xref: /netbsd-src/sys/dev/ic/aic6915.c (revision 274254cdae52594c1aa480a736aef78313d15c9c)
1 /*	$NetBSD: aic6915.c,v 1.23 2008/04/28 20:23:49 martin Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Device driver for the Adaptec AIC-6915 (``Starfire'')
34  * 10/100 Ethernet controller.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: aic6915.c,v 1.23 2008/04/28 20:23:49 martin Exp $");
39 
40 #include "bpfilter.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #include <sys/socket.h>
49 #include <sys/ioctl.h>
50 #include <sys/errno.h>
51 #include <sys/device.h>
52 
53 #include <uvm/uvm_extern.h>
54 
55 #include <net/if.h>
56 #include <net/if_dl.h>
57 #include <net/if_media.h>
58 #include <net/if_ether.h>
59 
60 #if NBPFILTER > 0
61 #include <net/bpf.h>
62 #endif
63 
64 #include <sys/bus.h>
65 #include <sys/intr.h>
66 
67 #include <dev/mii/miivar.h>
68 
69 #include <dev/ic/aic6915reg.h>
70 #include <dev/ic/aic6915var.h>
71 
72 static void	sf_start(struct ifnet *);
73 static void	sf_watchdog(struct ifnet *);
74 static int	sf_ioctl(struct ifnet *, u_long, void *);
75 static int	sf_init(struct ifnet *);
76 static void	sf_stop(struct ifnet *, int);
77 
78 static void	sf_shutdown(void *);
79 
80 static void	sf_txintr(struct sf_softc *);
81 static void	sf_rxintr(struct sf_softc *);
82 static void	sf_stats_update(struct sf_softc *);
83 
84 static void	sf_reset(struct sf_softc *);
85 static void	sf_macreset(struct sf_softc *);
86 static void	sf_rxdrain(struct sf_softc *);
87 static int	sf_add_rxbuf(struct sf_softc *, int);
88 static uint8_t	sf_read_eeprom(struct sf_softc *, int);
89 static void	sf_set_filter(struct sf_softc *);
90 
91 static int	sf_mii_read(struct device *, int, int);
92 static void	sf_mii_write(struct device *, int, int, int);
93 static void	sf_mii_statchg(struct device *);
94 
95 static void	sf_tick(void *);
96 
97 #define	sf_funcreg_read(sc, reg)					\
98 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh_func, (reg))
99 #define	sf_funcreg_write(sc, reg, val)					\
100 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh_func, (reg), (val))
101 
102 static inline uint32_t
103 sf_reg_read(struct sf_softc *sc, bus_addr_t reg)
104 {
105 
106 	if (__predict_false(sc->sc_iomapped)) {
107 		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoAccess,
108 		    reg);
109 		return (bus_space_read_4(sc->sc_st, sc->sc_sh,
110 		    SF_IndirectIoDataPort));
111 	}
112 
113 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, reg));
114 }
115 
116 static inline void
117 sf_reg_write(struct sf_softc *sc, bus_addr_t reg, uint32_t val)
118 {
119 
120 	if (__predict_false(sc->sc_iomapped)) {
121 		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoAccess,
122 		    reg);
123 		bus_space_write_4(sc->sc_st, sc->sc_sh, SF_IndirectIoDataPort,
124 		    val);
125 		return;
126 	}
127 
128 	bus_space_write_4(sc->sc_st, sc->sc_sh, reg, val);
129 }
130 
131 #define	sf_genreg_read(sc, reg)						\
132 	sf_reg_read((sc), (reg) + SF_GENREG_OFFSET)
133 #define	sf_genreg_write(sc, reg, val)					\
134 	sf_reg_write((sc), (reg) + SF_GENREG_OFFSET, (val))
135 
136 /*
137  * sf_attach:
138  *
139  *	Attach a Starfire interface to the system.
140  */
141 void
142 sf_attach(struct sf_softc *sc)
143 {
144 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
145 	int i, rseg, error;
146 	bus_dma_segment_t seg;
147 	u_int8_t enaddr[ETHER_ADDR_LEN];
148 
149 	callout_init(&sc->sc_tick_callout, 0);
150 
151 	/*
152 	 * If we're I/O mapped, the functional register handle is
153 	 * the same as the base handle.  If we're memory mapped,
154 	 * carve off a chunk of the register space for the functional
155 	 * registers, to save on arithmetic later.
156 	 */
157 	if (sc->sc_iomapped)
158 		sc->sc_sh_func = sc->sc_sh;
159 	else {
160 		if ((error = bus_space_subregion(sc->sc_st, sc->sc_sh,
161 		    SF_GENREG_OFFSET, SF_FUNCREG_SIZE, &sc->sc_sh_func)) != 0) {
162 			aprint_error_dev(&sc->sc_dev, "unable to sub-region functional "
163 			    "registers, error = %d\n",
164 			    error);
165 			return;
166 		}
167 	}
168 
169 	/*
170 	 * Initialize the transmit threshold for this interface.  The
171 	 * manual describes the default as 4 * 16 bytes.  We start out
172 	 * at 10 * 16 bytes, to avoid a bunch of initial underruns on
173 	 * several platforms.
174 	 */
175 	sc->sc_txthresh = 10;
176 
177 	/*
178 	 * Allocate the control data structures, and create and load the
179 	 * DMA map for it.
180 	 */
181 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
182 	    sizeof(struct sf_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
183 	    BUS_DMA_NOWAIT)) != 0) {
184 		aprint_error_dev(&sc->sc_dev, "unable to allocate control data, error = %d\n",
185 		    error);
186 		goto fail_0;
187 	}
188 
189 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
190 	    sizeof(struct sf_control_data), (void **)&sc->sc_control_data,
191 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
192 		aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
193 		    error);
194 		goto fail_1;
195 	}
196 
197 	if ((error = bus_dmamap_create(sc->sc_dmat,
198 	    sizeof(struct sf_control_data), 1,
199 	    sizeof(struct sf_control_data), 0, BUS_DMA_NOWAIT,
200 	    &sc->sc_cddmamap)) != 0) {
201 		aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
202 		    "error = %d\n", error);
203 		goto fail_2;
204 	}
205 
206 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
207 	    sc->sc_control_data, sizeof(struct sf_control_data), NULL,
208 	    BUS_DMA_NOWAIT)) != 0) {
209 		aprint_error_dev(&sc->sc_dev, "unable to load control data DMA map, error = %d\n",
210 		    error);
211 		goto fail_3;
212 	}
213 
214 	/*
215 	 * Create the transmit buffer DMA maps.
216 	 */
217 	for (i = 0; i < SF_NTXDESC; i++) {
218 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
219 		    SF_NTXFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
220 		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
221 			aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
222 			    "error = %d\n", i, error);
223 			goto fail_4;
224 		}
225 	}
226 
227 	/*
228 	 * Create the receive buffer DMA maps.
229 	 */
230 	for (i = 0; i < SF_NRXDESC; i++) {
231 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
232 		    MCLBYTES, 0, BUS_DMA_NOWAIT,
233 		    &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
234 			aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
235 			    "error = %d\n", i, error);
236 			goto fail_5;
237 		}
238 	}
239 
240 	/*
241 	 * Reset the chip to a known state.
242 	 */
243 	sf_reset(sc);
244 
245 	/*
246 	 * Read the Ethernet address from the EEPROM.
247 	 */
248 	for (i = 0; i < ETHER_ADDR_LEN; i++)
249 		enaddr[i] = sf_read_eeprom(sc, (15 + (ETHER_ADDR_LEN - 1)) - i);
250 
251 	printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
252 	    ether_sprintf(enaddr));
253 
254 	if (sf_funcreg_read(sc, SF_PciDeviceConfig) & PDC_System64)
255 		printf("%s: 64-bit PCI slot detected\n", device_xname(&sc->sc_dev));
256 
257 	/*
258 	 * Initialize our media structures and probe the MII.
259 	 */
260 	sc->sc_mii.mii_ifp = ifp;
261 	sc->sc_mii.mii_readreg = sf_mii_read;
262 	sc->sc_mii.mii_writereg = sf_mii_write;
263 	sc->sc_mii.mii_statchg = sf_mii_statchg;
264 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
265 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
266 	    ether_mediastatus);
267 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
268 	    MII_OFFSET_ANY, 0);
269 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
270 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
271 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
272 	} else
273 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
274 
275 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
276 	ifp->if_softc = sc;
277 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
278 	ifp->if_ioctl = sf_ioctl;
279 	ifp->if_start = sf_start;
280 	ifp->if_watchdog = sf_watchdog;
281 	ifp->if_init = sf_init;
282 	ifp->if_stop = sf_stop;
283 	IFQ_SET_READY(&ifp->if_snd);
284 
285 	/*
286 	 * Attach the interface.
287 	 */
288 	if_attach(ifp);
289 	ether_ifattach(ifp, enaddr);
290 
291 	/*
292 	 * Make sure the interface is shutdown during reboot.
293 	 */
294 	sc->sc_sdhook = shutdownhook_establish(sf_shutdown, sc);
295 	if (sc->sc_sdhook == NULL)
296 		aprint_error_dev(&sc->sc_dev, "WARNING: unable to establish shutdown hook\n");
297 	return;
298 
299 	/*
300 	 * Free any resources we've allocated during the failed attach
301 	 * attempt.  Do this in reverse order an fall through.
302 	 */
303  fail_5:
304 	for (i = 0; i < SF_NRXDESC; i++) {
305 		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
306 			bus_dmamap_destroy(sc->sc_dmat,
307 			    sc->sc_rxsoft[i].ds_dmamap);
308 	}
309  fail_4:
310 	for (i = 0; i < SF_NTXDESC; i++) {
311 		if (sc->sc_txsoft[i].ds_dmamap != NULL)
312 			bus_dmamap_destroy(sc->sc_dmat,
313 			    sc->sc_txsoft[i].ds_dmamap);
314 	}
315 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
316  fail_3:
317 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
318  fail_2:
319 	bus_dmamem_unmap(sc->sc_dmat, (void *) sc->sc_control_data,
320 	    sizeof(struct sf_control_data));
321  fail_1:
322 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
323  fail_0:
324 	return;
325 }
326 
327 /*
328  * sf_shutdown:
329  *
330  *	Shutdown hook -- make sure the interface is stopped at reboot.
331  */
332 static void
333 sf_shutdown(void *arg)
334 {
335 	struct sf_softc *sc = arg;
336 
337 	sf_stop(&sc->sc_ethercom.ec_if, 1);
338 }
339 
340 /*
341  * sf_start:		[ifnet interface function]
342  *
343  *	Start packet transmission on the interface.
344  */
345 static void
346 sf_start(struct ifnet *ifp)
347 {
348 	struct sf_softc *sc = ifp->if_softc;
349 	struct mbuf *m0, *m;
350 	struct sf_txdesc0 *txd;
351 	struct sf_descsoft *ds;
352 	bus_dmamap_t dmamap;
353 	int error, producer, last = -1, opending, seg;
354 
355 	/*
356 	 * Remember the previous number of pending transmits.
357 	 */
358 	opending = sc->sc_txpending;
359 
360 	/*
361 	 * Find out where we're sitting.
362 	 */
363 	producer = SF_TXDINDEX_TO_HOST(
364 	    TDQPI_HiPrTxProducerIndex_get(
365 	    sf_funcreg_read(sc, SF_TxDescQueueProducerIndex)));
366 
367 	/*
368 	 * Loop through the send queue, setting up transmit descriptors
369 	 * until we drain the queue, or use up all available transmit
370 	 * descriptors.  Leave a blank one at the end for sanity's sake.
371 	 */
372 	while (sc->sc_txpending < (SF_NTXDESC - 1)) {
373 		/*
374 		 * Grab a packet off the queue.
375 		 */
376 		IFQ_POLL(&ifp->if_snd, m0);
377 		if (m0 == NULL)
378 			break;
379 		m = NULL;
380 
381 		/*
382 		 * Get the transmit descriptor.
383 		 */
384 		txd = &sc->sc_txdescs[producer];
385 		ds = &sc->sc_txsoft[producer];
386 		dmamap = ds->ds_dmamap;
387 
388 		/*
389 		 * Load the DMA map.  If this fails, the packet either
390 		 * didn't fit in the allotted number of frags, or we were
391 		 * short on resources.  In this case, we'll copy and try
392 		 * again.
393 		 */
394 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
395 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
396 			MGETHDR(m, M_DONTWAIT, MT_DATA);
397 			if (m == NULL) {
398 				aprint_error_dev(&sc->sc_dev, "unable to allocate Tx mbuf\n");
399 				break;
400 			}
401 			if (m0->m_pkthdr.len > MHLEN) {
402 				MCLGET(m, M_DONTWAIT);
403 				if ((m->m_flags & M_EXT) == 0) {
404 					aprint_error_dev(&sc->sc_dev, "unable to allocate Tx "
405 					    "cluster\n");
406 					m_freem(m);
407 					break;
408 				}
409 			}
410 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
411 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
412 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
413 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
414 			if (error) {
415 				aprint_error_dev(&sc->sc_dev, "unable to load Tx buffer, "
416 				    "error = %d\n", error);
417 				break;
418 			}
419 		}
420 
421 		/*
422 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
423 		 */
424 		IFQ_DEQUEUE(&ifp->if_snd, m0);
425 		if (m != NULL) {
426 			m_freem(m0);
427 			m0 = m;
428 		}
429 
430 		/* Initialize the descriptor. */
431 		txd->td_word0 =
432 		    htole32(TD_W0_ID | TD_W0_CRCEN | m0->m_pkthdr.len);
433 		if (producer == (SF_NTXDESC - 1))
434 			txd->td_word0 |= TD_W0_END;
435 		txd->td_word1 = htole32(dmamap->dm_nsegs);
436 		for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
437 			txd->td_frags[seg].fr_addr =
438 			    htole32(dmamap->dm_segs[seg].ds_addr);
439 			txd->td_frags[seg].fr_len =
440 			    htole32(dmamap->dm_segs[seg].ds_len);
441 		}
442 
443 		/* Sync the descriptor and the DMA map. */
444 		SF_CDTXDSYNC(sc, producer, BUS_DMASYNC_PREWRITE);
445 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
446 		    BUS_DMASYNC_PREWRITE);
447 
448 		/*
449 		 * Store a pointer to the packet so we can free it later.
450 		 */
451 		ds->ds_mbuf = m0;
452 
453 		/* Advance the Tx pointer. */
454 		sc->sc_txpending++;
455 		last = producer;
456 		producer = SF_NEXTTX(producer);
457 
458 #if NBPFILTER > 0
459 		/*
460 		 * Pass the packet to any BPF listeners.
461 		 */
462 		if (ifp->if_bpf)
463 			bpf_mtap(ifp->if_bpf, m0);
464 #endif
465 	}
466 
467 	if (sc->sc_txpending == (SF_NTXDESC - 1)) {
468 		/* No more slots left; notify upper layer. */
469 		ifp->if_flags |= IFF_OACTIVE;
470 	}
471 
472 	if (sc->sc_txpending != opending) {
473 		KASSERT(last != -1);
474 		/*
475 		 * We enqueued packets.  Cause a transmit interrupt to
476 		 * happen on the last packet we enqueued, and give the
477 		 * new descriptors to the chip by writing the new
478 		 * producer index.
479 		 */
480 		sc->sc_txdescs[last].td_word0 |= TD_W0_INTR;
481 		SF_CDTXDSYNC(sc, last, BUS_DMASYNC_PREWRITE);
482 
483 		sf_funcreg_write(sc, SF_TxDescQueueProducerIndex,
484 		    TDQPI_HiPrTxProducerIndex(SF_TXDINDEX_TO_CHIP(producer)));
485 
486 		/* Set a watchdog timer in case the chip flakes out. */
487 		ifp->if_timer = 5;
488 	}
489 }
490 
491 /*
492  * sf_watchdog:		[ifnet interface function]
493  *
494  *	Watchdog timer handler.
495  */
496 static void
497 sf_watchdog(struct ifnet *ifp)
498 {
499 	struct sf_softc *sc = ifp->if_softc;
500 
501 	printf("%s: device timeout\n", device_xname(&sc->sc_dev));
502 	ifp->if_oerrors++;
503 
504 	(void) sf_init(ifp);
505 
506 	/* Try to get more packets going. */
507 	sf_start(ifp);
508 }
509 
510 /*
511  * sf_ioctl:		[ifnet interface function]
512  *
513  *	Handle control requests from the operator.
514  */
515 static int
516 sf_ioctl(struct ifnet *ifp, u_long cmd, void *data)
517 {
518 	struct sf_softc *sc = ifp->if_softc;
519 	int s, error;
520 
521 	s = splnet();
522 
523 	error = ether_ioctl(ifp, cmd, data);
524 	if (error == ENETRESET) {
525 		/*
526 		 * Multicast list has changed; set the hardware filter
527 		 * accordingly.
528 		 */
529 		if (ifp->if_flags & IFF_RUNNING)
530 			sf_set_filter(sc);
531 		error = 0;
532 	}
533 
534 	/* Try to get more packets going. */
535 	sf_start(ifp);
536 
537 	splx(s);
538 	return (error);
539 }
540 
541 /*
542  * sf_intr:
543  *
544  *	Interrupt service routine.
545  */
546 int
547 sf_intr(void *arg)
548 {
549 	struct sf_softc *sc = arg;
550 	uint32_t isr;
551 	int handled = 0, wantinit = 0;
552 
553 	for (;;) {
554 		/* Reading clears all interrupts we're interested in. */
555 		isr = sf_funcreg_read(sc, SF_InterruptStatus);
556 		if ((isr & IS_PCIPadInt) == 0)
557 			break;
558 
559 		handled = 1;
560 
561 		/* Handle receive interrupts. */
562 		if (isr & IS_RxQ1DoneInt)
563 			sf_rxintr(sc);
564 
565 		/* Handle transmit completion interrupts. */
566 		if (isr & (IS_TxDmaDoneInt|IS_TxQueueDoneInt))
567 			sf_txintr(sc);
568 
569 		/* Handle abnormal interrupts. */
570 		if (isr & IS_AbnormalInterrupt) {
571 			/* Statistics. */
572 			if (isr & IS_StatisticWrapInt)
573 				sf_stats_update(sc);
574 
575 			/* DMA errors. */
576 			if (isr & IS_DmaErrInt) {
577 				wantinit = 1;
578 				aprint_error_dev(&sc->sc_dev, "WARNING: DMA error\n");
579 			}
580 
581 			/* Transmit FIFO underruns. */
582 			if (isr & IS_TxDataLowInt) {
583 				if (sc->sc_txthresh < 0xff)
584 					sc->sc_txthresh++;
585 				printf("%s: transmit FIFO underrun, new "
586 				    "threshold: %d bytes\n",
587 				    device_xname(&sc->sc_dev),
588 				    sc->sc_txthresh * 16);
589 				sf_funcreg_write(sc, SF_TransmitFrameCSR,
590 				    sc->sc_TransmitFrameCSR |
591 				    TFCSR_TransmitThreshold(sc->sc_txthresh));
592 				sf_funcreg_write(sc, SF_TxDescQueueCtrl,
593 				    sc->sc_TxDescQueueCtrl |
594 				    TDQC_TxHighPriorityFifoThreshold(
595 							sc->sc_txthresh));
596 			}
597 		}
598 	}
599 
600 	if (handled) {
601 		/* Reset the interface, if necessary. */
602 		if (wantinit)
603 			sf_init(&sc->sc_ethercom.ec_if);
604 
605 		/* Try and get more packets going. */
606 		sf_start(&sc->sc_ethercom.ec_if);
607 	}
608 
609 	return (handled);
610 }
611 
612 /*
613  * sf_txintr:
614  *
615  *	Helper -- handle transmit completion interrupts.
616  */
617 static void
618 sf_txintr(struct sf_softc *sc)
619 {
620 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
621 	struct sf_descsoft *ds;
622 	uint32_t cqci, tcd;
623 	int consumer, producer, txidx;
624 
625  try_again:
626 	cqci = sf_funcreg_read(sc, SF_CompletionQueueConsumerIndex);
627 
628 	consumer = CQCI_TxCompletionConsumerIndex_get(cqci);
629 	producer = CQPI_TxCompletionProducerIndex_get(
630 	    sf_funcreg_read(sc, SF_CompletionQueueProducerIndex));
631 
632 	if (consumer == producer)
633 		return;
634 
635 	ifp->if_flags &= ~IFF_OACTIVE;
636 
637 	while (consumer != producer) {
638 		SF_CDTXCSYNC(sc, consumer, BUS_DMASYNC_POSTREAD);
639 		tcd = le32toh(sc->sc_txcomp[consumer].tcd_word0);
640 
641 		txidx = SF_TCD_INDEX_TO_HOST(TCD_INDEX(tcd));
642 #ifdef DIAGNOSTIC
643 		if ((tcd & TCD_PR) == 0)
644 			aprint_error_dev(&sc->sc_dev, "Tx queue mismatch, index %d\n",
645 			    txidx);
646 #endif
647 		/*
648 		 * NOTE: stats are updated later.  We're just
649 		 * releasing packets that have been DMA'd to
650 		 * the chip.
651 		 */
652 		ds = &sc->sc_txsoft[txidx];
653 		SF_CDTXDSYNC(sc, txidx, BUS_DMASYNC_POSTWRITE);
654 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
655 		    0, ds->ds_dmamap->dm_mapsize,
656 		    BUS_DMASYNC_POSTWRITE);
657 		m_freem(ds->ds_mbuf);
658 		ds->ds_mbuf = NULL;
659 
660 		consumer = SF_NEXTTCD(consumer);
661 		sc->sc_txpending--;
662 	}
663 
664 	/* XXXJRT -- should be KDASSERT() */
665 	KASSERT(sc->sc_txpending >= 0);
666 
667 	/* If all packets are done, cancel the watchdog timer. */
668 	if (sc->sc_txpending == 0)
669 		ifp->if_timer = 0;
670 
671 	/* Update the consumer index. */
672 	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
673 	    (cqci & ~CQCI_TxCompletionConsumerIndex(0x7ff)) |
674 	     CQCI_TxCompletionConsumerIndex(consumer));
675 
676 	/* Double check for new completions. */
677 	goto try_again;
678 }
679 
680 /*
681  * sf_rxintr:
682  *
683  *	Helper -- handle receive interrupts.
684  */
685 static void
686 sf_rxintr(struct sf_softc *sc)
687 {
688 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
689 	struct sf_descsoft *ds;
690 	struct sf_rcd_full *rcd;
691 	struct mbuf *m;
692 	uint32_t cqci, word0;
693 	int consumer, producer, bufproducer, rxidx, len;
694 
695  try_again:
696 	cqci = sf_funcreg_read(sc, SF_CompletionQueueConsumerIndex);
697 
698 	consumer = CQCI_RxCompletionQ1ConsumerIndex_get(cqci);
699 	producer = CQPI_RxCompletionQ1ProducerIndex_get(
700 	    sf_funcreg_read(sc, SF_CompletionQueueProducerIndex));
701 	bufproducer = RXQ1P_RxDescQ1Producer_get(
702 	    sf_funcreg_read(sc, SF_RxDescQueue1Ptrs));
703 
704 	if (consumer == producer)
705 		return;
706 
707 	while (consumer != producer) {
708 		rcd = &sc->sc_rxcomp[consumer];
709 		SF_CDRXCSYNC(sc, consumer,
710 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
711 		SF_CDRXCSYNC(sc, consumer,
712 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
713 
714 		word0 = le32toh(rcd->rcd_word0);
715 		rxidx = RCD_W0_EndIndex(word0);
716 
717 		ds = &sc->sc_rxsoft[rxidx];
718 
719 		consumer = SF_NEXTRCD(consumer);
720 		bufproducer = SF_NEXTRX(bufproducer);
721 
722 		if ((word0 & RCD_W0_OK) == 0) {
723 			SF_INIT_RXDESC(sc, rxidx);
724 			continue;
725 		}
726 
727 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
728 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
729 
730 		/*
731 		 * No errors; receive the packet.  Note that we have
732 		 * configured the Starfire to NOT transfer the CRC
733 		 * with the packet.
734 		 */
735 		len = RCD_W0_Length(word0);
736 
737 #ifdef __NO_STRICT_ALIGNMENT
738 		/*
739 		 * Allocate a new mbuf cluster.  If that fails, we are
740 		 * out of memory, and must drop the packet and recycle
741 		 * the buffer that's already attached to this descriptor.
742 		 */
743 		m = ds->ds_mbuf;
744 		if (sf_add_rxbuf(sc, rxidx) != 0) {
745 			ifp->if_ierrors++;
746 			SF_INIT_RXDESC(sc, rxidx);
747 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
748 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
749 			continue;
750 		}
751 #else
752 		/*
753 		 * The Starfire's receive buffer must be 4-byte aligned.
754 		 * But this means that the data after the Ethernet header
755 		 * is misaligned.  We must allocate a new buffer and
756 		 * copy the data, shifted forward 2 bytes.
757 		 */
758 		MGETHDR(m, M_DONTWAIT, MT_DATA);
759 		if (m == NULL) {
760  dropit:
761 			ifp->if_ierrors++;
762 			SF_INIT_RXDESC(sc, rxidx);
763 			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
764 			    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
765 			continue;
766 		}
767 		if (len > (MHLEN - 2)) {
768 			MCLGET(m, M_DONTWAIT);
769 			if ((m->m_flags & M_EXT) == 0) {
770 				m_freem(m);
771 				goto dropit;
772 			}
773 		}
774 		m->m_data += 2;
775 
776 		/*
777 		 * Note that we use cluster for incoming frames, so the
778 		 * buffer is virtually contiguous.
779 		 */
780 		memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *), len);
781 
782 		/* Allow the receive descriptor to continue using its mbuf. */
783 		SF_INIT_RXDESC(sc, rxidx);
784 		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
785 		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
786 #endif /* __NO_STRICT_ALIGNMENT */
787 
788 		m->m_pkthdr.rcvif = ifp;
789 		m->m_pkthdr.len = m->m_len = len;
790 
791 #if NBPFILTER > 0
792 		/*
793 		 * Pass this up to any BPF listeners.
794 		 */
795 		if (ifp->if_bpf)
796 			bpf_mtap(ifp->if_bpf, m);
797 #endif /* NBPFILTER > 0 */
798 
799 		/* Pass it on. */
800 		(*ifp->if_input)(ifp, m);
801 	}
802 
803 	/* Update the chip's pointers. */
804 	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
805 	    (cqci & ~CQCI_RxCompletionQ1ConsumerIndex(0x7ff)) |
806 	     CQCI_RxCompletionQ1ConsumerIndex(consumer));
807 	sf_funcreg_write(sc, SF_RxDescQueue1Ptrs,
808 	    RXQ1P_RxDescQ1Producer(bufproducer));
809 
810 	/* Double-check for any new completions. */
811 	goto try_again;
812 }
813 
814 /*
815  * sf_tick:
816  *
817  *	One second timer, used to tick the MII and update stats.
818  */
819 static void
820 sf_tick(void *arg)
821 {
822 	struct sf_softc *sc = arg;
823 	int s;
824 
825 	s = splnet();
826 	mii_tick(&sc->sc_mii);
827 	sf_stats_update(sc);
828 	splx(s);
829 
830 	callout_reset(&sc->sc_tick_callout, hz, sf_tick, sc);
831 }
832 
833 /*
834  * sf_stats_update:
835  *
836  *	Read the statitistics counters.
837  */
838 static void
839 sf_stats_update(struct sf_softc *sc)
840 {
841 	struct sf_stats stats;
842 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
843 	uint32_t *p;
844 	u_int i;
845 
846 	p = &stats.TransmitOKFrames;
847 	for (i = 0; i < (sizeof(stats) / sizeof(uint32_t)); i++) {
848 		*p++ = sf_genreg_read(sc,
849 		    SF_STATS_BASE + (i * sizeof(uint32_t)));
850 		sf_genreg_write(sc, SF_STATS_BASE + (i * sizeof(uint32_t)), 0);
851 	}
852 
853 	ifp->if_opackets += stats.TransmitOKFrames;
854 
855 	ifp->if_collisions += stats.SingleCollisionFrames +
856 	    stats.MultipleCollisionFrames;
857 
858 	ifp->if_oerrors += stats.TransmitAbortDueToExcessiveCollisions +
859 	    stats.TransmitAbortDueToExcessingDeferral +
860 	    stats.FramesLostDueToInternalTransmitErrors;
861 
862 	ifp->if_ipackets += stats.ReceiveOKFrames;
863 
864 	ifp->if_ierrors += stats.ReceiveCRCErrors + stats.AlignmentErrors +
865 	    stats.ReceiveFramesTooLong + stats.ReceiveFramesTooShort +
866 	    stats.ReceiveFramesJabbersError +
867 	    stats.FramesLostDueToInternalReceiveErrors;
868 }
869 
870 /*
871  * sf_reset:
872  *
873  *	Perform a soft reset on the Starfire.
874  */
875 static void
876 sf_reset(struct sf_softc *sc)
877 {
878 	int i;
879 
880 	sf_funcreg_write(sc, SF_GeneralEthernetCtrl, 0);
881 
882 	sf_macreset(sc);
883 
884 	sf_funcreg_write(sc, SF_PciDeviceConfig, PDC_SoftReset);
885 	for (i = 0; i < 1000; i++) {
886 		delay(10);
887 		if ((sf_funcreg_read(sc, SF_PciDeviceConfig) &
888 		     PDC_SoftReset) == 0)
889 			break;
890 	}
891 
892 	if (i == 1000) {
893 		aprint_error_dev(&sc->sc_dev, "reset failed to complete\n");
894 		sf_funcreg_write(sc, SF_PciDeviceConfig, 0);
895 	}
896 
897 	delay(1000);
898 }
899 
900 /*
901  * sf_macreset:
902  *
903  *	Reset the MAC portion of the Starfire.
904  */
905 static void
906 sf_macreset(struct sf_softc *sc)
907 {
908 
909 	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1 | MC1_SoftRst);
910 	delay(1000);
911 	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1);
912 }
913 
914 /*
915  * sf_init:		[ifnet interface function]
916  *
917  *	Initialize the interface.  Must be called at splnet().
918  */
919 static int
920 sf_init(struct ifnet *ifp)
921 {
922 	struct sf_softc *sc = ifp->if_softc;
923 	struct sf_descsoft *ds;
924 	int error = 0;
925 	u_int i;
926 
927 	/*
928 	 * Cancel any pending I/O.
929 	 */
930 	sf_stop(ifp, 0);
931 
932 	/*
933 	 * Reset the Starfire to a known state.
934 	 */
935 	sf_reset(sc);
936 
937 	/* Clear the stat counters. */
938 	for (i = 0; i < sizeof(struct sf_stats); i += sizeof(uint32_t))
939 		sf_genreg_write(sc, SF_STATS_BASE + i, 0);
940 
941 	/*
942 	 * Initialize the transmit descriptor ring.
943 	 */
944 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
945 	sf_funcreg_write(sc, SF_TxDescQueueHighAddr, 0);
946 	sf_funcreg_write(sc, SF_HiPrTxDescQueueBaseAddr, SF_CDTXDADDR(sc, 0));
947 	sf_funcreg_write(sc, SF_LoPrTxDescQueueBaseAddr, 0);
948 
949 	/*
950 	 * Initialize the transmit completion ring.
951 	 */
952 	for (i = 0; i < SF_NTCD; i++) {
953 		sc->sc_txcomp[i].tcd_word0 = TCD_DMA_ID;
954 		SF_CDTXCSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
955 	}
956 	sf_funcreg_write(sc, SF_CompletionQueueHighAddr, 0);
957 	sf_funcreg_write(sc, SF_TxCompletionQueueCtrl, SF_CDTXCADDR(sc, 0));
958 
959 	/*
960 	 * Initialize the receive descriptor ring.
961 	 */
962 	for (i = 0; i < SF_NRXDESC; i++) {
963 		ds = &sc->sc_rxsoft[i];
964 		if (ds->ds_mbuf == NULL) {
965 			if ((error = sf_add_rxbuf(sc, i)) != 0) {
966 				aprint_error_dev(&sc->sc_dev, "unable to allocate or map rx "
967 				    "buffer %d, error = %d\n",
968 				    i, error);
969 				/*
970 				 * XXX Should attempt to run with fewer receive
971 				 * XXX buffers instead of just failing.
972 				 */
973 				sf_rxdrain(sc);
974 				goto out;
975 			}
976 		} else
977 			SF_INIT_RXDESC(sc, i);
978 	}
979 	sf_funcreg_write(sc, SF_RxDescQueueHighAddress, 0);
980 	sf_funcreg_write(sc, SF_RxDescQueue1LowAddress, SF_CDRXDADDR(sc, 0));
981 	sf_funcreg_write(sc, SF_RxDescQueue2LowAddress, 0);
982 
983 	/*
984 	 * Initialize the receive completion ring.
985 	 */
986 	for (i = 0; i < SF_NRCD; i++) {
987 		sc->sc_rxcomp[i].rcd_word0 = RCD_W0_ID;
988 		sc->sc_rxcomp[i].rcd_word1 = 0;
989 		sc->sc_rxcomp[i].rcd_word2 = 0;
990 		sc->sc_rxcomp[i].rcd_timestamp = 0;
991 		SF_CDRXCSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
992 	}
993 	sf_funcreg_write(sc, SF_RxCompletionQueue1Ctrl, SF_CDRXCADDR(sc, 0) |
994 	    RCQ1C_RxCompletionQ1Type(3));
995 	sf_funcreg_write(sc, SF_RxCompletionQueue2Ctrl, 0);
996 
997 	/*
998 	 * Initialize the Tx CSR.
999 	 */
1000 	sc->sc_TransmitFrameCSR = 0;
1001 	sf_funcreg_write(sc, SF_TransmitFrameCSR,
1002 	    sc->sc_TransmitFrameCSR |
1003 	    TFCSR_TransmitThreshold(sc->sc_txthresh));
1004 
1005 	/*
1006 	 * Initialize the Tx descriptor control register.
1007 	 */
1008 	sc->sc_TxDescQueueCtrl = TDQC_SkipLength(0) |
1009 	    TDQC_TxDmaBurstSize(4) |	/* default */
1010 	    TDQC_MinFrameSpacing(3) |	/* 128 bytes */
1011 	    TDQC_TxDescType(0);
1012 	sf_funcreg_write(sc, SF_TxDescQueueCtrl,
1013 	    sc->sc_TxDescQueueCtrl |
1014 	    TDQC_TxHighPriorityFifoThreshold(sc->sc_txthresh));
1015 
1016 	/*
1017 	 * Initialize the Rx descriptor control registers.
1018 	 */
1019 	sf_funcreg_write(sc, SF_RxDescQueue1Ctrl,
1020 	    RDQ1C_RxQ1BufferLength(MCLBYTES) |
1021 	    RDQ1C_RxDescSpacing(0));
1022 	sf_funcreg_write(sc, SF_RxDescQueue2Ctrl, 0);
1023 
1024 	/*
1025 	 * Initialize the Tx descriptor producer indices.
1026 	 */
1027 	sf_funcreg_write(sc, SF_TxDescQueueProducerIndex,
1028 	    TDQPI_HiPrTxProducerIndex(0) |
1029 	    TDQPI_LoPrTxProducerIndex(0));
1030 
1031 	/*
1032 	 * Initialize the Rx descriptor producer indices.
1033 	 */
1034 	sf_funcreg_write(sc, SF_RxDescQueue1Ptrs,
1035 	    RXQ1P_RxDescQ1Producer(SF_NRXDESC - 1));
1036 	sf_funcreg_write(sc, SF_RxDescQueue2Ptrs,
1037 	    RXQ2P_RxDescQ2Producer(0));
1038 
1039 	/*
1040 	 * Initialize the Tx and Rx completion queue consumer indices.
1041 	 */
1042 	sf_funcreg_write(sc, SF_CompletionQueueConsumerIndex,
1043 	    CQCI_TxCompletionConsumerIndex(0) |
1044 	    CQCI_RxCompletionQ1ConsumerIndex(0));
1045 	sf_funcreg_write(sc, SF_RxHiPrCompletionPtrs, 0);
1046 
1047 	/*
1048 	 * Initialize the Rx DMA control register.
1049 	 */
1050 	sf_funcreg_write(sc, SF_RxDmaCtrl,
1051 	    RDC_RxHighPriorityThreshold(6) |	/* default */
1052 	    RDC_RxBurstSize(4));		/* default */
1053 
1054 	/*
1055 	 * Set the receive filter.
1056 	 */
1057 	sc->sc_RxAddressFilteringCtl = 0;
1058 	sf_set_filter(sc);
1059 
1060 	/*
1061 	 * Set MacConfig1.  When we set the media, MacConfig1 will
1062 	 * actually be written and the MAC part reset.
1063 	 */
1064 	sc->sc_MacConfig1 = MC1_PadEn;
1065 
1066 	/*
1067 	 * Set the media.
1068 	 */
1069 	if ((error = ether_mediachange(ifp)) != 0)
1070 		goto out;
1071 
1072 	/*
1073 	 * Initialize the interrupt register.
1074 	 */
1075 	sc->sc_InterruptEn = IS_PCIPadInt | IS_RxQ1DoneInt |
1076 	    IS_TxQueueDoneInt | IS_TxDmaDoneInt | IS_DmaErrInt |
1077 	    IS_StatisticWrapInt;
1078 	sf_funcreg_write(sc, SF_InterruptEn, sc->sc_InterruptEn);
1079 
1080 	sf_funcreg_write(sc, SF_PciDeviceConfig, PDC_IntEnable |
1081 	    PDC_PCIMstDmaEn | (1 << PDC_FifoThreshold_SHIFT));
1082 
1083 	/*
1084 	 * Start the transmit and receive processes.
1085 	 */
1086 	sf_funcreg_write(sc, SF_GeneralEthernetCtrl,
1087 	    GEC_TxDmaEn|GEC_RxDmaEn|GEC_TransmitEn|GEC_ReceiveEn);
1088 
1089 	/* Start the on second clock. */
1090 	callout_reset(&sc->sc_tick_callout, hz, sf_tick, sc);
1091 
1092 	/*
1093 	 * Note that the interface is now running.
1094 	 */
1095 	ifp->if_flags |= IFF_RUNNING;
1096 	ifp->if_flags &= ~IFF_OACTIVE;
1097 
1098  out:
1099 	if (error) {
1100 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1101 		ifp->if_timer = 0;
1102 		printf("%s: interface not running\n", device_xname(&sc->sc_dev));
1103 	}
1104 	return (error);
1105 }
1106 
1107 /*
1108  * sf_rxdrain:
1109  *
1110  *	Drain the receive queue.
1111  */
1112 static void
1113 sf_rxdrain(struct sf_softc *sc)
1114 {
1115 	struct sf_descsoft *ds;
1116 	int i;
1117 
1118 	for (i = 0; i < SF_NRXDESC; i++) {
1119 		ds = &sc->sc_rxsoft[i];
1120 		if (ds->ds_mbuf != NULL) {
1121 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1122 			m_freem(ds->ds_mbuf);
1123 			ds->ds_mbuf = NULL;
1124 		}
1125 	}
1126 }
1127 
1128 /*
1129  * sf_stop:		[ifnet interface function]
1130  *
1131  *	Stop transmission on the interface.
1132  */
1133 static void
1134 sf_stop(struct ifnet *ifp, int disable)
1135 {
1136 	struct sf_softc *sc = ifp->if_softc;
1137 	struct sf_descsoft *ds;
1138 	int i;
1139 
1140 	/* Stop the one second clock. */
1141 	callout_stop(&sc->sc_tick_callout);
1142 
1143 	/* Down the MII. */
1144 	mii_down(&sc->sc_mii);
1145 
1146 	/* Disable interrupts. */
1147 	sf_funcreg_write(sc, SF_InterruptEn, 0);
1148 
1149 	/* Stop the transmit and receive processes. */
1150 	sf_funcreg_write(sc, SF_GeneralEthernetCtrl, 0);
1151 
1152 	/*
1153 	 * Release any queued transmit buffers.
1154 	 */
1155 	for (i = 0; i < SF_NTXDESC; i++) {
1156 		ds = &sc->sc_txsoft[i];
1157 		if (ds->ds_mbuf != NULL) {
1158 			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1159 			m_freem(ds->ds_mbuf);
1160 			ds->ds_mbuf = NULL;
1161 		}
1162 	}
1163 
1164 	/*
1165 	 * Mark the interface down and cancel the watchdog timer.
1166 	 */
1167 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1168 	ifp->if_timer = 0;
1169 
1170 	if (disable)
1171 		sf_rxdrain(sc);
1172 }
1173 
1174 /*
1175  * sf_read_eeprom:
1176  *
1177  *	Read from the Starfire EEPROM.
1178  */
1179 static uint8_t
1180 sf_read_eeprom(struct sf_softc *sc, int offset)
1181 {
1182 	uint32_t reg;
1183 
1184 	reg = sf_genreg_read(sc, SF_EEPROM_BASE + (offset & ~3));
1185 
1186 	return ((reg >> (8 * (offset & 3))) & 0xff);
1187 }
1188 
1189 /*
1190  * sf_add_rxbuf:
1191  *
1192  *	Add a receive buffer to the indicated descriptor.
1193  */
1194 static int
1195 sf_add_rxbuf(struct sf_softc *sc, int idx)
1196 {
1197 	struct sf_descsoft *ds = &sc->sc_rxsoft[idx];
1198 	struct mbuf *m;
1199 	int error;
1200 
1201 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1202 	if (m == NULL)
1203 		return (ENOBUFS);
1204 
1205 	MCLGET(m, M_DONTWAIT);
1206 	if ((m->m_flags & M_EXT) == 0) {
1207 		m_freem(m);
1208 		return (ENOBUFS);
1209 	}
1210 
1211 	if (ds->ds_mbuf != NULL)
1212 		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1213 
1214 	ds->ds_mbuf = m;
1215 
1216 	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1217 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1218 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1219 	if (error) {
1220 		aprint_error_dev(&sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
1221 		    idx, error);
1222 		panic("sf_add_rxbuf"); /* XXX */
1223 	}
1224 
1225 	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1226 	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1227 
1228 	SF_INIT_RXDESC(sc, idx);
1229 
1230 	return (0);
1231 }
1232 
1233 static void
1234 sf_set_filter_perfect(struct sf_softc *sc, int slot, const uint8_t *enaddr)
1235 {
1236 	uint32_t reg0, reg1, reg2;
1237 
1238 	reg0 = enaddr[5] | (enaddr[4] << 8);
1239 	reg1 = enaddr[3] | (enaddr[2] << 8);
1240 	reg2 = enaddr[1] | (enaddr[0] << 8);
1241 
1242 	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 0, reg0);
1243 	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 4, reg1);
1244 	sf_genreg_write(sc, SF_PERFECT_BASE + (slot * 0x10) + 8, reg2);
1245 }
1246 
1247 static void
1248 sf_set_filter_hash(struct sf_softc *sc, uint8_t *enaddr)
1249 {
1250 	uint32_t hash, slot, reg;
1251 
1252 	hash = ether_crc32_be(enaddr, ETHER_ADDR_LEN) >> 23;
1253 	slot = hash >> 4;
1254 
1255 	reg = sf_genreg_read(sc, SF_HASH_BASE + (slot * 0x10));
1256 	reg |= 1 << (hash & 0xf);
1257 	sf_genreg_write(sc, SF_HASH_BASE + (slot * 0x10), reg);
1258 }
1259 
1260 /*
1261  * sf_set_filter:
1262  *
1263  *	Set the Starfire receive filter.
1264  */
1265 static void
1266 sf_set_filter(struct sf_softc *sc)
1267 {
1268 	struct ethercom *ec = &sc->sc_ethercom;
1269 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1270 	struct ether_multi *enm;
1271 	struct ether_multistep step;
1272 	int i;
1273 
1274 	/* Start by clearing the perfect and hash tables. */
1275 	for (i = 0; i < SF_PERFECT_SIZE; i += sizeof(uint32_t))
1276 		sf_genreg_write(sc, SF_PERFECT_BASE + i, 0);
1277 
1278 	for (i = 0; i < SF_HASH_SIZE; i += sizeof(uint32_t))
1279 		sf_genreg_write(sc, SF_HASH_BASE + i, 0);
1280 
1281 	/*
1282 	 * Clear the perfect and hash mode bits.
1283 	 */
1284 	sc->sc_RxAddressFilteringCtl &=
1285 	    ~(RAFC_PerfectFilteringMode(3) | RAFC_HashFilteringMode(3));
1286 
1287 	if (ifp->if_flags & IFF_BROADCAST)
1288 		sc->sc_RxAddressFilteringCtl |= RAFC_PassBroadcast;
1289 	else
1290 		sc->sc_RxAddressFilteringCtl &= ~RAFC_PassBroadcast;
1291 
1292 	if (ifp->if_flags & IFF_PROMISC) {
1293 		sc->sc_RxAddressFilteringCtl |= RAFC_PromiscuousMode;
1294 		goto allmulti;
1295 	} else
1296 		sc->sc_RxAddressFilteringCtl &= ~RAFC_PromiscuousMode;
1297 
1298 	/*
1299 	 * Set normal perfect filtering mode.
1300 	 */
1301 	sc->sc_RxAddressFilteringCtl |= RAFC_PerfectFilteringMode(1);
1302 
1303 	/*
1304 	 * First, write the station address to the perfect filter
1305 	 * table.
1306 	 */
1307 	sf_set_filter_perfect(sc, 0, CLLADDR(ifp->if_sadl));
1308 
1309 	/*
1310 	 * Now set the hash bits for each multicast address in our
1311 	 * list.
1312 	 */
1313 	ETHER_FIRST_MULTI(step, ec, enm);
1314 	if (enm == NULL)
1315 		goto done;
1316 	while (enm != NULL) {
1317 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1318 			/*
1319 			 * We must listen to a range of multicast addresses.
1320 			 * For now, just accept all multicasts, rather than
1321 			 * trying to set only those filter bits needed to match
1322 			 * the range.  (At this time, the only use of address
1323 			 * ranges is for IP multicast routing, for which the
1324 			 * range is big enough to require all bits set.)
1325 			 */
1326 			goto allmulti;
1327 		}
1328 		sf_set_filter_hash(sc, enm->enm_addrlo);
1329 		ETHER_NEXT_MULTI(step, enm);
1330 	}
1331 
1332 	/*
1333 	 * Set "hash only multicast dest, match regardless of VLAN ID".
1334 	 */
1335 	sc->sc_RxAddressFilteringCtl |= RAFC_HashFilteringMode(2);
1336 	goto done;
1337 
1338  allmulti:
1339 	/*
1340 	 * XXX RAFC_PassMulticast is sub-optimal if using VLAN mode.
1341 	 */
1342 	sc->sc_RxAddressFilteringCtl |= RAFC_PassMulticast;
1343 	ifp->if_flags |= IFF_ALLMULTI;
1344 
1345  done:
1346 	sf_funcreg_write(sc, SF_RxAddressFilteringCtl,
1347 	    sc->sc_RxAddressFilteringCtl);
1348 }
1349 
1350 /*
1351  * sf_mii_read:		[mii interface function]
1352  *
1353  *	Read from the MII.
1354  */
1355 static int
1356 sf_mii_read(struct device *self, int phy, int reg)
1357 {
1358 	struct sf_softc *sc = (void *) self;
1359 	uint32_t v;
1360 	int i;
1361 
1362 	for (i = 0; i < 1000; i++) {
1363 		v = sf_genreg_read(sc, SF_MII_PHY_REG(phy, reg));
1364 		if (v & MiiDataValid)
1365 			break;
1366 		delay(1);
1367 	}
1368 
1369 	if ((v & MiiDataValid) == 0)
1370 		return (0);
1371 
1372 	if (MiiRegDataPort(v) == 0xffff)
1373 		return (0);
1374 
1375 	return (MiiRegDataPort(v));
1376 }
1377 
1378 /*
1379  * sf_mii_write:	[mii interface function]
1380  *
1381  *	Write to the MII.
1382  */
1383 static void
1384 sf_mii_write(struct device *self, int phy, int reg, int val)
1385 {
1386 	struct sf_softc *sc = (void *) self;
1387 	int i;
1388 
1389 	sf_genreg_write(sc, SF_MII_PHY_REG(phy, reg), val);
1390 
1391 	for (i = 0; i < 1000; i++) {
1392 		if ((sf_genreg_read(sc, SF_MII_PHY_REG(phy, reg)) &
1393 		     MiiBusy) == 0)
1394 			return;
1395 		delay(1);
1396 	}
1397 
1398 	printf("%s: MII write timed out\n", device_xname(&sc->sc_dev));
1399 }
1400 
1401 /*
1402  * sf_mii_statchg:	[mii interface function]
1403  *
1404  *	Callback from the PHY when the media changes.
1405  */
1406 static void
1407 sf_mii_statchg(struct device *self)
1408 {
1409 	struct sf_softc *sc = (void *) self;
1410 	uint32_t ipg;
1411 
1412 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
1413 		sc->sc_MacConfig1 |= MC1_FullDuplex;
1414 		ipg = 0x15;
1415 	} else {
1416 		sc->sc_MacConfig1 &= ~MC1_FullDuplex;
1417 		ipg = 0x11;
1418 	}
1419 
1420 	sf_genreg_write(sc, SF_MacConfig1, sc->sc_MacConfig1);
1421 	sf_macreset(sc);
1422 
1423 	sf_genreg_write(sc, SF_BkToBkIPG, ipg);
1424 }
1425