)
128 {
129 
130 	if (__predict_false(sc->sc_iomapped)) {
131 		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoAccess,
132 		    reg);
133 		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoDataPort,
134 		    val);
135 		return;
136 	}
137 
138 	bus_space_write_4(sc->sc_st, sc->sc_sh, reg, val);
139 }
140 
141 #define	sf_genreg_read(sc, reg)						\
142 	sf_reg_read((sc), (reg) + SF_GENREG_OFFSET)
143 #define	sf_genreg_write(sc, reg, val)					\
144 	sf_reg_write((sc), (reg) + SF_GENREG_OFFSET, (val))
145 
146 /*
147  * sf_attach:
148  *
149  *	Attach a Starfire interface to the system.
150  */
151 void
152 sf_attach(struct sf_softc *sc)
153 {
154 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
155 	int i, rseg, error;
156 	bus_dma_segment_t seg;
157 	u_int8_t enaddr[ETHER_ADDR_LEN];
158 
159 	callout_init(&sc->sc_tick_callout, 0);
160 
161 	/*
162 	 * If we're I/O mapped, the functional register handle is
163 	 * the same as the base handle.  If we're memory mapped,
164 	 * carve off a chunk of the register space for the functional
165 	 * registers, to save on arithmetic later.
166 	 */
167 	if (sc->sc_iomapped)
168 		sc->sc_sh_func = sc->sc_sh;
169 	else {
170 		if ((error = bus_space_subregion(sc->sc_st, sc->sc_sh,
171 		    SF_GENREG_OFFSET, SF_FUNCREG_SIZE, &sc->sc_sh_func)) != 0) {
172 			printf("%s: unable to sub-region functional "
173 			    "registers, error = %d\n", sc->sc_dev.dv_xname,
174 			    error);
175 			return;
176 		}
177 	}
178 
179 	/*
180 	 * Initialize the transmit threshold for this interface.  The
181 	 * manual describes the default as 4 * 16 bytes.  We start out
182 	 * at 10 * 16 bytes, to avoid a bunch of initial underruns on
183 	 * several platforms.
184 	 */
185 	sc->sc_txthresh = 10;
186 
187 	/*
188 	 * Allocate the control data structures, and create and load the
189 	 * DMA map for it.
190 	 */
191 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
192 	    sizeof(struct sf_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
193 	    BUS_DMA_NOWAIT)) != 0) {
194 		printf("%s: unable to allocate control data, error = %d\n",
195 		    sc->sc_dev.dv_xname, error);
196 		goto fail_0;
197 	}
198 
199 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
200 	    sizeof(struct sf_control_data), (void **)&sc->sc_control_data,
201 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
202 		printf("%s: unable to map control data, error = %d\n",
203 		    sc->sc_dev.dv_xname, error);
204 		goto fail_1;
205 	}
206 
207 	if ((error = bus_dmamap_create(sc->sc_dmat,
208 	    sizeof(struct sf_control_data), 1,
209 	    sizeof(struct sf_control_data), 0, BUS_DMA_NOWAIT,
210 	    &sc->sc_cddmamap)) != 0) {
211 		printf("%s: unable to create control data DMA map, "
212 		    "error = %d\n", sc->sc_dev.dv_xname, error);
213 		goto fail_2;
214 	}
215 
216 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
217 	    sc->sc_control_data, sizeof(struct sf_control_data), NULL,
218 	    BUS_DMA_NOWAIT)) != 0) {
219 		printf("%s: unable to load control data DMA map, error = %d\n",
220 		    sc->sc_dev.dv_xname, error);
221 		goto fail_3;
222 	}
223 
224 	/*
225 	 * Create the transmit buffer DMA maps.
226 	 */
227 	for (i = 0; i < SF_NTXDESC; i++) {
228 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
229 		    SF_NTXFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
230 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
231 			printf("%s: unable to create tx DMA map %d, "
232 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
233 			goto fail_4;
234 		}
235 	}
236 
237 	/*
238 	 * Create the receive buffer DMA maps.
239 	 */
240 	for (i = 0; i < SF_NRXDESC; i++) {
241 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
242 		    MCLBYTES, 0, BUS_DMA_NOWAIT,
243 		    &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
244 			printf("%s: unable to create rx DMA map %d, "
245 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
246 			goto fail_5;
247 		}
248 	}
249 
250 	/*
251 	 * Reset the chip to a known state.
252 	 */
253 	sf_reset(sc);
254 
255 	/*
256 	 * Read the Ethernet address from the EEPROM.
257 	 */
258 	for (i = 0; i < ETHER_ADDR_LEN; i++)
259 		enaddr[i] = sf_read_eeprom(sc, (15 + (ETHER_ADDR_LEN - 1)) - i);
260 
261 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
262 	    ether_sprintf(enaddr));
263 
264 	if (sf_funcreg_read(sc, SF_PciDeviceConfig) & PDC_System64)
265 		printf("%s: 64-bit PCI slot detected\n", sc->sc_dev.dv_xname);
266 
267 	/*
268 	 * Initialize our media structures and probe the MII.
269 	 */
270 	sc->sc_mii.mii_ifp = ifp;
271 	sc->sc_mii.mii_readreg = sf_mii_read;
272 	sc->sc_mii.mii_writereg = sf_mii_write;
273 	sc->sc_mii.mii_statchg = sf_mii_statchg;
274 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, sf_mediachange,
275 	    sf_mediastatus);
276 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
277 	    MII_OFFSET_ANY, 0);
278 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
279 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
280 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
281 	} else
282 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
283 
284 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
285 	ifp->if_softc = sc;
286 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
287 	ifp->if_ioctl = sf_ioctl;
288 	ifp->if_start = sf_start;
289 	ifp->if_watchdog = sf_watchdog;
290 	ifp->if_init = sf_init;
291 	ifp->if_stop = sf_stop;
292 	IFQ_SET_READY(&ifp->if_snd);
293 
294 	/*
295 	 * Attach the interface.
296 	 */
297 	if_attach(ifp);
298 	ether_ifattach(ifp, enaddr);
299 
300 	/*
301 	 * Make sure the interface is shutdown during reboot.
302 	 */
303 	sc->sc_sdhook = shutdownhook_establish(sf_shutdown, sc);
304 	if (sc->sc_sdhook == NULL)
305 		printf("%s: WARNING: unable to establish shutdown hook\n",
306 		    sc->sc_dev.dv_xname);
307 	return;
308 
309 	/*
310 	 * Free any resources we've allocated during the failed attach
311 	 * attempt.  Do this in reverse order an fall through.
312 	 */
313  fail_5:
314 	for (i = 0; i < SF_NRXDESC; i++) {
315 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
316 			bus_dmamap_destroy(sc->sc_dmat,
317 			    sc->sc_rxsoft[i].ds_dmamap);
318 	}
319  fail_4:
320 	for (i = 0; i < SF_NTXDESC; i++) {
321 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
322 			bus_dmamap_destroy(sc->sc_dmat,
323 			    sc->sc_txsoft[i].ds_dmamap);
324 	}
325 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
326  fail_3:
327 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
328  fail_2:
329 	bus_dmamem_unmap(sc->sc_dmat, (void *) sc->sc_control_data,
330 	    sizeof(struct sf_control_data));
331  fail_1:
332 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
333  fail_0:
334 	return;
335 }
336 
337 /*
338  * sf_shutdown:
339  *
340  *	Shutdown hook -- make sure the interface is stopped at reboot.
341  */
342 static void
343 sf_shutdown(void *arg)
344 {
345 	struct sf_softc *sc = arg;
346 
347 	sf_stop(&sc->sc_ethercom.ec_if, 1);
348 }
349 
350 /*
351  * sf_start:		[ifnet interface function]
352  *
353  *	Start packet transmission on the interface.
354  */
355 static void
356 sf_start(struct ifnet *ifp)
357 {
358 	struct sf_softc *sc = ifp->if_softc;
359 	struct mbuf *m0, *m;
360 	struct sf_txdesc0 *txd;
361 	struct sf_descsoft *ds;
362 	bus_dmamap_t dmamap;
363 	int error, producer, last = -1, opending, seg;
364 
365 	/*
366 	 * Remember the previous number of pending transmits.
367 	 */
368 	opending = sc->sc_txpending;
369 
370 	/*
371 	 * Find out where we're sitting.
372 	 */
373 	producer = SF_TXDINDEX_TO_HOST(
374 	    TDQPI_HiPrTxProducerIndex_get(
375 	    sf_funcreg_read(sc, SF_TxDescQueueProducerIndex)));
376 
377 	/*
378 	 * Loop through the send queue, setting up transmit descriptors
379 	 * until we drain the queue, or use up all available transmit
380 	 * descriptors.  Leave a blank one at the end for sanity's sake.
381 	 */
382 	while (sc->sc_txpending < (SF_NTXDESC - 1)) {
383 		/*
384 		 * Grab a packet off the queue.
385 		 */
386 		IFQ_POLL(&ifp->if_snd, m0);
387 		if (m0 == NULL)
388 			break;
389 		m = NULL;
390 
391 		/*
392 		 * Get the transmit descriptor.
393 		 */
394 		txd = &sc->sc_txdescs[producer];
395 		ds = &sc->sc_txsoft[producer];
396 		dmamap = ds->ds_dmamap;
397 
398 		/*
399 		 * Load the DMA map.  If this fails, the packet either
400 		 * didn't fit in the allotted number of frags, or we were
401 		 * short on resources.  In this case, we'll copy and try
402 		 * again.
403 		 */
404 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
405 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
406 			MGETHDR(m, M_DONTWAIT, MT_DATA);
407 			if (m == NULL) {
408 				printf("%s: unable to allocate Tx mbuf\n",
409 				    sc->sc_dev.dv_xname);
410 				break;
411 			}
412 			if (m0->m_pkthdr.len > MHLEN) {
413 				MCLGET(m, M_DONTWAIT);
414 				if ((m->m_flags & M_EXT) == 0) {
415 					printf("%s: unable to allocate Tx "
416 					    "cluster\n", sc->sc_dev.dv_xname);
417 					m_freem(m);
418 					break;
419 				}
420 			}
421 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
422 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
423 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
424 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
425 			if (error) {
426 				printf("%s: unable to load Tx buffer, "
427 				    "error = %d\n", sc->sc_dev.dv_xname, error);
428 				break;
429 			}
430 		}
431 
432 		/*
433 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
434 		 */
435 		IFQ_DEQUEUE(&ifp->if_snd, m0);
436 		if (m != NULL) {
437 			m_freem(m0);
438 			m0 = m;
439 		}
440 
441 		/* Initialize the descriptor. */
442 		txd->td_word0 =
443 		    htole32(TD_W0_ID | TD_W0_CRCEN | m0->m_pkthdr.len);
444 		if (producer == (SF_NTXDESC - 1))
445 			txd->td_word0 |= TD_W0_END;
446 		txd->td_word1 = htole32(dmamap->dm_nsegs);
447 		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
448 			txd->td_frags[seg].fr_addr =
449 			    htole32(dmamap->dm_segs[seg].ds_addr);
450 			txd->td_frags[seg].fr_len =
451 			    htole32(dmamap->dm_segs[seg].ds_len);
452 		}
453 
454 		/* Sync the descriptor and the DMA map. */
455 		SF_CDTXDSYNC(sc, producer, BUS_DMASYNC_PREWRITE);
456 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
457 		    BUS_DMASYNC_PREWRITE);
458 
459 		/*
460 		 * Store a pointer to the packet so we can free it later.
461 		 */
462 		ds->ds_mbuf = m0;
463 
464 		/* Advance the Tx pointer. */
465 		sc->sc_txpending++;
466 		last = producer;
467 		producer = SF_NEXTTX(producer);
468 
469 #if NBPFILTER > 0
470 		/*
471 		 * Pass the packet to any BPF listeners.
472 		 */
473 		if (ifp->if_bpf)
474 			bpf_mtap(ifp->if_bpf, m0);
475 #endif
476 	}
477 
478 	if (sc->sc_txpending == (SF_NTXDESC - 1)) {
479 		/* No more slots left; notify upper layer. */
480 		ifp->if_flags |= IFF_OACTIVE;
481 	}
482 
483 	if (sc->sc_txpending != opending) {
484 		KASSERT(last != -1);
485 		/*
486 		 * We enqueued packets.  Cause a transmit interrupt to
487 		 * happen on the last packet we enqueued, and give the
488 		 * new descriptors to the chip by writing the new
489 		 * producer index.
490 		 */
491 		sc->sc_txdescs[last].td_word0 |= TD_W0_INTR;
492 		SF_CDTXDSYNC(sc, last, BUS_DMASYNC_PREWRITE);
493 
494 		sf_funcreg_write(sc, SF_TxDescQueueProducerIndex,
495 		    TDQPI_HiPrTxProducerIndex(SF_TXDINDEX_TO_CHIP(producer)));
496 
497 		/* Set a watchdog timer in case the chip flakes out. */
498 		ifp->if_timer = 5;
499 	}
500 }
501 
502 /*
503  * sf_watchdog:		[ifnet interface function]
504  *
505  *	Watchdog timer handler.
506  */
507 static void
508 sf_watchdog(struct ifnet *ifp)
509 {
510 	struct sf_softc *sc = ifp->if_softc;
511 
512 	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
513 	ifp->if_oerrors++;
514 
515 	(void) sf_init(ifp);
516 
517 	/* Try to get more packets going. */
518 	sf_start(ifp);
519 }
520 
521 /*
522  * sf_ioctl:		[ifnet interface function]
523  *
524  *	Handle control requests from the operator.
525  */
526 static int
527 sf_ioctl(struct ifnet *ifp, u_long cmd, void *data)
528 {
529 	struct sf_softc *sc = ifp->if_softc;
530 	struct ifreq *ifr = (struct ifreq *) data;
531 	int s, error;
532 
533 	s = splnet();
534 
535 	switch (cmd) {
536 	case SIOCSIFMEDIA:
537 	case SIOCGIFMEDIA:
538 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
539 		break;
540 
541 	default:
542 		error = ether_ioctl(ifp, cmd, data);
543 		if (error == ENETRESET) {
544 			/*
545 			 * Multicast list has changed; set the hardware filter
546 			 * accordingly.
547 			 */
548 			if (ifp->if_flags & IFF_RUNNING)
549 				sf_set_filter(sc);
550 			error = 0;
551 		}
552 		break;
553 	}
554 
555 	/* Try to get more packets going. */
556 	sf_start(ifp);
557 
558 	splx(s);
559 	return (error);
560 }
561 
562 /*
563  * sf_intr:
564  *
565  *	Interrupt service routine.
566  */
567 int
568 sf_intr(void *arg)
569 {
570 	struct sf_softc *sc = arg;
571 	uint32_t isr;
572 	int handled = 0, wantinit = 0;
573 
574 	for (;;) {
575 		/* Reading clears all interrupts we're interested in. */
576 		isr = sf_funcreg_read(sc, SF_InterruptStatus);
577 		if ((isr & IS_PCIPadInt) == 0)
578 			break;
579 
580 		handled = 1;
581 
582 		/* Handle receive interrupts. */
583 		if (isr & IS_RxQ1DoneInt)
584 			sf_rxintr(sc);
585 
586 		/* Handle transmit completion interrupts. */
587 		if (isr & (IS_TxDmaDoneInt|IS_TxQueueDoneInt))
588 			sf_txintr(sc);
589 
590 		/* Handle abnormal interrupts. */
591 		if (isr & IS_AbnormalInterrupt) {
592 			/* Statistics. */
593 			if (isr & IS_StatisticWrapInt)
594 				sf_stats_update(sc);
595 
596 			/* DMA errors. */
597 			if (isr & IS_DmaErrInt) {
598 				wantinit = 1;
599 				printf("%s: WARNING: DMA error\n",
600 				    sc->sc_dev.dv_xname);
601 			}
602 
603 			/* Transmit FIFO underruns. */
604 			if (isr & IS_TxDataLowInt) {
605 				if (sc->sc_txthresh < 0xff)
606 					sc->sc_txthresh++;
607 				printf("%s: transmit FIFO underrun, new "
608 				    "threshold: %d bytes\n",
609 				    sc->sc_dev.dv_xname,
610 				    sc->sc_txthresh * 16);
611 				sf_funcreg_write(sc, SF_TransmitFrameCSR,
612 				    sc->sc_TransmitFrameCSR |
613 				    TFCSR_TransmitThreshold(sc->sc_txthresh));
614 				sf_funcreg_write(sc, SF_TxDescQueueCtrl,
615 				    sc->sc_TxDescQueueCtrl |
616 				    TDQC_TxHighPriorityFifoThreshold(
617 							sc->sc_txthresh));
618 			}
619 		}
620 	}
621 
622 	if (handled) {
623 		/* Reset the interface, if necessary. */
624 		if (wantinit)
625 			sf_init(&sc->sc_ethercom.ec_if);
626 
627 		/* Try and get more packets going. */
628 		sf_start(&sc->sc_ethercom.ec_if);
629 	}
630 
631 	return (handled);
632 }
633 
634 /*
635  * sf_txintr:
636  *
637  *	Helper -- handle transmit completion interrupts.
638  */
639 static void
640 sf_txintr(struct sf_softc *sc)
641 {
642 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
643 	struct sf_descsoft *ds;
644 	uint32_t cqci, tcd;
645 	int consumer, producer, txidx;
646 
647  try_again:
648 	cqci = sf_funcreg_read(sc, SF_CompletionQueueConsumerIndex);
649 
650 	consumer = CQCI_TxCompletionConsumerIndex_get(cqci);
651 	producer = CQPI_TxCompletionProducerIndex_get(
652 	    sf_funcreg_read(sc, SF_CompletionQueueProducerIndex));
653 
654 	if (consumer == producer)
655 		return;
656 
657 	ifp->if_flags &= ~IFF_OACTIVE;
658 
659 	while (consumer != producer) {
660 		SF_CDTXCSYNC(sc, consumer, BUS_DMASYNC_POSTREAD);
661 		tcd = le32toh(sc->sc_txcomp[consumer].tcd_word0);
662 
663 		txidx = SF_TCD_INDEX_TO_HOST(TCD_INDEX(tcd));
664 #ifdef DIAGNOSTIC
665 		if ((tcd & TCD_PR) == 0)
666 			printf("%s: Tx queue mismatch, index %d\n",
667 			    sc->sc_dev.dv_xname, txidx);
668 #endif
669 		/*
670 		 * NOTE: stats are updated later.  We're just
671 		 * releasing packets that have been DMA'd to
672 		 * the chip.
673 		 */
674 		ds = &sc->sc_txsoft[txidx];
675 		SF_CDTXDSYNC(sc, txidx, BUS_DMASYNC_POSTWRITE);
676 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
677 		    0, ds->ds_dmamap->dm_mapsize,
678 		    BUS_DMASYNC_POSTWRITE);
679 		m_freem(ds->ds_mbuf);
680 		ds->ds_mbuf = NULL;
681 
682 		consumer = SF_NEXTTCD(consumer);
683 		sc->sc_txpending--;
684 	}
685 
686 	/* XXXJRT -- should be KDASSERT() */
687 	KASSERT(sc->sc_txpending >= 0);
688 
689 	/* If all packets are done, cancel the watchdog timer. */
690 	if (sc->sc_txpending == 0)
691 		ifp->if_timer = 0;
692 
693 	/* Update the consumer index. */
694 	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
695 	    (cqci & ~CQCI_TxCompletionConsumerIndex(0x7ff)) |
696 	     CQCI_TxCompletionConsumerIndex(consumer));
697 
698 	/* Double check for new completions. */
699 	goto try_again;
700 }
701 
702 /*
703  * sf_rxintr:
704  *
705  *	Helper -- handle receive interrupts.
706  */
707 static void
708 sf_rxintr(struct sf_softc *sc)
709 {
710 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
711 	struct sf_descsoft *ds;
712 	struct sf_rcd_full *rcd;
713 	struct mbuf *m;
714 	uint32_t cqci, word0;
715 	int consumer, producer, bufproducer, rxidx, len;
716 
717  try_again:
718 	cqci = sf_funcreg_read(sc, SF_CompletionQueueConsumerIndex);
719 
720 	consumer = CQCI_RxCompletionQ1ConsumerIndex_get(cqci);
721 	producer = CQPI_RxCompletionQ1ProducerIndex_get(
722 	    sf_funcreg_read(sc, SF_CompletionQueueProducerIndex));
723 	bufproducer = RXQ1P_RxDescQ1Producer_get(
724 	    sf_funcreg_read(sc, SF_RxDescQueue1Ptrs));
725 
726 	if (consumer == producer)
727 		return;
728 
729 	while (consumer != producer) {
730 		rcd = &sc->sc_rxcomp[consumer];
731 		SF_CDRXCSYNC(sc, consumer,
732 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
733 		SF_CDRXCSYNC(sc, consumer,
734 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
735 
736 		word0 = le32toh(rcd->rcd_word0);
737 		rxidx = RCD_W0_EndIndex(word0);
738 
739 		ds = &sc->sc_rxsoft[rxidx];
740 
741 		consumer = SF_NEXTRCD(consumer);
742 		bufproducer = SF_NEXTRX(bufproducer);
743 
744 		if ((word0 & RCD_W0_OK) == 0) {
745 			SF_INIT_RXDESC(sc, rxidx);
746 			continue;
747 		}
748 
749 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
750 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
751 
752 		/*
753 		 * No errors; receive the packet.  Note that we have
754 		 * configured the Starfire to NOT transfer the CRC
755 		 * with the packet.
756 		 */
757 		len = RCD_W0_Length(word0);
758 
759 #ifdef __NO_STRICT_ALIGNMENT
760 		/*
761 		 * Allocate a new mbuf cluster.  If that fails, we are
762 		 * out of memory, and must drop the packet and recycle
763 		 * the buffer that's already attached to this descriptor.
764 		 */
765 		m = ds->ds_mbuf;
766 		if (sf_add_rxbuf(sc, rxidx) != 0) {
767 			ifp->if_ierrors++;
768 			SF_INIT_RXDESC(sc, rxidx);
769 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
770 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
771 			continue;
772 		}
773 #else
774 		/*
775 		 * The Starfire's receive buffer must be 4-byte aligned.
776 		 * But this means that the data after the Ethernet header
777 		 * is misaligned.  We must allocate a new buffer and
778 		 * copy the data, shifted forward 2 bytes.
779 		 */
780 		MGETHDR(m, M_DONTWAIT, MT_DATA);
781 		if (m == NULL) {
782  dropit:
783 			ifp->if_ierrors++;
784 			SF_INIT_RXDESC(sc, rxidx);
785 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
786 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
787 			continue;
788 		}
789 		if (len > (MHLEN - 2)) {
790 			MCLGET(m, M_DONTWAIT);
791 			if ((m->m_flags & M_EXT) == 0) {
792 				m_freem(m);
793 				goto dropit;
794 			}
795 		}
796 		m->m_data += 2;
797 
798 		/*
799 		 * Note that we use cluster for incoming frames, so the
800 		 * buffer is virtually contiguous.
801 		 */
802 		memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *), len);
803 
804 		/* Allow the receive descriptor to continue using its mbuf. */
805 		SF_INIT_RXDESC(sc, rxidx);
806 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
807 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
808 #endif /* __NO_STRICT_ALIGNMENT */
809 
810 		m->m_pkthdr.rcvif = ifp;
811 		m->m_pkthdr.len = m->m_len = len;
812 
813 #if NBPFILTER > 0
814 		/*
815 		 * Pass this up to any BPF listeners.
816 		 */
817 		if (ifp->if_bpf)
818 			bpf_mtap(ifp->if_bpf, m);
819 #endif /* NBPFILTER > 0 */
820 
821 		/* Pass it on. */
822 		(*ifp->if_input)(ifp, m);
823 	}
824 
825 	/* Update the chip's pointers. */
826 	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
827 	    (cqci & ~CQCI_RxCompletionQ1ConsumerIndex(0x7ff)) |
828 	     CQCI_RxCompletionQ1ConsumerIndex(consumer));
829 	sf_funcreg_write(sc, SF_RxDescQueue1Ptrs,
830 	    RXQ1P_RxDescQ1Producer(bufproducer));
831 
832 	/* Double-check for any new completions. */
833 	goto try_again;
834 }
835 
836 /*
837  * sf_tick:
838  *
839  *	One second timer, used to tick the MII and update stats.
840  */
841 static void
842 sf_tick(void *arg)
843 {
844 	struct sf_softc *sc = arg;
845 	int s;
846 
847 	s = splnet();
848 	mii_tick(&sc->sc_mii);
849 	sf_stats_update(sc);
850 	splx(s);
851 
852 	callout_reset(&sc->sc_tick_callout, hz, sf_tick, sc);
853 }
854 
855 /*
856  * sf_stats_update:
857  *
858  *	Read the statitistics counters.
859  */
860 static void
861 sf_stats_update(struct sf_softc *sc)
862 {
863 	struct sf_stats stats;
864 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
865 	uint32_t *p;
866 	u_int i;
867 
868 	p = &stats.TransmitOKFrames;
869 	for (i = 0; i < (sizeof(stats) / sizeof(uint32_t)); i++) {
870 		*p++ = sf_genreg_read(sc,
871 		    SF_STATS_BASE + (i * sizeof(uint32_t)));
872 		sf_genreg_write(sc, SF_STATS_BASE + (i * sizeof(uint32_t)), 0);
873 	}
874 
875 	ifp->if_opackets += stats.TransmitOKFrames;
876 
877 	ifp->if_collisions += stats.SingleCollisionFrames +
878 	    stats.MultipleCollisionFrames;
879 
880 	ifp->if_oerrors += stats.TransmitAbortDueToExcessiveCollisions +
881 	    stats.TransmitAbortDueToExcessingDeferral +
882 	    stats.FramesLostDueToInternalTransmitErrors;
883 
884 	ifp->if_ipackets += stats.ReceiveOKFrames;
885 
886 	ifp->if_ierrors += stats.ReceiveCRCErrors + stats.AlignmentErrors +
887 	    stats.ReceiveFramesTooLong + stats.ReceiveFramesTooShort +
888 	    stats.ReceiveFramesJabbersError +
889 	    stats.FramesLostDueToInternalReceiveErrors;
890 }
891 
892 /*
893  * sf_reset:
894  *
895  *	Perform a soft reset on the Starfire.
896  */
897 static void
898 sf_reset(struct sf_softc *sc)
899 {
900 	int i;
901 
902 	sf_funcreg_write(sc, SF_GeneralEthernetCtrl, 0);
903 
904 	sf_macreset(sc);
905 
906 	sf_funcreg_write(sc, SF_PciDeviceConfig, PDC_SoftReset);
907 	for (i = 0; i < 1000; i++) {
908 		delay(10);
909 		if ((sf_funcreg_read(sc, SF_PciDeviceConfig) &
910 		     PDC_SoftReset) == 0)
911 			break;
912 	}
913 
914 	if (i == 1000) {
915 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
916 		sf_funcreg_write(sc, SF_PciDeviceConfig, 0);
917 	}
918 
919 	delay(1000);
920 }
921 
922 /*
923  * sf_macreset:
924  *
925  *	Reset the MAC portion of the Starfire.
926  */
927 static void
928 sf_macreset(struct sf_softc *sc)
929 {
930 
931 	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1 | MC1_SoftRst);
932 	delay(1000);
933 	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1);
934 }
935 
936 /*
937  * sf_init:		[ifnet interface function]
938  *
939  *	Initialize the interface.  Must be called at splnet().
940  */
941 static int
942 sf_init(struct ifnet *ifp)
943 {
944 	struct sf_softc *sc = ifp->if_softc;
945 	struct sf_descsoft *ds;
946 	int error = 0;
947 	u_int i;
948 
949 	/*
950 	 * Cancel any pending I/O.
951 	 */
952 	sf_stop(ifp, 0);
953 
954 	/*
955 	 * Reset the Starfire to a known state.
956 	 */
957 	sf_reset(sc);
958 
959 	/* Clear the stat counters. */
960 	for (i = 0; i < sizeof(struct sf_stats); i += sizeof(uint32_t))
961 		sf_genreg_write(sc, SF_STATS_BASE + i, 0);
962 
963 	/*
964 	 * Initialize the transmit descriptor ring.
965 	 */
966 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
967 	sf_funcreg_write(sc, SF_TxDescQueueHighAddr, 0);
968 	sf_funcreg_write(sc, SF_HiPrTxDescQueueBaseAddr, SF_CDTXDADDR(sc, 0));
969 	sf_funcreg_write(sc, SF_LoPrTxDescQueueBaseAddr, 0);
970 
971 	/*
972 	 * Initialize the transmit completion ring.
973 	 */
974 	for (i = 0; i < SF_NTCD; i++) {
975 		sc->sc_txcomp[i].tcd_word0 = TCD_DMA_ID;
976 		SF_CDTXCSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
977 	}
978 	sf_funcreg_write(sc, SF_CompletionQueueHighAddr, 0);
979 	sf_funcreg_write(sc, SF_TxCompletionQueueCtrl, SF_CDTXCADDR(sc, 0));
980 
981 	/*
982 	 * Initialize the receive descriptor ring.
983 	 */
984 	for (i = 0; i < SF_NRXDESC; i++) {
985 		ds = &sc->sc_rxsoft[i];
986 		if (ds->ds_mbuf == NULL) {
987 			if ((error = sf_add_rxbuf(sc, i)) != 0) {
988 				printf("%s: unable to allocate or map rx "
989 				    "buffer %d, error = %d\n",
990 				    sc->sc_dev.dv_xname, i, error);
991 				/*
992 				 * XXX Should attempt to run with fewer receive
993 				 * XXX buffers instead of just failing.
994 				 */
995 				sf_rxdrain(sc);
996 				goto out;
997 			}
998 		} else
999 			SF_INIT_RXDESC(sc, i);
1000 	}
1001 	sf_funcreg_write(sc, SF_RxDescQueueHighAddress, 0);
1002 	sf_funcreg_write(sc, SF_RxDescQueue1LowAddress, SF_CDRXDADDR(sc, 0));
1003 	sf_funcreg_write(sc, SF_RxDescQueue2LowAddress, 0);
1004 
1005 	/*
1006 	 * Initialize the receive completion ring.
1007 	 */
1008 	for (i = 0; i < SF_NRCD; i++) {
1009 		sc->sc_rxcomp[i].rcd_word0 = RCD_W0_ID;
1010 		sc->sc_rxcomp[i].rcd_word1 = 0;
1011 		sc->sc_rxcomp[i].rcd_word2 = 0;
1012 		sc->sc_rxcomp[i].rcd_timestamp = 0;
1013 		SF_CDRXCSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1014 	}
1015 	sf_funcreg_write(sc, SF_RxCompletionQueue1Ctrl, SF_CDRXCADDR(sc, 0) |
1016 	    RCQ1C_RxCompletionQ1Type(3));
1017 	sf_funcreg_write(sc, SF_RxCompletionQueue2Ctrl, 0);
1018 
1019 	/*
1020 	 * Initialize the Tx CSR.
1021 	 */
1022 	sc->sc_TransmitFrameCSR = 0;
1023 	sf_funcreg_write(sc, SF_TransmitFrameCSR,
1024 	    sc->sc_TransmitFrameCSR |
1025 	    TFCSR_TransmitThreshold(sc->sc_txthresh));
1026 
1027 	/*
1028 	 * Initialize the Tx descriptor control register.
1029 	 */
1030 	sc->sc_TxDescQueueCtrl = TDQC_SkipLength(0) |
1031 	    TDQC_TxDmaBurstSize(4) |	/* default */
1032 	    TDQC_MinFrameSpacing(3) |	/* 128 bytes */
1033 	    TDQC_TxDescType(0);
1034 	sf_funcreg_write(sc, SF_TxDescQueueCtrl,
1035 	    sc->sc_TxDescQueueCtrl |
1036 	    TDQC_TxHighPriorityFifoThreshold(sc->sc_txthresh));
1037 
1038 	/*
1039 	 * Initialize the Rx descriptor control registers.
1040 	 */
1041 	sf_funcreg_write(sc, SF_RxDescQueue1Ctrl,
1042 	    RDQ1C_RxQ1BufferLength(MCLBYTES) |
1043 	    RDQ1C_RxDescSpacing(0));
1044 	sf_funcreg_write(sc, SF_RxDescQueue2Ctrl, 0);
1045 
1046 	/*
1047 	 * Initialize the Tx descriptor producer indices.
1048 	 */
1049 	sf_funcreg_write(sc, SF_TxDescQueueProducerIndex,
1050 	    TDQPI_HiPrTxProducerIndex(0) |
1051 	    TDQPI_LoPrTxProducerIndex(0));
1052 
1053 	/*
1054 	 * Initialize the Rx descriptor producer indices.
1055 	 */
1056 	sf_funcreg_write(sc, SF_RxDescQueue1Ptrs,
1057 	    RXQ1P_RxDescQ1Producer(SF_NRXDESC - 1));
1058 	sf_funcreg_write(sc, SF_RxDescQueue2Ptrs,
1059 	    RXQ2P_RxDescQ2Producer(0));
1060 
1061 	/*
1062 	 * Initialize the Tx and Rx completion queue consumer indices.
1063 	 */
1064 	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
1065 	    CQCI_TxCompletionConsumerIndex(0) |
1066 	    CQCI_RxCompletionQ1ConsumerIndex(0));
1067 	sf_funcreg_write(sc, SF_RxHiPrCompletionPtrs, 0);
1068 
1069 	/*
1070 	 * Initialize the Rx DMA control register.
1071 	 */
1072 	sf_funcreg_write(sc, SF_RxDmaCtrl,
1073 	    RDC_RxHighPriorityThreshold(6) |	/* default */
1074 	    RDC_RxBurstSize(4));		/* default */
1075 
1076 	/*
1077 	 * Set the receive filter.
1078 	 */
1079 	sc->sc_RxAddressFilteringCtl = 0;
1080 	sf_set_filter(sc);
1081 
1082 	/*
1083 	 * Set MacConfig1.  When we set the media, MacConfig1 will
1084 	 * actually be written and the MAC part reset.
1085 	 */
1086 	sc->sc_MacConfig1 = MC1_PadEn;
1087 
1088 	/*
1089 	 * Set the media.
1090 	 */
1091 	mii_mediachg(&sc->sc_mii);
1092 
1093 	/*
1094 	 * Initialize the interrupt register.
1095 	 */
1096 	sc->sc_InterruptEn = IS_PCIPadInt | IS_RxQ1DoneInt |
1097 	    IS_TxQueueDoneInt | IS_TxDmaDoneInt | IS_DmaErrInt |
1098 	    IS_StatisticWrapInt;
1099 	sf_funcreg_write(sc, SF_InterruptEn, sc->sc_InterruptEn);
1100 
1101 	sf_funcreg_write(sc, SF_PciDeviceConfig, PDC_IntEnable |
1102 	    PDC_PCIMstDmaEn | (1 << PDC_FifoThreshold_SHIFT));
1103 
1104 	/*
1105 	 * Start the transmit and receive processes.
1106 	 */
1107 	sf_funcreg_write(sc, SF_GeneralEthernetCtrl,
1108 	    GEC_TxDmaEn|GEC_RxDmaEn|GEC_TransmitEn|GEC_ReceiveEn);
1109 
1110 	/* Start the on second clock. */
1111 	callout_reset(&sc->sc_tick_callout, hz, sf_tick, sc);
1112 
1113 	/*
1114 	 * Note that the interface is now running.
1115 	 */
1116 	ifp->if_flags |= IFF_RUNNING;
1117 	ifp->if_flags &= ~IFF_OACTIVE;
1118 
1119  out:
1120 	if (error) {
1121 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1122 		ifp->if_timer = 0;
1123 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1124 	}
1125 	return (error);
1126 }
1127 
1128 /*
1129  * sf_rxdrain:
1130  *
1131  *	Drain the receive queue.
1132  */
1133 static void
1134 sf_rxdrain(struct sf_softc *sc)
1135 {
1136 	struct sf_descsoft *ds;
1137 	int i;
1138 
1139 	for (i = 0; i < SF_NRXDESC; i++) {
1140 		ds = &sc->sc_rxsoft[i];
1141 		if (ds->ds_mbuf != NULL) {
1142 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1143 			m_freem(ds->ds_mbuf);
1144 			ds->ds_mbuf = NULL;
1145 		}
1146 	}
1147 }
1148 
1149 /*
1150  * sf_stop:		[ifnet interface function]
1151  *
1152  *	Stop transmission on the interface.
1153  */
1154 static void
1155 sf_stop(struct ifnet *ifp, int disable)
1156 {
1157 	struct sf_softc *sc = ifp->if_softc;
1158 	struct sf_descsoft *ds;
1159 	int i;
1160 
1161 	/* Stop the one second clock. */
1162 	callout_stop(&sc->sc_tick_callout);
1163 
1164 	/* Down the MII. */
1165 	mii_down(&sc->sc_mii);
1166 
1167 	/* Disable interrupts. */
1168 	sf_funcreg_write(sc, SF_InterruptEn, 0);
1169 
1170 	/* Stop the transmit and receive processes. */
1171 	sf_funcreg_write(sc, SF_GeneralEthernetCtrl, 0);
1172 
1173 	/*
1174 	 * Release any queued transmit buffers.
1175 	 */
1176 	for (i = 0; i < SF_NTXDESC; i++) {
1177 		ds = &sc->sc_txsoft[i];
1178 		if (ds->ds_mbuf != NULL) {
1179 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1180 			m_freem(ds->ds_mbuf);
1181 			ds->ds_mbuf = NULL;
1182 		}
1183 	}
1184 
1185 	if (disable)
1186 		sf_rxdrain(sc);
1187 
1188 	/*
1189 	 * Mark the interface down and cancel the watchdog timer.
1190 	 */
1191 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1192 	ifp->if_timer = 0;
1193 }
1194 
1195 /*
1196  * sf_read_eeprom:
1197  *
1198  *	Read from the Starfire EEPROM.
1199  */
1200 static uint8_t
1201 sf_read_eeprom(struct sf_softc *sc, int offset)
1202 {
1203 	uint32_t reg;
1204 
1205 	reg = sf_genreg_read(sc, SF_EEPROM_BASE + (offset & ~3));
1206 
1207 	return ((reg >> (8 * (offset & 3))) & 0xff);
1208 }
1209 
1210 /*
1211  * sf_add_rxbuf:
1212  *
1213  *	Add a receive buffer to the indicated descriptor.
1214  */
1215 static int
1216 sf_add_rxbuf(struct sf_softc *sc, int idx)
1217 {
1218 	struct sf_descsoft *ds = &sc->sc_rxsoft[idx];
1219 	struct mbuf *m;
1220 	int error;
1221 
1222 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1223 	if (m == NULL)
1224 		return (ENOBUFS);
1225 
1226 	MCLGET(m, M_DONTWAIT);
1227 	if ((m->m_flags & M_EXT) == 0) {
1228 		m_freem(m);
1229 		return (ENOBUFS);
1230 	}
1231 
1232 	if (ds->ds_mbuf != NULL)
1233 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1234 
1235 	ds->ds_mbuf = m;
1236 
1237 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1238 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1239 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1240 	if (error) {
1241 		printf("%s: can't load rx DMA map %d, error = %d\n",
1242 		    sc->sc_dev.dv_xname, idx, error);
1243 		panic("sf_add_rxbuf"); /* XXX */
1244 	}
1245 
1246 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1247 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1248 
1249 	SF_INIT_RXDESC(sc, idx);
1250 
1251 	return (0);
1252 }
1253 
1254 static void
1255 sf_set_filter_perfect(struct sf_softc *sc, int slot, const uint8_t *enaddr)
1256 {
1257 	uint32_t reg0, reg1, reg2;
1258 
1259 	reg0 = enaddr[5] | (enaddr[4] << 8);
1260 	reg1 = enaddr[3] | (enaddr[2] << 8);
1261 	reg2 = enaddr[1] | (enaddr[0] << 8);
1262 
1263 	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 0, reg0);
1264 	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 4, reg1);
1265 	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 8, reg2);
1266 }
1267 
1268 static void
1269 sf_set_filter_hash(struct sf_softc *sc, uint8_t *enaddr)
1270 {
1271 	uint32_t hash, slot, reg;
1272 
1273 	hash = ether_crc32_be(enaddr, ETHER_ADDR_LEN) >> 23;
1274 	slot = hash >> 4;
1275 
1276 	reg = sf_genreg_read(sc, SF_HASH_BASE + (slot * 0x10));
1277 	reg |= 1 << (hash & 0xf);
1278 	sf_genreg_write(sc, SF_HASH_BASE + (slot * 0x10), reg);
1279 }
1280 
1281 /*
1282  * sf_set_filter:
1283  *
1284  *	Set the Starfire receive filter.
1285  */
1286 static void
1287 sf_set_filter(struct sf_softc *sc)
1288 {
1289 	struct ethercom *ec = &sc->sc_ethercom;
1290 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1291 	struct ether_multi *enm;
1292 	struct ether_multistep step;
1293 	int i;
1294 
1295 	/* Start by clearing the perfect and hash tables. */
1296 	for (i = 0; i < SF_PERFECT_SIZE; i += sizeof(uint32_t))
1297 		sf_genreg_write(sc, SF_PERFECT_BASE + i, 0);
1298 
1299 	for (i = 0; i < SF_HASH_SIZE; i += sizeof(uint32_t))
1300 		sf_genreg_write(sc, SF_HASH_BASE + i, 0);
1301 
1302 	/*
1303 	 * Clear the perfect and hash mode bits.
1304 	 */
1305 	sc->sc_RxAddressFilteringCtl &=
1306 	    ~(RAFC_PerfectFilteringMode(3) | RAFC_HashFilteringMode(3));
1307 
1308 	if (ifp->if_flags & IFF_BROADCAST)
1309 		sc->sc_RxAddressFilteringCtl |= RAFC_PassBroadcast;
1310 	else
1311 		sc->sc_RxAddressFilteringCtl &= ~RAFC_PassBroadcast;
1312 
1313 	if (ifp->if_flags & IFF_PROMISC) {
1314 		sc->sc_RxAddressFilteringCtl |= RAFC_PromiscuousMode;
1315 		goto allmulti;
1316 	} else
1317 		sc->sc_RxAddressFilteringCtl &= ~RAFC_PromiscuousMode;
1318 
1319 	/*
1320 	 * Set normal perfect filtering mode.
1321 	 */
1322 	sc->sc_RxAddressFilteringCtl |= RAFC_PerfectFilteringMode(1);
1323 
1324 	/*
1325 	 * First, write the station address to the perfect filter
1326 	 * table.
1327 	 */
1328 	sf_set_filter_perfect(sc, 0, CLLADDR(ifp->if_sadl));
1329 
1330 	/*
1331 	 * Now set the hash bits for each multicast address in our
1332 	 * list.
1333 	 */
1334 	ETHER_FIRST_MULTI(step, ec, enm);
1335 	if (enm == NULL)
1336 		goto done;
1337 	while (enm != NULL) {
1338 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1339 			/*
1340 			 * We must listen to a range of multicast addresses.
1341 			 * For now, just accept all multicasts, rather than
1342 			 * trying to set only those filter bits needed to match
1343 			 * the range.  (At this time, the only use of address
1344 			 * ranges is for IP multicast routing, for which the
1345 			 * range is big enough to require all bits set.)
1346 			 */
1347 			goto allmulti;
1348 		}
1349 		sf_set_filter_hash(sc, enm->enm_addrlo);
1350 		ETHER_NEXT_MULTI(step, enm);
1351 	}
1352 
1353 	/*
1354 	 * Set "hash only multicast dest, match regardless of VLAN ID".
1355 	 */
1356 	sc->sc_RxAddressFilteringCtl |= RAFC_HashFilteringMode(2);
1357 	goto done;
1358 
1359  allmulti:
1360 	/*
1361 	 * XXX RAFC_PassMulticast is sub-optimal if using VLAN mode.
1362 	 */
1363 	sc->sc_RxAddressFilteringCtl |= RAFC_PassMulticast;
1364 	ifp->if_flags |= IFF_ALLMULTI;
1365 
1366  done:
1367 	sf_funcreg_write(sc, SF_RxAddressFilteringCtl,
1368 	    sc->sc_RxAddressFilteringCtl);
1369 }
1370 
1371 /*
1372  * sf_mii_read:		[mii interface function]
1373  *
1374  *	Read from the MII.
1375  */
1376 static int
1377 sf_mii_read(struct device *self, int phy, int reg)
1378 {
1379 	struct sf_softc *sc = (void *) self;
1380 	uint32_t v;
1381 	int i;
1382 
1383 	for (i = 0; i < 1000; i++) {
1384 		v = sf_genreg_read(sc, SF_MII_PHY_REG(phy, reg));
1385 		if (v & MiiDataValid)
1386 			break;
1387 		delay(1);
1388 	}
1389 
1390 	if ((v & MiiDataValid) == 0)
1391 		return (0);
1392 
1393 	if (MiiRegDataPort(v) == 0xffff)
1394 		return (0);
1395 
1396 	return (MiiRegDataPort(v));
1397 }
1398 
1399 /*
1400  * sf_mii_write:	[mii interface function]
1401  *
1402  *	Write to the MII.
1403  */
1404 static void
1405 sf_mii_write(struct device *self, int phy, int reg, int val)
1406 {
1407 	struct sf_softc *sc = (void *) self;
1408 	int i;
1409 
1410 	sf_genreg_write(sc, SF_MII_PHY_REG(phy, reg), val);
1411 
1412 	for (i = 0; i < 1000; i++) {
1413 		if ((sf_genreg_read(sc, SF_MII_PHY_REG(phy, reg)) &
1414 		     MiiBusy) == 0)
1415 			return;
1416 		delay(1);
1417 	}
1418 
1419 	printf("%s: MII write timed out\n", sc->sc_dev.dv_xname);
1420 }
1421 
1422 /*
1423  * sf_mii_statchg:	[mii interface function]
1424  *
1425  *	Callback from the PHY when the media changes.
1426  */
1427 static void
1428 sf_mii_statchg(struct device *self)
1429 {
1430 	struct sf_softc *sc = (void *) self;
1431 	uint32_t ipg;
1432 
1433 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
1434 		sc->sc_MacConfig1 |= MC1_FullDuplex;
1435 		ipg = 0x15;
1436 	} else {
1437 		sc->sc_MacConfig1 &= ~MC1_FullDuplex;
1438 		ipg = 0x11;
1439 	}
1440 
1441 	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1);
1442 	sf_macreset(sc);
1443 
1444 	sf_genreg_write(sc, SF_BkToBkIPG, ipg);
1445 }
1446 
1447 /*
1448  * sf_mediastatus:	[ifmedia interface function]
1449  *
1450  *	Callback from ifmedia to request current media status.
1451  */
1452 static void
1453 sf_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1454 {
1455 	struct sf_softc *sc = ifp->if_softc;
1456 
1457 	mii_pollstat(&sc->sc_mii);
1458 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1459 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1460 }
1461 
1462 /*
1463  * sf_mediachange:	[ifmedia interface function]
1464  *
1465  *	Callback from ifmedia to request new media setting.
1466  */
1467 static int
1468 sf_mediachange(struct ifnet *ifp)
1469 {
1470 	struct sf_softc *sc = ifp->if_softc;
1471 
1472 	if (ifp->if_flags & IFF_UP)
1473 		mii_mediachg(&sc->sc_mii);
1474 	return (0);
1475 }
1476