xref: /netbsd-src/sys/dev/ic/aic6915.c (revision 7f21db1c0118155e0dd40b75182e30c589d9f63e)
1 /*	$NetBSD: aic6915.c,v 1.26 2010/01/19 22:06:24 pooka Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Device driver for the Adaptec AIC-6915 (``Starfire'')
34  * 10/100 Ethernet controller.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: aic6915.c,v 1.26 2010/01/19 22:06:24 pooka Exp $");
39 
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/device.h>
51 
52 #include <uvm/uvm_extern.h>
53 
54 #include <net/if.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/if_ether.h>
58 
59 #include <net/bpf.h>
60 
61 #include <sys/bus.h>
62 #include <sys/intr.h>
63 
64 #include <dev/mii/miivar.h>
65 
66 #include <dev/ic/aic6915reg.h>
67 #include <dev/ic/aic6915var.h>
68 
69 static void	sf_start(struct ifnet *);
70 static void	sf_watchdog(struct ifnet *);
71 static int	sf_ioctl(struct ifnet *, u_long, void *);
72 static int	sf_init(struct ifnet *);
73 static void	sf_stop(struct ifnet *, int);
74 
75 static bool	sf_shutdown(device_t, int);
76 
77 static void	sf_txintr(struct sf_softc *);
78 static void	sf_rxintr(struct sf_softc *);
79 static void	sf_stats_update(struct sf_softc *);
80 
81 static void	sf_reset(struct sf_softc *);
82 static void	sf_macreset(struct sf_softc *);
83 static void	sf_rxdrain(struct sf_softc *);
84 static int	sf_add_rxbuf(struct sf_softc *, int);
85 static uint8_t	sf_read_eeprom(struct sf_softc *, int);
86 static void	sf_set_filter(struct sf_softc *);
87 
88 static int	sf_mii_read(device_t, int, int);
89 static void	sf_mii_write(device_t, int, int, int);
90 static void	sf_mii_statchg(device_t);
91 
92 static void	sf_tick(void *);
93 
94 #define	sf_funcreg_read(sc, reg)					\
95 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh_func, (reg))
96 #define	sf_funcreg_write(sc, reg, val)					\
97 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh_func, (reg), (val))
98 
99 static inline uint32_t
100 sf_reg_read(struct sf_softc *sc, bus_addr_t reg)
101 {
102 
103 	if (__predict_false(sc->sc_iomapped)) {
104 		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoAccess,
105 		    reg);
106 		return (bus_space_read_4(sc->sc_st, sc->sc_sh,
107 		    SF_IndirectIoDataPort));
108 	}
109 
110 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, reg));
111 }
112 
113 static inline void
114 sf_reg_write(struct sf_softc *sc, bus_addr_t reg, uint32_t val)
115 {
116 
117 	if (__predict_false(sc->sc_iomapped)) {
118 		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoAccess,
119 		    reg);
120 		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoDataPort,
121 		    val);
122 		return;
123 	}
124 
125 	bus_space_write_4(sc->sc_st, sc->sc_sh, reg, val);
126 }
127 
128 #define	sf_genreg_read(sc, reg)						\
129 	sf_reg_read((sc), (reg) + SF_GENREG_OFFSET)
130 #define	sf_genreg_write(sc, reg, val)					\
131 	sf_reg_write((sc), (reg) + SF_GENREG_OFFSET, (val))
132 
133 /*
134  * sf_attach:
135  *
136  *	Attach a Starfire interface to the system.
137  */
138 void
139 sf_attach(struct sf_softc *sc)
140 {
141 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
142 	int i, rseg, error;
143 	bus_dma_segment_t seg;
144 	u_int8_t enaddr[ETHER_ADDR_LEN];
145 
146 	callout_init(&sc->sc_tick_callout, 0);
147 
148 	/*
149 	 * If we're I/O mapped, the functional register handle is
150 	 * the same as the base handle.  If we're memory mapped,
151 	 * carve off a chunk of the register space for the functional
152 	 * registers, to save on arithmetic later.
153 	 */
154 	if (sc->sc_iomapped)
155 		sc->sc_sh_func = sc->sc_sh;
156 	else {
157 		if ((error = bus_space_subregion(sc->sc_st, sc->sc_sh,
158 		    SF_GENREG_OFFSET, SF_FUNCREG_SIZE, &sc->sc_sh_func)) != 0) {
159 			aprint_error_dev(&sc->sc_dev, "unable to sub-region functional "
160 			    "registers, error = %d\n",
161 			    error);
162 			return;
163 		}
164 	}
165 
166 	/*
167 	 * Initialize the transmit threshold for this interface.  The
168 	 * manual describes the default as 4 * 16 bytes.  We start out
169 	 * at 10 * 16 bytes, to avoid a bunch of initial underruns on
170 	 * several platforms.
171 	 */
172 	sc->sc_txthresh = 10;
173 
174 	/*
175 	 * Allocate the control data structures, and create and load the
176 	 * DMA map for it.
177 	 */
178 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
179 	    sizeof(struct sf_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
180 	    BUS_DMA_NOWAIT)) != 0) {
181 		aprint_error_dev(&sc->sc_dev, "unable to allocate control data, error = %d\n",
182 		    error);
183 		goto fail_0;
184 	}
185 
186 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
187 	    sizeof(struct sf_control_data), (void **)&sc->sc_control_data,
188 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
189 		aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
190 		    error);
191 		goto fail_1;
192 	}
193 
194 	if ((error = bus_dmamap_create(sc->sc_dmat,
195 	    sizeof(struct sf_control_data), 1,
196 	    sizeof(struct sf_control_data), 0, BUS_DMA_NOWAIT,
197 	    &sc->sc_cddmamap)) != 0) {
198 		aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
199 		    "error = %d\n", error);
200 		goto fail_2;
201 	}
202 
203 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
204 	    sc->sc_control_data, sizeof(struct sf_control_data), NULL,
205 	    BUS_DMA_NOWAIT)) != 0) {
206 		aprint_error_dev(&sc->sc_dev, "unable to load control data DMA map, error = %d\n",
207 		    error);
208 		goto fail_3;
209 	}
210 
211 	/*
212 	 * Create the transmit buffer DMA maps.
213 	 */
214 	for (i = 0; i < SF_NTXDESC; i++) {
215 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
216 		    SF_NTXFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
217 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
218 			aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
219 			    "error = %d\n", i, error);
220 			goto fail_4;
221 		}
222 	}
223 
224 	/*
225 	 * Create the receive buffer DMA maps.
226 	 */
227 	for (i = 0; i < SF_NRXDESC; i++) {
228 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
229 		    MCLBYTES, 0, BUS_DMA_NOWAIT,
230 		    &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
231 			aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
232 			    "error = %d\n", i, error);
233 			goto fail_5;
234 		}
235 	}
236 
237 	/*
238 	 * Reset the chip to a known state.
239 	 */
240 	sf_reset(sc);
241 
242 	/*
243 	 * Read the Ethernet address from the EEPROM.
244 	 */
245 	for (i = 0; i < ETHER_ADDR_LEN; i++)
246 		enaddr[i] = sf_read_eeprom(sc, (15 + (ETHER_ADDR_LEN - 1)) - i);
247 
248 	printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
249 	    ether_sprintf(enaddr));
250 
251 	if (sf_funcreg_read(sc, SF_PciDeviceConfig) & PDC_System64)
252 		printf("%s: 64-bit PCI slot detected\n", device_xname(&sc->sc_dev));
253 
254 	/*
255 	 * Initialize our media structures and probe the MII.
256 	 */
257 	sc->sc_mii.mii_ifp = ifp;
258 	sc->sc_mii.mii_readreg = sf_mii_read;
259 	sc->sc_mii.mii_writereg = sf_mii_write;
260 	sc->sc_mii.mii_statchg = sf_mii_statchg;
261 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
262 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
263 	    ether_mediastatus);
264 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
265 	    MII_OFFSET_ANY, 0);
266 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
267 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
268 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
269 	} else
270 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
271 
272 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
273 	ifp->if_softc = sc;
274 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
275 	ifp->if_ioctl = sf_ioctl;
276 	ifp->if_start = sf_start;
277 	ifp->if_watchdog = sf_watchdog;
278 	ifp->if_init = sf_init;
279 	ifp->if_stop = sf_stop;
280 	IFQ_SET_READY(&ifp->if_snd);
281 
282 	/*
283 	 * Attach the interface.
284 	 */
285 	if_attach(ifp);
286 	ether_ifattach(ifp, enaddr);
287 
288 	/*
289 	 * Make sure the interface is shutdown during reboot.
290 	 */
291 	if (pmf_device_register1(&sc->sc_dev, NULL, NULL, sf_shutdown))
292 		pmf_class_network_register(&sc->sc_dev, ifp);
293 	else
294 		aprint_error_dev(&sc->sc_dev,
295 		    "couldn't establish power handler\n");
296 	return;
297 
298 	/*
299 	 * Free any resources we've allocated during the failed attach
300 	 * attempt.  Do this in reverse order an fall through.
301 	 */
302  fail_5:
303 	for (i = 0; i < SF_NRXDESC; i++) {
304 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
305 			bus_dmamap_destroy(sc->sc_dmat,
306 			    sc->sc_rxsoft[i].ds_dmamap);
307 	}
308  fail_4:
309 	for (i = 0; i < SF_NTXDESC; i++) {
310 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
311 			bus_dmamap_destroy(sc->sc_dmat,
312 			    sc->sc_txsoft[i].ds_dmamap);
313 	}
314 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
315  fail_3:
316 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
317  fail_2:
318 	bus_dmamem_unmap(sc->sc_dmat, (void *) sc->sc_control_data,
319 	    sizeof(struct sf_control_data));
320  fail_1:
321 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
322  fail_0:
323 	return;
324 }
325 
326 /*
327  * sf_shutdown:
328  *
329  *	Shutdown hook -- make sure the interface is stopped at reboot.
330  */
331 static bool
332 sf_shutdown(device_t self, int howto)
333 {
334 	struct sf_softc *sc;
335 
336 	sc = device_private(self);
337 	sf_stop(&sc->sc_ethercom.ec_if, 1);
338 
339 	return true;
340 }
341 
342 /*
343  * sf_start:		[ifnet interface function]
344  *
345  *	Start packet transmission on the interface.
346  */
347 static void
348 sf_start(struct ifnet *ifp)
349 {
350 	struct sf_softc *sc = ifp->if_softc;
351 	struct mbuf *m0, *m;
352 	struct sf_txdesc0 *txd;
353 	struct sf_descsoft *ds;
354 	bus_dmamap_t dmamap;
355 	int error, producer, last = -1, opending, seg;
356 
357 	/*
358 	 * Remember the previous number of pending transmits.
359 	 */
360 	opending = sc->sc_txpending;
361 
362 	/*
363 	 * Find out where we're sitting.
364 	 */
365 	producer = SF_TXDINDEX_TO_HOST(
366 	    TDQPI_HiPrTxProducerIndex_get(
367 	    sf_funcreg_read(sc, SF_TxDescQueueProducerIndex)));
368 
369 	/*
370 	 * Loop through the send queue, setting up transmit descriptors
371 	 * until we drain the queue, or use up all available transmit
372 	 * descriptors.  Leave a blank one at the end for sanity's sake.
373 	 */
374 	while (sc->sc_txpending < (SF_NTXDESC - 1)) {
375 		/*
376 		 * Grab a packet off the queue.
377 		 */
378 		IFQ_POLL(&ifp->if_snd, m0);
379 		if (m0 == NULL)
380 			break;
381 		m = NULL;
382 
383 		/*
384 		 * Get the transmit descriptor.
385 		 */
386 		txd = &sc->sc_txdescs[producer];
387 		ds = &sc->sc_txsoft[producer];
388 		dmamap = ds->ds_dmamap;
389 
390 		/*
391 		 * Load the DMA map.  If this fails, the packet either
392 		 * didn't fit in the allotted number of frags, or we were
393 		 * short on resources.  In this case, we'll copy and try
394 		 * again.
395 		 */
396 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
397 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
398 			MGETHDR(m, M_DONTWAIT, MT_DATA);
399 			if (m == NULL) {
400 				aprint_error_dev(&sc->sc_dev, "unable to allocate Tx mbuf\n");
401 				break;
402 			}
403 			if (m0->m_pkthdr.len > MHLEN) {
404 				MCLGET(m, M_DONTWAIT);
405 				if ((m->m_flags & M_EXT) == 0) {
406 					aprint_error_dev(&sc->sc_dev, "unable to allocate Tx "
407 					    "cluster\n");
408 					m_freem(m);
409 					break;
410 				}
411 			}
412 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
413 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
414 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
415 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
416 			if (error) {
417 				aprint_error_dev(&sc->sc_dev, "unable to load Tx buffer, "
418 				    "error = %d\n", error);
419 				break;
420 			}
421 		}
422 
423 		/*
424 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
425 		 */
426 		IFQ_DEQUEUE(&ifp->if_snd, m0);
427 		if (m != NULL) {
428 			m_freem(m0);
429 			m0 = m;
430 		}
431 
432 		/* Initialize the descriptor. */
433 		txd->td_word0 =
434 		    htole32(TD_W0_ID | TD_W0_CRCEN | m0->m_pkthdr.len);
435 		if (producer == (SF_NTXDESC - 1))
436 			txd->td_word0 |= TD_W0_END;
437 		txd->td_word1 = htole32(dmamap->dm_nsegs);
438 		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
439 			txd->td_frags[seg].fr_addr =
440 			    htole32(dmamap->dm_segs[seg].ds_addr);
441 			txd->td_frags[seg].fr_len =
442 			    htole32(dmamap->dm_segs[seg].ds_len);
443 		}
444 
445 		/* Sync the descriptor and the DMA map. */
446 		SF_CDTXDSYNC(sc, producer, BUS_DMASYNC_PREWRITE);
447 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
448 		    BUS_DMASYNC_PREWRITE);
449 
450 		/*
451 		 * Store a pointer to the packet so we can free it later.
452 		 */
453 		ds->ds_mbuf = m0;
454 
455 		/* Advance the Tx pointer. */
456 		sc->sc_txpending++;
457 		last = producer;
458 		producer = SF_NEXTTX(producer);
459 
460 		/*
461 		 * Pass the packet to any BPF listeners.
462 		 */
463 		if (ifp->if_bpf)
464 			bpf_ops->bpf_mtap(ifp->if_bpf, m0);
465 	}
466 
467 	if (sc->sc_txpending == (SF_NTXDESC - 1)) {
468 		/* No more slots left; notify upper layer. */
469 		ifp->if_flags |= IFF_OACTIVE;
470 	}
471 
472 	if (sc->sc_txpending != opending) {
473 		KASSERT(last != -1);
474 		/*
475 		 * We enqueued packets.  Cause a transmit interrupt to
476 		 * happen on the last packet we enqueued, and give the
477 		 * new descriptors to the chip by writing the new
478 		 * producer index.
479 		 */
480 		sc->sc_txdescs[last].td_word0 |= TD_W0_INTR;
481 		SF_CDTXDSYNC(sc, last, BUS_DMASYNC_PREWRITE);
482 
483 		sf_funcreg_write(sc, SF_TxDescQueueProducerIndex,
484 		    TDQPI_HiPrTxProducerIndex(SF_TXDINDEX_TO_CHIP(producer)));
485 
486 		/* Set a watchdog timer in case the chip flakes out. */
487 		ifp->if_timer = 5;
488 	}
489 }
490 
491 /*
492  * sf_watchdog:		[ifnet interface function]
493  *
494  *	Watchdog timer handler.
495  */
496 static void
497 sf_watchdog(struct ifnet *ifp)
498 {
499 	struct sf_softc *sc = ifp->if_softc;
500 
501 	printf("%s: device timeout\n", device_xname(&sc->sc_dev));
502 	ifp->if_oerrors++;
503 
504 	(void) sf_init(ifp);
505 
506 	/* Try to get more packets going. */
507 	sf_start(ifp);
508 }
509 
510 /*
511  * sf_ioctl:		[ifnet interface function]
512  *
513  *	Handle control requests from the operator.
514  */
515 static int
516 sf_ioctl(struct ifnet *ifp, u_long cmd, void *data)
517 {
518 	struct sf_softc *sc = ifp->if_softc;
519 	int s, error;
520 
521 	s = splnet();
522 
523 	error = ether_ioctl(ifp, cmd, data);
524 	if (error == ENETRESET) {
525 		/*
526 		 * Multicast list has changed; set the hardware filter
527 		 * accordingly.
528 		 */
529 		if (ifp->if_flags & IFF_RUNNING)
530 			sf_set_filter(sc);
531 		error = 0;
532 	}
533 
534 	/* Try to get more packets going. */
535 	sf_start(ifp);
536 
537 	splx(s);
538 	return (error);
539 }
540 
541 /*
542  * sf_intr:
543  *
544  *	Interrupt service routine.
545  */
546 int
547 sf_intr(void *arg)
548 {
549 	struct sf_softc *sc = arg;
550 	uint32_t isr;
551 	int handled = 0, wantinit = 0;
552 
553 	for (;;) {
554 		/* Reading clears all interrupts we're interested in. */
555 		isr = sf_funcreg_read(sc, SF_InterruptStatus);
556 		if ((isr & IS_PCIPadInt) == 0)
557 			break;
558 
559 		handled = 1;
560 
561 		/* Handle receive interrupts. */
562 		if (isr & IS_RxQ1DoneInt)
563 			sf_rxintr(sc);
564 
565 		/* Handle transmit completion interrupts. */
566 		if (isr & (IS_TxDmaDoneInt|IS_TxQueueDoneInt))
567 			sf_txintr(sc);
568 
569 		/* Handle abnormal interrupts. */
570 		if (isr & IS_AbnormalInterrupt) {
571 			/* Statistics. */
572 			if (isr & IS_StatisticWrapInt)
573 				sf_stats_update(sc);
574 
575 			/* DMA errors. */
576 			if (isr & IS_DmaErrInt) {
577 				wantinit = 1;
578 				aprint_error_dev(&sc->sc_dev, "WARNING: DMA error\n");
579 			}
580 
581 			/* Transmit FIFO underruns. */
582 			if (isr & IS_TxDataLowInt) {
583 				if (sc->sc_txthresh < 0xff)
584 					sc->sc_txthresh++;
585 				printf("%s: transmit FIFO underrun, new "
586 				    "threshold: %d bytes\n",
587 				    device_xname(&sc->sc_dev),
588 				    sc->sc_txthresh * 16);
589 				sf_funcreg_write(sc, SF_TransmitFrameCSR,
590 				    sc->sc_TransmitFrameCSR |
591 				    TFCSR_TransmitThreshold(sc->sc_txthresh));
592 				sf_funcreg_write(sc, SF_TxDescQueueCtrl,
593 				    sc->sc_TxDescQueueCtrl |
594 				    TDQC_TxHighPriorityFifoThreshold(
595 							sc->sc_txthresh));
596 			}
597 		}
598 	}
599 
600 	if (handled) {
601 		/* Reset the interface, if necessary. */
602 		if (wantinit)
603 			sf_init(&sc->sc_ethercom.ec_if);
604 
605 		/* Try and get more packets going. */
606 		sf_start(&sc->sc_ethercom.ec_if);
607 	}
608 
609 	return (handled);
610 }
611 
612 /*
613  * sf_txintr:
614  *
615  *	Helper -- handle transmit completion interrupts.
616  */
617 static void
618 sf_txintr(struct sf_softc *sc)
619 {
620 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
621 	struct sf_descsoft *ds;
622 	uint32_t cqci, tcd;
623 	int consumer, producer, txidx;
624 
625  try_again:
626 	cqci = sf_funcreg_read(sc, SF_CompletionQueueConsumerIndex);
627 
628 	consumer = CQCI_TxCompletionConsumerIndex_get(cqci);
629 	producer = CQPI_TxCompletionProducerIndex_get(
630 	    sf_funcreg_read(sc, SF_CompletionQueueProducerIndex));
631 
632 	if (consumer == producer)
633 		return;
634 
635 	ifp->if_flags &= ~IFF_OACTIVE;
636 
637 	while (consumer != producer) {
638 		SF_CDTXCSYNC(sc, consumer, BUS_DMASYNC_POSTREAD);
639 		tcd = le32toh(sc->sc_txcomp[consumer].tcd_word0);
640 
641 		txidx = SF_TCD_INDEX_TO_HOST(TCD_INDEX(tcd));
642 #ifdef DIAGNOSTIC
643 		if ((tcd & TCD_PR) == 0)
644 			aprint_error_dev(&sc->sc_dev, "Tx queue mismatch, index %d\n",
645 			    txidx);
646 #endif
647 		/*
648 		 * NOTE: stats are updated later.  We're just
649 		 * releasing packets that have been DMA'd to
650 		 * the chip.
651 		 */
652 		ds = &sc->sc_txsoft[txidx];
653 		SF_CDTXDSYNC(sc, txidx, BUS_DMASYNC_POSTWRITE);
654 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
655 		    0, ds->ds_dmamap->dm_mapsize,
656 		    BUS_DMASYNC_POSTWRITE);
657 		m_freem(ds->ds_mbuf);
658 		ds->ds_mbuf = NULL;
659 
660 		consumer = SF_NEXTTCD(consumer);
661 		sc->sc_txpending--;
662 	}
663 
664 	/* XXXJRT -- should be KDASSERT() */
665 	KASSERT(sc->sc_txpending >= 0);
666 
667 	/* If all packets are done, cancel the watchdog timer. */
668 	if (sc->sc_txpending == 0)
669 		ifp->if_timer = 0;
670 
671 	/* Update the consumer index. */
672 	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
673 	    (cqci & ~CQCI_TxCompletionConsumerIndex(0x7ff)) |
674 	     CQCI_TxCompletionConsumerIndex(consumer));
675 
676 	/* Double check for new completions. */
677 	goto try_again;
678 }
679 
680 /*
681  * sf_rxintr:
682  *
683  *	Helper -- handle receive interrupts.
684  */
685 static void
686 sf_rxintr(struct sf_softc *sc)
687 {
688 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
689 	struct sf_descsoft *ds;
690 	struct sf_rcd_full *rcd;
691 	struct mbuf *m;
692 	uint32_t cqci, word0;
693 	int consumer, producer, bufproducer, rxidx, len;
694 
695  try_again:
696 	cqci = sf_funcreg_read(sc, SF_CompletionQueueConsumerIndex);
697 
698 	consumer = CQCI_RxCompletionQ1ConsumerIndex_get(cqci);
699 	producer = CQPI_RxCompletionQ1ProducerIndex_get(
700 	    sf_funcreg_read(sc, SF_CompletionQueueProducerIndex));
701 	bufproducer = RXQ1P_RxDescQ1Producer_get(
702 	    sf_funcreg_read(sc, SF_RxDescQueue1Ptrs));
703 
704 	if (consumer == producer)
705 		return;
706 
707 	while (consumer != producer) {
708 		rcd = &sc->sc_rxcomp[consumer];
709 		SF_CDRXCSYNC(sc, consumer,
710 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
711 		SF_CDRXCSYNC(sc, consumer,
712 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
713 
714 		word0 = le32toh(rcd->rcd_word0);
715 		rxidx = RCD_W0_EndIndex(word0);
716 
717 		ds = &sc->sc_rxsoft[rxidx];
718 
719 		consumer = SF_NEXTRCD(consumer);
720 		bufproducer = SF_NEXTRX(bufproducer);
721 
722 		if ((word0 & RCD_W0_OK) == 0) {
723 			SF_INIT_RXDESC(sc, rxidx);
724 			continue;
725 		}
726 
727 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
728 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
729 
730 		/*
731 		 * No errors; receive the packet.  Note that we have
732 		 * configured the Starfire to NOT transfer the CRC
733 		 * with the packet.
734 		 */
735 		len = RCD_W0_Length(word0);
736 
737 #ifdef __NO_STRICT_ALIGNMENT
738 		/*
739 		 * Allocate a new mbuf cluster.  If that fails, we are
740 		 * out of memory, and must drop the packet and recycle
741 		 * the buffer that's already attached to this descriptor.
742 		 */
743 		m = ds->ds_mbuf;
744 		if (sf_add_rxbuf(sc, rxidx) != 0) {
745 			ifp->if_ierrors++;
746 			SF_INIT_RXDESC(sc, rxidx);
747 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
748 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
749 			continue;
750 		}
751 #else
752 		/*
753 		 * The Starfire's receive buffer must be 4-byte aligned.
754 		 * But this means that the data after the Ethernet header
755 		 * is misaligned.  We must allocate a new buffer and
756 		 * copy the data, shifted forward 2 bytes.
757 		 */
758 		MGETHDR(m, M_DONTWAIT, MT_DATA);
759 		if (m == NULL) {
760  dropit:
761 			ifp->if_ierrors++;
762 			SF_INIT_RXDESC(sc, rxidx);
763 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
764 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
765 			continue;
766 		}
767 		if (len > (MHLEN - 2)) {
768 			MCLGET(m, M_DONTWAIT);
769 			if ((m->m_flags & M_EXT) == 0) {
770 				m_freem(m);
771 				goto dropit;
772 			}
773 		}
774 		m->m_data += 2;
775 
776 		/*
777 		 * Note that we use cluster for incoming frames, so the
778 		 * buffer is virtually contiguous.
779 		 */
780 		memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *), len);
781 
782 		/* Allow the receive descriptor to continue using its mbuf. */
783 		SF_INIT_RXDESC(sc, rxidx);
784 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
785 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
786 #endif /* __NO_STRICT_ALIGNMENT */
787 
788 		m->m_pkthdr.rcvif = ifp;
789 		m->m_pkthdr.len = m->m_len = len;
790 
791 		/*
792 		 * Pass this up to any BPF listeners.
793 		 */
794 		if (ifp->if_bpf)
795 			bpf_ops->bpf_mtap(ifp->if_bpf, m);
796 
797 		/* Pass it on. */
798 		(*ifp->if_input)(ifp, m);
799 	}
800 
801 	/* Update the chip's pointers. */
802 	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
803 	    (cqci & ~CQCI_RxCompletionQ1ConsumerIndex(0x7ff)) |
804 	     CQCI_RxCompletionQ1ConsumerIndex(consumer));
805 	sf_funcreg_write(sc, SF_RxDescQueue1Ptrs,
806 	    RXQ1P_RxDescQ1Producer(bufproducer));
807 
808 	/* Double-check for any new completions. */
809 	goto try_again;
810 }
811 
812 /*
813  * sf_tick:
814  *
815  *	One second timer, used to tick the MII and update stats.
816  */
817 static void
818 sf_tick(void *arg)
819 {
820 	struct sf_softc *sc = arg;
821 	int s;
822 
823 	s = splnet();
824 	mii_tick(&sc->sc_mii);
825 	sf_stats_update(sc);
826 	splx(s);
827 
828 	callout_reset(&sc->sc_tick_callout, hz, sf_tick, sc);
829 }
830 
831 /*
832  * sf_stats_update:
833  *
834  *	Read the statitistics counters.
835  */
836 static void
837 sf_stats_update(struct sf_softc *sc)
838 {
839 	struct sf_stats stats;
840 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
841 	uint32_t *p;
842 	u_int i;
843 
844 	p = &stats.TransmitOKFrames;
845 	for (i = 0; i < (sizeof(stats) / sizeof(uint32_t)); i++) {
846 		*p++ = sf_genreg_read(sc,
847 		    SF_STATS_BASE + (i * sizeof(uint32_t)));
848 		sf_genreg_write(sc, SF_STATS_BASE + (i * sizeof(uint32_t)), 0);
849 	}
850 
851 	ifp->if_opackets += stats.TransmitOKFrames;
852 
853 	ifp->if_collisions += stats.SingleCollisionFrames +
854 	    stats.MultipleCollisionFrames;
855 
856 	ifp->if_oerrors += stats.TransmitAbortDueToExcessiveCollisions +
857 	    stats.TransmitAbortDueToExcessingDeferral +
858 	    stats.FramesLostDueToInternalTransmitErrors;
859 
860 	ifp->if_ipackets += stats.ReceiveOKFrames;
861 
862 	ifp->if_ierrors += stats.ReceiveCRCErrors + stats.AlignmentErrors +
863 	    stats.ReceiveFramesTooLong + stats.ReceiveFramesTooShort +
864 	    stats.ReceiveFramesJabbersError +
865 	    stats.FramesLostDueToInternalReceiveErrors;
866 }
867 
868 /*
869  * sf_reset:
870  *
871  *	Perform a soft reset on the Starfire.
872  */
873 static void
874 sf_reset(struct sf_softc *sc)
875 {
876 	int i;
877 
878 	sf_funcreg_write(sc, SF_GeneralEthernetCtrl, 0);
879 
880 	sf_macreset(sc);
881 
882 	sf_funcreg_write(sc, SF_PciDeviceConfig, PDC_SoftReset);
883 	for (i = 0; i < 1000; i++) {
884 		delay(10);
885 		if ((sf_funcreg_read(sc, SF_PciDeviceConfig) &
886 		     PDC_SoftReset) == 0)
887 			break;
888 	}
889 
890 	if (i == 1000) {
891 		aprint_error_dev(&sc->sc_dev, "reset failed to complete\n");
892 		sf_funcreg_write(sc, SF_PciDeviceConfig, 0);
893 	}
894 
895 	delay(1000);
896 }
897 
898 /*
899  * sf_macreset:
900  *
901  *	Reset the MAC portion of the Starfire.
902  */
903 static void
904 sf_macreset(struct sf_softc *sc)
905 {
906 
907 	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1 | MC1_SoftRst);
908 	delay(1000);
909 	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1);
910 }
911 
912 /*
913  * sf_init:		[ifnet interface function]
914  *
915  *	Initialize the interface.  Must be called at splnet().
916  */
917 static int
918 sf_init(struct ifnet *ifp)
919 {
920 	struct sf_softc *sc = ifp->if_softc;
921 	struct sf_descsoft *ds;
922 	int error = 0;
923 	u_int i;
924 
925 	/*
926 	 * Cancel any pending I/O.
927 	 */
928 	sf_stop(ifp, 0);
929 
930 	/*
931 	 * Reset the Starfire to a known state.
932 	 */
933 	sf_reset(sc);
934 
935 	/* Clear the stat counters. */
936 	for (i = 0; i < sizeof(struct sf_stats); i += sizeof(uint32_t))
937 		sf_genreg_write(sc, SF_STATS_BASE + i, 0);
938 
939 	/*
940 	 * Initialize the transmit descriptor ring.
941 	 */
942 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
943 	sf_funcreg_write(sc, SF_TxDescQueueHighAddr, 0);
944 	sf_funcreg_write(sc, SF_HiPrTxDescQueueBaseAddr, SF_CDTXDADDR(sc, 0));
945 	sf_funcreg_write(sc, SF_LoPrTxDescQueueBaseAddr, 0);
946 
947 	/*
948 	 * Initialize the transmit completion ring.
949 	 */
950 	for (i = 0; i < SF_NTCD; i++) {
951 		sc->sc_txcomp[i].tcd_word0 = TCD_DMA_ID;
952 		SF_CDTXCSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
953 	}
954 	sf_funcreg_write(sc, SF_CompletionQueueHighAddr, 0);
955 	sf_funcreg_write(sc, SF_TxCompletionQueueCtrl, SF_CDTXCADDR(sc, 0));
956 
957 	/*
958 	 * Initialize the receive descriptor ring.
959 	 */
960 	for (i = 0; i < SF_NRXDESC; i++) {
961 		ds = &sc->sc_rxsoft[i];
962 		if (ds->ds_mbuf == NULL) {
963 			if ((error = sf_add_rxbuf(sc, i)) != 0) {
964 				aprint_error_dev(&sc->sc_dev, "unable to allocate or map rx "
965 				    "buffer %d, error = %d\n",
966 				    i, error);
967 				/*
968 				 * XXX Should attempt to run with fewer receive
969 				 * XXX buffers instead of just failing.
970 				 */
971 				sf_rxdrain(sc);
972 				goto out;
973 			}
974 		} else
975 			SF_INIT_RXDESC(sc, i);
976 	}
977 	sf_funcreg_write(sc, SF_RxDescQueueHighAddress, 0);
978 	sf_funcreg_write(sc, SF_RxDescQueue1LowAddress, SF_CDRXDADDR(sc, 0));
979 	sf_funcreg_write(sc, SF_RxDescQueue2LowAddress, 0);
980 
981 	/*
982 	 * Initialize the receive completion ring.
983 	 */
984 	for (i = 0; i < SF_NRCD; i++) {
985 		sc->sc_rxcomp[i].rcd_word0 = RCD_W0_ID;
986 		sc->sc_rxcomp[i].rcd_word1 = 0;
987 		sc->sc_rxcomp[i].rcd_word2 = 0;
988 		sc->sc_rxcomp[i].rcd_timestamp = 0;
989 		SF_CDRXCSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
990 	}
991 	sf_funcreg_write(sc, SF_RxCompletionQueue1Ctrl, SF_CDRXCADDR(sc, 0) |
992 	    RCQ1C_RxCompletionQ1Type(3));
993 	sf_funcreg_write(sc, SF_RxCompletionQueue2Ctrl, 0);
994 
995 	/*
996 	 * Initialize the Tx CSR.
997 	 */
998 	sc->sc_TransmitFrameCSR = 0;
999 	sf_funcreg_write(sc, SF_TransmitFrameCSR,
1000 	    sc->sc_TransmitFrameCSR |
1001 	    TFCSR_TransmitThreshold(sc->sc_txthresh));
1002 
1003 	/*
1004 	 * Initialize the Tx descriptor control register.
1005 	 */
1006 	sc->sc_TxDescQueueCtrl = TDQC_SkipLength(0) |
1007 	    TDQC_TxDmaBurstSize(4) |	/* default */
1008 	    TDQC_MinFrameSpacing(3) |	/* 128 bytes */
1009 	    TDQC_TxDescType(0);
1010 	sf_funcreg_write(sc, SF_TxDescQueueCtrl,
1011 	    sc->sc_TxDescQueueCtrl |
1012 	    TDQC_TxHighPriorityFifoThreshold(sc->sc_txthresh));
1013 
1014 	/*
1015 	 * Initialize the Rx descriptor control registers.
1016 	 */
1017 	sf_funcreg_write(sc, SF_RxDescQueue1Ctrl,
1018 	    RDQ1C_RxQ1BufferLength(MCLBYTES) |
1019 	    RDQ1C_RxDescSpacing(0));
1020 	sf_funcreg_write(sc, SF_RxDescQueue2Ctrl, 0);
1021 
1022 	/*
1023 	 * Initialize the Tx descriptor producer indices.
1024 	 */
1025 	sf_funcreg_write(sc, SF_TxDescQueueProducerIndex,
1026 	    TDQPI_HiPrTxProducerIndex(0) |
1027 	    TDQPI_LoPrTxProducerIndex(0));
1028 
1029 	/*
1030 	 * Initialize the Rx descriptor producer indices.
1031 	 */
1032 	sf_funcreg_write(sc, SF_RxDescQueue1Ptrs,
1033 	    RXQ1P_RxDescQ1Producer(SF_NRXDESC - 1));
1034 	sf_funcreg_write(sc, SF_RxDescQueue2Ptrs,
1035 	    RXQ2P_RxDescQ2Producer(0));
1036 
1037 	/*
1038 	 * Initialize the Tx and Rx completion queue consumer indices.
1039 	 */
1040 	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
1041 	    CQCI_TxCompletionConsumerIndex(0) |
1042 	    CQCI_RxCompletionQ1ConsumerIndex(0));
1043 	sf_funcreg_write(sc, SF_RxHiPrCompletionPtrs, 0);
1044 
1045 	/*
1046 	 * Initialize the Rx DMA control register.
1047 	 */
1048 	sf_funcreg_write(sc, SF_RxDmaCtrl,
1049 	    RDC_RxHighPriorityThreshold(6) |	/* default */
1050 	    RDC_RxBurstSize(4));		/* default */
1051 
1052 	/*
1053 	 * Set the receive filter.
1054 	 */
1055 	sc->sc_RxAddressFilteringCtl = 0;
1056 	sf_set_filter(sc);
1057 
1058 	/*
1059 	 * Set MacConfig1.  When we set the media, MacConfig1 will
1060 	 * actually be written and the MAC part reset.
1061 	 */
1062 	sc->sc_MacConfig1 = MC1_PadEn;
1063 
1064 	/*
1065 	 * Set the media.
1066 	 */
1067 	if ((error = ether_mediachange(ifp)) != 0)
1068 		goto out;
1069 
1070 	/*
1071 	 * Initialize the interrupt register.
1072 	 */
1073 	sc->sc_InterruptEn = IS_PCIPadInt | IS_RxQ1DoneInt |
1074 	    IS_TxQueueDoneInt | IS_TxDmaDoneInt | IS_DmaErrInt |
1075 	    IS_StatisticWrapInt;
1076 	sf_funcreg_write(sc, SF_InterruptEn, sc->sc_InterruptEn);
1077 
1078 	sf_funcreg_write(sc, SF_PciDeviceConfig, PDC_IntEnable |
1079 	    PDC_PCIMstDmaEn | (1 << PDC_FifoThreshold_SHIFT));
1080 
1081 	/*
1082 	 * Start the transmit and receive processes.
1083 	 */
1084 	sf_funcreg_write(sc, SF_GeneralEthernetCtrl,
1085 	    GEC_TxDmaEn|GEC_RxDmaEn|GEC_TransmitEn|GEC_ReceiveEn);
1086 
1087 	/* Start the on second clock. */
1088 	callout_reset(&sc->sc_tick_callout, hz, sf_tick, sc);
1089 
1090 	/*
1091 	 * Note that the interface is now running.
1092 	 */
1093 	ifp->if_flags |= IFF_RUNNING;
1094 	ifp->if_flags &= ~IFF_OACTIVE;
1095 
1096  out:
1097 	if (error) {
1098 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1099 		ifp->if_timer = 0;
1100 		printf("%s: interface not running\n", device_xname(&sc->sc_dev));
1101 	}
1102 	return (error);
1103 }
1104 
1105 /*
1106  * sf_rxdrain:
1107  *
1108  *	Drain the receive queue.
1109  */
1110 static void
1111 sf_rxdrain(struct sf_softc *sc)
1112 {
1113 	struct sf_descsoft *ds;
1114 	int i;
1115 
1116 	for (i = 0; i < SF_NRXDESC; i++) {
1117 		ds = &sc->sc_rxsoft[i];
1118 		if (ds->ds_mbuf != NULL) {
1119 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1120 			m_freem(ds->ds_mbuf);
1121 			ds->ds_mbuf = NULL;
1122 		}
1123 	}
1124 }
1125 
1126 /*
1127  * sf_stop:		[ifnet interface function]
1128  *
1129  *	Stop transmission on the interface.
1130  */
1131 static void
1132 sf_stop(struct ifnet *ifp, int disable)
1133 {
1134 	struct sf_softc *sc = ifp->if_softc;
1135 	struct sf_descsoft *ds;
1136 	int i;
1137 
1138 	/* Stop the one second clock. */
1139 	callout_stop(&sc->sc_tick_callout);
1140 
1141 	/* Down the MII. */
1142 	mii_down(&sc->sc_mii);
1143 
1144 	/* Disable interrupts. */
1145 	sf_funcreg_write(sc, SF_InterruptEn, 0);
1146 
1147 	/* Stop the transmit and receive processes. */
1148 	sf_funcreg_write(sc, SF_GeneralEthernetCtrl, 0);
1149 
1150 	/*
1151 	 * Release any queued transmit buffers.
1152 	 */
1153 	for (i = 0; i < SF_NTXDESC; i++) {
1154 		ds = &sc->sc_txsoft[i];
1155 		if (ds->ds_mbuf != NULL) {
1156 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1157 			m_freem(ds->ds_mbuf);
1158 			ds->ds_mbuf = NULL;
1159 		}
1160 	}
1161 
1162 	/*
1163 	 * Mark the interface down and cancel the watchdog timer.
1164 	 */
1165 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1166 	ifp->if_timer = 0;
1167 
1168 	if (disable)
1169 		sf_rxdrain(sc);
1170 }
1171 
1172 /*
1173  * sf_read_eeprom:
1174  *
1175  *	Read from the Starfire EEPROM.
1176  */
1177 static uint8_t
1178 sf_read_eeprom(struct sf_softc *sc, int offset)
1179 {
1180 	uint32_t reg;
1181 
1182 	reg = sf_genreg_read(sc, SF_EEPROM_BASE + (offset & ~3));
1183 
1184 	return ((reg >> (8 * (offset & 3))) & 0xff);
1185 }
1186 
1187 /*
1188  * sf_add_rxbuf:
1189  *
1190  *	Add a receive buffer to the indicated descriptor.
1191  */
1192 static int
1193 sf_add_rxbuf(struct sf_softc *sc, int idx)
1194 {
1195 	struct sf_descsoft *ds = &sc->sc_rxsoft[idx];
1196 	struct mbuf *m;
1197 	int error;
1198 
1199 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1200 	if (m == NULL)
1201 		return (ENOBUFS);
1202 
1203 	MCLGET(m, M_DONTWAIT);
1204 	if ((m->m_flags & M_EXT) == 0) {
1205 		m_freem(m);
1206 		return (ENOBUFS);
1207 	}
1208 
1209 	if (ds->ds_mbuf != NULL)
1210 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1211 
1212 	ds->ds_mbuf = m;
1213 
1214 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1215 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1216 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1217 	if (error) {
1218 		aprint_error_dev(&sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
1219 		    idx, error);
1220 		panic("sf_add_rxbuf"); /* XXX */
1221 	}
1222 
1223 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1224 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1225 
1226 	SF_INIT_RXDESC(sc, idx);
1227 
1228 	return (0);
1229 }
1230 
1231 static void
1232 sf_set_filter_perfect(struct sf_softc *sc, int slot, const uint8_t *enaddr)
1233 {
1234 	uint32_t reg0, reg1, reg2;
1235 
1236 	reg0 = enaddr[5] | (enaddr[4] << 8);
1237 	reg1 = enaddr[3] | (enaddr[2] << 8);
1238 	reg2 = enaddr[1] | (enaddr[0] << 8);
1239 
1240 	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 0, reg0);
1241 	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 4, reg1);
1242 	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 8, reg2);
1243 }
1244 
1245 static void
1246 sf_set_filter_hash(struct sf_softc *sc, uint8_t *enaddr)
1247 {
1248 	uint32_t hash, slot, reg;
1249 
1250 	hash = ether_crc32_be(enaddr, ETHER_ADDR_LEN) >> 23;
1251 	slot = hash >> 4;
1252 
1253 	reg = sf_genreg_read(sc, SF_HASH_BASE + (slot * 0x10));
1254 	reg |= 1 << (hash & 0xf);
1255 	sf_genreg_write(sc, SF_HASH_BASE + (slot * 0x10), reg);
1256 }
1257 
1258 /*
1259  * sf_set_filter:
1260  *
1261  *	Set the Starfire receive filter.
1262  */
1263 static void
1264 sf_set_filter(struct sf_softc *sc)
1265 {
1266 	struct ethercom *ec = &sc->sc_ethercom;
1267 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1268 	struct ether_multi *enm;
1269 	struct ether_multistep step;
1270 	int i;
1271 
1272 	/* Start by clearing the perfect and hash tables. */
1273 	for (i = 0; i < SF_PERFECT_SIZE; i += sizeof(uint32_t))
1274 		sf_genreg_write(sc, SF_PERFECT_BASE + i, 0);
1275 
1276 	for (i = 0; i < SF_HASH_SIZE; i += sizeof(uint32_t))
1277 		sf_genreg_write(sc, SF_HASH_BASE + i, 0);
1278 
1279 	/*
1280 	 * Clear the perfect and hash mode bits.
1281 	 */
1282 	sc->sc_RxAddressFilteringCtl &=
1283 	    ~(RAFC_PerfectFilteringMode(3) | RAFC_HashFilteringMode(3));
1284 
1285 	if (ifp->if_flags & IFF_BROADCAST)
1286 		sc->sc_RxAddressFilteringCtl |= RAFC_PassBroadcast;
1287 	else
1288 		sc->sc_RxAddressFilteringCtl &= ~RAFC_PassBroadcast;
1289 
1290 	if (ifp->if_flags & IFF_PROMISC) {
1291 		sc->sc_RxAddressFilteringCtl |= RAFC_PromiscuousMode;
1292 		goto allmulti;
1293 	} else
1294 		sc->sc_RxAddressFilteringCtl &= ~RAFC_PromiscuousMode;
1295 
1296 	/*
1297 	 * Set normal perfect filtering mode.
1298 	 */
1299 	sc->sc_RxAddressFilteringCtl |= RAFC_PerfectFilteringMode(1);
1300 
1301 	/*
1302 	 * First, write the station address to the perfect filter
1303 	 * table.
1304 	 */
1305 	sf_set_filter_perfect(sc, 0, CLLADDR(ifp->if_sadl));
1306 
1307 	/*
1308 	 * Now set the hash bits for each multicast address in our
1309 	 * list.
1310 	 */
1311 	ETHER_FIRST_MULTI(step, ec, enm);
1312 	if (enm == NULL)
1313 		goto done;
1314 	while (enm != NULL) {
1315 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1316 			/*
1317 			 * We must listen to a range of multicast addresses.
1318 			 * For now, just accept all multicasts, rather than
1319 			 * trying to set only those filter bits needed to match
1320 			 * the range.  (At this time, the only use of address
1321 			 * ranges is for IP multicast routing, for which the
1322 			 * range is big enough to require all bits set.)
1323 			 */
1324 			goto allmulti;
1325 		}
1326 		sf_set_filter_hash(sc, enm->enm_addrlo);
1327 		ETHER_NEXT_MULTI(step, enm);
1328 	}
1329 
1330 	/*
1331 	 * Set "hash only multicast dest, match regardless of VLAN ID".
1332 	 */
1333 	sc->sc_RxAddressFilteringCtl |= RAFC_HashFilteringMode(2);
1334 	goto done;
1335 
1336  allmulti:
1337 	/*
1338 	 * XXX RAFC_PassMulticast is sub-optimal if using VLAN mode.
1339 	 */
1340 	sc->sc_RxAddressFilteringCtl |= RAFC_PassMulticast;
1341 	ifp->if_flags |= IFF_ALLMULTI;
1342 
1343  done:
1344 	sf_funcreg_write(sc, SF_RxAddressFilteringCtl,
1345 	    sc->sc_RxAddressFilteringCtl);
1346 }
1347 
1348 /*
1349  * sf_mii_read:		[mii interface function]
1350  *
1351  *	Read from the MII.
1352  */
1353 static int
1354 sf_mii_read(device_t self, int phy, int reg)
1355 {
1356 	struct sf_softc *sc = (void *) self;
1357 	uint32_t v;
1358 	int i;
1359 
1360 	for (i = 0; i < 1000; i++) {
1361 		v = sf_genreg_read(sc, SF_MII_PHY_REG(phy, reg));
1362 		if (v & MiiDataValid)
1363 			break;
1364 		delay(1);
1365 	}
1366 
1367 	if ((v & MiiDataValid) == 0)
1368 		return (0);
1369 
1370 	if (MiiRegDataPort(v) == 0xffff)
1371 		return (0);
1372 
1373 	return (MiiRegDataPort(v));
1374 }
1375 
1376 /*
1377  * sf_mii_write:	[mii interface function]
1378  *
1379  *	Write to the MII.
1380  */
1381 static void
1382 sf_mii_write(device_t self, int phy, int reg, int val)
1383 {
1384 	struct sf_softc *sc = (void *) self;
1385 	int i;
1386 
1387 	sf_genreg_write(sc, SF_MII_PHY_REG(phy, reg), val);
1388 
1389 	for (i = 0; i < 1000; i++) {
1390 		if ((sf_genreg_read(sc, SF_MII_PHY_REG(phy, reg)) &
1391 		     MiiBusy) == 0)
1392 			return;
1393 		delay(1);
1394 	}
1395 
1396 	printf("%s: MII write timed out\n", device_xname(&sc->sc_dev));
1397 }
1398 
1399 /*
1400  * sf_mii_statchg:	[mii interface function]
1401  *
1402  *	Callback from the PHY when the media changes.
1403  */
1404 static void
1405 sf_mii_statchg(device_t self)
1406 {
1407 	struct sf_softc *sc = (void *) self;
1408 	uint32_t ipg;
1409 
1410 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
1411 		sc->sc_MacConfig1 |= MC1_FullDuplex;
1412 		ipg = 0x15;
1413 	} else {
1414 		sc->sc_MacConfig1 &= ~MC1_FullDuplex;
1415 		ipg = 0x11;
1416 	}
1417 
1418 	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1);
1419 	sf_macreset(sc);
1420 
1421 	sf_genreg_write(sc, SF_BkToBkIPG, ipg);
1422 }
1423