xref: /netbsd-src/sys/dev/ic/aic6915.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*	$NetBSD: aic6915.c,v 1.30 2012/10/27 17:18:18 chs Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Device driver for the Adaptec AIC-6915 (``Starfire'')
34  * 10/100 Ethernet controller.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: aic6915.c,v 1.30 2012/10/27 17:18:18 chs Exp $");
39 
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/device.h>
51 
52 #include <net/if.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_ether.h>
56 
57 #include <net/bpf.h>
58 
59 #include <sys/bus.h>
60 #include <sys/intr.h>
61 
62 #include <dev/mii/miivar.h>
63 
64 #include <dev/ic/aic6915reg.h>
65 #include <dev/ic/aic6915var.h>
66 
67 static void	sf_start(struct ifnet *);
68 static void	sf_watchdog(struct ifnet *);
69 static int	sf_ioctl(struct ifnet *, u_long, void *);
70 static int	sf_init(struct ifnet *);
71 static void	sf_stop(struct ifnet *, int);
72 
73 static bool	sf_shutdown(device_t, int);
74 
75 static void	sf_txintr(struct sf_softc *);
76 static void	sf_rxintr(struct sf_softc *);
77 static void	sf_stats_update(struct sf_softc *);
78 
79 static void	sf_reset(struct sf_softc *);
80 static void	sf_macreset(struct sf_softc *);
81 static void	sf_rxdrain(struct sf_softc *);
82 static int	sf_add_rxbuf(struct sf_softc *, int);
83 static uint8_t	sf_read_eeprom(struct sf_softc *, int);
84 static void	sf_set_filter(struct sf_softc *);
85 
86 static int	sf_mii_read(device_t, int, int);
87 static void	sf_mii_write(device_t, int, int, int);
88 static void	sf_mii_statchg(struct ifnet *);
89 
90 static void	sf_tick(void *);
91 
92 #define	sf_funcreg_read(sc, reg)					\
93 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh_func, (reg))
94 #define	sf_funcreg_write(sc, reg, val)					\
95 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh_func, (reg), (val))
96 
97 static inline uint32_t
98 sf_reg_read(struct sf_softc *sc, bus_addr_t reg)
99 {
100 
101 	if (__predict_false(sc->sc_iomapped)) {
102 		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoAccess,
103 		    reg);
104 		return (bus_space_read_4(sc->sc_st, sc->sc_sh,
105 		    SF_IndirectIoDataPort));
106 	}
107 
108 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, reg));
109 }
110 
111 static inline void
112 sf_reg_write(struct sf_softc *sc, bus_addr_t reg, uint32_t val)
113 {
114 
115 	if (__predict_false(sc->sc_iomapped)) {
116 		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoAccess,
117 		    reg);
118 		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoDataPort,
119 		    val);
120 		return;
121 	}
122 
123 	bus_space_write_4(sc->sc_st, sc->sc_sh, reg, val);
124 }
125 
126 #define	sf_genreg_read(sc, reg)						\
127 	sf_reg_read((sc), (reg) + SF_GENREG_OFFSET)
128 #define	sf_genreg_write(sc, reg, val)					\
129 	sf_reg_write((sc), (reg) + SF_GENREG_OFFSET, (val))
130 
131 /*
132  * sf_attach:
133  *
134  *	Attach a Starfire interface to the system.
135  */
136 void
137 sf_attach(struct sf_softc *sc)
138 {
139 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
140 	int i, rseg, error;
141 	bus_dma_segment_t seg;
142 	u_int8_t enaddr[ETHER_ADDR_LEN];
143 
144 	callout_init(&sc->sc_tick_callout, 0);
145 
146 	/*
147 	 * If we're I/O mapped, the functional register handle is
148 	 * the same as the base handle.  If we're memory mapped,
149 	 * carve off a chunk of the register space for the functional
150 	 * registers, to save on arithmetic later.
151 	 */
152 	if (sc->sc_iomapped)
153 		sc->sc_sh_func = sc->sc_sh;
154 	else {
155 		if ((error = bus_space_subregion(sc->sc_st, sc->sc_sh,
156 		    SF_GENREG_OFFSET, SF_FUNCREG_SIZE, &sc->sc_sh_func)) != 0) {
157 			aprint_error_dev(sc->sc_dev, "unable to sub-region functional "
158 			    "registers, error = %d\n",
159 			    error);
160 			return;
161 		}
162 	}
163 
164 	/*
165 	 * Initialize the transmit threshold for this interface.  The
166 	 * manual describes the default as 4 * 16 bytes.  We start out
167 	 * at 10 * 16 bytes, to avoid a bunch of initial underruns on
168 	 * several platforms.
169 	 */
170 	sc->sc_txthresh = 10;
171 
172 	/*
173 	 * Allocate the control data structures, and create and load the
174 	 * DMA map for it.
175 	 */
176 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
177 	    sizeof(struct sf_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
178 	    BUS_DMA_NOWAIT)) != 0) {
179 		aprint_error_dev(sc->sc_dev, "unable to allocate control data, error = %d\n",
180 		    error);
181 		goto fail_0;
182 	}
183 
184 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
185 	    sizeof(struct sf_control_data), (void **)&sc->sc_control_data,
186 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
187 		aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n",
188 		    error);
189 		goto fail_1;
190 	}
191 
192 	if ((error = bus_dmamap_create(sc->sc_dmat,
193 	    sizeof(struct sf_control_data), 1,
194 	    sizeof(struct sf_control_data), 0, BUS_DMA_NOWAIT,
195 	    &sc->sc_cddmamap)) != 0) {
196 		aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
197 		    "error = %d\n", error);
198 		goto fail_2;
199 	}
200 
201 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
202 	    sc->sc_control_data, sizeof(struct sf_control_data), NULL,
203 	    BUS_DMA_NOWAIT)) != 0) {
204 		aprint_error_dev(sc->sc_dev, "unable to load control data DMA map, error = %d\n",
205 		    error);
206 		goto fail_3;
207 	}
208 
209 	/*
210 	 * Create the transmit buffer DMA maps.
211 	 */
212 	for (i = 0; i < SF_NTXDESC; i++) {
213 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
214 		    SF_NTXFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
215 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
216 			aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, "
217 			    "error = %d\n", i, error);
218 			goto fail_4;
219 		}
220 	}
221 
222 	/*
223 	 * Create the receive buffer DMA maps.
224 	 */
225 	for (i = 0; i < SF_NRXDESC; i++) {
226 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
227 		    MCLBYTES, 0, BUS_DMA_NOWAIT,
228 		    &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
229 			aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, "
230 			    "error = %d\n", i, error);
231 			goto fail_5;
232 		}
233 	}
234 
235 	/*
236 	 * Reset the chip to a known state.
237 	 */
238 	sf_reset(sc);
239 
240 	/*
241 	 * Read the Ethernet address from the EEPROM.
242 	 */
243 	for (i = 0; i < ETHER_ADDR_LEN; i++)
244 		enaddr[i] = sf_read_eeprom(sc, (15 + (ETHER_ADDR_LEN - 1)) - i);
245 
246 	printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
247 	    ether_sprintf(enaddr));
248 
249 	if (sf_funcreg_read(sc, SF_PciDeviceConfig) & PDC_System64)
250 		printf("%s: 64-bit PCI slot detected\n", device_xname(sc->sc_dev));
251 
252 	/*
253 	 * Initialize our media structures and probe the MII.
254 	 */
255 	sc->sc_mii.mii_ifp = ifp;
256 	sc->sc_mii.mii_readreg = sf_mii_read;
257 	sc->sc_mii.mii_writereg = sf_mii_write;
258 	sc->sc_mii.mii_statchg = sf_mii_statchg;
259 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
260 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
261 	    ether_mediastatus);
262 	mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
263 	    MII_OFFSET_ANY, 0);
264 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
265 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
266 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
267 	} else
268 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
269 
270 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
271 	ifp->if_softc = sc;
272 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
273 	ifp->if_ioctl = sf_ioctl;
274 	ifp->if_start = sf_start;
275 	ifp->if_watchdog = sf_watchdog;
276 	ifp->if_init = sf_init;
277 	ifp->if_stop = sf_stop;
278 	IFQ_SET_READY(&ifp->if_snd);
279 
280 	/*
281 	 * Attach the interface.
282 	 */
283 	if_attach(ifp);
284 	ether_ifattach(ifp, enaddr);
285 
286 	/*
287 	 * Make sure the interface is shutdown during reboot.
288 	 */
289 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, sf_shutdown))
290 		pmf_class_network_register(sc->sc_dev, ifp);
291 	else
292 		aprint_error_dev(sc->sc_dev,
293 		    "couldn't establish power handler\n");
294 	return;
295 
296 	/*
297 	 * Free any resources we've allocated during the failed attach
298 	 * attempt.  Do this in reverse order an fall through.
299 	 */
300  fail_5:
301 	for (i = 0; i < SF_NRXDESC; i++) {
302 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
303 			bus_dmamap_destroy(sc->sc_dmat,
304 			    sc->sc_rxsoft[i].ds_dmamap);
305 	}
306  fail_4:
307 	for (i = 0; i < SF_NTXDESC; i++) {
308 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
309 			bus_dmamap_destroy(sc->sc_dmat,
310 			    sc->sc_txsoft[i].ds_dmamap);
311 	}
312 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
313  fail_3:
314 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
315  fail_2:
316 	bus_dmamem_unmap(sc->sc_dmat, (void *) sc->sc_control_data,
317 	    sizeof(struct sf_control_data));
318  fail_1:
319 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
320  fail_0:
321 	return;
322 }
323 
324 /*
325  * sf_shutdown:
326  *
327  *	Shutdown hook -- make sure the interface is stopped at reboot.
328  */
329 static bool
330 sf_shutdown(device_t self, int howto)
331 {
332 	struct sf_softc *sc;
333 
334 	sc = device_private(self);
335 	sf_stop(&sc->sc_ethercom.ec_if, 1);
336 
337 	return true;
338 }
339 
340 /*
341  * sf_start:		[ifnet interface function]
342  *
343  *	Start packet transmission on the interface.
344  */
345 static void
346 sf_start(struct ifnet *ifp)
347 {
348 	struct sf_softc *sc = ifp->if_softc;
349 	struct mbuf *m0, *m;
350 	struct sf_txdesc0 *txd;
351 	struct sf_descsoft *ds;
352 	bus_dmamap_t dmamap;
353 	int error, producer, last = -1, opending, seg;
354 
355 	/*
356 	 * Remember the previous number of pending transmits.
357 	 */
358 	opending = sc->sc_txpending;
359 
360 	/*
361 	 * Find out where we're sitting.
362 	 */
363 	producer = SF_TXDINDEX_TO_HOST(
364 	    TDQPI_HiPrTxProducerIndex_get(
365 	    sf_funcreg_read(sc, SF_TxDescQueueProducerIndex)));
366 
367 	/*
368 	 * Loop through the send queue, setting up transmit descriptors
369 	 * until we drain the queue, or use up all available transmit
370 	 * descriptors.  Leave a blank one at the end for sanity's sake.
371 	 */
372 	while (sc->sc_txpending < (SF_NTXDESC - 1)) {
373 		/*
374 		 * Grab a packet off the queue.
375 		 */
376 		IFQ_POLL(&ifp->if_snd, m0);
377 		if (m0 == NULL)
378 			break;
379 		m = NULL;
380 
381 		/*
382 		 * Get the transmit descriptor.
383 		 */
384 		txd = &sc->sc_txdescs[producer];
385 		ds = &sc->sc_txsoft[producer];
386 		dmamap = ds->ds_dmamap;
387 
388 		/*
389 		 * Load the DMA map.  If this fails, the packet either
390 		 * didn't fit in the allotted number of frags, or we were
391 		 * short on resources.  In this case, we'll copy and try
392 		 * again.
393 		 */
394 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
395 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
396 			MGETHDR(m, M_DONTWAIT, MT_DATA);
397 			if (m == NULL) {
398 				aprint_error_dev(sc->sc_dev, "unable to allocate Tx mbuf\n");
399 				break;
400 			}
401 			if (m0->m_pkthdr.len > MHLEN) {
402 				MCLGET(m, M_DONTWAIT);
403 				if ((m->m_flags & M_EXT) == 0) {
404 					aprint_error_dev(sc->sc_dev, "unable to allocate Tx "
405 					    "cluster\n");
406 					m_freem(m);
407 					break;
408 				}
409 			}
410 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
411 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
412 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
413 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
414 			if (error) {
415 				aprint_error_dev(sc->sc_dev, "unable to load Tx buffer, "
416 				    "error = %d\n", error);
417 				break;
418 			}
419 		}
420 
421 		/*
422 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
423 		 */
424 		IFQ_DEQUEUE(&ifp->if_snd, m0);
425 		if (m != NULL) {
426 			m_freem(m0);
427 			m0 = m;
428 		}
429 
430 		/* Initialize the descriptor. */
431 		txd->td_word0 =
432 		    htole32(TD_W0_ID | TD_W0_CRCEN | m0->m_pkthdr.len);
433 		if (producer == (SF_NTXDESC - 1))
434 			txd->td_word0 |= TD_W0_END;
435 		txd->td_word1 = htole32(dmamap->dm_nsegs);
436 		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
437 			txd->td_frags[seg].fr_addr =
438 			    htole32(dmamap->dm_segs[seg].ds_addr);
439 			txd->td_frags[seg].fr_len =
440 			    htole32(dmamap->dm_segs[seg].ds_len);
441 		}
442 
443 		/* Sync the descriptor and the DMA map. */
444 		SF_CDTXDSYNC(sc, producer, BUS_DMASYNC_PREWRITE);
445 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
446 		    BUS_DMASYNC_PREWRITE);
447 
448 		/*
449 		 * Store a pointer to the packet so we can free it later.
450 		 */
451 		ds->ds_mbuf = m0;
452 
453 		/* Advance the Tx pointer. */
454 		sc->sc_txpending++;
455 		last = producer;
456 		producer = SF_NEXTTX(producer);
457 
458 		/*
459 		 * Pass the packet to any BPF listeners.
460 		 */
461 		bpf_mtap(ifp, m0);
462 	}
463 
464 	if (sc->sc_txpending == (SF_NTXDESC - 1)) {
465 		/* No more slots left; notify upper layer. */
466 		ifp->if_flags |= IFF_OACTIVE;
467 	}
468 
469 	if (sc->sc_txpending != opending) {
470 		KASSERT(last != -1);
471 		/*
472 		 * We enqueued packets.  Cause a transmit interrupt to
473 		 * happen on the last packet we enqueued, and give the
474 		 * new descriptors to the chip by writing the new
475 		 * producer index.
476 		 */
477 		sc->sc_txdescs[last].td_word0 |= TD_W0_INTR;
478 		SF_CDTXDSYNC(sc, last, BUS_DMASYNC_PREWRITE);
479 
480 		sf_funcreg_write(sc, SF_TxDescQueueProducerIndex,
481 		    TDQPI_HiPrTxProducerIndex(SF_TXDINDEX_TO_CHIP(producer)));
482 
483 		/* Set a watchdog timer in case the chip flakes out. */
484 		ifp->if_timer = 5;
485 	}
486 }
487 
488 /*
489  * sf_watchdog:		[ifnet interface function]
490  *
491  *	Watchdog timer handler.
492  */
493 static void
494 sf_watchdog(struct ifnet *ifp)
495 {
496 	struct sf_softc *sc = ifp->if_softc;
497 
498 	printf("%s: device timeout\n", device_xname(sc->sc_dev));
499 	ifp->if_oerrors++;
500 
501 	(void) sf_init(ifp);
502 
503 	/* Try to get more packets going. */
504 	sf_start(ifp);
505 }
506 
507 /*
508  * sf_ioctl:		[ifnet interface function]
509  *
510  *	Handle control requests from the operator.
511  */
512 static int
513 sf_ioctl(struct ifnet *ifp, u_long cmd, void *data)
514 {
515 	struct sf_softc *sc = ifp->if_softc;
516 	int s, error;
517 
518 	s = splnet();
519 
520 	error = ether_ioctl(ifp, cmd, data);
521 	if (error == ENETRESET) {
522 		/*
523 		 * Multicast list has changed; set the hardware filter
524 		 * accordingly.
525 		 */
526 		if (ifp->if_flags & IFF_RUNNING)
527 			sf_set_filter(sc);
528 		error = 0;
529 	}
530 
531 	/* Try to get more packets going. */
532 	sf_start(ifp);
533 
534 	splx(s);
535 	return (error);
536 }
537 
538 /*
539  * sf_intr:
540  *
541  *	Interrupt service routine.
542  */
543 int
544 sf_intr(void *arg)
545 {
546 	struct sf_softc *sc = arg;
547 	uint32_t isr;
548 	int handled = 0, wantinit = 0;
549 
550 	for (;;) {
551 		/* Reading clears all interrupts we're interested in. */
552 		isr = sf_funcreg_read(sc, SF_InterruptStatus);
553 		if ((isr & IS_PCIPadInt) == 0)
554 			break;
555 
556 		handled = 1;
557 
558 		/* Handle receive interrupts. */
559 		if (isr & IS_RxQ1DoneInt)
560 			sf_rxintr(sc);
561 
562 		/* Handle transmit completion interrupts. */
563 		if (isr & (IS_TxDmaDoneInt|IS_TxQueueDoneInt))
564 			sf_txintr(sc);
565 
566 		/* Handle abnormal interrupts. */
567 		if (isr & IS_AbnormalInterrupt) {
568 			/* Statistics. */
569 			if (isr & IS_StatisticWrapInt)
570 				sf_stats_update(sc);
571 
572 			/* DMA errors. */
573 			if (isr & IS_DmaErrInt) {
574 				wantinit = 1;
575 				aprint_error_dev(sc->sc_dev, "WARNING: DMA error\n");
576 			}
577 
578 			/* Transmit FIFO underruns. */
579 			if (isr & IS_TxDataLowInt) {
580 				if (sc->sc_txthresh < 0xff)
581 					sc->sc_txthresh++;
582 				printf("%s: transmit FIFO underrun, new "
583 				    "threshold: %d bytes\n",
584 				    device_xname(sc->sc_dev),
585 				    sc->sc_txthresh * 16);
586 				sf_funcreg_write(sc, SF_TransmitFrameCSR,
587 				    sc->sc_TransmitFrameCSR |
588 				    TFCSR_TransmitThreshold(sc->sc_txthresh));
589 				sf_funcreg_write(sc, SF_TxDescQueueCtrl,
590 				    sc->sc_TxDescQueueCtrl |
591 				    TDQC_TxHighPriorityFifoThreshold(
592 							sc->sc_txthresh));
593 			}
594 		}
595 	}
596 
597 	if (handled) {
598 		/* Reset the interface, if necessary. */
599 		if (wantinit)
600 			sf_init(&sc->sc_ethercom.ec_if);
601 
602 		/* Try and get more packets going. */
603 		sf_start(&sc->sc_ethercom.ec_if);
604 	}
605 
606 	return (handled);
607 }
608 
609 /*
610  * sf_txintr:
611  *
612  *	Helper -- handle transmit completion interrupts.
613  */
614 static void
615 sf_txintr(struct sf_softc *sc)
616 {
617 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
618 	struct sf_descsoft *ds;
619 	uint32_t cqci, tcd;
620 	int consumer, producer, txidx;
621 
622  try_again:
623 	cqci = sf_funcreg_read(sc, SF_CompletionQueueConsumerIndex);
624 
625 	consumer = CQCI_TxCompletionConsumerIndex_get(cqci);
626 	producer = CQPI_TxCompletionProducerIndex_get(
627 	    sf_funcreg_read(sc, SF_CompletionQueueProducerIndex));
628 
629 	if (consumer == producer)
630 		return;
631 
632 	ifp->if_flags &= ~IFF_OACTIVE;
633 
634 	while (consumer != producer) {
635 		SF_CDTXCSYNC(sc, consumer, BUS_DMASYNC_POSTREAD);
636 		tcd = le32toh(sc->sc_txcomp[consumer].tcd_word0);
637 
638 		txidx = SF_TCD_INDEX_TO_HOST(TCD_INDEX(tcd));
639 #ifdef DIAGNOSTIC
640 		if ((tcd & TCD_PR) == 0)
641 			aprint_error_dev(sc->sc_dev, "Tx queue mismatch, index %d\n",
642 			    txidx);
643 #endif
644 		/*
645 		 * NOTE: stats are updated later.  We're just
646 		 * releasing packets that have been DMA'd to
647 		 * the chip.
648 		 */
649 		ds = &sc->sc_txsoft[txidx];
650 		SF_CDTXDSYNC(sc, txidx, BUS_DMASYNC_POSTWRITE);
651 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
652 		    0, ds->ds_dmamap->dm_mapsize,
653 		    BUS_DMASYNC_POSTWRITE);
654 		m_freem(ds->ds_mbuf);
655 		ds->ds_mbuf = NULL;
656 
657 		consumer = SF_NEXTTCD(consumer);
658 		sc->sc_txpending--;
659 	}
660 
661 	/* XXXJRT -- should be KDASSERT() */
662 	KASSERT(sc->sc_txpending >= 0);
663 
664 	/* If all packets are done, cancel the watchdog timer. */
665 	if (sc->sc_txpending == 0)
666 		ifp->if_timer = 0;
667 
668 	/* Update the consumer index. */
669 	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
670 	    (cqci & ~CQCI_TxCompletionConsumerIndex(0x7ff)) |
671 	     CQCI_TxCompletionConsumerIndex(consumer));
672 
673 	/* Double check for new completions. */
674 	goto try_again;
675 }
676 
677 /*
678  * sf_rxintr:
679  *
680  *	Helper -- handle receive interrupts.
681  */
682 static void
683 sf_rxintr(struct sf_softc *sc)
684 {
685 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
686 	struct sf_descsoft *ds;
687 	struct sf_rcd_full *rcd;
688 	struct mbuf *m;
689 	uint32_t cqci, word0;
690 	int consumer, producer, bufproducer, rxidx, len;
691 
692  try_again:
693 	cqci = sf_funcreg_read(sc, SF_CompletionQueueConsumerIndex);
694 
695 	consumer = CQCI_RxCompletionQ1ConsumerIndex_get(cqci);
696 	producer = CQPI_RxCompletionQ1ProducerIndex_get(
697 	    sf_funcreg_read(sc, SF_CompletionQueueProducerIndex));
698 	bufproducer = RXQ1P_RxDescQ1Producer_get(
699 	    sf_funcreg_read(sc, SF_RxDescQueue1Ptrs));
700 
701 	if (consumer == producer)
702 		return;
703 
704 	while (consumer != producer) {
705 		rcd = &sc->sc_rxcomp[consumer];
706 		SF_CDRXCSYNC(sc, consumer,
707 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
708 		SF_CDRXCSYNC(sc, consumer,
709 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
710 
711 		word0 = le32toh(rcd->rcd_word0);
712 		rxidx = RCD_W0_EndIndex(word0);
713 
714 		ds = &sc->sc_rxsoft[rxidx];
715 
716 		consumer = SF_NEXTRCD(consumer);
717 		bufproducer = SF_NEXTRX(bufproducer);
718 
719 		if ((word0 & RCD_W0_OK) == 0) {
720 			SF_INIT_RXDESC(sc, rxidx);
721 			continue;
722 		}
723 
724 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
725 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
726 
727 		/*
728 		 * No errors; receive the packet.  Note that we have
729 		 * configured the Starfire to NOT transfer the CRC
730 		 * with the packet.
731 		 */
732 		len = RCD_W0_Length(word0);
733 
734 #ifdef __NO_STRICT_ALIGNMENT
735 		/*
736 		 * Allocate a new mbuf cluster.  If that fails, we are
737 		 * out of memory, and must drop the packet and recycle
738 		 * the buffer that's already attached to this descriptor.
739 		 */
740 		m = ds->ds_mbuf;
741 		if (sf_add_rxbuf(sc, rxidx) != 0) {
742 			ifp->if_ierrors++;
743 			SF_INIT_RXDESC(sc, rxidx);
744 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
745 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
746 			continue;
747 		}
748 #else
749 		/*
750 		 * The Starfire's receive buffer must be 4-byte aligned.
751 		 * But this means that the data after the Ethernet header
752 		 * is misaligned.  We must allocate a new buffer and
753 		 * copy the data, shifted forward 2 bytes.
754 		 */
755 		MGETHDR(m, M_DONTWAIT, MT_DATA);
756 		if (m == NULL) {
757  dropit:
758 			ifp->if_ierrors++;
759 			SF_INIT_RXDESC(sc, rxidx);
760 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
761 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
762 			continue;
763 		}
764 		if (len > (MHLEN - 2)) {
765 			MCLGET(m, M_DONTWAIT);
766 			if ((m->m_flags & M_EXT) == 0) {
767 				m_freem(m);
768 				goto dropit;
769 			}
770 		}
771 		m->m_data += 2;
772 
773 		/*
774 		 * Note that we use cluster for incoming frames, so the
775 		 * buffer is virtually contiguous.
776 		 */
777 		memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *), len);
778 
779 		/* Allow the receive descriptor to continue using its mbuf. */
780 		SF_INIT_RXDESC(sc, rxidx);
781 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
782 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
783 #endif /* __NO_STRICT_ALIGNMENT */
784 
785 		m->m_pkthdr.rcvif = ifp;
786 		m->m_pkthdr.len = m->m_len = len;
787 
788 		/*
789 		 * Pass this up to any BPF listeners.
790 		 */
791 		bpf_mtap(ifp, m);
792 
793 		/* Pass it on. */
794 		(*ifp->if_input)(ifp, m);
795 	}
796 
797 	/* Update the chip's pointers. */
798 	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
799 	    (cqci & ~CQCI_RxCompletionQ1ConsumerIndex(0x7ff)) |
800 	     CQCI_RxCompletionQ1ConsumerIndex(consumer));
801 	sf_funcreg_write(sc, SF_RxDescQueue1Ptrs,
802 	    RXQ1P_RxDescQ1Producer(bufproducer));
803 
804 	/* Double-check for any new completions. */
805 	goto try_again;
806 }
807 
808 /*
809  * sf_tick:
810  *
811  *	One second timer, used to tick the MII and update stats.
812  */
813 static void
814 sf_tick(void *arg)
815 {
816 	struct sf_softc *sc = arg;
817 	int s;
818 
819 	s = splnet();
820 	mii_tick(&sc->sc_mii);
821 	sf_stats_update(sc);
822 	splx(s);
823 
824 	callout_reset(&sc->sc_tick_callout, hz, sf_tick, sc);
825 }
826 
827 /*
828  * sf_stats_update:
829  *
830  *	Read the statitistics counters.
831  */
832 static void
833 sf_stats_update(struct sf_softc *sc)
834 {
835 	struct sf_stats stats;
836 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
837 	uint32_t *p;
838 	u_int i;
839 
840 	p = &stats.TransmitOKFrames;
841 	for (i = 0; i < (sizeof(stats) / sizeof(uint32_t)); i++) {
842 		*p++ = sf_genreg_read(sc,
843 		    SF_STATS_BASE + (i * sizeof(uint32_t)));
844 		sf_genreg_write(sc, SF_STATS_BASE + (i * sizeof(uint32_t)), 0);
845 	}
846 
847 	ifp->if_opackets += stats.TransmitOKFrames;
848 
849 	ifp->if_collisions += stats.SingleCollisionFrames +
850 	    stats.MultipleCollisionFrames;
851 
852 	ifp->if_oerrors += stats.TransmitAbortDueToExcessiveCollisions +
853 	    stats.TransmitAbortDueToExcessingDeferral +
854 	    stats.FramesLostDueToInternalTransmitErrors;
855 
856 	ifp->if_ipackets += stats.ReceiveOKFrames;
857 
858 	ifp->if_ierrors += stats.ReceiveCRCErrors + stats.AlignmentErrors +
859 	    stats.ReceiveFramesTooLong + stats.ReceiveFramesTooShort +
860 	    stats.ReceiveFramesJabbersError +
861 	    stats.FramesLostDueToInternalReceiveErrors;
862 }
863 
864 /*
865  * sf_reset:
866  *
867  *	Perform a soft reset on the Starfire.
868  */
869 static void
870 sf_reset(struct sf_softc *sc)
871 {
872 	int i;
873 
874 	sf_funcreg_write(sc, SF_GeneralEthernetCtrl, 0);
875 
876 	sf_macreset(sc);
877 
878 	sf_funcreg_write(sc, SF_PciDeviceConfig, PDC_SoftReset);
879 	for (i = 0; i < 1000; i++) {
880 		delay(10);
881 		if ((sf_funcreg_read(sc, SF_PciDeviceConfig) &
882 		     PDC_SoftReset) == 0)
883 			break;
884 	}
885 
886 	if (i == 1000) {
887 		aprint_error_dev(sc->sc_dev, "reset failed to complete\n");
888 		sf_funcreg_write(sc, SF_PciDeviceConfig, 0);
889 	}
890 
891 	delay(1000);
892 }
893 
894 /*
895  * sf_macreset:
896  *
897  *	Reset the MAC portion of the Starfire.
898  */
899 static void
900 sf_macreset(struct sf_softc *sc)
901 {
902 
903 	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1 | MC1_SoftRst);
904 	delay(1000);
905 	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1);
906 }
907 
908 /*
909  * sf_init:		[ifnet interface function]
910  *
911  *	Initialize the interface.  Must be called at splnet().
912  */
913 static int
914 sf_init(struct ifnet *ifp)
915 {
916 	struct sf_softc *sc = ifp->if_softc;
917 	struct sf_descsoft *ds;
918 	int error = 0;
919 	u_int i;
920 
921 	/*
922 	 * Cancel any pending I/O.
923 	 */
924 	sf_stop(ifp, 0);
925 
926 	/*
927 	 * Reset the Starfire to a known state.
928 	 */
929 	sf_reset(sc);
930 
931 	/* Clear the stat counters. */
932 	for (i = 0; i < sizeof(struct sf_stats); i += sizeof(uint32_t))
933 		sf_genreg_write(sc, SF_STATS_BASE + i, 0);
934 
935 	/*
936 	 * Initialize the transmit descriptor ring.
937 	 */
938 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
939 	sf_funcreg_write(sc, SF_TxDescQueueHighAddr, 0);
940 	sf_funcreg_write(sc, SF_HiPrTxDescQueueBaseAddr, SF_CDTXDADDR(sc, 0));
941 	sf_funcreg_write(sc, SF_LoPrTxDescQueueBaseAddr, 0);
942 
943 	/*
944 	 * Initialize the transmit completion ring.
945 	 */
946 	for (i = 0; i < SF_NTCD; i++) {
947 		sc->sc_txcomp[i].tcd_word0 = TCD_DMA_ID;
948 		SF_CDTXCSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
949 	}
950 	sf_funcreg_write(sc, SF_CompletionQueueHighAddr, 0);
951 	sf_funcreg_write(sc, SF_TxCompletionQueueCtrl, SF_CDTXCADDR(sc, 0));
952 
953 	/*
954 	 * Initialize the receive descriptor ring.
955 	 */
956 	for (i = 0; i < SF_NRXDESC; i++) {
957 		ds = &sc->sc_rxsoft[i];
958 		if (ds->ds_mbuf == NULL) {
959 			if ((error = sf_add_rxbuf(sc, i)) != 0) {
960 				aprint_error_dev(sc->sc_dev, "unable to allocate or map rx "
961 				    "buffer %d, error = %d\n",
962 				    i, error);
963 				/*
964 				 * XXX Should attempt to run with fewer receive
965 				 * XXX buffers instead of just failing.
966 				 */
967 				sf_rxdrain(sc);
968 				goto out;
969 			}
970 		} else
971 			SF_INIT_RXDESC(sc, i);
972 	}
973 	sf_funcreg_write(sc, SF_RxDescQueueHighAddress, 0);
974 	sf_funcreg_write(sc, SF_RxDescQueue1LowAddress, SF_CDRXDADDR(sc, 0));
975 	sf_funcreg_write(sc, SF_RxDescQueue2LowAddress, 0);
976 
977 	/*
978 	 * Initialize the receive completion ring.
979 	 */
980 	for (i = 0; i < SF_NRCD; i++) {
981 		sc->sc_rxcomp[i].rcd_word0 = RCD_W0_ID;
982 		sc->sc_rxcomp[i].rcd_word1 = 0;
983 		sc->sc_rxcomp[i].rcd_word2 = 0;
984 		sc->sc_rxcomp[i].rcd_timestamp = 0;
985 		SF_CDRXCSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
986 	}
987 	sf_funcreg_write(sc, SF_RxCompletionQueue1Ctrl, SF_CDRXCADDR(sc, 0) |
988 	    RCQ1C_RxCompletionQ1Type(3));
989 	sf_funcreg_write(sc, SF_RxCompletionQueue2Ctrl, 0);
990 
991 	/*
992 	 * Initialize the Tx CSR.
993 	 */
994 	sc->sc_TransmitFrameCSR = 0;
995 	sf_funcreg_write(sc, SF_TransmitFrameCSR,
996 	    sc->sc_TransmitFrameCSR |
997 	    TFCSR_TransmitThreshold(sc->sc_txthresh));
998 
999 	/*
1000 	 * Initialize the Tx descriptor control register.
1001 	 */
1002 	sc->sc_TxDescQueueCtrl = TDQC_SkipLength(0) |
1003 	    TDQC_TxDmaBurstSize(4) |	/* default */
1004 	    TDQC_MinFrameSpacing(3) |	/* 128 bytes */
1005 	    TDQC_TxDescType(0);
1006 	sf_funcreg_write(sc, SF_TxDescQueueCtrl,
1007 	    sc->sc_TxDescQueueCtrl |
1008 	    TDQC_TxHighPriorityFifoThreshold(sc->sc_txthresh));
1009 
1010 	/*
1011 	 * Initialize the Rx descriptor control registers.
1012 	 */
1013 	sf_funcreg_write(sc, SF_RxDescQueue1Ctrl,
1014 	    RDQ1C_RxQ1BufferLength(MCLBYTES) |
1015 	    RDQ1C_RxDescSpacing(0));
1016 	sf_funcreg_write(sc, SF_RxDescQueue2Ctrl, 0);
1017 
1018 	/*
1019 	 * Initialize the Tx descriptor producer indices.
1020 	 */
1021 	sf_funcreg_write(sc, SF_TxDescQueueProducerIndex,
1022 	    TDQPI_HiPrTxProducerIndex(0) |
1023 	    TDQPI_LoPrTxProducerIndex(0));
1024 
1025 	/*
1026 	 * Initialize the Rx descriptor producer indices.
1027 	 */
1028 	sf_funcreg_write(sc, SF_RxDescQueue1Ptrs,
1029 	    RXQ1P_RxDescQ1Producer(SF_NRXDESC - 1));
1030 	sf_funcreg_write(sc, SF_RxDescQueue2Ptrs,
1031 	    RXQ2P_RxDescQ2Producer(0));
1032 
1033 	/*
1034 	 * Initialize the Tx and Rx completion queue consumer indices.
1035 	 */
1036 	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
1037 	    CQCI_TxCompletionConsumerIndex(0) |
1038 	    CQCI_RxCompletionQ1ConsumerIndex(0));
1039 	sf_funcreg_write(sc, SF_RxHiPrCompletionPtrs, 0);
1040 
1041 	/*
1042 	 * Initialize the Rx DMA control register.
1043 	 */
1044 	sf_funcreg_write(sc, SF_RxDmaCtrl,
1045 	    RDC_RxHighPriorityThreshold(6) |	/* default */
1046 	    RDC_RxBurstSize(4));		/* default */
1047 
1048 	/*
1049 	 * Set the receive filter.
1050 	 */
1051 	sc->sc_RxAddressFilteringCtl = 0;
1052 	sf_set_filter(sc);
1053 
1054 	/*
1055 	 * Set MacConfig1.  When we set the media, MacConfig1 will
1056 	 * actually be written and the MAC part reset.
1057 	 */
1058 	sc->sc_MacConfig1 = MC1_PadEn;
1059 
1060 	/*
1061 	 * Set the media.
1062 	 */
1063 	if ((error = ether_mediachange(ifp)) != 0)
1064 		goto out;
1065 
1066 	/*
1067 	 * Initialize the interrupt register.
1068 	 */
1069 	sc->sc_InterruptEn = IS_PCIPadInt | IS_RxQ1DoneInt |
1070 	    IS_TxQueueDoneInt | IS_TxDmaDoneInt | IS_DmaErrInt |
1071 	    IS_StatisticWrapInt;
1072 	sf_funcreg_write(sc, SF_InterruptEn, sc->sc_InterruptEn);
1073 
1074 	sf_funcreg_write(sc, SF_PciDeviceConfig, PDC_IntEnable |
1075 	    PDC_PCIMstDmaEn | (1 << PDC_FifoThreshold_SHIFT));
1076 
1077 	/*
1078 	 * Start the transmit and receive processes.
1079 	 */
1080 	sf_funcreg_write(sc, SF_GeneralEthernetCtrl,
1081 	    GEC_TxDmaEn|GEC_RxDmaEn|GEC_TransmitEn|GEC_ReceiveEn);
1082 
1083 	/* Start the on second clock. */
1084 	callout_reset(&sc->sc_tick_callout, hz, sf_tick, sc);
1085 
1086 	/*
1087 	 * Note that the interface is now running.
1088 	 */
1089 	ifp->if_flags |= IFF_RUNNING;
1090 	ifp->if_flags &= ~IFF_OACTIVE;
1091 
1092  out:
1093 	if (error) {
1094 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1095 		ifp->if_timer = 0;
1096 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
1097 	}
1098 	return (error);
1099 }
1100 
1101 /*
1102  * sf_rxdrain:
1103  *
1104  *	Drain the receive queue.
1105  */
1106 static void
1107 sf_rxdrain(struct sf_softc *sc)
1108 {
1109 	struct sf_descsoft *ds;
1110 	int i;
1111 
1112 	for (i = 0; i < SF_NRXDESC; i++) {
1113 		ds = &sc->sc_rxsoft[i];
1114 		if (ds->ds_mbuf != NULL) {
1115 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1116 			m_freem(ds->ds_mbuf);
1117 			ds->ds_mbuf = NULL;
1118 		}
1119 	}
1120 }
1121 
1122 /*
1123  * sf_stop:		[ifnet interface function]
1124  *
1125  *	Stop transmission on the interface.
1126  */
1127 static void
1128 sf_stop(struct ifnet *ifp, int disable)
1129 {
1130 	struct sf_softc *sc = ifp->if_softc;
1131 	struct sf_descsoft *ds;
1132 	int i;
1133 
1134 	/* Stop the one second clock. */
1135 	callout_stop(&sc->sc_tick_callout);
1136 
1137 	/* Down the MII. */
1138 	mii_down(&sc->sc_mii);
1139 
1140 	/* Disable interrupts. */
1141 	sf_funcreg_write(sc, SF_InterruptEn, 0);
1142 
1143 	/* Stop the transmit and receive processes. */
1144 	sf_funcreg_write(sc, SF_GeneralEthernetCtrl, 0);
1145 
1146 	/*
1147 	 * Release any queued transmit buffers.
1148 	 */
1149 	for (i = 0; i < SF_NTXDESC; i++) {
1150 		ds = &sc->sc_txsoft[i];
1151 		if (ds->ds_mbuf != NULL) {
1152 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1153 			m_freem(ds->ds_mbuf);
1154 			ds->ds_mbuf = NULL;
1155 		}
1156 	}
1157 
1158 	/*
1159 	 * Mark the interface down and cancel the watchdog timer.
1160 	 */
1161 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1162 	ifp->if_timer = 0;
1163 
1164 	if (disable)
1165 		sf_rxdrain(sc);
1166 }
1167 
1168 /*
1169  * sf_read_eeprom:
1170  *
1171  *	Read from the Starfire EEPROM.
1172  */
1173 static uint8_t
1174 sf_read_eeprom(struct sf_softc *sc, int offset)
1175 {
1176 	uint32_t reg;
1177 
1178 	reg = sf_genreg_read(sc, SF_EEPROM_BASE + (offset & ~3));
1179 
1180 	return ((reg >> (8 * (offset & 3))) & 0xff);
1181 }
1182 
1183 /*
1184  * sf_add_rxbuf:
1185  *
1186  *	Add a receive buffer to the indicated descriptor.
1187  */
1188 static int
1189 sf_add_rxbuf(struct sf_softc *sc, int idx)
1190 {
1191 	struct sf_descsoft *ds = &sc->sc_rxsoft[idx];
1192 	struct mbuf *m;
1193 	int error;
1194 
1195 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1196 	if (m == NULL)
1197 		return (ENOBUFS);
1198 
1199 	MCLGET(m, M_DONTWAIT);
1200 	if ((m->m_flags & M_EXT) == 0) {
1201 		m_freem(m);
1202 		return (ENOBUFS);
1203 	}
1204 
1205 	if (ds->ds_mbuf != NULL)
1206 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1207 
1208 	ds->ds_mbuf = m;
1209 
1210 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1211 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1212 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1213 	if (error) {
1214 		aprint_error_dev(sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
1215 		    idx, error);
1216 		panic("sf_add_rxbuf"); /* XXX */
1217 	}
1218 
1219 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1220 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1221 
1222 	SF_INIT_RXDESC(sc, idx);
1223 
1224 	return (0);
1225 }
1226 
1227 static void
1228 sf_set_filter_perfect(struct sf_softc *sc, int slot, const uint8_t *enaddr)
1229 {
1230 	uint32_t reg0, reg1, reg2;
1231 
1232 	reg0 = enaddr[5] | (enaddr[4] << 8);
1233 	reg1 = enaddr[3] | (enaddr[2] << 8);
1234 	reg2 = enaddr[1] | (enaddr[0] << 8);
1235 
1236 	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 0, reg0);
1237 	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 4, reg1);
1238 	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 8, reg2);
1239 }
1240 
1241 static void
1242 sf_set_filter_hash(struct sf_softc *sc, uint8_t *enaddr)
1243 {
1244 	uint32_t hash, slot, reg;
1245 
1246 	hash = ether_crc32_be(enaddr, ETHER_ADDR_LEN) >> 23;
1247 	slot = hash >> 4;
1248 
1249 	reg = sf_genreg_read(sc, SF_HASH_BASE + (slot * 0x10));
1250 	reg |= 1 << (hash & 0xf);
1251 	sf_genreg_write(sc, SF_HASH_BASE + (slot * 0x10), reg);
1252 }
1253 
1254 /*
1255  * sf_set_filter:
1256  *
1257  *	Set the Starfire receive filter.
1258  */
1259 static void
1260 sf_set_filter(struct sf_softc *sc)
1261 {
1262 	struct ethercom *ec = &sc->sc_ethercom;
1263 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1264 	struct ether_multi *enm;
1265 	struct ether_multistep step;
1266 	int i;
1267 
1268 	/* Start by clearing the perfect and hash tables. */
1269 	for (i = 0; i < SF_PERFECT_SIZE; i += sizeof(uint32_t))
1270 		sf_genreg_write(sc, SF_PERFECT_BASE + i, 0);
1271 
1272 	for (i = 0; i < SF_HASH_SIZE; i += sizeof(uint32_t))
1273 		sf_genreg_write(sc, SF_HASH_BASE + i, 0);
1274 
1275 	/*
1276 	 * Clear the perfect and hash mode bits.
1277 	 */
1278 	sc->sc_RxAddressFilteringCtl &=
1279 	    ~(RAFC_PerfectFilteringMode(3) | RAFC_HashFilteringMode(3));
1280 
1281 	if (ifp->if_flags & IFF_BROADCAST)
1282 		sc->sc_RxAddressFilteringCtl |= RAFC_PassBroadcast;
1283 	else
1284 		sc->sc_RxAddressFilteringCtl &= ~RAFC_PassBroadcast;
1285 
1286 	if (ifp->if_flags & IFF_PROMISC) {
1287 		sc->sc_RxAddressFilteringCtl |= RAFC_PromiscuousMode;
1288 		goto allmulti;
1289 	} else
1290 		sc->sc_RxAddressFilteringCtl &= ~RAFC_PromiscuousMode;
1291 
1292 	/*
1293 	 * Set normal perfect filtering mode.
1294 	 */
1295 	sc->sc_RxAddressFilteringCtl |= RAFC_PerfectFilteringMode(1);
1296 
1297 	/*
1298 	 * First, write the station address to the perfect filter
1299 	 * table.
1300 	 */
1301 	sf_set_filter_perfect(sc, 0, CLLADDR(ifp->if_sadl));
1302 
1303 	/*
1304 	 * Now set the hash bits for each multicast address in our
1305 	 * list.
1306 	 */
1307 	ETHER_FIRST_MULTI(step, ec, enm);
1308 	if (enm == NULL)
1309 		goto done;
1310 	while (enm != NULL) {
1311 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1312 			/*
1313 			 * We must listen to a range of multicast addresses.
1314 			 * For now, just accept all multicasts, rather than
1315 			 * trying to set only those filter bits needed to match
1316 			 * the range.  (At this time, the only use of address
1317 			 * ranges is for IP multicast routing, for which the
1318 			 * range is big enough to require all bits set.)
1319 			 */
1320 			goto allmulti;
1321 		}
1322 		sf_set_filter_hash(sc, enm->enm_addrlo);
1323 		ETHER_NEXT_MULTI(step, enm);
1324 	}
1325 
1326 	/*
1327 	 * Set "hash only multicast dest, match regardless of VLAN ID".
1328 	 */
1329 	sc->sc_RxAddressFilteringCtl |= RAFC_HashFilteringMode(2);
1330 	goto done;
1331 
1332  allmulti:
1333 	/*
1334 	 * XXX RAFC_PassMulticast is sub-optimal if using VLAN mode.
1335 	 */
1336 	sc->sc_RxAddressFilteringCtl |= RAFC_PassMulticast;
1337 	ifp->if_flags |= IFF_ALLMULTI;
1338 
1339  done:
1340 	sf_funcreg_write(sc, SF_RxAddressFilteringCtl,
1341 	    sc->sc_RxAddressFilteringCtl);
1342 }
1343 
1344 /*
1345  * sf_mii_read:		[mii interface function]
1346  *
1347  *	Read from the MII.
1348  */
1349 static int
1350 sf_mii_read(device_t self, int phy, int reg)
1351 {
1352 	struct sf_softc *sc = device_private(self);
1353 	uint32_t v;
1354 	int i;
1355 
1356 	for (i = 0; i < 1000; i++) {
1357 		v = sf_genreg_read(sc, SF_MII_PHY_REG(phy, reg));
1358 		if (v & MiiDataValid)
1359 			break;
1360 		delay(1);
1361 	}
1362 
1363 	if ((v & MiiDataValid) == 0)
1364 		return (0);
1365 
1366 	if (MiiRegDataPort(v) == 0xffff)
1367 		return (0);
1368 
1369 	return (MiiRegDataPort(v));
1370 }
1371 
1372 /*
1373  * sf_mii_write:	[mii interface function]
1374  *
1375  *	Write to the MII.
1376  */
1377 static void
1378 sf_mii_write(device_t self, int phy, int reg, int val)
1379 {
1380 	struct sf_softc *sc = device_private(self);
1381 	int i;
1382 
1383 	sf_genreg_write(sc, SF_MII_PHY_REG(phy, reg), val);
1384 
1385 	for (i = 0; i < 1000; i++) {
1386 		if ((sf_genreg_read(sc, SF_MII_PHY_REG(phy, reg)) &
1387 		     MiiBusy) == 0)
1388 			return;
1389 		delay(1);
1390 	}
1391 
1392 	printf("%s: MII write timed out\n", device_xname(sc->sc_dev));
1393 }
1394 
1395 /*
1396  * sf_mii_statchg:	[mii interface function]
1397  *
1398  *	Callback from the PHY when the media changes.
1399  */
1400 static void
1401 sf_mii_statchg(struct ifnet *ifp)
1402 {
1403 	struct sf_softc *sc = ifp->if_softc;
1404 	uint32_t ipg;
1405 
1406 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
1407 		sc->sc_MacConfig1 |= MC1_FullDuplex;
1408 		ipg = 0x15;
1409 	} else {
1410 		sc->sc_MacConfig1 &= ~MC1_FullDuplex;
1411 		ipg = 0x11;
1412 	}
1413 
1414 	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1);
1415 	sf_macreset(sc);
1416 
1417 	sf_genreg_write(sc, SF_BkToBkIPG, ipg);
1418 }
1419