xref: /netbsd-src/sys/dev/i2c/axppmic.c (revision 43133b5d4d6fd948fe14e269bf9378b9c9cff1a7)
1 /* $NetBSD: axppmic.c,v 1.41 2025/01/05 19:24:04 skrll Exp $ */
2 
3 /*-
4  * Copyright (c) 2014-2018 Jared McNeill <jmcneill@invisible.ca>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: axppmic.c,v 1.41 2025/01/05 19:24:04 skrll Exp $");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/device.h>
36 #include <sys/conf.h>
37 #include <sys/bus.h>
38 #include <sys/kmem.h>
39 #include <sys/workqueue.h>
40 
41 #include <dev/i2c/i2cvar.h>
42 
43 #include <dev/sysmon/sysmonvar.h>
44 #include <dev/sysmon/sysmon_taskq.h>
45 
46 #include <dev/fdt/fdtvar.h>
47 
48 #define	AXP_POWER_SOURCE_REG	0x00
49 #define	 AXP_POWER_SOURCE_ACIN_PRESENT	__BIT(7)
50 #define	 AXP_POWER_SOURCE_VBUS_PRESENT	__BIT(5)
51 #define	 AXP_POWER_SOURCE_CHARGE_DIRECTION __BIT(2)
52 
53 #define	AXP_POWER_MODE_REG	0x01
54 #define	 AXP_POWER_MODE_BATT_VALID	__BIT(4)
55 #define	 AXP_POWER_MODE_BATT_PRESENT	__BIT(5)
56 #define	 AXP_POWER_MODE_BATT_CHARGING	__BIT(6)
57 
58 #define	AXP_CHIP_ID_REG		0x03
59 
60 #define AXP_POWER_DISABLE_REG	0x32
61 #define	 AXP_POWER_DISABLE_CTRL	__BIT(7)
62 
63 #define AXP_IRQ_ENABLE_REG(n)	(0x40 + (n) - 1)
64 #define	 AXP_IRQ1_ACIN_RAISE	__BIT(6)
65 #define	 AXP_IRQ1_ACIN_LOWER	__BIT(5)
66 #define	 AXP_IRQ1_VBUS_RAISE	__BIT(3)
67 #define	 AXP_IRQ1_VBUS_LOWER	__BIT(2)
68 #define AXP_IRQ_STATUS_REG(n)	(0x48 + (n) - 1)
69 
70 #define	AXP_BATSENSE_HI_REG	0x78
71 #define	AXP_BATSENSE_LO_REG	0x79
72 
73 #define	AXP_BATTCHG_HI_REG	0x7a
74 #define	AXP_BATTCHG_LO_REG	0x7b
75 
76 #define	AXP_BATTDISCHG_HI_REG	0x7c
77 #define	AXP_BATTDISCHG_LO_REG	0x7d
78 
79 #define	AXP_ADC_RAW(_hi, _lo)	\
80 	(((u_int)(_hi) << 4) | ((_lo) & 0xf))
81 
82 #define	AXP_GPIO_CTRL_REG(pin)	(0x90 + (pin) * 2)
83 #define	 AXP_GPIO_CTRL_FUNC_MASK 	__BITS(2,0)
84 #define	 AXP_GPIO_CTRL_FUNC_LOW	 	0
85 #define	 AXP_GPIO_CTRL_FUNC_HIGH	1
86 #define	 AXP_GPIO_CTRL_FUNC_INPUT	2
87 #define	AXP_GPIO_SIGNAL_REG	0x94
88 
89 #define	AXP_FUEL_GAUGE_CTRL_REG	0xb8
90 #define	 AXP_FUEL_GAUGE_CTRL_EN	__BIT(7)
91 
92 #define	AXP_BATT_CAP_REG	0xb9
93 #define	 AXP_BATT_CAP_VALID	__BIT(7)
94 #define	 AXP_BATT_CAP_PERCENT	__BITS(6,0)
95 
96 #define	AXP_BATT_MAX_CAP_HI_REG	0xe0
97 #define	 AXP_BATT_MAX_CAP_VALID	__BIT(7)
98 #define	AXP_BATT_MAX_CAP_LO_REG	0xe1
99 
100 #define	AXP_BATT_COULOMB_HI_REG	0xe2
101 #define	 AXP_BATT_COULOMB_VALID	__BIT(7)
102 #define	AXP_BATT_COULOMB_LO_REG	0xe3
103 
104 #define	AXP_COULOMB_RAW(_hi, _lo)	\
105 	(((u_int)(_hi & ~__BIT(7)) << 8) | (_lo))
106 
107 #define	AXP_BATT_CAP_WARN_REG	0xe6
108 #define	 AXP_BATT_CAP_WARN_LV1	__BITS(7,4)
109 #define	 AXP_BATT_CAP_WARN_LV2	__BITS(3,0)
110 
111 #define	AXP_ADDR_EXT_REG	0xff	/* AXP806 */
112 #define	 AXP_ADDR_EXT_MASTER	0
113 #define	 AXP_ADDR_EXT_SLAVE	__BIT(4)
114 
115 struct axppmic_ctrl {
116 	device_t	c_dev;
117 
118 	const char *	c_name;
119 	u_int		c_min;
120 	u_int		c_max;
121 	u_int		c_step1;
122 	u_int		c_step1cnt;
123 	u_int		c_step2;
124 	u_int		c_step2cnt;
125 	u_int		c_step2start;
126 
127 	uint8_t		c_enable_reg;
128 	uint8_t		c_enable_mask;
129 	uint8_t		c_enable_val;
130 	uint8_t		c_disable_val;
131 
132 	uint8_t		c_voltage_reg;
133 	uint8_t		c_voltage_mask;
134 };
135 
136 #define AXP_CTRL(name, min, max, step, ereg, emask, vreg, vmask)	\
137 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
138 	  .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \
139 	  .c_step2 = 0, .c_step2cnt = 0,				\
140 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
141 	  .c_enable_val = (emask), .c_disable_val = 0,			\
142 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
143 
144 #define AXP_CTRL2(name, min, max, step1, step1cnt, step2, step2cnt, ereg, emask, vreg, vmask) \
145 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
146 	  .c_step1 = (step1), .c_step1cnt = (step1cnt),			\
147 	  .c_step2 = (step2), .c_step2cnt = (step2cnt),			\
148 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
149 	  .c_enable_val = (emask), .c_disable_val = 0,			\
150 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
151 
152 #define AXP_CTRL2_RANGE(name, min, max, step1, step1cnt, step2start, step2, step2cnt, ereg, emask, vreg, vmask) \
153 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
154 	  .c_step1 = (step1), .c_step1cnt = (step1cnt),			\
155 	  .c_step2start = (step2start),					\
156 	  .c_step2 = (step2), .c_step2cnt = (step2cnt),			\
157 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
158 	  .c_enable_val = (emask), .c_disable_val = 0,			\
159 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
160 
161 #define AXP_CTRL_IO(name, min, max, step, ereg, emask, eval, dval, vreg, vmask)	\
162 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
163 	  .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \
164 	  .c_step2 = 0, .c_step2cnt = 0,				\
165 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
166 	  .c_enable_val = (eval), .c_disable_val = (dval),		\
167 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
168 
169 #define AXP_CTRL_SW(name, ereg, emask)					\
170 	{ .c_name = (name), 						\
171 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
172 	  .c_enable_val = (emask), .c_disable_val = 0 }
173 
174 static const struct axppmic_ctrl axp803_ctrls[] = {
175 	AXP_CTRL("dldo1", 700, 3300, 100,
176 		0x12, __BIT(3), 0x15, __BITS(4,0)),
177 	AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
178 		0x12, __BIT(4), 0x16, __BITS(4,0)),
179 	AXP_CTRL("dldo3", 700, 3300, 100,
180 	 	0x12, __BIT(5), 0x17, __BITS(4,0)),
181 	AXP_CTRL("dldo4", 700, 3300, 100,
182 		0x12, __BIT(6), 0x18, __BITS(4,0)),
183 	AXP_CTRL("eldo1", 700, 1900, 50,
184 		0x12, __BIT(0), 0x19, __BITS(4,0)),
185 	AXP_CTRL("eldo2", 700, 1900, 50,
186 		0x12, __BIT(1), 0x1a, __BITS(4,0)),
187 	AXP_CTRL("eldo3", 700, 1900, 50,
188 		0x12, __BIT(2), 0x1b, __BITS(4,0)),
189 	AXP_CTRL("fldo1", 700, 1450, 50,
190 		0x13, __BIT(2), 0x1c, __BITS(3,0)),
191 	AXP_CTRL("fldo2", 700, 1450, 50,
192 		0x13, __BIT(3), 0x1d, __BITS(3,0)),
193 	AXP_CTRL("dcdc1", 1600, 3400, 100,
194 		0x10, __BIT(0), 0x20, __BITS(4,0)),
195 	AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
196 		0x10, __BIT(1), 0x21, __BITS(6,0)),
197 	AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
198 		0x10, __BIT(2), 0x22, __BITS(6,0)),
199 	AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
200 		0x10, __BIT(3), 0x23, __BITS(6,0)),
201 	AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
202 		0x10, __BIT(4), 0x24, __BITS(6,0)),
203 	AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
204 		0x10, __BIT(5), 0x25, __BITS(6,0)),
205 	AXP_CTRL("aldo1", 700, 3300, 100,
206 		0x13, __BIT(5), 0x28, __BITS(4,0)),
207 	AXP_CTRL("aldo2", 700, 3300, 100,
208 		0x13, __BIT(6), 0x29, __BITS(4,0)),
209 	AXP_CTRL("aldo3", 700, 3300, 100,
210 		0x13, __BIT(7), 0x2a, __BITS(4,0)),
211 };
212 
213 static const struct axppmic_ctrl axp805_ctrls[] = {
214 	AXP_CTRL2("dcdca", 600, 1520, 10, 51, 20, 21,
215 		0x10, __BIT(0), 0x12, __BITS(6,0)),
216 	AXP_CTRL("dcdcb", 1000, 2550, 50,
217 		0x10, __BIT(1), 0x13, __BITS(4,0)),
218 	AXP_CTRL2("dcdcc", 600, 1520, 10, 51, 20, 21,
219 		0x10, __BIT(2), 0x14, __BITS(6,0)),
220 	AXP_CTRL2("dcdcd", 600, 3300, 20, 46, 100, 18,
221 		0x10, __BIT(3), 0x15, __BITS(5,0)),
222 	AXP_CTRL("dcdce", 1100, 3400, 100,
223 		0x10, __BIT(4), 0x16, __BITS(4,0)),
224 	AXP_CTRL("aldo1", 700, 3300, 100,
225 		0x10, __BIT(5), 0x17, __BITS(4,0)),
226 	AXP_CTRL("aldo2", 700, 3400, 100,
227 		0x10, __BIT(6), 0x18, __BITS(4,0)),
228 	AXP_CTRL("aldo3", 700, 3300, 100,
229 		0x10, __BIT(7), 0x19, __BITS(4,0)),
230 	AXP_CTRL("bldo1", 700, 1900, 100,
231 		0x11, __BIT(0), 0x20, __BITS(3,0)),
232 	AXP_CTRL("bldo2", 700, 1900, 100,
233 		0x11, __BIT(1), 0x21, __BITS(3,0)),
234 	AXP_CTRL("bldo3", 700, 1900, 100,
235 		0x11, __BIT(2), 0x22, __BITS(3,0)),
236 	AXP_CTRL("bldo4", 700, 1900, 100,
237 		0x11, __BIT(3), 0x23, __BITS(3,0)),
238 	AXP_CTRL("cldo1", 700, 3300, 100,
239 		0x11, __BIT(4), 0x24, __BITS(4,0)),
240 	AXP_CTRL2("cldo2", 700, 4200, 100, 28, 200, 4,
241 		0x11, __BIT(5), 0x25, __BITS(4,0)),
242 	AXP_CTRL("cldo3", 700, 3300, 100,
243 		0x11, __BIT(6), 0x26, __BITS(4,0)),
244 };
245 
246 static const struct axppmic_ctrl axp809_ctrls[] = {
247 	AXP_CTRL("dc5ldo", 700, 1400, 100,
248 		0x10, __BIT(0), 0x1c, __BITS(2,0)),
249 	AXP_CTRL("dcdc1", 1600, 3400, 100,
250 		0x10, __BIT(1), 0x21, __BITS(4,0)),
251 	AXP_CTRL("dcdc2", 600, 1540, 20,
252 		0x10, __BIT(2), 0x22, __BITS(5,0)),
253 	AXP_CTRL("dcdc3", 600, 1860, 20,
254 		0x10, __BIT(3), 0x23, __BITS(5,0)),
255 	AXP_CTRL2_RANGE("dcdc4", 600, 2600, 20, 47, 1800, 100, 9,
256 		0x10, __BIT(4), 0x24, __BITS(5,0)),
257 	AXP_CTRL("dcdc5", 1000, 2550, 50,
258 		0x10, __BIT(5), 0x25, __BITS(4,0)),
259 	AXP_CTRL("aldo1", 700, 3300, 100,
260 		0x10, __BIT(6), 0x28, __BITS(4,0)),
261 	AXP_CTRL("aldo2", 700, 3300, 100,
262 		0x10, __BIT(7), 0x29, __BITS(4,0)),
263 	AXP_CTRL("eldo1", 700, 3300, 100,
264 		0x12, __BIT(0), 0x19, __BITS(4,0)),
265 	AXP_CTRL("eldo2", 700, 3300, 100,
266 		0x12, __BIT(1), 0x1a, __BITS(4,0)),
267 	AXP_CTRL("eldo3", 700, 3300, 100,
268 		0x12, __BIT(2), 0x1b, __BITS(4,0)),
269 	AXP_CTRL2_RANGE("dldo1", 700, 4000, 100, 26, 3400, 200, 4,
270 		0x12, __BIT(3), 0x15, __BITS(4,0)),
271 	AXP_CTRL("dldo2", 700, 3300, 100,
272 		0x12, __BIT(4), 0x16, __BITS(4,0)),
273 	AXP_CTRL("aldo3", 700, 3300, 100,
274 		0x12, __BIT(5), 0x2a, __BITS(4,0)),
275 	AXP_CTRL_SW("sw",
276 		0x12, __BIT(6)),
277 	/* dc1sw is another switch for dcdc1 */
278 	AXP_CTRL("dc1sw", 1600, 3400, 100,
279 		0x12, __BIT(7), 0x21, __BITS(4,0)),
280 	AXP_CTRL_IO("ldo_io0", 700, 3300, 100,
281 		0x90, __BITS(3,0), 0x3, 0x7, 0x91, __BITS(4,0)),
282 	AXP_CTRL_IO("ldo_io1", 700, 3300, 100,
283 		0x92, __BITS(3,0), 0x3, 0x7, 0x93, __BITS(4,0)),
284 };
285 
286 static const struct axppmic_ctrl axp813_ctrls[] = {
287 	AXP_CTRL("dldo1", 700, 3300, 100,
288 		0x12, __BIT(3), 0x15, __BITS(4,0)),
289 	AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
290 		0x12, __BIT(4), 0x16, __BITS(4,0)),
291 	AXP_CTRL("dldo3", 700, 3300, 100,
292 	 	0x12, __BIT(5), 0x17, __BITS(4,0)),
293 	AXP_CTRL("dldo4", 700, 3300, 100,
294 		0x12, __BIT(6), 0x18, __BITS(4,0)),
295 	AXP_CTRL("eldo1", 700, 1900, 50,
296 		0x12, __BIT(0), 0x19, __BITS(4,0)),
297 	AXP_CTRL("eldo2", 700, 1900, 50,
298 		0x12, __BIT(1), 0x1a, __BITS(4,0)),
299 	AXP_CTRL("eldo3", 700, 1900, 50,
300 		0x12, __BIT(2), 0x1b, __BITS(4,0)),
301 	AXP_CTRL("fldo1", 700, 1450, 50,
302 		0x13, __BIT(2), 0x1c, __BITS(3,0)),
303 	AXP_CTRL("fldo2", 700, 1450, 50,
304 		0x13, __BIT(3), 0x1d, __BITS(3,0)),
305 	AXP_CTRL("dcdc1", 1600, 3400, 100,
306 		0x10, __BIT(0), 0x20, __BITS(4,0)),
307 	AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
308 		0x10, __BIT(1), 0x21, __BITS(6,0)),
309 	AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
310 		0x10, __BIT(2), 0x22, __BITS(6,0)),
311 	AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
312 		0x10, __BIT(3), 0x23, __BITS(6,0)),
313 	AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
314 		0x10, __BIT(4), 0x24, __BITS(6,0)),
315 	AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
316 		0x10, __BIT(5), 0x25, __BITS(6,0)),
317 	AXP_CTRL2("dcdc7", 600, 1520, 10, 51, 20, 21,
318 		0x10, __BIT(6), 0x26, __BITS(6,0)),
319 	AXP_CTRL("aldo1", 700, 3300, 100,
320 		0x13, __BIT(5), 0x28, __BITS(4,0)),
321 	AXP_CTRL("aldo2", 700, 3300, 100,
322 		0x13, __BIT(6), 0x29, __BITS(4,0)),
323 	AXP_CTRL("aldo3", 700, 3300, 100,
324 		0x13, __BIT(7), 0x2a, __BITS(4,0)),
325 };
326 
327 static const struct axppmic_ctrl axp15060_ctrls[] = {
328 	AXP_CTRL( "dcdc1",  1500, 3400, 100,
329 		 0x13, __BITS(4, 0),
330 		 0x10, __BIT(0)),
331 	// DCDC2: 0.5~1.2V, 10mV/step, 1.22~1.54V, 20mV/step, IMAX=3.5A, DVM
332 	AXP_CTRL2_RANGE("dcdc2",
333 			500, 1540, 70, 10, 1220, 16 , 20,
334 			0x14, __BITS(6, 0),
335 			0x10, __BIT(1)),
336 	// DCDC3: 0.5~1.2V, 10mV/step, 1.22~1.54V, 20mV/step, IMAX=3.5A, DVM
337 	AXP_CTRL2_RANGE("dcdc3",
338 			500, 1540, 70, 10, 1220, 16 , 20,
339 			0x15, __BITS(6, 0),
340 			0x10, __BIT(2)),
341 	// DCDC4: 0.5~1.2V, 10mV/step, 1.22~1.54V, 20mV/step, IMAX=3.5A, DVM
342 	AXP_CTRL2_RANGE("dcdc4",
343 			500, 1540, 70, 10, 1220, 16 , 20,
344 			0x16, __BITS(6, 0),
345 			0x10, __BIT(3)),
346 	// DCDC5: 0.8~1.12V, 10mV/step, 1.14~1.84V, 20mV/step, IMAX=2.5A, DVM
347 	AXP_CTRL2_RANGE("dcdc5",
348 			800, 1840,
349 			32, 10,
350 			1140, 35, 20,
351 			0x17, __BITS(6, 0),
352 			0x10, __BIT(4)),
353 	AXP_CTRL("dcdc6", 500, 3400, 100,
354 		 0x18, __BITS(4, 0),
355 		 0x10, __BIT(5)),
356 	AXP_CTRL("aldo1", 700, 3300, 100,
357 		 0x19, __BITS(4, 0),
358 		 0x11, __BIT(0)),
359 	AXP_CTRL("aldo2", 700, 3300, 100,
360 		 0x20, __BITS(4, 0),
361 		 0x11, __BIT(1)),
362 	AXP_CTRL("aldo3", 700, 3300, 100,
363 		 0x21, __BITS(4, 0),
364 		 0x11, __BIT(2)),
365 	AXP_CTRL("aldo4", 700, 3300, 100,
366 		 0x22, __BITS(4, 0),
367 		 0x11, __BIT(3)),
368 	AXP_CTRL("aldo5", 700, 3300, 100,
369 		 0x23, __BITS(4, 0),
370 		 0x11, __BIT(4)),
371 	AXP_CTRL("bldo1", 700, 3300, 100,
372 		 0x24, __BITS(4, 0),
373 		 0x11, __BIT(5)),
374 	AXP_CTRL("bldo2", 700, 3300, 100,
375 		 0x25, __BITS(4, 0),
376 		 0x11, __BIT(6)),
377 	AXP_CTRL("bldo3", 700, 3300, 100,
378 		 0x26, __BITS(4, 0),
379 		 0x11, __BIT(7)),
380 	AXP_CTRL("bldo4", 700, 3300, 100,
381 		 0x27, __BITS(4, 0),
382 		 0x12, __BIT(0)),
383 	AXP_CTRL("bldo5", 700, 3300, 100,
384 		 0x28, __BITS(4, 0),
385 		 0x12, __BIT(1)),
386 	AXP_CTRL("cldo1", 700, 3300, 100,
387 		 0x29, __BITS(4, 0),
388 		 0x12, __BIT(2)),
389 	AXP_CTRL("cldo2", 700, 3300, 100,
390 		 0x2a, __BITS(4, 0),
391 		 0x12, __BIT(3)),
392 	AXP_CTRL("cldo3", 700, 3300, 100,
393 		 0x2b, __BITS(4, 0),
394 		 0x12, __BIT(4)),
395 	AXP_CTRL("cldo4", 700, 4200, 100,
396 		 0x2d, __BITS(5, 0),
397 		 0x12, __BIT(5)),
398 	AXP_CTRL("cpusldo", 700, 1400, 50,
399 		 0x2e, __BITS(3, 0),
400 		 0x12, __BIT(6)),
401 };
402 
403 
404 struct axppmic_irq {
405 	u_int reg;
406 	uint8_t mask;
407 };
408 
409 #define	AXPPMIC_IRQ(_reg, _mask)	\
410 	{ .reg = (_reg), .mask = (_mask) }
411 
412 struct axppmic_config {
413 	const char *name;
414 	const char *gpio_compat;
415 	u_int gpio_npins;
416 	const struct axppmic_ctrl *controls;
417 	u_int ncontrols;
418 	u_int irq_regs;
419 	bool has_battery;
420 	bool has_fuel_gauge;
421 	bool has_mode_set;
422 	struct axppmic_irq poklirq;
423 	struct axppmic_irq acinirq;
424 	struct axppmic_irq vbusirq;
425 	struct axppmic_irq battirq;
426 	struct axppmic_irq chargeirq;
427 	struct axppmic_irq chargestirq;
428 	u_int batsense_step;	/* uV */
429 	u_int charge_step;	/* uA */
430 	u_int discharge_step;	/* uA */
431 	u_int maxcap_step;	/* uAh */
432 	u_int coulomb_step;	/* uAh */
433 };
434 
435 enum axppmic_sensor {
436 	AXP_SENSOR_ACIN_PRESENT,
437 	AXP_SENSOR_VBUS_PRESENT,
438 	AXP_SENSOR_BATT_PRESENT,
439 	AXP_SENSOR_BATT_CHARGING,
440 	AXP_SENSOR_BATT_CHARGE_STATE,
441 	AXP_SENSOR_BATT_VOLTAGE,
442 	AXP_SENSOR_BATT_CHARGE_CURRENT,
443 	AXP_SENSOR_BATT_DISCHARGE_CURRENT,
444 	AXP_SENSOR_BATT_CAPACITY_PERCENT,
445 	AXP_SENSOR_BATT_MAXIMUM_CAPACITY,
446 	AXP_SENSOR_BATT_CURRENT_CAPACITY,
447 	AXP_NSENSORS
448 };
449 
450 struct axppmic_softc {
451 	device_t	sc_dev;
452 	i2c_tag_t	sc_i2c;
453 	i2c_addr_t	sc_addr;
454 	int		sc_phandle;
455 
456 	void		*sc_ih;
457 	struct workqueue *sc_wq;
458 
459 	kmutex_t	sc_intr_lock;
460 	struct work	sc_work;
461 	bool		sc_work_scheduled;
462 
463 	const struct axppmic_config *sc_conf;
464 
465 	struct sysmon_pswitch sc_smpsw;
466 
467 	struct sysmon_envsys *sc_sme;
468 
469 	envsys_data_t	sc_sensor[AXP_NSENSORS];
470 
471 	u_int		sc_warn_thres;
472 	u_int		sc_shut_thres;
473 };
474 
475 struct axppmic_gpio_pin {
476 	struct axppmic_softc *pin_sc;
477 	u_int pin_nr;
478 	int pin_flags;
479 	bool pin_actlo;
480 };
481 
482 struct axpreg_softc {
483 	device_t	sc_dev;
484 	i2c_tag_t	sc_i2c;
485 	i2c_addr_t	sc_addr;
486 	const struct axppmic_ctrl *sc_ctrl;
487 };
488 
489 struct axpreg_attach_args {
490 	const struct axppmic_ctrl *reg_ctrl;
491 	int		reg_phandle;
492 	i2c_tag_t	reg_i2c;
493 	i2c_addr_t	reg_addr;
494 };
495 
496 static const struct axppmic_config axp803_config = {
497 	.name = "AXP803",
498 	.gpio_compat = "x-powers,axp803-gpio",
499 	.gpio_npins = 2,
500 	.controls = axp803_ctrls,
501 	.ncontrols = __arraycount(axp803_ctrls),
502 	.irq_regs = 6,
503 	.has_battery = true,
504 	.has_fuel_gauge = true,
505 	.batsense_step = 1100,
506 	.charge_step = 1000,
507 	.discharge_step = 1000,
508 	.maxcap_step = 1456,
509 	.coulomb_step = 1456,
510 	.poklirq = AXPPMIC_IRQ(5, __BIT(3)),
511 	.acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
512 	.vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
513 	.battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
514 	.chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
515 	.chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
516 };
517 
518 static const struct axppmic_config axp805_config = {
519 	.name = "AXP805",
520 	.controls = axp805_ctrls,
521 	.ncontrols = __arraycount(axp805_ctrls),
522 	.irq_regs = 2,
523 	.poklirq = AXPPMIC_IRQ(2, __BIT(0)),
524 };
525 
526 static const struct axppmic_config axp806_config = {
527 	.name = "AXP806",
528 	.controls = axp805_ctrls,
529 	.ncontrols = __arraycount(axp805_ctrls),
530 #if notyet
531 	.irq_regs = 2,
532 	.poklirq = AXPPMIC_IRQ(2, __BIT(0)),
533 #endif
534 	.has_mode_set = true,
535 };
536 
537 static const struct axppmic_config axp809_config = {
538 	.name = "AXP809",
539 	.controls = axp809_ctrls,
540 	.ncontrols = __arraycount(axp809_ctrls),
541 };
542 
543 static const struct axppmic_config axp813_config = {
544 	.name = "AXP813",
545 	.gpio_compat = "x-powers,axp813-gpio",
546 	.gpio_npins = 2,
547 	.controls = axp813_ctrls,
548 	.ncontrols = __arraycount(axp813_ctrls),
549 	.irq_regs = 6,
550 	.has_battery = true,
551 	.has_fuel_gauge = true,
552 	.batsense_step = 1100,
553 	.charge_step = 1000,
554 	.discharge_step = 1000,
555 	.maxcap_step = 1456,
556 	.coulomb_step = 1456,
557 	.poklirq = AXPPMIC_IRQ(5, __BIT(3)),
558 	.acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
559 	.vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
560 	.battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
561 	.chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
562 	.chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
563 };
564 
565 static const struct axppmic_config axp15060_config = {
566 	.name = "AXP15060",
567 	.controls = axp15060_ctrls,
568 	.ncontrols = __arraycount(axp15060_ctrls),
569 };
570 
571 static const struct device_compatible_entry compat_data[] = {
572 	{ .compat = "x-powers,axp803",		.data = &axp803_config },
573 	{ .compat = "x-powers,axp805",		.data = &axp805_config },
574 	{ .compat = "x-powers,axp806",		.data = &axp806_config },
575 	{ .compat = "x-powers,axp809",		.data = &axp809_config },
576 	{ .compat = "x-powers,axp813",		.data = &axp813_config },
577 	{ .compat = "x-powers,axp15060",	.data = &axp15060_config },
578 	DEVICE_COMPAT_EOL
579 };
580 
581 static int
582 axppmic_read(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t *val, int flags)
583 {
584 	return iic_smbus_read_byte(tag, addr, reg, val, flags);
585 }
586 
587 static int
588 axppmic_write(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t val, int flags)
589 {
590 	return iic_smbus_write_byte(tag, addr, reg, val, flags);
591 }
592 
593 static int
594 axppmic_set_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int min, u_int max)
595 {
596 	u_int vol, reg_val;
597 	int nstep, error;
598 	uint8_t val;
599 
600 	if (!c->c_voltage_mask)
601 		return EINVAL;
602 
603 	if (min < c->c_min || min > c->c_max)
604 		return EINVAL;
605 
606 	reg_val = 0;
607 	nstep = 1;
608 	vol = c->c_min;
609 
610 	for (nstep = 0; nstep < c->c_step1cnt && vol < min; nstep++) {
611 		++reg_val;
612 		vol += c->c_step1;
613 	}
614 
615 	if (c->c_step2start)
616 		vol = c->c_step2start;
617 
618 	for (nstep = 0; nstep < c->c_step2cnt && vol < min; nstep++) {
619 		++reg_val;
620 		vol += c->c_step2;
621 	}
622 
623 	if (vol > max)
624 		return EINVAL;
625 
626 	iic_acquire_bus(tag, 0);
627 	if ((error = axppmic_read(tag, addr, c->c_voltage_reg, &val, 0)) == 0) {
628 		val &= ~c->c_voltage_mask;
629 		val |= __SHIFTIN(reg_val, c->c_voltage_mask);
630 		error = axppmic_write(tag, addr, c->c_voltage_reg, val, 0);
631 	}
632 	iic_release_bus(tag, 0);
633 
634 	return error;
635 }
636 
637 static int
638 axppmic_get_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int *pvol)
639 {
640 	int reg_val, error;
641 	uint8_t val;
642 
643 	if (!c->c_voltage_mask)
644 		return EINVAL;
645 
646 	iic_acquire_bus(tag, 0);
647 	error = axppmic_read(tag, addr, c->c_voltage_reg, &val, 0);
648 	iic_release_bus(tag, 0);
649 	if (error)
650 		return error;
651 
652 	reg_val = __SHIFTOUT(val, c->c_voltage_mask);
653 	if (reg_val < c->c_step1cnt) {
654 		*pvol = c->c_min + reg_val * c->c_step1;
655 	} else if (c->c_step2start) {
656 		*pvol = c->c_step2start +
657 		    ((reg_val - c->c_step1cnt) * c->c_step2);
658 	} else {
659 		*pvol = c->c_min + (c->c_step1cnt * c->c_step1) +
660 		    ((reg_val - c->c_step1cnt) * c->c_step2);
661 	}
662 
663 	return 0;
664 }
665 
666 static void
667 axppmic_power_poweroff(device_t dev)
668 {
669 	struct axppmic_softc *sc = device_private(dev);
670 	int error;
671 
672 	delay(1000000);
673 
674 	error = iic_acquire_bus(sc->sc_i2c, 0);
675 	if (error == 0) {
676 		error = axppmic_write(sc->sc_i2c, sc->sc_addr,
677 		    AXP_POWER_DISABLE_REG, AXP_POWER_DISABLE_CTRL, 0);
678 		iic_release_bus(sc->sc_i2c, 0);
679 	}
680 	if (error) {
681 		device_printf(dev, "WARNING: unable to power off, error %d\n",
682 		    error);
683 	}
684 }
685 
686 static struct fdtbus_power_controller_func axppmic_power_funcs = {
687 	.poweroff = axppmic_power_poweroff,
688 };
689 
690 static int
691 axppmic_gpio_ctl(struct axppmic_softc *sc, uint8_t pin, uint8_t func)
692 {
693 	uint8_t val;
694 	int error;
695 
696 	KASSERT(pin < sc->sc_conf->gpio_npins);
697 	KASSERT((func & ~AXP_GPIO_CTRL_FUNC_MASK) == 0);
698 
699 	iic_acquire_bus(sc->sc_i2c, 0);
700 	error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_GPIO_CTRL_REG(pin),
701 	    &val, 0);
702 	if (error == 0) {
703 		val &= ~AXP_GPIO_CTRL_FUNC_MASK;
704 		val |= func;
705 		error = axppmic_write(sc->sc_i2c, sc->sc_addr,
706 		    AXP_GPIO_CTRL_REG(pin), val, 0);
707 	}
708 	iic_release_bus(sc->sc_i2c, 0);
709 
710 	return error;
711 }
712 
713 static void *
714 axppmic_gpio_acquire(device_t dev, const void *data, size_t len, int flags)
715 {
716 	struct axppmic_softc *sc = device_private(dev);
717 	struct axppmic_gpio_pin *gpin;
718 	const u_int *gpio = data;
719 	int error;
720 
721 	if (len != 12) {
722 		return NULL;
723 	}
724 
725 	const uint8_t pin = be32toh(gpio[1]) & 0xff;
726 	const bool actlo = be32toh(gpio[2]) & 1;
727 
728 	if (pin >= sc->sc_conf->gpio_npins) {
729 		return NULL;
730 	}
731 
732 	if ((flags & GPIO_PIN_INPUT) != 0) {
733 		error = axppmic_gpio_ctl(sc, pin, AXP_GPIO_CTRL_FUNC_INPUT);
734 		if (error != 0) {
735 			return NULL;
736 		}
737 	}
738 
739 	gpin = kmem_zalloc(sizeof(*gpin), KM_SLEEP);
740 	gpin->pin_sc = sc;
741 	gpin->pin_nr = pin;
742 	gpin->pin_flags = flags;
743 	gpin->pin_actlo = actlo;
744 
745 	return gpin;
746 }
747 
748 static void
749 axppmic_gpio_release(device_t dev, void *priv)
750 {
751 	struct axppmic_softc *sc = device_private(dev);
752 	struct axppmic_gpio_pin *gpin = priv;
753 
754 	axppmic_gpio_ctl(sc, gpin->pin_nr, AXP_GPIO_CTRL_FUNC_INPUT);
755 
756 	kmem_free(gpin, sizeof(*gpin));
757 }
758 
759 static int
760 axppmic_gpio_read(device_t dev, void *priv, bool raw)
761 {
762 	struct axppmic_softc *sc = device_private(dev);
763 	struct axppmic_gpio_pin *gpin = priv;
764 	uint8_t data;
765 	int error, val;
766 
767 	KASSERT(sc == gpin->pin_sc);
768 
769 	const uint8_t data_mask = __BIT(gpin->pin_nr);
770 
771 	iic_acquire_bus(sc->sc_i2c, 0);
772 	error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_GPIO_SIGNAL_REG,
773 	    &data, 0);
774 	iic_release_bus(sc->sc_i2c, 0);
775 
776 	if (error != 0) {
777 		device_printf(dev, "WARNING: failed to read pin %d: %d\n",
778 		    gpin->pin_nr, error);
779 		val = 0;
780 	} else {
781 		val = __SHIFTOUT(data, data_mask);
782 	}
783 	if (!raw && gpin->pin_actlo) {
784 		val = !val;
785 	}
786 
787 	return val;
788 }
789 
790 static void
791 axppmic_gpio_write(device_t dev, void *priv, int val, bool raw)
792 {
793 	struct axppmic_softc *sc = device_private(dev);
794 	struct axppmic_gpio_pin *gpin = priv;
795 	int error;
796 
797 	if (!raw && gpin->pin_actlo) {
798 		val = !val;
799 	}
800 
801 	error = axppmic_gpio_ctl(sc, gpin->pin_nr,
802 	    val == 0 ? AXP_GPIO_CTRL_FUNC_LOW : AXP_GPIO_CTRL_FUNC_HIGH);
803 	if (error != 0) {
804 		device_printf(dev, "WARNING: failed to write pin %d: %d\n",
805 		    gpin->pin_nr, error);
806 	}
807 }
808 
809 static struct fdtbus_gpio_controller_func axppmic_gpio_funcs = {
810 	.acquire = axppmic_gpio_acquire,
811 	.release = axppmic_gpio_release,
812 	.read = axppmic_gpio_read,
813 	.write = axppmic_gpio_write,
814 };
815 
816 static void
817 axppmic_task_shut(void *priv)
818 {
819 	struct axppmic_softc *sc = priv;
820 
821 	sysmon_pswitch_event(&sc->sc_smpsw, PSWITCH_EVENT_PRESSED);
822 }
823 
824 static void
825 axppmic_sensor_update(struct sysmon_envsys *sme, envsys_data_t *e)
826 {
827 	struct axppmic_softc *sc = sme->sme_cookie;
828 	const struct axppmic_config *c = sc->sc_conf;
829 	uint8_t val, lo, hi;
830 
831 	e->state = ENVSYS_SINVALID;
832 
833 	const bool battery_present =
834 	    sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].state == ENVSYS_SVALID &&
835 	    sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].value_cur == 1;
836 
837 	switch (e->private) {
838 	case AXP_SENSOR_ACIN_PRESENT:
839 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0) {
840 			e->state = ENVSYS_SVALID;
841 			e->value_cur = !!(val & AXP_POWER_SOURCE_ACIN_PRESENT);
842 		}
843 		break;
844 	case AXP_SENSOR_VBUS_PRESENT:
845 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0) {
846 			e->state = ENVSYS_SVALID;
847 			e->value_cur = !!(val & AXP_POWER_SOURCE_VBUS_PRESENT);
848 		}
849 		break;
850 	case AXP_SENSOR_BATT_PRESENT:
851 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, 0) == 0) {
852 			if (val & AXP_POWER_MODE_BATT_VALID) {
853 				e->state = ENVSYS_SVALID;
854 				e->value_cur = !!(val & AXP_POWER_MODE_BATT_PRESENT);
855 			}
856 		}
857 		break;
858 	case AXP_SENSOR_BATT_CHARGING:
859 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, 0) == 0) {
860 			e->state = ENVSYS_SVALID;
861 			e->value_cur = !!(val & AXP_POWER_MODE_BATT_CHARGING);
862 		}
863 		break;
864 	case AXP_SENSOR_BATT_CHARGE_STATE:
865 		if (battery_present &&
866 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, 0) == 0 &&
867 		    (val & AXP_BATT_CAP_VALID) != 0) {
868 			const u_int batt_val = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
869 			if (batt_val <= sc->sc_shut_thres) {
870 				e->state = ENVSYS_SCRITICAL;
871 				e->value_cur = ENVSYS_BATTERY_CAPACITY_CRITICAL;
872 			} else if (batt_val <= sc->sc_warn_thres) {
873 				e->state = ENVSYS_SWARNUNDER;
874 				e->value_cur = ENVSYS_BATTERY_CAPACITY_WARNING;
875 			} else {
876 				e->state = ENVSYS_SVALID;
877 				e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
878 			}
879 		}
880 		break;
881 	case AXP_SENSOR_BATT_CAPACITY_PERCENT:
882 		if (battery_present &&
883 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, 0) == 0 &&
884 		    (val & AXP_BATT_CAP_VALID) != 0) {
885 			e->state = ENVSYS_SVALID;
886 			e->value_cur = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
887 		}
888 		break;
889 	case AXP_SENSOR_BATT_VOLTAGE:
890 		if (battery_present &&
891 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_HI_REG, &hi, 0) == 0 &&
892 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_LO_REG, &lo, 0) == 0) {
893 			e->state = ENVSYS_SVALID;
894 			e->value_cur = AXP_ADC_RAW(hi, lo) * c->batsense_step;
895 		}
896 		break;
897 	case AXP_SENSOR_BATT_CHARGE_CURRENT:
898 		if (battery_present &&
899 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0 &&
900 		    (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) != 0 &&
901 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_HI_REG, &hi, 0) == 0 &&
902 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_LO_REG, &lo, 0) == 0) {
903 			e->state = ENVSYS_SVALID;
904 			e->value_cur = AXP_ADC_RAW(hi, lo) * c->charge_step;
905 		}
906 		break;
907 	case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
908 		if (battery_present &&
909 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0 &&
910 		    (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) == 0 &&
911 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_HI_REG, &hi, 0) == 0 &&
912 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_LO_REG, &lo, 0) == 0) {
913 			e->state = ENVSYS_SVALID;
914 			e->value_cur = AXP_ADC_RAW(hi, lo) * c->discharge_step;
915 		}
916 		break;
917 	case AXP_SENSOR_BATT_MAXIMUM_CAPACITY:
918 		if (battery_present &&
919 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_HI_REG, &hi, 0) == 0 &&
920 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_LO_REG, &lo, 0) == 0) {
921 			e->state = (hi & AXP_BATT_MAX_CAP_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
922 			e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->maxcap_step;
923 		}
924 		break;
925 	case AXP_SENSOR_BATT_CURRENT_CAPACITY:
926 		if (battery_present &&
927 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_HI_REG, &hi, 0) == 0 &&
928 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_LO_REG, &lo, 0) == 0) {
929 			e->state = (hi & AXP_BATT_COULOMB_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
930 			e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->coulomb_step;
931 		}
932 		break;
933 	}
934 }
935 
936 static void
937 axppmic_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *e)
938 {
939 	struct axppmic_softc *sc = sme->sme_cookie;
940 
941 	switch (e->private) {
942 	case AXP_SENSOR_BATT_CAPACITY_PERCENT:
943 	case AXP_SENSOR_BATT_VOLTAGE:
944 	case AXP_SENSOR_BATT_CHARGE_CURRENT:
945 	case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
946 		/* Always update battery capacity and ADCs */
947 		iic_acquire_bus(sc->sc_i2c, 0);
948 		axppmic_sensor_update(sme, e);
949 		iic_release_bus(sc->sc_i2c, 0);
950 		break;
951 	default:
952 		/* Refresh if the sensor is not in valid state */
953 		if (e->state != ENVSYS_SVALID) {
954 			iic_acquire_bus(sc->sc_i2c, 0);
955 			axppmic_sensor_update(sme, e);
956 			iic_release_bus(sc->sc_i2c, 0);
957 		}
958 		break;
959 	}
960 }
961 
962 static int
963 axppmic_intr(void *priv)
964 {
965 	struct axppmic_softc * const sc = priv;
966 
967 	mutex_enter(&sc->sc_intr_lock);
968 
969 	fdtbus_intr_mask(sc->sc_phandle, sc->sc_ih);
970 
971 	/* Interrupt is always masked when work is scheduled! */
972 	KASSERT(!sc->sc_work_scheduled);
973 	sc->sc_work_scheduled = true;
974 	workqueue_enqueue(sc->sc_wq, &sc->sc_work, NULL);
975 
976 	mutex_exit(&sc->sc_intr_lock);
977 
978 	return 1;
979 }
980 
981 static void
982 axppmic_work(struct work *work, void *arg)
983 {
984 	struct axppmic_softc * const sc =
985 	    container_of(work, struct axppmic_softc, sc_work);
986 	const struct axppmic_config * const c = sc->sc_conf;
987 	const int flags = 0;
988 	uint8_t stat;
989 	u_int n;
990 
991 	KASSERT(sc->sc_work_scheduled);
992 
993 	iic_acquire_bus(sc->sc_i2c, flags);
994 	for (n = 1; n <= c->irq_regs; n++) {
995 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_IRQ_STATUS_REG(n), &stat, flags) == 0) {
996 			if (stat != 0) {
997 				axppmic_write(sc->sc_i2c, sc->sc_addr,
998 				    AXP_IRQ_STATUS_REG(n), stat, flags);
999 			}
1000 
1001 			if (n == c->poklirq.reg && (stat & c->poklirq.mask) != 0)
1002 				sysmon_task_queue_sched(0, axppmic_task_shut, sc);
1003 			if (n == c->acinirq.reg && (stat & c->acinirq.mask) != 0)
1004 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT]);
1005 			if (n == c->vbusirq.reg && (stat & c->vbusirq.mask) != 0)
1006 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT]);
1007 			if (n == c->battirq.reg && (stat & c->battirq.mask) != 0)
1008 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT]);
1009 			if (n == c->chargeirq.reg && (stat & c->chargeirq.mask) != 0)
1010 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING]);
1011 			if (n == c->chargestirq.reg && (stat & c->chargestirq.mask) != 0)
1012 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE]);
1013 		}
1014 	}
1015 	iic_release_bus(sc->sc_i2c, flags);
1016 
1017 	mutex_enter(&sc->sc_intr_lock);
1018 	sc->sc_work_scheduled = false;
1019 	fdtbus_intr_unmask(sc->sc_phandle, sc->sc_ih);
1020 	mutex_exit(&sc->sc_intr_lock);
1021 }
1022 
1023 static void
1024 axppmic_attach_acadapter(struct axppmic_softc *sc)
1025 {
1026 	envsys_data_t *e;
1027 
1028 	e = &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT];
1029 	e->private = AXP_SENSOR_ACIN_PRESENT;
1030 	e->units = ENVSYS_INDICATOR;
1031 	e->state = ENVSYS_SINVALID;
1032 	strlcpy(e->desc, "ACIN present", sizeof(e->desc));
1033 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
1034 
1035 	e = &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT];
1036 	e->private = AXP_SENSOR_VBUS_PRESENT;
1037 	e->units = ENVSYS_INDICATOR;
1038 	e->state = ENVSYS_SINVALID;
1039 	strlcpy(e->desc, "VBUS present", sizeof(e->desc));
1040 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
1041 }
1042 
1043 static void
1044 axppmic_attach_battery(struct axppmic_softc *sc)
1045 {
1046 	const struct axppmic_config *c = sc->sc_conf;
1047 	envsys_data_t *e;
1048 	uint8_t val;
1049 
1050 	iic_acquire_bus(sc->sc_i2c, 0);
1051 	if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_WARN_REG, &val, 0) == 0) {
1052 		sc->sc_warn_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV1) + 5;
1053 		sc->sc_shut_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV2);
1054 	}
1055 	iic_release_bus(sc->sc_i2c, 0);
1056 
1057 	e = &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT];
1058 	e->private = AXP_SENSOR_BATT_PRESENT;
1059 	e->units = ENVSYS_INDICATOR;
1060 	e->state = ENVSYS_SINVALID;
1061 	strlcpy(e->desc, "battery present", sizeof(e->desc));
1062 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
1063 
1064 	e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING];
1065 	e->private = AXP_SENSOR_BATT_CHARGING;
1066 	e->units = ENVSYS_BATTERY_CHARGE;
1067 	e->state = ENVSYS_SINVALID;
1068 	strlcpy(e->desc, "charging", sizeof(e->desc));
1069 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
1070 
1071 	e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE];
1072 	e->private = AXP_SENSOR_BATT_CHARGE_STATE;
1073 	e->units = ENVSYS_BATTERY_CAPACITY;
1074 	e->flags = ENVSYS_FMONSTCHANGED;
1075 	e->state = ENVSYS_SINVALID;
1076 	e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
1077 	strlcpy(e->desc, "charge state", sizeof(e->desc));
1078 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
1079 
1080 	if (c->batsense_step) {
1081 		e = &sc->sc_sensor[AXP_SENSOR_BATT_VOLTAGE];
1082 		e->private = AXP_SENSOR_BATT_VOLTAGE;
1083 		e->units = ENVSYS_SVOLTS_DC;
1084 		e->state = ENVSYS_SINVALID;
1085 		strlcpy(e->desc, "battery voltage", sizeof(e->desc));
1086 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
1087 	}
1088 
1089 	if (c->charge_step) {
1090 		e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_CURRENT];
1091 		e->private = AXP_SENSOR_BATT_CHARGE_CURRENT;
1092 		e->units = ENVSYS_SAMPS;
1093 		e->state = ENVSYS_SINVALID;
1094 		strlcpy(e->desc, "battery charge current", sizeof(e->desc));
1095 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
1096 	}
1097 
1098 	if (c->discharge_step) {
1099 		e = &sc->sc_sensor[AXP_SENSOR_BATT_DISCHARGE_CURRENT];
1100 		e->private = AXP_SENSOR_BATT_DISCHARGE_CURRENT;
1101 		e->units = ENVSYS_SAMPS;
1102 		e->state = ENVSYS_SINVALID;
1103 		strlcpy(e->desc, "battery discharge current", sizeof(e->desc));
1104 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
1105 	}
1106 
1107 	if (c->has_fuel_gauge) {
1108 		e = &sc->sc_sensor[AXP_SENSOR_BATT_CAPACITY_PERCENT];
1109 		e->private = AXP_SENSOR_BATT_CAPACITY_PERCENT;
1110 		e->units = ENVSYS_INTEGER;
1111 		e->state = ENVSYS_SINVALID;
1112 		e->flags = ENVSYS_FPERCENT;
1113 		strlcpy(e->desc, "battery percent", sizeof(e->desc));
1114 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
1115 	}
1116 
1117 	if (c->maxcap_step) {
1118 		e = &sc->sc_sensor[AXP_SENSOR_BATT_MAXIMUM_CAPACITY];
1119 		e->private = AXP_SENSOR_BATT_MAXIMUM_CAPACITY;
1120 		e->units = ENVSYS_SAMPHOUR;
1121 		e->state = ENVSYS_SINVALID;
1122 		strlcpy(e->desc, "battery maximum capacity", sizeof(e->desc));
1123 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
1124 	}
1125 
1126 	if (c->coulomb_step) {
1127 		e = &sc->sc_sensor[AXP_SENSOR_BATT_CURRENT_CAPACITY];
1128 		e->private = AXP_SENSOR_BATT_CURRENT_CAPACITY;
1129 		e->units = ENVSYS_SAMPHOUR;
1130 		e->state = ENVSYS_SINVALID;
1131 		strlcpy(e->desc, "battery current capacity", sizeof(e->desc));
1132 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
1133 	}
1134 }
1135 
1136 static void
1137 axppmic_attach_sensors(struct axppmic_softc *sc)
1138 {
1139 	if (sc->sc_conf->has_battery) {
1140 		sc->sc_sme = sysmon_envsys_create();
1141 		sc->sc_sme->sme_name = device_xname(sc->sc_dev);
1142 		sc->sc_sme->sme_cookie = sc;
1143 		sc->sc_sme->sme_refresh = axppmic_sensor_refresh;
1144 		sc->sc_sme->sme_class = SME_CLASS_BATTERY;
1145 		sc->sc_sme->sme_flags = SME_INIT_REFRESH;
1146 
1147 		axppmic_attach_acadapter(sc);
1148 		axppmic_attach_battery(sc);
1149 
1150 		sysmon_envsys_register(sc->sc_sme);
1151 	}
1152 }
1153 
1154 
1155 static int
1156 axppmic_match(device_t parent, cfdata_t match, void *aux)
1157 {
1158 	struct i2c_attach_args *ia = aux;
1159 	int match_result;
1160 
1161 	if (iic_use_direct_match(ia, match, compat_data, &match_result))
1162 		return match_result;
1163 
1164 	/* This device is direct-config only. */
1165 
1166 	return 0;
1167 }
1168 
1169 static void
1170 axppmic_attach(device_t parent, device_t self, void *aux)
1171 {
1172 	struct axppmic_softc *sc = device_private(self);
1173 	const struct device_compatible_entry *dce = NULL;
1174 	const struct axppmic_config *c;
1175 	struct axpreg_attach_args aaa;
1176 	struct i2c_attach_args *ia = aux;
1177 	int phandle, child, i;
1178 	uint8_t irq_mask, val;
1179 	int error;
1180 
1181 	dce = iic_compatible_lookup(ia, compat_data);
1182 	KASSERT(dce != NULL);
1183 	c = dce->data;
1184 
1185 	sc->sc_dev = self;
1186 	sc->sc_i2c = ia->ia_tag;
1187 	sc->sc_addr = ia->ia_addr;
1188 	sc->sc_phandle = ia->ia_cookie;
1189 	sc->sc_conf = c;
1190 
1191 	aprint_naive("\n");
1192 	aprint_normal(": %s\n", c->name);
1193 
1194 	if (c->has_mode_set) {
1195 		const bool master_mode =
1196 		    of_hasprop(sc->sc_phandle, "x-powers,self-working-mode") ||
1197 		    of_hasprop(sc->sc_phandle, "x-powers,master-mode");
1198 
1199 		iic_acquire_bus(sc->sc_i2c, 0);
1200 		axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_ADDR_EXT_REG,
1201 		    master_mode ? AXP_ADDR_EXT_MASTER : AXP_ADDR_EXT_SLAVE, 0);
1202 		iic_release_bus(sc->sc_i2c, 0);
1203 	}
1204 
1205 	iic_acquire_bus(sc->sc_i2c, 0);
1206 	error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_CHIP_ID_REG, &val, 0);
1207 	iic_release_bus(sc->sc_i2c, 0);
1208 	if (error != 0) {
1209 		aprint_error_dev(self, "couldn't read chipid\n");
1210 		return;
1211 	}
1212 	aprint_debug_dev(self, "chipid %#x\n", val);
1213 
1214 	sc->sc_smpsw.smpsw_name = device_xname(self);
1215 	sc->sc_smpsw.smpsw_type = PSWITCH_TYPE_POWER;
1216 	sysmon_pswitch_register(&sc->sc_smpsw);
1217 
1218 	mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_VM);
1219 
1220 	if (c->irq_regs > 0) {
1221 		char intrstr[128];
1222 
1223 		if (!fdtbus_intr_str(sc->sc_phandle, 0,
1224 				     intrstr, sizeof(intrstr))) {
1225 			aprint_error_dev(self,
1226 			    "WARNING: failed to decode interrupt\n");
1227 		}
1228 
1229 		sc->sc_ih = fdtbus_intr_establish(sc->sc_phandle, 0, IPL_VM,
1230 						  FDT_INTR_MPSAFE,
1231 						  axppmic_intr, sc);
1232 		if (sc->sc_ih == NULL) {
1233 			aprint_error_dev(self,
1234 			    "WARNING: couldn't establish interrupt handler\n");
1235 		}
1236 
1237 		error = workqueue_create(&sc->sc_wq, device_xname(self),
1238 					 axppmic_work, NULL,
1239 					 PRI_SOFTSERIAL, IPL_VM,
1240 					 WQ_MPSAFE);
1241 		if (error) {
1242 			sc->sc_wq = NULL;
1243 			aprint_error_dev(self,
1244 			    "WARNING: couldn't create work queue: error %d\n",
1245 			    error);
1246 		}
1247 
1248 		if (sc->sc_ih != NULL && sc->sc_wq != NULL) {
1249 			iic_acquire_bus(sc->sc_i2c, 0);
1250 			for (i = 1; i <= c->irq_regs; i++) {
1251 				irq_mask = 0;
1252 				if (i == c->poklirq.reg)
1253 					irq_mask |= c->poklirq.mask;
1254 				if (i == c->acinirq.reg)
1255 					irq_mask |= c->acinirq.mask;
1256 				if (i == c->vbusirq.reg)
1257 					irq_mask |= c->vbusirq.mask;
1258 				if (i == c->battirq.reg)
1259 					irq_mask |= c->battirq.mask;
1260 				if (i == c->chargeirq.reg)
1261 					irq_mask |= c->chargeirq.mask;
1262 				if (i == c->chargestirq.reg)
1263 					irq_mask |= c->chargestirq.mask;
1264 				axppmic_write(sc->sc_i2c, sc->sc_addr,
1265 					      AXP_IRQ_ENABLE_REG(i),
1266 					      irq_mask, 0);
1267 			}
1268 			iic_release_bus(sc->sc_i2c, 0);
1269 		}
1270 	}
1271 
1272 	fdtbus_register_power_controller(sc->sc_dev, sc->sc_phandle,
1273 	    &axppmic_power_funcs);
1274 
1275 	if (c->gpio_compat != NULL) {
1276 		phandle = of_find_bycompat(sc->sc_phandle, c->gpio_compat);
1277 		if (phandle > 0) {
1278 			fdtbus_register_gpio_controller(self, phandle,
1279 			    &axppmic_gpio_funcs);
1280 		}
1281 	}
1282 
1283 	phandle = of_find_firstchild_byname(sc->sc_phandle, "regulators");
1284 	if (phandle > 0) {
1285 		aaa.reg_i2c = sc->sc_i2c;
1286 		aaa.reg_addr = sc->sc_addr;
1287 		for (i = 0; i < c->ncontrols; i++) {
1288 			const struct axppmic_ctrl *ctrl = &c->controls[i];
1289 			child = of_find_firstchild_byname(phandle, ctrl->c_name);
1290 			if (child <= 0)
1291 				continue;
1292 			aaa.reg_ctrl = ctrl;
1293 			aaa.reg_phandle = child;
1294 			config_found(sc->sc_dev, &aaa, NULL, CFARGS_NONE);
1295 		}
1296 	}
1297 
1298 	if (c->has_battery)
1299 		axppmic_attach_sensors(sc);
1300 }
1301 
1302 static int
1303 axpreg_acquire(device_t dev)
1304 {
1305 	return 0;
1306 }
1307 
1308 static void
1309 axpreg_release(device_t dev)
1310 {
1311 }
1312 
1313 static int
1314 axpreg_enable(device_t dev, bool enable)
1315 {
1316 	struct axpreg_softc *sc = device_private(dev);
1317 	const struct axppmic_ctrl *c = sc->sc_ctrl;
1318 	const int flags = 0;
1319 	uint8_t val;
1320 	int error;
1321 
1322 	if (!c->c_enable_mask)
1323 		return EINVAL;
1324 
1325 	iic_acquire_bus(sc->sc_i2c, flags);
1326 	if ((error = axppmic_read(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, &val, flags)) == 0) {
1327 		val &= ~c->c_enable_mask;
1328 		if (enable)
1329 			val |= c->c_enable_val;
1330 		else
1331 			val |= c->c_disable_val;
1332 		error = axppmic_write(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, val, flags);
1333 	}
1334 	iic_release_bus(sc->sc_i2c, flags);
1335 
1336 	return error;
1337 }
1338 
1339 static int
1340 axpreg_set_voltage(device_t dev, u_int min_uvol, u_int max_uvol)
1341 {
1342 	struct axpreg_softc *sc = device_private(dev);
1343 	const struct axppmic_ctrl *c = sc->sc_ctrl;
1344 
1345 	return axppmic_set_voltage(sc->sc_i2c, sc->sc_addr, c,
1346 	    min_uvol / 1000, max_uvol / 1000);
1347 }
1348 
1349 static int
1350 axpreg_get_voltage(device_t dev, u_int *puvol)
1351 {
1352 	struct axpreg_softc *sc = device_private(dev);
1353 	const struct axppmic_ctrl *c = sc->sc_ctrl;
1354 	int error;
1355 	u_int vol;
1356 
1357 	error = axppmic_get_voltage(sc->sc_i2c, sc->sc_addr, c, &vol);
1358 	if (error)
1359 		return error;
1360 
1361 	*puvol = vol * 1000;
1362 	return 0;
1363 }
1364 
1365 static struct fdtbus_regulator_controller_func axpreg_funcs = {
1366 	.acquire = axpreg_acquire,
1367 	.release = axpreg_release,
1368 	.enable = axpreg_enable,
1369 	.set_voltage = axpreg_set_voltage,
1370 	.get_voltage = axpreg_get_voltage,
1371 };
1372 
1373 static int
1374 axpreg_match(device_t parent, cfdata_t match, void *aux)
1375 {
1376 	return 1;
1377 }
1378 
1379 static void
1380 axpreg_attach(device_t parent, device_t self, void *aux)
1381 {
1382 	struct axpreg_softc *sc = device_private(self);
1383 	struct axpreg_attach_args *aaa = aux;
1384 	const int phandle = aaa->reg_phandle;
1385 	const char *name;
1386 	u_int uvol, min_uvol, max_uvol;
1387 
1388 	sc->sc_dev = self;
1389 	sc->sc_i2c = aaa->reg_i2c;
1390 	sc->sc_addr = aaa->reg_addr;
1391 	sc->sc_ctrl = aaa->reg_ctrl;
1392 
1393 	fdtbus_register_regulator_controller(self, phandle,
1394 	    &axpreg_funcs);
1395 
1396 	aprint_naive("\n");
1397 	name = fdtbus_get_string(phandle, "regulator-name");
1398 	if (name)
1399 		aprint_normal(": %s\n", name);
1400 	else
1401 		aprint_normal("\n");
1402 
1403 	int error = axpreg_get_voltage(self, &uvol);
1404 	if (error)
1405 		return;
1406 
1407 	if (of_getprop_uint32(phandle, "regulator-min-microvolt", &min_uvol) == 0 &&
1408 	    of_getprop_uint32(phandle, "regulator-max-microvolt", &max_uvol) == 0) {
1409 		if (uvol < min_uvol || uvol > max_uvol) {
1410 			aprint_debug_dev(self, "fix voltage %u uV -> %u/%u uV\n",
1411 			    uvol, min_uvol, max_uvol);
1412 			axpreg_set_voltage(self, min_uvol, max_uvol);
1413 		}
1414 	}
1415 
1416 	if (of_hasprop(phandle, "regulator-always-on") ||
1417 	    of_hasprop(phandle, "regulator-boot-on")) {
1418 		axpreg_enable(self, true);
1419 	}
1420 }
1421 
1422 CFATTACH_DECL_NEW(axppmic, sizeof(struct axppmic_softc),
1423     axppmic_match, axppmic_attach, NULL, NULL);
1424 
1425 CFATTACH_DECL_NEW(axpreg, sizeof(struct axpreg_softc),
1426     axpreg_match, axpreg_attach, NULL, NULL);
1427