xref: /netbsd-src/sys/dev/i2c/axppmic.c (revision 7330f729ccf0bd976a06f95fad452fe774fc7fd1)
1 /* $NetBSD: axppmic.c,v 1.26 2019/10/01 23:32:52 jmcneill Exp $ */
2 
3 /*-
4  * Copyright (c) 2014-2018 Jared McNeill <jmcneill@invisible.ca>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: axppmic.c,v 1.26 2019/10/01 23:32:52 jmcneill Exp $");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/device.h>
36 #include <sys/conf.h>
37 #include <sys/bus.h>
38 #include <sys/kmem.h>
39 
40 #include <dev/i2c/i2cvar.h>
41 
42 #include <dev/sysmon/sysmonvar.h>
43 #include <dev/sysmon/sysmon_taskq.h>
44 
45 #include <dev/fdt/fdtvar.h>
46 
47 #define	AXP_POWER_SOURCE_REG	0x00
48 #define	 AXP_POWER_SOURCE_ACIN_PRESENT	__BIT(7)
49 #define	 AXP_POWER_SOURCE_VBUS_PRESENT	__BIT(5)
50 #define	 AXP_POWER_SOURCE_CHARGE_DIRECTION __BIT(2)
51 
52 #define	AXP_POWER_MODE_REG	0x01
53 #define	 AXP_POWER_MODE_BATT_VALID	__BIT(4)
54 #define	 AXP_POWER_MODE_BATT_PRESENT	__BIT(5)
55 #define	 AXP_POWER_MODE_BATT_CHARGING	__BIT(6)
56 
57 #define	AXP_CHIP_ID_REG		0x03
58 
59 #define AXP_POWER_DISABLE_REG	0x32
60 #define	 AXP_POWER_DISABLE_CTRL	__BIT(7)
61 
62 #define AXP_IRQ_ENABLE_REG(n)	(0x40 + (n) - 1)
63 #define	 AXP_IRQ1_ACIN_RAISE	__BIT(6)
64 #define	 AXP_IRQ1_ACIN_LOWER	__BIT(5)
65 #define	 AXP_IRQ1_VBUS_RAISE	__BIT(3)
66 #define	 AXP_IRQ1_VBUS_LOWER	__BIT(2)
67 #define AXP_IRQ_STATUS_REG(n)	(0x48 + (n) - 1)
68 
69 #define	AXP_BATSENSE_HI_REG	0x78
70 #define	AXP_BATSENSE_LO_REG	0x79
71 
72 #define	AXP_BATTCHG_HI_REG	0x7a
73 #define	AXP_BATTCHG_LO_REG	0x7b
74 
75 #define	AXP_BATTDISCHG_HI_REG	0x7c
76 #define	AXP_BATTDISCHG_LO_REG	0x7d
77 
78 #define	AXP_ADC_RAW(_hi, _lo)	\
79 	(((u_int)(_hi) << 4) | ((_lo) & 0xf))
80 
81 #define	AXP_FUEL_GAUGE_CTRL_REG	0xb8
82 #define	 AXP_FUEL_GAUGE_CTRL_EN	__BIT(7)
83 
84 #define	AXP_BATT_CAP_REG	0xb9
85 #define	 AXP_BATT_CAP_VALID	__BIT(7)
86 #define	 AXP_BATT_CAP_PERCENT	__BITS(6,0)
87 
88 #define	AXP_BATT_MAX_CAP_HI_REG	0xe0
89 #define	 AXP_BATT_MAX_CAP_VALID	__BIT(7)
90 #define	AXP_BATT_MAX_CAP_LO_REG	0xe1
91 
92 #define	AXP_BATT_COULOMB_HI_REG	0xe2
93 #define	 AXP_BATT_COULOMB_VALID	__BIT(7)
94 #define	AXP_BATT_COULOMB_LO_REG	0xe3
95 
96 #define	AXP_COULOMB_RAW(_hi, _lo)	\
97 	(((u_int)(_hi & ~__BIT(7)) << 8) | (_lo))
98 
99 #define	AXP_BATT_CAP_WARN_REG	0xe6
100 #define	 AXP_BATT_CAP_WARN_LV1	__BITS(7,4)
101 #define	 AXP_BATT_CAP_WARN_LV2	__BITS(3,0)
102 
103 #define	AXP_ADDR_EXT_REG	0xff	/* AXP806 */
104 #define	 AXP_ADDR_EXT_MASTER	0
105 #define	 AXP_ADDR_EXT_SLAVE	__BIT(4)
106 
107 struct axppmic_ctrl {
108 	device_t	c_dev;
109 
110 	const char *	c_name;
111 	u_int		c_min;
112 	u_int		c_max;
113 	u_int		c_step1;
114 	u_int		c_step1cnt;
115 	u_int		c_step2;
116 	u_int		c_step2cnt;
117 	u_int		c_step2start;
118 
119 	uint8_t		c_enable_reg;
120 	uint8_t		c_enable_mask;
121 	uint8_t		c_enable_val;
122 	uint8_t		c_disable_val;
123 
124 	uint8_t		c_voltage_reg;
125 	uint8_t		c_voltage_mask;
126 };
127 
128 #define AXP_CTRL(name, min, max, step, ereg, emask, vreg, vmask)	\
129 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
130 	  .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \
131 	  .c_step2 = 0, .c_step2cnt = 0,				\
132 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
133 	  .c_enable_val = (emask), .c_disable_val = 0,			\
134 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
135 
136 #define AXP_CTRL2(name, min, max, step1, step1cnt, step2, step2cnt, ereg, emask, vreg, vmask) \
137 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
138 	  .c_step1 = (step1), .c_step1cnt = (step1cnt),			\
139 	  .c_step2 = (step2), .c_step2cnt = (step2cnt),			\
140 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
141 	  .c_enable_val = (emask), .c_disable_val = 0,			\
142 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
143 
144 #define AXP_CTRL2_RANGE(name, min, max, step1, step1cnt, step2start, step2, step2cnt, ereg, emask, vreg, vmask) \
145 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
146 	  .c_step1 = (step1), .c_step1cnt = (step1cnt),			\
147 	  .c_step2start = (step2start),					\
148 	  .c_step2 = (step2), .c_step2cnt = (step2cnt),			\
149 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
150 	  .c_enable_val = (emask), .c_disable_val = 0,			\
151 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
152 
153 #define AXP_CTRL_IO(name, min, max, step, ereg, emask, eval, dval, vreg, vmask)	\
154 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
155 	  .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \
156 	  .c_step2 = 0, .c_step2cnt = 0,				\
157 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
158 	  .c_enable_val = (eval), .c_disable_val = (dval),		\
159 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
160 
161 #define AXP_CTRL_SW(name, ereg, emask)					\
162 	{ .c_name = (name), 						\
163 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
164 	  .c_enable_val = (emask), .c_disable_val = 0 }
165 
166 static const struct axppmic_ctrl axp803_ctrls[] = {
167 	AXP_CTRL("dldo1", 700, 3300, 100,
168 		0x12, __BIT(3), 0x15, __BITS(4,0)),
169 	AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
170 		0x12, __BIT(4), 0x16, __BITS(4,0)),
171 	AXP_CTRL("dldo3", 700, 3300, 100,
172 	 	0x12, __BIT(5), 0x17, __BITS(4,0)),
173 	AXP_CTRL("dldo4", 700, 3300, 100,
174 		0x12, __BIT(6), 0x18, __BITS(4,0)),
175 	AXP_CTRL("eldo1", 700, 1900, 50,
176 		0x12, __BIT(0), 0x19, __BITS(4,0)),
177 	AXP_CTRL("eldo2", 700, 1900, 50,
178 		0x12, __BIT(1), 0x1a, __BITS(4,0)),
179 	AXP_CTRL("eldo3", 700, 1900, 50,
180 		0x12, __BIT(2), 0x1b, __BITS(4,0)),
181 	AXP_CTRL("fldo1", 700, 1450, 50,
182 		0x13, __BIT(2), 0x1c, __BITS(3,0)),
183 	AXP_CTRL("fldo2", 700, 1450, 50,
184 		0x13, __BIT(3), 0x1d, __BITS(3,0)),
185 	AXP_CTRL("dcdc1", 1600, 3400, 100,
186 		0x10, __BIT(0), 0x20, __BITS(4,0)),
187 	AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
188 		0x10, __BIT(1), 0x21, __BITS(6,0)),
189 	AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
190 		0x10, __BIT(2), 0x22, __BITS(6,0)),
191 	AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
192 		0x10, __BIT(3), 0x23, __BITS(6,0)),
193 	AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
194 		0x10, __BIT(4), 0x24, __BITS(6,0)),
195 	AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
196 		0x10, __BIT(5), 0x25, __BITS(6,0)),
197 	AXP_CTRL("aldo1", 700, 3300, 100,
198 		0x13, __BIT(5), 0x28, __BITS(4,0)),
199 	AXP_CTRL("aldo2", 700, 3300, 100,
200 		0x13, __BIT(6), 0x29, __BITS(4,0)),
201 	AXP_CTRL("aldo3", 700, 3300, 100,
202 		0x13, __BIT(7), 0x2a, __BITS(4,0)),
203 };
204 
205 static const struct axppmic_ctrl axp805_ctrls[] = {
206 	AXP_CTRL2("dcdca", 600, 1520, 10, 51, 20, 21,
207 		0x10, __BIT(0), 0x12, __BITS(6,0)),
208 	AXP_CTRL("dcdcb", 1000, 2550, 50,
209 		0x10, __BIT(1), 0x13, __BITS(4,0)),
210 	AXP_CTRL2("dcdcc", 600, 1520, 10, 51, 20, 21,
211 		0x10, __BIT(2), 0x14, __BITS(6,0)),
212 	AXP_CTRL2("dcdcd", 600, 3300, 20, 46, 100, 18,
213 		0x10, __BIT(3), 0x15, __BITS(5,0)),
214 	AXP_CTRL("dcdce", 1100, 3400, 100,
215 		0x10, __BIT(4), 0x16, __BITS(4,0)),
216 	AXP_CTRL("aldo1", 700, 3300, 100,
217 		0x10, __BIT(5), 0x17, __BITS(4,0)),
218 	AXP_CTRL("aldo2", 700, 3400, 100,
219 		0x10, __BIT(6), 0x18, __BITS(4,0)),
220 	AXP_CTRL("aldo3", 700, 3300, 100,
221 		0x10, __BIT(7), 0x19, __BITS(4,0)),
222 	AXP_CTRL("bldo1", 700, 1900, 100,
223 		0x11, __BIT(0), 0x20, __BITS(3,0)),
224 	AXP_CTRL("bldo2", 700, 1900, 100,
225 		0x11, __BIT(1), 0x21, __BITS(3,0)),
226 	AXP_CTRL("bldo3", 700, 1900, 100,
227 		0x11, __BIT(2), 0x22, __BITS(3,0)),
228 	AXP_CTRL("bldo4", 700, 1900, 100,
229 		0x11, __BIT(3), 0x23, __BITS(3,0)),
230 	AXP_CTRL("cldo1", 700, 3300, 100,
231 		0x11, __BIT(4), 0x24, __BITS(4,0)),
232 	AXP_CTRL2("cldo2", 700, 4200, 100, 28, 200, 4,
233 		0x11, __BIT(5), 0x25, __BITS(4,0)),
234 	AXP_CTRL("cldo3", 700, 3300, 100,
235 		0x11, __BIT(6), 0x26, __BITS(4,0)),
236 };
237 
238 static const struct axppmic_ctrl axp809_ctrls[] = {
239 	AXP_CTRL("dc5ldo", 700, 1400, 100,
240 		0x10, __BIT(0), 0x1c, __BITS(2,0)),
241 	AXP_CTRL("dcdc1", 1600, 3400, 100,
242 		0x10, __BIT(1), 0x21, __BITS(4,0)),
243 	AXP_CTRL("dcdc2", 600, 1540, 20,
244 		0x10, __BIT(2), 0x22, __BITS(5,0)),
245 	AXP_CTRL("dcdc3", 600, 1860, 20,
246 		0x10, __BIT(3), 0x23, __BITS(5,0)),
247 	AXP_CTRL2_RANGE("dcdc4", 600, 2600, 20, 47, 1800, 100, 9,
248 		0x10, __BIT(4), 0x24, __BITS(5,0)),
249 	AXP_CTRL("dcdc5", 1000, 2550, 50,
250 		0x10, __BIT(5), 0x25, __BITS(4,0)),
251 	AXP_CTRL("aldo1", 700, 3300, 100,
252 		0x10, __BIT(6), 0x28, __BITS(4,0)),
253 	AXP_CTRL("aldo2", 700, 3300, 100,
254 		0x10, __BIT(7), 0x29, __BITS(4,0)),
255 	AXP_CTRL("eldo1", 700, 3300, 100,
256 		0x12, __BIT(0), 0x19, __BITS(4,0)),
257 	AXP_CTRL("eldo2", 700, 3300, 100,
258 		0x12, __BIT(1), 0x1a, __BITS(4,0)),
259 	AXP_CTRL("eldo3", 700, 3300, 100,
260 		0x12, __BIT(2), 0x1b, __BITS(4,0)),
261 	AXP_CTRL2_RANGE("dldo1", 700, 4000, 100, 26, 3400, 200, 4,
262 		0x12, __BIT(3), 0x15, __BITS(4,0)),
263 	AXP_CTRL("dldo2", 700, 3300, 100,
264 		0x12, __BIT(4), 0x16, __BITS(4,0)),
265 	AXP_CTRL("aldo3", 700, 3300, 100,
266 		0x12, __BIT(5), 0x2a, __BITS(4,0)),
267 	AXP_CTRL_SW("sw",
268 		0x12, __BIT(6)),
269 	/* dc1sw is another switch for dcdc1 */
270 	AXP_CTRL("dc1sw", 1600, 3400, 100,
271 		0x12, __BIT(7), 0x21, __BITS(4,0)),
272 	AXP_CTRL_IO("ldo_io0", 700, 3300, 100,
273 		0x90, __BITS(3,0), 0x3, 0x7, 0x91, __BITS(4,0)),
274 	AXP_CTRL_IO("ldo_io1", 700, 3300, 100,
275 		0x92, __BITS(3,0), 0x3, 0x7, 0x93, __BITS(4,0)),
276 };
277 
278 static const struct axppmic_ctrl axp813_ctrls[] = {
279 	AXP_CTRL("dldo1", 700, 3300, 100,
280 		0x12, __BIT(3), 0x15, __BITS(4,0)),
281 	AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
282 		0x12, __BIT(4), 0x16, __BITS(4,0)),
283 	AXP_CTRL("dldo3", 700, 3300, 100,
284 	 	0x12, __BIT(5), 0x17, __BITS(4,0)),
285 	AXP_CTRL("dldo4", 700, 3300, 100,
286 		0x12, __BIT(6), 0x18, __BITS(4,0)),
287 	AXP_CTRL("eldo1", 700, 1900, 50,
288 		0x12, __BIT(0), 0x19, __BITS(4,0)),
289 	AXP_CTRL("eldo2", 700, 1900, 50,
290 		0x12, __BIT(1), 0x1a, __BITS(4,0)),
291 	AXP_CTRL("eldo3", 700, 1900, 50,
292 		0x12, __BIT(2), 0x1b, __BITS(4,0)),
293 	AXP_CTRL("fldo1", 700, 1450, 50,
294 		0x13, __BIT(2), 0x1c, __BITS(3,0)),
295 	AXP_CTRL("fldo2", 700, 1450, 50,
296 		0x13, __BIT(3), 0x1d, __BITS(3,0)),
297 	AXP_CTRL("dcdc1", 1600, 3400, 100,
298 		0x10, __BIT(0), 0x20, __BITS(4,0)),
299 	AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
300 		0x10, __BIT(1), 0x21, __BITS(6,0)),
301 	AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
302 		0x10, __BIT(2), 0x22, __BITS(6,0)),
303 	AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
304 		0x10, __BIT(3), 0x23, __BITS(6,0)),
305 	AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
306 		0x10, __BIT(4), 0x24, __BITS(6,0)),
307 	AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
308 		0x10, __BIT(5), 0x25, __BITS(6,0)),
309 	AXP_CTRL2("dcdc7", 600, 1520, 10, 51, 20, 21,
310 		0x10, __BIT(6), 0x26, __BITS(6,0)),
311 	AXP_CTRL("aldo1", 700, 3300, 100,
312 		0x13, __BIT(5), 0x28, __BITS(4,0)),
313 	AXP_CTRL("aldo2", 700, 3300, 100,
314 		0x13, __BIT(6), 0x29, __BITS(4,0)),
315 	AXP_CTRL("aldo3", 700, 3300, 100,
316 		0x13, __BIT(7), 0x2a, __BITS(4,0)),
317 };
318 
319 struct axppmic_irq {
320 	u_int reg;
321 	uint8_t mask;
322 };
323 
324 #define	AXPPMIC_IRQ(_reg, _mask)	\
325 	{ .reg = (_reg), .mask = (_mask) }
326 
327 struct axppmic_config {
328 	const char *name;
329 	const struct axppmic_ctrl *controls;
330 	u_int ncontrols;
331 	u_int irq_regs;
332 	bool has_battery;
333 	bool has_fuel_gauge;
334 	bool has_mode_set;
335 	struct axppmic_irq poklirq;
336 	struct axppmic_irq acinirq;
337 	struct axppmic_irq vbusirq;
338 	struct axppmic_irq battirq;
339 	struct axppmic_irq chargeirq;
340 	struct axppmic_irq chargestirq;
341 	u_int batsense_step;	/* uV */
342 	u_int charge_step;	/* uA */
343 	u_int discharge_step;	/* uA */
344 	u_int maxcap_step;	/* uAh */
345 	u_int coulomb_step;	/* uAh */
346 };
347 
348 enum axppmic_sensor {
349 	AXP_SENSOR_ACIN_PRESENT,
350 	AXP_SENSOR_VBUS_PRESENT,
351 	AXP_SENSOR_BATT_PRESENT,
352 	AXP_SENSOR_BATT_CHARGING,
353 	AXP_SENSOR_BATT_CHARGE_STATE,
354 	AXP_SENSOR_BATT_VOLTAGE,
355 	AXP_SENSOR_BATT_CHARGE_CURRENT,
356 	AXP_SENSOR_BATT_DISCHARGE_CURRENT,
357 	AXP_SENSOR_BATT_CAPACITY_PERCENT,
358 	AXP_SENSOR_BATT_MAXIMUM_CAPACITY,
359 	AXP_SENSOR_BATT_CURRENT_CAPACITY,
360 	AXP_NSENSORS
361 };
362 
363 struct axppmic_softc {
364 	device_t	sc_dev;
365 	i2c_tag_t	sc_i2c;
366 	i2c_addr_t	sc_addr;
367 	int		sc_phandle;
368 
369 	const struct axppmic_config *sc_conf;
370 
371 	struct sysmon_pswitch sc_smpsw;
372 
373 	struct sysmon_envsys *sc_sme;
374 
375 	envsys_data_t	sc_sensor[AXP_NSENSORS];
376 
377 	u_int		sc_warn_thres;
378 	u_int		sc_shut_thres;
379 };
380 
381 struct axpreg_softc {
382 	device_t	sc_dev;
383 	i2c_tag_t	sc_i2c;
384 	i2c_addr_t	sc_addr;
385 	const struct axppmic_ctrl *sc_ctrl;
386 };
387 
388 struct axpreg_attach_args {
389 	const struct axppmic_ctrl *reg_ctrl;
390 	int		reg_phandle;
391 	i2c_tag_t	reg_i2c;
392 	i2c_addr_t	reg_addr;
393 };
394 
395 static const struct axppmic_config axp803_config = {
396 	.name = "AXP803",
397 	.controls = axp803_ctrls,
398 	.ncontrols = __arraycount(axp803_ctrls),
399 	.irq_regs = 6,
400 	.has_battery = true,
401 	.has_fuel_gauge = true,
402 	.batsense_step = 1100,
403 	.charge_step = 1000,
404 	.discharge_step = 1000,
405 	.maxcap_step = 1456,
406 	.coulomb_step = 1456,
407 	.poklirq = AXPPMIC_IRQ(5, __BIT(3)),
408 	.acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
409 	.vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
410 	.battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
411 	.chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
412 	.chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
413 };
414 
415 static const struct axppmic_config axp805_config = {
416 	.name = "AXP805",
417 	.controls = axp805_ctrls,
418 	.ncontrols = __arraycount(axp805_ctrls),
419 	.irq_regs = 2,
420 	.poklirq = AXPPMIC_IRQ(2, __BIT(0)),
421 };
422 
423 static const struct axppmic_config axp806_config = {
424 	.name = "AXP806",
425 	.controls = axp805_ctrls,
426 	.ncontrols = __arraycount(axp805_ctrls),
427 #if notyet
428 	.irq_regs = 2,
429 	.poklirq = AXPPMIC_IRQ(2, __BIT(0)),
430 #endif
431 	.has_mode_set = true,
432 };
433 
434 static const struct axppmic_config axp809_config = {
435 	.name = "AXP809",
436 	.controls = axp809_ctrls,
437 	.ncontrols = __arraycount(axp809_ctrls),
438 };
439 
440 static const struct axppmic_config axp813_config = {
441 	.name = "AXP813",
442 	.controls = axp813_ctrls,
443 	.ncontrols = __arraycount(axp813_ctrls),
444 	.irq_regs = 6,
445 	.has_battery = true,
446 	.has_fuel_gauge = true,
447 	.batsense_step = 1100,
448 	.charge_step = 1000,
449 	.discharge_step = 1000,
450 	.maxcap_step = 1456,
451 	.coulomb_step = 1456,
452 	.poklirq = AXPPMIC_IRQ(5, __BIT(3)),
453 	.acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
454 	.vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
455 	.battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
456 	.chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
457 	.chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
458 };
459 
460 static const struct device_compatible_entry compat_data[] = {
461 	{ "x-powers,axp803",		(uintptr_t)&axp803_config },
462 	{ "x-powers,axp805",		(uintptr_t)&axp805_config },
463 	{ "x-powers,axp806",		(uintptr_t)&axp806_config },
464 	{ "x-powers,axp809",		(uintptr_t)&axp809_config },
465 	{ "x-powers,axp813",		(uintptr_t)&axp813_config },
466 	{ NULL,				0 }
467 };
468 
469 static int
470 axppmic_read(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t *val, int flags)
471 {
472 	return iic_smbus_read_byte(tag, addr, reg, val, flags);
473 }
474 
475 static int
476 axppmic_write(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t val, int flags)
477 {
478 	return iic_smbus_write_byte(tag, addr, reg, val, flags);
479 }
480 
481 static int
482 axppmic_set_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int min, u_int max)
483 {
484 	const int flags = 0;
485 	u_int vol, reg_val;
486 	int nstep, error;
487 	uint8_t val;
488 
489 	if (!c->c_voltage_mask)
490 		return EINVAL;
491 
492 	if (min < c->c_min || min > c->c_max)
493 		return EINVAL;
494 
495 	reg_val = 0;
496 	nstep = 1;
497 	vol = c->c_min;
498 
499 	for (nstep = 0; nstep < c->c_step1cnt && vol < min; nstep++) {
500 		++reg_val;
501 		vol += c->c_step1;
502 	}
503 
504 	if (c->c_step2start)
505 		vol = c->c_step2start;
506 
507 	for (nstep = 0; nstep < c->c_step2cnt && vol < min; nstep++) {
508 		++reg_val;
509 		vol += c->c_step2;
510 	}
511 
512 	if (vol > max)
513 		return EINVAL;
514 
515 	iic_acquire_bus(tag, flags);
516 	if ((error = axppmic_read(tag, addr, c->c_voltage_reg, &val, flags)) == 0) {
517 		val &= ~c->c_voltage_mask;
518 		val |= __SHIFTIN(reg_val, c->c_voltage_mask);
519 		error = axppmic_write(tag, addr, c->c_voltage_reg, val, flags);
520 	}
521 	iic_release_bus(tag, flags);
522 
523 	return error;
524 }
525 
526 static int
527 axppmic_get_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int *pvol)
528 {
529 	const int flags = 0;
530 	int reg_val, error;
531 	uint8_t val;
532 
533 	if (!c->c_voltage_mask)
534 		return EINVAL;
535 
536 	iic_acquire_bus(tag, flags);
537 	error = axppmic_read(tag, addr, c->c_voltage_reg, &val, flags);
538 	iic_release_bus(tag, flags);
539 	if (error)
540 		return error;
541 
542 	reg_val = __SHIFTOUT(val, c->c_voltage_mask);
543 	if (reg_val < c->c_step1cnt) {
544 		*pvol = c->c_min + reg_val * c->c_step1;
545 	} else if (c->c_step2start) {
546 		*pvol = c->c_step2start +
547 		    ((reg_val - c->c_step1cnt) * c->c_step2);
548 	} else {
549 		*pvol = c->c_min + (c->c_step1cnt * c->c_step1) +
550 		    ((reg_val - c->c_step1cnt) * c->c_step2);
551 	}
552 
553 	return 0;
554 }
555 
556 static void
557 axppmic_power_poweroff(device_t dev)
558 {
559 	struct axppmic_softc *sc = device_private(dev);
560 
561 	delay(1000000);
562 
563 	iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
564 	axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_POWER_DISABLE_REG, AXP_POWER_DISABLE_CTRL, I2C_F_POLL);
565 	iic_release_bus(sc->sc_i2c, I2C_F_POLL);
566 }
567 
568 static struct fdtbus_power_controller_func axppmic_power_funcs = {
569 	.poweroff = axppmic_power_poweroff,
570 };
571 
572 static void
573 axppmic_task_shut(void *priv)
574 {
575 	struct axppmic_softc *sc = priv;
576 
577 	sysmon_pswitch_event(&sc->sc_smpsw, PSWITCH_EVENT_PRESSED);
578 }
579 
580 static void
581 axppmic_sensor_update(struct sysmon_envsys *sme, envsys_data_t *e)
582 {
583 	struct axppmic_softc *sc = sme->sme_cookie;
584 	const struct axppmic_config *c = sc->sc_conf;
585 	const int flags = I2C_F_POLL;
586 	uint8_t val, lo, hi;
587 
588 	e->state = ENVSYS_SINVALID;
589 
590 	const bool battery_present =
591 	    sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].state == ENVSYS_SVALID &&
592 	    sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].value_cur == 1;
593 
594 	switch (e->private) {
595 	case AXP_SENSOR_ACIN_PRESENT:
596 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0) {
597 			e->state = ENVSYS_SVALID;
598 			e->value_cur = !!(val & AXP_POWER_SOURCE_ACIN_PRESENT);
599 		}
600 		break;
601 	case AXP_SENSOR_VBUS_PRESENT:
602 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0) {
603 			e->state = ENVSYS_SVALID;
604 			e->value_cur = !!(val & AXP_POWER_SOURCE_VBUS_PRESENT);
605 		}
606 		break;
607 	case AXP_SENSOR_BATT_PRESENT:
608 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, flags) == 0) {
609 			if (val & AXP_POWER_MODE_BATT_VALID) {
610 				e->state = ENVSYS_SVALID;
611 				e->value_cur = !!(val & AXP_POWER_MODE_BATT_PRESENT);
612 			}
613 		}
614 		break;
615 	case AXP_SENSOR_BATT_CHARGING:
616 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, flags) == 0) {
617 			e->state = ENVSYS_SVALID;
618 			e->value_cur = !!(val & AXP_POWER_MODE_BATT_CHARGING);
619 		}
620 		break;
621 	case AXP_SENSOR_BATT_CHARGE_STATE:
622 		if (battery_present &&
623 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, flags) == 0 &&
624 		    (val & AXP_BATT_CAP_VALID) != 0) {
625 			const u_int batt_val = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
626 			if (batt_val <= sc->sc_shut_thres) {
627 				e->state = ENVSYS_SCRITICAL;
628 				e->value_cur = ENVSYS_BATTERY_CAPACITY_CRITICAL;
629 			} else if (batt_val <= sc->sc_warn_thres) {
630 				e->state = ENVSYS_SWARNUNDER;
631 				e->value_cur = ENVSYS_BATTERY_CAPACITY_WARNING;
632 			} else {
633 				e->state = ENVSYS_SVALID;
634 				e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
635 			}
636 		}
637 		break;
638 	case AXP_SENSOR_BATT_CAPACITY_PERCENT:
639 		if (battery_present &&
640 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, flags) == 0 &&
641 		    (val & AXP_BATT_CAP_VALID) != 0) {
642 			e->state = ENVSYS_SVALID;
643 			e->value_cur = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
644 		}
645 		break;
646 	case AXP_SENSOR_BATT_VOLTAGE:
647 		if (battery_present &&
648 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_HI_REG, &hi, flags) == 0 &&
649 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_LO_REG, &lo, flags) == 0) {
650 			e->state = ENVSYS_SVALID;
651 			e->value_cur = AXP_ADC_RAW(hi, lo) * c->batsense_step;
652 		}
653 		break;
654 	case AXP_SENSOR_BATT_CHARGE_CURRENT:
655 		if (battery_present &&
656 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0 &&
657 		    (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) != 0 &&
658 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_HI_REG, &hi, flags) == 0 &&
659 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_LO_REG, &lo, flags) == 0) {
660 			e->state = ENVSYS_SVALID;
661 			e->value_cur = AXP_ADC_RAW(hi, lo) * c->charge_step;
662 		}
663 		break;
664 	case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
665 		if (battery_present &&
666 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0 &&
667 		    (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) == 0 &&
668 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_HI_REG, &hi, flags) == 0 &&
669 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_LO_REG, &lo, flags) == 0) {
670 			e->state = ENVSYS_SVALID;
671 			e->value_cur = AXP_ADC_RAW(hi, lo) * c->discharge_step;
672 		}
673 		break;
674 	case AXP_SENSOR_BATT_MAXIMUM_CAPACITY:
675 		if (battery_present &&
676 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_HI_REG, &hi, flags) == 0 &&
677 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_LO_REG, &lo, flags) == 0) {
678 			e->state = (hi & AXP_BATT_MAX_CAP_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
679 			e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->maxcap_step;
680 		}
681 		break;
682 	case AXP_SENSOR_BATT_CURRENT_CAPACITY:
683 		if (battery_present &&
684 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_HI_REG, &hi, flags) == 0 &&
685 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_LO_REG, &lo, flags) == 0) {
686 			e->state = (hi & AXP_BATT_COULOMB_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
687 			e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->coulomb_step;
688 		}
689 		break;
690 	}
691 }
692 
693 static void
694 axppmic_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *e)
695 {
696 	struct axppmic_softc *sc = sme->sme_cookie;
697 	const int flags = I2C_F_POLL;
698 
699 	switch (e->private) {
700 	case AXP_SENSOR_BATT_CAPACITY_PERCENT:
701 	case AXP_SENSOR_BATT_VOLTAGE:
702 	case AXP_SENSOR_BATT_CHARGE_CURRENT:
703 	case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
704 		/* Always update battery capacity and ADCs */
705 		iic_acquire_bus(sc->sc_i2c, flags);
706 		axppmic_sensor_update(sme, e);
707 		iic_release_bus(sc->sc_i2c, flags);
708 		break;
709 	default:
710 		/* Refresh if the sensor is not in valid state */
711 		if (e->state != ENVSYS_SVALID) {
712 			iic_acquire_bus(sc->sc_i2c, flags);
713 			axppmic_sensor_update(sme, e);
714 			iic_release_bus(sc->sc_i2c, flags);
715 		}
716 		break;
717 	}
718 }
719 
720 static int
721 axppmic_intr(void *priv)
722 {
723 	struct axppmic_softc *sc = priv;
724 	const struct axppmic_config *c = sc->sc_conf;
725 	const int flags = I2C_F_POLL;
726 	uint8_t stat;
727 	u_int n;
728 
729 	iic_acquire_bus(sc->sc_i2c, flags);
730 	for (n = 1; n <= c->irq_regs; n++) {
731 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_IRQ_STATUS_REG(n), &stat, flags) == 0) {
732 			if (n == c->poklirq.reg && (stat & c->poklirq.mask) != 0)
733 				sysmon_task_queue_sched(0, axppmic_task_shut, sc);
734 			if (n == c->acinirq.reg && (stat & c->acinirq.mask) != 0)
735 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT]);
736 			if (n == c->vbusirq.reg && (stat & c->vbusirq.mask) != 0)
737 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT]);
738 			if (n == c->battirq.reg && (stat & c->battirq.mask) != 0)
739 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT]);
740 			if (n == c->chargeirq.reg && (stat & c->chargeirq.mask) != 0)
741 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING]);
742 			if (n == c->chargestirq.reg && (stat & c->chargestirq.mask) != 0)
743 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE]);
744 
745 			if (stat != 0)
746 				axppmic_write(sc->sc_i2c, sc->sc_addr,
747 				    AXP_IRQ_STATUS_REG(n), stat, flags);
748 		}
749 	}
750 	iic_release_bus(sc->sc_i2c, flags);
751 
752 	return 1;
753 }
754 
755 static void
756 axppmic_attach_acadapter(struct axppmic_softc *sc)
757 {
758 	envsys_data_t *e;
759 
760 	e = &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT];
761 	e->private = AXP_SENSOR_ACIN_PRESENT;
762 	e->units = ENVSYS_INDICATOR;
763 	e->state = ENVSYS_SINVALID;
764 	strlcpy(e->desc, "ACIN present", sizeof(e->desc));
765 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
766 
767 	e = &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT];
768 	e->private = AXP_SENSOR_VBUS_PRESENT;
769 	e->units = ENVSYS_INDICATOR;
770 	e->state = ENVSYS_SINVALID;
771 	strlcpy(e->desc, "VBUS present", sizeof(e->desc));
772 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
773 }
774 
775 static void
776 axppmic_attach_battery(struct axppmic_softc *sc)
777 {
778 	const struct axppmic_config *c = sc->sc_conf;
779 	envsys_data_t *e;
780 	uint8_t val;
781 
782 	iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
783 	if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_WARN_REG, &val, I2C_F_POLL) == 0) {
784 		sc->sc_warn_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV1) + 5;
785 		sc->sc_shut_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV2);
786 	}
787 	iic_release_bus(sc->sc_i2c, I2C_F_POLL);
788 
789 	e = &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT];
790 	e->private = AXP_SENSOR_BATT_PRESENT;
791 	e->units = ENVSYS_INDICATOR;
792 	e->state = ENVSYS_SINVALID;
793 	strlcpy(e->desc, "battery present", sizeof(e->desc));
794 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
795 
796 	e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING];
797 	e->private = AXP_SENSOR_BATT_CHARGING;
798 	e->units = ENVSYS_BATTERY_CHARGE;
799 	e->state = ENVSYS_SINVALID;
800 	strlcpy(e->desc, "charging", sizeof(e->desc));
801 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
802 
803 	e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE];
804 	e->private = AXP_SENSOR_BATT_CHARGE_STATE;
805 	e->units = ENVSYS_BATTERY_CAPACITY;
806 	e->flags = ENVSYS_FMONSTCHANGED;
807 	e->state = ENVSYS_SINVALID;
808 	e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
809 	strlcpy(e->desc, "charge state", sizeof(e->desc));
810 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
811 
812 	if (c->batsense_step) {
813 		e = &sc->sc_sensor[AXP_SENSOR_BATT_VOLTAGE];
814 		e->private = AXP_SENSOR_BATT_VOLTAGE;
815 		e->units = ENVSYS_SVOLTS_DC;
816 		e->state = ENVSYS_SINVALID;
817 		strlcpy(e->desc, "battery voltage", sizeof(e->desc));
818 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
819 	}
820 
821 	if (c->charge_step) {
822 		e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_CURRENT];
823 		e->private = AXP_SENSOR_BATT_CHARGE_CURRENT;
824 		e->units = ENVSYS_SAMPS;
825 		e->state = ENVSYS_SINVALID;
826 		strlcpy(e->desc, "battery charge current", sizeof(e->desc));
827 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
828 	}
829 
830 	if (c->discharge_step) {
831 		e = &sc->sc_sensor[AXP_SENSOR_BATT_DISCHARGE_CURRENT];
832 		e->private = AXP_SENSOR_BATT_DISCHARGE_CURRENT;
833 		e->units = ENVSYS_SAMPS;
834 		e->state = ENVSYS_SINVALID;
835 		strlcpy(e->desc, "battery discharge current", sizeof(e->desc));
836 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
837 	}
838 
839 	if (c->has_fuel_gauge) {
840 		e = &sc->sc_sensor[AXP_SENSOR_BATT_CAPACITY_PERCENT];
841 		e->private = AXP_SENSOR_BATT_CAPACITY_PERCENT;
842 		e->units = ENVSYS_INTEGER;
843 		e->state = ENVSYS_SINVALID;
844 		e->flags = ENVSYS_FPERCENT;
845 		strlcpy(e->desc, "battery percent", sizeof(e->desc));
846 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
847 	}
848 
849 	if (c->maxcap_step) {
850 		e = &sc->sc_sensor[AXP_SENSOR_BATT_MAXIMUM_CAPACITY];
851 		e->private = AXP_SENSOR_BATT_MAXIMUM_CAPACITY;
852 		e->units = ENVSYS_SAMPHOUR;
853 		e->state = ENVSYS_SINVALID;
854 		strlcpy(e->desc, "battery maximum capacity", sizeof(e->desc));
855 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
856 	}
857 
858 	if (c->coulomb_step) {
859 		e = &sc->sc_sensor[AXP_SENSOR_BATT_CURRENT_CAPACITY];
860 		e->private = AXP_SENSOR_BATT_CURRENT_CAPACITY;
861 		e->units = ENVSYS_SAMPHOUR;
862 		e->state = ENVSYS_SINVALID;
863 		strlcpy(e->desc, "battery current capacity", sizeof(e->desc));
864 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
865 	}
866 }
867 
868 static void
869 axppmic_attach_sensors(struct axppmic_softc *sc)
870 {
871 	if (sc->sc_conf->has_battery) {
872 		sc->sc_sme = sysmon_envsys_create();
873 		sc->sc_sme->sme_name = device_xname(sc->sc_dev);
874 		sc->sc_sme->sme_cookie = sc;
875 		sc->sc_sme->sme_refresh = axppmic_sensor_refresh;
876 		sc->sc_sme->sme_class = SME_CLASS_BATTERY;
877 		sc->sc_sme->sme_flags = SME_INIT_REFRESH;
878 
879 		axppmic_attach_acadapter(sc);
880 		axppmic_attach_battery(sc);
881 
882 		sysmon_envsys_register(sc->sc_sme);
883 	}
884 }
885 
886 
887 static int
888 axppmic_match(device_t parent, cfdata_t match, void *aux)
889 {
890 	struct i2c_attach_args *ia = aux;
891 	int match_result;
892 
893 	if (iic_use_direct_match(ia, match, compat_data, &match_result))
894 		return match_result;
895 
896 	/* This device is direct-config only. */
897 
898 	return 0;
899 }
900 
901 static void
902 axppmic_attach(device_t parent, device_t self, void *aux)
903 {
904 	struct axppmic_softc *sc = device_private(self);
905 	const struct device_compatible_entry *dce = NULL;
906 	const struct axppmic_config *c;
907 	struct axpreg_attach_args aaa;
908 	struct i2c_attach_args *ia = aux;
909 	int phandle, child, i;
910 	uint8_t irq_mask, val;
911 	int error;
912 	void *ih;
913 
914 	(void) iic_compatible_match(ia, compat_data, &dce);
915 	KASSERT(dce != NULL);
916 	c = (void *)dce->data;
917 
918 	sc->sc_dev = self;
919 	sc->sc_i2c = ia->ia_tag;
920 	sc->sc_addr = ia->ia_addr;
921 	sc->sc_phandle = ia->ia_cookie;
922 	sc->sc_conf = c;
923 
924 	aprint_naive("\n");
925 	aprint_normal(": %s\n", c->name);
926 
927 	if (c->has_mode_set) {
928 		const bool master_mode = of_hasprop(sc->sc_phandle, "x-powers,self-working-mode") ||
929 		    of_hasprop(sc->sc_phandle, "x-powers,master-mode");
930 
931 		iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
932 		axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_ADDR_EXT_REG,
933 		    master_mode ? AXP_ADDR_EXT_MASTER : AXP_ADDR_EXT_SLAVE, I2C_F_POLL);
934 		iic_release_bus(sc->sc_i2c, I2C_F_POLL);
935 	}
936 
937 	iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
938 	error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_CHIP_ID_REG, &val, I2C_F_POLL);
939 	iic_release_bus(sc->sc_i2c, I2C_F_POLL);
940 	if (error != 0) {
941 		aprint_error_dev(self, "couldn't read chipid\n");
942 		return;
943 	}
944 	aprint_debug_dev(self, "chipid %#x\n", val);
945 
946 	sc->sc_smpsw.smpsw_name = device_xname(self);
947 	sc->sc_smpsw.smpsw_type = PSWITCH_TYPE_POWER;
948 	sysmon_pswitch_register(&sc->sc_smpsw);
949 
950 	if (c->irq_regs > 0) {
951 		iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
952 		for (i = 1; i <= c->irq_regs; i++) {
953 			irq_mask = 0;
954 			if (i == c->poklirq.reg)
955 				irq_mask |= c->poklirq.mask;
956 			if (i == c->acinirq.reg)
957 				irq_mask |= c->acinirq.mask;
958 			if (i == c->vbusirq.reg)
959 				irq_mask |= c->vbusirq.mask;
960 			if (i == c->battirq.reg)
961 				irq_mask |= c->battirq.mask;
962 			if (i == c->chargeirq.reg)
963 				irq_mask |= c->chargeirq.mask;
964 			if (i == c->chargestirq.reg)
965 				irq_mask |= c->chargestirq.mask;
966 			axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_IRQ_ENABLE_REG(i), irq_mask, I2C_F_POLL);
967 		}
968 		iic_release_bus(sc->sc_i2c, I2C_F_POLL);
969 
970 		ih = fdtbus_intr_establish(sc->sc_phandle, 0, IPL_VM, FDT_INTR_MPSAFE,
971 		    axppmic_intr, sc);
972 		if (ih == NULL) {
973 			aprint_error_dev(self, "WARNING: couldn't establish interrupt handler\n");
974 		}
975 	}
976 
977 	fdtbus_register_power_controller(sc->sc_dev, sc->sc_phandle,
978 	    &axppmic_power_funcs);
979 
980 	phandle = of_find_firstchild_byname(sc->sc_phandle, "regulators");
981 	if (phandle > 0) {
982 		aaa.reg_i2c = sc->sc_i2c;
983 		aaa.reg_addr = sc->sc_addr;
984 		for (i = 0; i < c->ncontrols; i++) {
985 			const struct axppmic_ctrl *ctrl = &c->controls[i];
986 			child = of_find_firstchild_byname(phandle, ctrl->c_name);
987 			if (child <= 0)
988 				continue;
989 			aaa.reg_ctrl = ctrl;
990 			aaa.reg_phandle = child;
991 			config_found(sc->sc_dev, &aaa, NULL);
992 		}
993 	}
994 
995 	if (c->has_battery)
996 		axppmic_attach_sensors(sc);
997 }
998 
999 static int
1000 axpreg_acquire(device_t dev)
1001 {
1002 	return 0;
1003 }
1004 
1005 static void
1006 axpreg_release(device_t dev)
1007 {
1008 }
1009 
1010 static int
1011 axpreg_enable(device_t dev, bool enable)
1012 {
1013 	struct axpreg_softc *sc = device_private(dev);
1014 	const struct axppmic_ctrl *c = sc->sc_ctrl;
1015 	const int flags = 0;
1016 	uint8_t val;
1017 	int error;
1018 
1019 	if (!c->c_enable_mask)
1020 		return EINVAL;
1021 
1022 	iic_acquire_bus(sc->sc_i2c, flags);
1023 	if ((error = axppmic_read(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, &val, flags)) == 0) {
1024 		val &= ~c->c_enable_mask;
1025 		if (enable)
1026 			val |= c->c_enable_val;
1027 		else
1028 			val |= c->c_disable_val;
1029 		error = axppmic_write(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, val, flags);
1030 	}
1031 	iic_release_bus(sc->sc_i2c, flags);
1032 
1033 	return error;
1034 }
1035 
1036 static int
1037 axpreg_set_voltage(device_t dev, u_int min_uvol, u_int max_uvol)
1038 {
1039 	struct axpreg_softc *sc = device_private(dev);
1040 	const struct axppmic_ctrl *c = sc->sc_ctrl;
1041 
1042 	return axppmic_set_voltage(sc->sc_i2c, sc->sc_addr, c,
1043 	    min_uvol / 1000, max_uvol / 1000);
1044 }
1045 
1046 static int
1047 axpreg_get_voltage(device_t dev, u_int *puvol)
1048 {
1049 	struct axpreg_softc *sc = device_private(dev);
1050 	const struct axppmic_ctrl *c = sc->sc_ctrl;
1051 	int error;
1052 	u_int vol;
1053 
1054 	error = axppmic_get_voltage(sc->sc_i2c, sc->sc_addr, c, &vol);
1055 	if (error)
1056 		return error;
1057 
1058 	*puvol = vol * 1000;
1059 	return 0;
1060 }
1061 
1062 static struct fdtbus_regulator_controller_func axpreg_funcs = {
1063 	.acquire = axpreg_acquire,
1064 	.release = axpreg_release,
1065 	.enable = axpreg_enable,
1066 	.set_voltage = axpreg_set_voltage,
1067 	.get_voltage = axpreg_get_voltage,
1068 };
1069 
1070 static int
1071 axpreg_match(device_t parent, cfdata_t match, void *aux)
1072 {
1073 	return 1;
1074 }
1075 
1076 static void
1077 axpreg_attach(device_t parent, device_t self, void *aux)
1078 {
1079 	struct axpreg_softc *sc = device_private(self);
1080 	struct axpreg_attach_args *aaa = aux;
1081 	const int phandle = aaa->reg_phandle;
1082 	const char *name;
1083 	u_int uvol, min_uvol, max_uvol;
1084 
1085 	sc->sc_dev = self;
1086 	sc->sc_i2c = aaa->reg_i2c;
1087 	sc->sc_addr = aaa->reg_addr;
1088 	sc->sc_ctrl = aaa->reg_ctrl;
1089 
1090 	fdtbus_register_regulator_controller(self, phandle,
1091 	    &axpreg_funcs);
1092 
1093 	aprint_naive("\n");
1094 	name = fdtbus_get_string(phandle, "regulator-name");
1095 	if (name)
1096 		aprint_normal(": %s\n", name);
1097 	else
1098 		aprint_normal("\n");
1099 
1100 	axpreg_get_voltage(self, &uvol);
1101 	if (of_getprop_uint32(phandle, "regulator-min-microvolt", &min_uvol) == 0 &&
1102 	    of_getprop_uint32(phandle, "regulator-max-microvolt", &max_uvol) == 0) {
1103 		if (uvol < min_uvol || uvol > max_uvol) {
1104 			aprint_debug_dev(self, "fix voltage %u uV -> %u/%u uV\n",
1105 			    uvol, min_uvol, max_uvol);
1106 			axpreg_set_voltage(self, min_uvol, max_uvol);
1107 		}
1108 	}
1109 
1110 	if (of_hasprop(phandle, "regulator-always-on") ||
1111 	    of_hasprop(phandle, "regulator-boot-on")) {
1112 		axpreg_enable(self, true);
1113 	}
1114 }
1115 
1116 CFATTACH_DECL_NEW(axppmic, sizeof(struct axppmic_softc),
1117     axppmic_match, axppmic_attach, NULL, NULL);
1118 
1119 CFATTACH_DECL_NEW(axpreg, sizeof(struct axpreg_softc),
1120     axpreg_match, axpreg_attach, NULL, NULL);
1121