xref: /netbsd-src/sys/arch/powerpc/booke/dev/pq3etsec.c (revision f0fde9902fd4d72ded2807793acc7bfaa1ebf243)
1 /*	$NetBSD: pq3etsec.c,v 1.56 2021/08/07 16:19:02 thorpej Exp $	*/
2 /*-
3  * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to The NetBSD Foundation
7  * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8  * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9  *
10  * This material is based upon work supported by the Defense Advanced Research
11  * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12  * Contract No. N66001-09-C-2073.
13  * Approved for Public Release, Distribution Unlimited
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: pq3etsec.c,v 1.56 2021/08/07 16:19:02 thorpej Exp $");
39 
40 #ifdef _KERNEL_OPT
41 #include "opt_inet.h"
42 #include "opt_mpc85xx.h"
43 #include "opt_multiprocessor.h"
44 #include "opt_net_mpsafe.h"
45 #endif
46 
47 #include <sys/param.h>
48 #include <sys/cpu.h>
49 #include <sys/device.h>
50 #include <sys/mbuf.h>
51 #include <sys/ioctl.h>
52 #include <sys/intr.h>
53 #include <sys/bus.h>
54 #include <sys/kernel.h>
55 #include <sys/kmem.h>
56 #include <sys/proc.h>
57 #include <sys/atomic.h>
58 #include <sys/callout.h>
59 #include <sys/sysctl.h>
60 
61 #include <sys/rndsource.h>
62 
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_ether.h>
66 #include <net/if_media.h>
67 #include <net/bpf.h>
68 
69 #include <dev/mii/miivar.h>
70 
71 #ifdef INET
72 #include <netinet/in.h>
73 #include <netinet/in_systm.h>
74 #include <netinet/ip.h>
75 #include <netinet/in_offload.h>
76 #endif /* INET */
77 #ifdef INET6
78 #include <netinet6/in6.h>
79 #include <netinet/ip6.h>
80 #endif
81 #include <netinet6/in6_offload.h>
82 
83 #include <powerpc/spr.h>
84 #include <powerpc/booke/spr.h>
85 #include <powerpc/booke/cpuvar.h>
86 #include <powerpc/booke/e500var.h>
87 #include <powerpc/booke/e500reg.h>
88 #include <powerpc/booke/etsecreg.h>
89 
90 #define	M_HASFCB		M_LINK2	/* tx packet has FCB prepended */
91 
92 #define	ETSEC_MAXTXMBUFS	30
93 #define	ETSEC_NTXSEGS		30
94 #define	ETSEC_MAXRXMBUFS	511
95 #define	ETSEC_MINRXMBUFS	32
96 #define	ETSEC_NRXSEGS		1
97 
98 #define	IFCAP_RCTRL_IPCSEN	IFCAP_CSUM_IPv4_Rx
99 #define	IFCAP_RCTRL_TUCSEN	(IFCAP_CSUM_TCPv4_Rx	\
100 				 | IFCAP_CSUM_UDPv4_Rx	\
101 				 | IFCAP_CSUM_TCPv6_Rx	\
102 				 | IFCAP_CSUM_UDPv6_Rx)
103 
104 #define	IFCAP_TCTRL_IPCSEN	IFCAP_CSUM_IPv4_Tx
105 #define	IFCAP_TCTRL_TUCSEN	(IFCAP_CSUM_TCPv4_Tx	\
106 				 | IFCAP_CSUM_UDPv4_Tx	\
107 				 | IFCAP_CSUM_TCPv6_Tx	\
108 				 | IFCAP_CSUM_UDPv6_Tx)
109 
110 #define	IFCAP_ETSEC		(IFCAP_RCTRL_IPCSEN | IFCAP_RCTRL_TUCSEN      \
111 				 | IFCAP_TCTRL_IPCSEN | IFCAP_TCTRL_TUCSEN)
112 
113 #define	M_CSUM_IP   (M_CSUM_CIP | M_CSUM_CTU)
114 #define	M_CSUM_IP6  (M_CSUM_TCPv6 | M_CSUM_UDPv6)
115 #define	M_CSUM_TUP  (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)
116 #define	M_CSUM_UDP  (M_CSUM_UDPv4 | M_CSUM_UDPv6)
117 #define	M_CSUM_IP4  (M_CSUM_IPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv4)
118 #define	M_CSUM_CIP  (M_CSUM_IPv4)
119 #define	M_CSUM_CTU  (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)
120 
121 struct pq3etsec_txqueue {
122 	bus_dmamap_t txq_descmap;
123 	volatile struct txbd *txq_consumer;
124 	volatile struct txbd *txq_producer;
125 	volatile struct txbd *txq_first;
126 	volatile struct txbd *txq_last;
127 	struct ifqueue txq_mbufs;
128 	struct mbuf *txq_next;
129 #ifdef ETSEC_DEBUG
130 	struct mbuf *txq_lmbufs[512];
131 #endif
132 	uint32_t txq_qmask;
133 	uint32_t txq_free;
134 	uint32_t txq_threshold;
135 	uint32_t txq_lastintr;
136 	bus_size_t txq_reg_tbase;
137 	bus_dma_segment_t txq_descmap_seg;
138 };
139 
140 struct pq3etsec_rxqueue {
141 	bus_dmamap_t rxq_descmap;
142 	volatile struct rxbd *rxq_consumer;
143 	volatile struct rxbd *rxq_producer;
144 	volatile struct rxbd *rxq_first;
145 	volatile struct rxbd *rxq_last;
146 	struct mbuf *rxq_mhead;
147 	struct mbuf **rxq_mtail;
148 	struct mbuf *rxq_mconsumer;
149 #ifdef ETSEC_DEBUG
150 	struct mbuf *rxq_mbufs[512];
151 #endif
152 	uint32_t rxq_qmask;
153 	uint32_t rxq_inuse;
154 	uint32_t rxq_threshold;
155 	bus_size_t rxq_reg_rbase;
156 	bus_size_t rxq_reg_rbptr;
157 	bus_dma_segment_t rxq_descmap_seg;
158 };
159 
160 struct pq3etsec_mapcache {
161 	u_int dmc_nmaps;
162 	u_int dmc_maxseg;
163 	u_int dmc_maxmaps;
164 	u_int dmc_maxmapsize;
165 	bus_dmamap_t dmc_maps[0];
166 };
167 
168 struct pq3etsec_softc {
169 	device_t sc_dev;
170 	device_t sc_mdio_dev;
171 	struct ethercom sc_ec;
172 #define sc_if		sc_ec.ec_if
173 	struct mii_data sc_mii;
174 	bus_space_tag_t sc_bst;
175 	bus_space_handle_t sc_bsh;
176 	bus_space_handle_t sc_mdio_bsh;
177 	bus_dma_tag_t sc_dmat;
178 	int sc_phy_addr;
179 	prop_dictionary_t sc_intrmap;
180 	uint32_t sc_intrmask;
181 
182 	uint32_t sc_soft_flags;
183 #define	SOFT_RESET		0x0001
184 #define	SOFT_RXINTR		0x0010
185 #define	SOFT_RXBSY		0x0020
186 #define	SOFT_TXINTR		0x0100
187 #define	SOFT_TXERROR		0x0200
188 
189 	struct pq3etsec_txqueue sc_txq;
190 	struct pq3etsec_rxqueue sc_rxq;
191 	uint32_t sc_txerrors;
192 	uint32_t sc_rxerrors;
193 
194 	size_t sc_rx_adjlen;
195 
196 	/*
197 	 * Copies of various ETSEC registers.
198 	 */
199 	uint32_t sc_imask;
200 	uint32_t sc_maccfg1;
201 	uint32_t sc_maccfg2;
202 	uint32_t sc_maxfrm;
203 	uint32_t sc_ecntrl;
204 	uint32_t sc_dmactrl;
205 	uint32_t sc_macstnaddr1;
206 	uint32_t sc_macstnaddr2;
207 	uint32_t sc_tctrl;
208 	uint32_t sc_rctrl;
209 	uint32_t sc_gaddr[16];
210 	uint64_t sc_macaddrs[15];
211 
212 	void *sc_tx_ih;
213 	void *sc_rx_ih;
214 	void *sc_error_ih;
215 	void *sc_soft_ih;
216 
217 	kmutex_t *sc_lock;
218 	kmutex_t *sc_hwlock;
219 
220 	struct evcnt sc_ev_tx_stall;
221 	struct evcnt sc_ev_tx_intr;
222 	struct evcnt sc_ev_rx_stall;
223 	struct evcnt sc_ev_rx_intr;
224 	struct evcnt sc_ev_error_intr;
225 	struct evcnt sc_ev_soft_intr;
226 	struct evcnt sc_ev_tx_pause;
227 	struct evcnt sc_ev_rx_pause;
228 	struct evcnt sc_ev_mii_ticks;
229 
230 	struct callout sc_mii_callout;
231 	uint64_t sc_mii_last_tick;
232 
233 	struct ifqueue sc_rx_bufcache;
234 	struct pq3etsec_mapcache *sc_rx_mapcache;
235 	struct pq3etsec_mapcache *sc_tx_mapcache;
236 
237 	/* Interrupt Coalescing parameters */
238 	int sc_ic_rx_time;
239 	int sc_ic_rx_count;
240 	int sc_ic_tx_time;
241 	int sc_ic_tx_count;
242 
243 	krndsource_t rnd_source;
244 };
245 
246 #define	ETSEC_IC_RX_ENABLED(sc)						\
247 	((sc)->sc_ic_rx_time != 0 && (sc)->sc_ic_rx_count != 0)
248 #define	ETSEC_IC_TX_ENABLED(sc)						\
249 	((sc)->sc_ic_tx_time != 0 && (sc)->sc_ic_tx_count != 0)
250 
251 struct pq3mdio_softc {
252 	device_t mdio_dev;
253 
254 	kmutex_t *mdio_lock;
255 
256 	bus_space_tag_t mdio_bst;
257 	bus_space_handle_t mdio_bsh;
258 };
259 
260 static int pq3etsec_match(device_t, cfdata_t, void *);
261 static void pq3etsec_attach(device_t, device_t, void *);
262 
263 static int pq3mdio_match(device_t, cfdata_t, void *);
264 static void pq3mdio_attach(device_t, device_t, void *);
265 
266 static void pq3etsec_ifstart(struct ifnet *);
267 static void pq3etsec_ifwatchdog(struct ifnet *);
268 static int pq3etsec_ifinit(struct ifnet *);
269 static void pq3etsec_ifstop(struct ifnet *, int);
270 static int pq3etsec_ifioctl(struct ifnet *, u_long, void *);
271 
272 static int pq3etsec_mapcache_create(struct pq3etsec_softc *,
273     struct pq3etsec_mapcache **, size_t, size_t, size_t);
274 static void pq3etsec_mapcache_destroy(struct pq3etsec_softc *,
275     struct pq3etsec_mapcache *);
276 static bus_dmamap_t pq3etsec_mapcache_get(struct pq3etsec_softc *,
277     struct pq3etsec_mapcache *);
278 static void pq3etsec_mapcache_put(struct pq3etsec_softc *,
279     struct pq3etsec_mapcache *, bus_dmamap_t);
280 
281 static int pq3etsec_txq_attach(struct pq3etsec_softc *,
282     struct pq3etsec_txqueue *, u_int);
283 static void pq3etsec_txq_purge(struct pq3etsec_softc *,
284     struct pq3etsec_txqueue *);
285 static void pq3etsec_txq_reset(struct pq3etsec_softc *,
286     struct pq3etsec_txqueue *);
287 static bool pq3etsec_txq_consume(struct pq3etsec_softc *,
288     struct pq3etsec_txqueue *);
289 static bool pq3etsec_txq_produce(struct pq3etsec_softc *,
290     struct pq3etsec_txqueue *, struct mbuf *m);
291 static bool pq3etsec_txq_active_p(struct pq3etsec_softc *,
292     struct pq3etsec_txqueue *);
293 
294 static int pq3etsec_rxq_attach(struct pq3etsec_softc *,
295     struct pq3etsec_rxqueue *, u_int);
296 static bool pq3etsec_rxq_produce(struct pq3etsec_softc *,
297     struct pq3etsec_rxqueue *);
298 static void pq3etsec_rxq_purge(struct pq3etsec_softc *,
299     struct pq3etsec_rxqueue *, bool);
300 static void pq3etsec_rxq_reset(struct pq3etsec_softc *,
301     struct pq3etsec_rxqueue *);
302 
303 static void pq3etsec_mc_setup(struct pq3etsec_softc *);
304 
305 static void pq3etsec_mii_tick(void *);
306 static int pq3etsec_rx_intr(void *);
307 static int pq3etsec_tx_intr(void *);
308 static int pq3etsec_error_intr(void *);
309 static void pq3etsec_soft_intr(void *);
310 
311 static void pq3etsec_set_ic_rx(struct pq3etsec_softc *);
312 static void pq3etsec_set_ic_tx(struct pq3etsec_softc *);
313 
314 static void pq3etsec_sysctl_setup(struct sysctllog **, struct pq3etsec_softc *);
315 
316 CFATTACH_DECL_NEW(pq3etsec, sizeof(struct pq3etsec_softc),
317     pq3etsec_match, pq3etsec_attach, NULL, NULL);
318 
319 CFATTACH_DECL_NEW(pq3mdio_tsec, sizeof(struct pq3mdio_softc),
320     pq3mdio_match, pq3mdio_attach, NULL, NULL);
321 
322 CFATTACH_DECL_NEW(pq3mdio_cpunode, sizeof(struct pq3mdio_softc),
323     pq3mdio_match, pq3mdio_attach, NULL, NULL);
324 
325 static inline uint32_t
326 etsec_mdio_read(struct pq3mdio_softc *mdio, bus_size_t off)
327 {
328 	return bus_space_read_4(mdio->mdio_bst, mdio->mdio_bsh, off);
329 }
330 
331 static inline void
332 etsec_mdio_write(struct pq3mdio_softc *mdio, bus_size_t off, uint32_t data)
333 {
334 	bus_space_write_4(mdio->mdio_bst, mdio->mdio_bsh, off, data);
335 }
336 
337 static inline uint32_t
338 etsec_read(struct pq3etsec_softc *sc, bus_size_t off)
339 {
340 	return bus_space_read_4(sc->sc_bst, sc->sc_bsh, off);
341 }
342 
343 static int
344 pq3mdio_find(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
345 {
346 	return strcmp(cf->cf_name, "mdio") == 0;
347 }
348 
349 static int
350 pq3mdio_match(device_t parent, cfdata_t cf, void *aux)
351 {
352 	const uint16_t svr = (mfspr(SPR_SVR) & ~0x80000) >> 16;
353 	const bool p1025_p = (svr == (SVR_P1025v1 >> 16)
354 	    || svr == (SVR_P1016v1 >> 16));
355 
356 	if (device_is_a(parent, "cpunode")) {
357 		if (!p1025_p
358 		    || !e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
359 			return 0;
360 
361 		return 1;
362 	}
363 
364 	if (device_is_a(parent, "tsec")) {
365 		if (p1025_p
366 		    || !e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
367 			return 0;
368 
369 		return 1;
370 	}
371 
372 	return 0;
373 }
374 
375 static void
376 pq3mdio_attach(device_t parent, device_t self, void *aux)
377 {
378 	struct pq3mdio_softc * const mdio = device_private(self);
379 	struct cpunode_attach_args * const cna = aux;
380 	struct cpunode_locators * const cnl = &cna->cna_locs;
381 
382 	mdio->mdio_dev = self;
383 	mdio->mdio_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
384 
385 	if (device_is_a(parent, "cpunode")) {
386 		struct cpunode_softc * const psc = device_private(parent);
387 		psc->sc_children |= cna->cna_childmask;
388 
389 		mdio->mdio_bst = cna->cna_memt;
390 		if (bus_space_map(mdio->mdio_bst, cnl->cnl_addr,
391 				cnl->cnl_size, 0, &mdio->mdio_bsh) != 0) {
392 			aprint_error(": error mapping registers @ %#x\n",
393 			    cnl->cnl_addr);
394 			return;
395 		}
396 	} else {
397 		struct pq3etsec_softc * const sc = device_private(parent);
398 
399 		KASSERT(device_is_a(parent, "tsec"));
400 		KASSERTMSG(cnl->cnl_addr == ETSEC1_BASE
401 		    || cnl->cnl_addr == ETSEC2_BASE
402 		    || cnl->cnl_addr == ETSEC3_BASE
403 		    || cnl->cnl_addr == ETSEC4_BASE,
404 		    "unknown tsec addr %x", cnl->cnl_addr);
405 
406 		mdio->mdio_bst = sc->sc_bst;
407 		mdio->mdio_bsh = sc->sc_bsh;
408 	}
409 
410 	aprint_normal("\n");
411 }
412 
413 static int
414 pq3mdio_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
415 {
416 	struct pq3mdio_softc * const mdio = device_private(self);
417 	uint32_t miimcom = etsec_mdio_read(mdio, MIIMCOM);
418 
419 	mutex_enter(mdio->mdio_lock);
420 
421 	etsec_mdio_write(mdio, MIIMADD,
422 	    __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
423 
424 	etsec_mdio_write(mdio, MIIMCOM, 0);	/* clear any past bits */
425 	etsec_mdio_write(mdio, MIIMCOM, MIIMCOM_READ);
426 
427 	while (etsec_mdio_read(mdio, MIIMIND) != 0) {
428 			delay(1);
429 	}
430 	*val = etsec_mdio_read(mdio, MIIMSTAT) &0xffff;
431 
432 	if (miimcom == MIIMCOM_SCAN)
433 		etsec_mdio_write(mdio, MIIMCOM, miimcom);
434 
435 #if 0
436 	aprint_normal_dev(mdio->mdio_dev, "%s: phy %d reg %d: %#x\n",
437 	    __func__, phy, reg, data);
438 #endif
439 	mutex_exit(mdio->mdio_lock);
440 	return 0;
441 }
442 
443 static int
444 pq3mdio_mii_writereg(device_t self, int phy, int reg, uint16_t data)
445 {
446 	struct pq3mdio_softc * const mdio = device_private(self);
447 	uint32_t miimcom = etsec_mdio_read(mdio, MIIMCOM);
448 
449 #if 0
450 	aprint_normal_dev(mdio->mdio_dev, "%s: phy %d reg %d: %#x\n",
451 	    __func__, phy, reg, data);
452 #endif
453 
454 	mutex_enter(mdio->mdio_lock);
455 
456 	etsec_mdio_write(mdio, MIIMADD,
457 	    __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
458 	etsec_mdio_write(mdio, MIIMCOM, 0);	/* clear any past bits */
459 	etsec_mdio_write(mdio, MIIMCON, data);
460 
461 	int timo = 1000;	/* 1ms */
462 	while ((etsec_mdio_read(mdio, MIIMIND) & MIIMIND_BUSY) && --timo > 0) {
463 			delay(1);
464 	}
465 
466 	if (miimcom == MIIMCOM_SCAN)
467 		etsec_mdio_write(mdio, MIIMCOM, miimcom);
468 
469 	mutex_exit(mdio->mdio_lock);
470 
471 	return 0;
472 }
473 
474 static inline void
475 etsec_write(struct pq3etsec_softc *sc, bus_size_t off, uint32_t data)
476 {
477 	bus_space_write_4(sc->sc_bst, sc->sc_bsh, off, data);
478 }
479 
480 static void
481 pq3etsec_mii_statchg(struct ifnet *ifp)
482 {
483 	struct pq3etsec_softc * const sc = ifp->if_softc;
484 	struct mii_data * const mii = &sc->sc_mii;
485 
486 	uint32_t maccfg1 = sc->sc_maccfg1;
487 	uint32_t maccfg2 = sc->sc_maccfg2;
488 	uint32_t ecntrl = sc->sc_ecntrl;
489 
490 	maccfg1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
491 	maccfg2 &= ~(MACCFG2_IFMODE | MACCFG2_FD);
492 
493 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
494 		maccfg2 |= MACCFG2_FD;
495 	}
496 
497 	/*
498 	 * Now deal with the flow control bits.
499 	 */
500 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO
501 	    && (mii->mii_media_active & IFM_ETH_FMASK)) {
502 		if (mii->mii_media_active & IFM_ETH_RXPAUSE)
503 			maccfg1 |= MACCFG1_RX_FLOW;
504 		if (mii->mii_media_active & IFM_ETH_TXPAUSE)
505 			maccfg1 |= MACCFG1_TX_FLOW;
506 	}
507 
508 	/*
509 	 * Now deal with the speed.
510 	 */
511 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
512 		maccfg2 |= MACCFG2_IFMODE_GMII;
513 	} else {
514 		maccfg2 |= MACCFG2_IFMODE_MII;
515 		ecntrl &= ~ECNTRL_R100M;
516 		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_10_T) {
517 			ecntrl |= ECNTRL_R100M;
518 		}
519 	}
520 
521 	/*
522 	 * If things are different, re-init things.
523 	 */
524 	if (maccfg1 != sc->sc_maccfg1
525 	    || maccfg2 != sc->sc_maccfg2
526 	    || ecntrl != sc->sc_ecntrl) {
527 		if (sc->sc_if.if_flags & IFF_RUNNING)
528 			atomic_or_uint(&sc->sc_soft_flags, SOFT_RESET);
529 		sc->sc_maccfg1 = maccfg1;
530 		sc->sc_maccfg2 = maccfg2;
531 		sc->sc_ecntrl = ecntrl;
532 	}
533 }
534 
535 #if 0
536 static void
537 pq3etsec_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
538 {
539 	struct pq3etsec_softc * const sc = ifp->if_softc;
540 
541 	mii_pollstat(&sc->sc_mii);
542 	ether_mediastatus(ifp, ifmr);
543 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
544 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
545 }
546 
547 static int
548 pq3etsec_mediachange(struct ifnet *ifp)
549 {
550 	struct pq3etsec_softc * const sc = ifp->if_softc;
551 
552 	if ((ifp->if_flags & IFF_UP) == 0)
553 		return 0;
554 
555 	int rv = mii_mediachg(&sc->sc_mii);
556 	return (rv == ENXIO) ? 0 : rv;
557 }
558 #endif
559 
560 static int
561 pq3etsec_match(device_t parent, cfdata_t cf, void *aux)
562 {
563 
564 	if (!e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
565 		return 0;
566 
567 	return 1;
568 }
569 
570 static void
571 pq3etsec_attach(device_t parent, device_t self, void *aux)
572 {
573 	struct cpunode_softc * const psc = device_private(parent);
574 	struct pq3etsec_softc * const sc = device_private(self);
575 	struct mii_data * const mii = &sc->sc_mii;
576 	struct cpunode_attach_args * const cna = aux;
577 	struct cpunode_locators * const cnl = &cna->cna_locs;
578 	cfdata_t cf = device_cfdata(self);
579 	int error;
580 
581 	psc->sc_children |= cna->cna_childmask;
582 	sc->sc_dev = self;
583 	sc->sc_bst = cna->cna_memt;
584 	sc->sc_dmat = &booke_bus_dma_tag;
585 
586 	/*
587 	 * Pull out the mdio bus and phy we are supposed to use.
588 	 */
589 	const int mdio = cf->cf_loc[CPUNODECF_MDIO];
590 	const int phy = cf->cf_loc[CPUNODECF_PHY];
591 	if (mdio != CPUNODECF_MDIO_DEFAULT)
592 		aprint_normal(" mdio %d", mdio);
593 
594 	/*
595 	 * See if the phy is in the config file...
596 	 */
597 	if (phy != CPUNODECF_PHY_DEFAULT) {
598 		sc->sc_phy_addr = phy;
599 	} else {
600 		unsigned char prop_name[20];
601 		snprintf(prop_name, sizeof(prop_name), "tsec%u-phy-addr",
602 		    cnl->cnl_instance);
603 		sc->sc_phy_addr = board_info_get_number(prop_name);
604 	}
605 	if (sc->sc_phy_addr != MII_PHY_ANY)
606 		aprint_normal(" phy %d", sc->sc_phy_addr);
607 
608 	error = bus_space_map(sc->sc_bst, cnl->cnl_addr, cnl->cnl_size, 0,
609 	    &sc->sc_bsh);
610 	if (error) {
611 		aprint_error(": error mapping registers: %d\n", error);
612 		return;
613 	}
614 
615 	/*
616 	 * Assume firmware has aready set the mac address and fetch it
617 	 * before we reinit it.
618 	 */
619 	sc->sc_macstnaddr2 = etsec_read(sc, MACSTNADDR2);
620 	sc->sc_macstnaddr1 = etsec_read(sc, MACSTNADDR1);
621 	sc->sc_rctrl = RCTRL_DEFAULT;
622 	sc->sc_ecntrl = etsec_read(sc, ECNTRL);
623 	sc->sc_maccfg1 = etsec_read(sc, MACCFG1);
624 	sc->sc_maccfg2 = etsec_read(sc, MACCFG2) | MACCFG2_DEFAULT;
625 
626 	if (sc->sc_macstnaddr1 == 0 && sc->sc_macstnaddr2 == 0) {
627 		size_t len;
628 		const uint8_t *mac_addr =
629 		    board_info_get_data("tsec-mac-addr-base", &len);
630 		KASSERT(len == ETHER_ADDR_LEN);
631 		sc->sc_macstnaddr2 =
632 		    (mac_addr[1] << 24)
633 		    | (mac_addr[0] << 16);
634 		sc->sc_macstnaddr1 =
635 		    ((mac_addr[5] + cnl->cnl_instance - 1) << 24)
636 		    | (mac_addr[4] << 16)
637 		    | (mac_addr[3] << 8)
638 		    | (mac_addr[2] << 0);
639 #if 0
640 		aprint_error(": mac-address unknown\n");
641 		return;
642 #endif
643 	}
644 
645 	sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
646 	sc->sc_hwlock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_VM);
647 
648 	callout_init(&sc->sc_mii_callout, CALLOUT_MPSAFE);
649 	callout_setfunc(&sc->sc_mii_callout, pq3etsec_mii_tick, sc);
650 
651 	/* Disable interrupts */
652 	etsec_write(sc, IMASK, 0);
653 
654 	error = pq3etsec_rxq_attach(sc, &sc->sc_rxq, 0);
655 	if (error) {
656 		aprint_error(": failed to init rxq: %d\n", error);
657 		goto fail_1;
658 	}
659 
660 	error = pq3etsec_txq_attach(sc, &sc->sc_txq, 0);
661 	if (error) {
662 		aprint_error(": failed to init txq: %d\n", error);
663 		goto fail_2;
664 	}
665 
666 	error = pq3etsec_mapcache_create(sc, &sc->sc_rx_mapcache,
667 	    ETSEC_MAXRXMBUFS, MCLBYTES, ETSEC_NRXSEGS);
668 	if (error) {
669 		aprint_error(": failed to allocate rx dmamaps: %d\n", error);
670 		goto fail_3;
671 	}
672 
673 	error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
674 	    ETSEC_MAXTXMBUFS, MCLBYTES, ETSEC_NTXSEGS);
675 	if (error) {
676 		aprint_error(": failed to allocate tx dmamaps: %d\n", error);
677 		goto fail_4;
678 	}
679 
680 	sc->sc_tx_ih = intr_establish(cnl->cnl_intrs[0], IPL_VM, IST_ONCHIP,
681 	    pq3etsec_tx_intr, sc);
682 	if (sc->sc_tx_ih == NULL) {
683 		aprint_error(": failed to establish tx interrupt: %d\n",
684 		    cnl->cnl_intrs[0]);
685 		goto fail_5;
686 	}
687 
688 	sc->sc_rx_ih = intr_establish(cnl->cnl_intrs[1], IPL_VM, IST_ONCHIP,
689 	    pq3etsec_rx_intr, sc);
690 	if (sc->sc_rx_ih == NULL) {
691 		aprint_error(": failed to establish rx interrupt: %d\n",
692 		    cnl->cnl_intrs[1]);
693 		goto fail_6;
694 	}
695 
696 	sc->sc_error_ih = intr_establish(cnl->cnl_intrs[2], IPL_VM, IST_ONCHIP,
697 	    pq3etsec_error_intr, sc);
698 	if (sc->sc_error_ih == NULL) {
699 		aprint_error(": failed to establish error interrupt: %d\n",
700 		    cnl->cnl_intrs[2]);
701 		goto fail_7;
702 	}
703 
704 	int softint_flags = SOFTINT_NET;
705 #if !defined(MULTIPROCESSOR) || defined(NET_MPSAFE)
706 	softint_flags |= SOFTINT_MPSAFE;
707 #endif	/* !MULTIPROCESSOR || NET_MPSAFE */
708 	sc->sc_soft_ih = softint_establish(softint_flags,
709 	    pq3etsec_soft_intr, sc);
710 	if (sc->sc_soft_ih == NULL) {
711 		aprint_error(": failed to establish soft interrupt\n");
712 		goto fail_8;
713 	}
714 
715 	/*
716 	 * If there was no MDIO
717 	 */
718 	if (mdio == CPUNODECF_MDIO_DEFAULT) {
719 		aprint_normal("\n");
720 		cfdata_t mdio_cf = config_search(self, cna,
721 		    CFARGS(.submatch = pq3mdio_find));
722 		if (mdio_cf != NULL) {
723 			sc->sc_mdio_dev =
724 			    config_attach(self, mdio_cf, cna, NULL, CFARGS_NONE);
725 		}
726 	} else {
727 		sc->sc_mdio_dev = device_find_by_driver_unit("mdio", mdio);
728 		if (sc->sc_mdio_dev == NULL) {
729 			aprint_error(": failed to locate mdio device\n");
730 			goto fail_9;
731 		}
732 		aprint_normal("\n");
733 	}
734 
735 	etsec_write(sc, ATTR, ATTR_DEFAULT);
736 	etsec_write(sc, ATTRELI, ATTRELI_DEFAULT);
737 
738 	/* Enable interrupt coalesing */
739 	sc->sc_ic_rx_time = 768;
740 	sc->sc_ic_rx_count = 16;
741 	sc->sc_ic_tx_time = 768;
742 	sc->sc_ic_tx_count = 16;
743 	pq3etsec_set_ic_rx(sc);
744 	pq3etsec_set_ic_tx(sc);
745 
746 	char enaddr[ETHER_ADDR_LEN] = {
747 	    [0] = sc->sc_macstnaddr2 >> 16,
748 	    [1] = sc->sc_macstnaddr2 >> 24,
749 	    [2] = sc->sc_macstnaddr1 >>	 0,
750 	    [3] = sc->sc_macstnaddr1 >>	 8,
751 	    [4] = sc->sc_macstnaddr1 >> 16,
752 	    [5] = sc->sc_macstnaddr1 >> 24,
753 	};
754 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
755 	   ether_sprintf(enaddr));
756 
757 	const char * const xname = device_xname(sc->sc_dev);
758 	struct ethercom * const ec = &sc->sc_ec;
759 	struct ifnet * const ifp = &ec->ec_if;
760 
761 	ec->ec_mii = mii;
762 
763 	mii->mii_ifp = ifp;
764 	mii->mii_readreg = pq3mdio_mii_readreg;
765 	mii->mii_writereg = pq3mdio_mii_writereg;
766 	mii->mii_statchg = pq3etsec_mii_statchg;
767 
768 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
769 
770 	if (sc->sc_mdio_dev != NULL && sc->sc_phy_addr < 32) {
771 		mii_attach(sc->sc_mdio_dev, mii, 0xffffffff,
772 		    sc->sc_phy_addr, MII_OFFSET_ANY, MIIF_DOPAUSE);
773 
774 		if (LIST_FIRST(&mii->mii_phys) == NULL) {
775 			ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE,
776 			    0, NULL);
777 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
778 		} else {
779 			callout_schedule(&sc->sc_mii_callout, hz);
780 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
781 		}
782 	} else {
783 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_1000_T | IFM_FDX,
784 		    0, NULL);
785 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_1000_T | IFM_FDX);
786 	}
787 
788 	ec->ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING
789 	    | ETHERCAP_JUMBO_MTU;
790 	ec->ec_capenable = ETHERCAP_VLAN_HWTAGGING;
791 
792 	strlcpy(ifp->if_xname, xname, IFNAMSIZ);
793 	ifp->if_softc = sc;
794 	ifp->if_capabilities = IFCAP_ETSEC;
795 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
796 	ifp->if_ioctl = pq3etsec_ifioctl;
797 	ifp->if_start = pq3etsec_ifstart;
798 	ifp->if_watchdog = pq3etsec_ifwatchdog;
799 	ifp->if_init = pq3etsec_ifinit;
800 	ifp->if_stop = pq3etsec_ifstop;
801 	IFQ_SET_READY(&ifp->if_snd);
802 
803 	/*
804 	 * Attach the interface.
805 	 */
806 	if_initialize(ifp);
807 	pq3etsec_sysctl_setup(NULL, sc);
808 	if_attach(ifp);
809 	if_deferred_start_init(ifp, NULL);
810 	ether_ifattach(ifp, enaddr);
811 
812 	rnd_attach_source(&sc->rnd_source, xname, RND_TYPE_NET,
813 	    RND_FLAG_DEFAULT);
814 
815 	pq3etsec_ifstop(ifp, true);
816 
817 	evcnt_attach_dynamic(&sc->sc_ev_rx_stall, EVCNT_TYPE_MISC,
818 	    NULL, xname, "rx stall");
819 	evcnt_attach_dynamic(&sc->sc_ev_tx_stall, EVCNT_TYPE_MISC,
820 	    NULL, xname, "tx stall");
821 	evcnt_attach_dynamic(&sc->sc_ev_tx_intr, EVCNT_TYPE_INTR,
822 	    NULL, xname, "tx intr");
823 	evcnt_attach_dynamic(&sc->sc_ev_rx_intr, EVCNT_TYPE_INTR,
824 	    NULL, xname, "rx intr");
825 	evcnt_attach_dynamic(&sc->sc_ev_error_intr, EVCNT_TYPE_INTR,
826 	    NULL, xname, "error intr");
827 	evcnt_attach_dynamic(&sc->sc_ev_soft_intr, EVCNT_TYPE_INTR,
828 	    NULL, xname, "soft intr");
829 	evcnt_attach_dynamic(&sc->sc_ev_tx_pause, EVCNT_TYPE_MISC,
830 	    NULL, xname, "tx pause");
831 	evcnt_attach_dynamic(&sc->sc_ev_rx_pause, EVCNT_TYPE_MISC,
832 	    NULL, xname, "rx pause");
833 	evcnt_attach_dynamic(&sc->sc_ev_mii_ticks, EVCNT_TYPE_MISC,
834 	    NULL, xname, "mii ticks");
835 	return;
836 
837 fail_9:
838 	softint_disestablish(sc->sc_soft_ih);
839 fail_8:
840 	intr_disestablish(sc->sc_error_ih);
841 fail_7:
842 	intr_disestablish(sc->sc_rx_ih);
843 fail_6:
844 	intr_disestablish(sc->sc_tx_ih);
845 fail_5:
846 	pq3etsec_mapcache_destroy(sc, sc->sc_tx_mapcache);
847 fail_4:
848 	pq3etsec_mapcache_destroy(sc, sc->sc_rx_mapcache);
849 fail_3:
850 #if 0 /* notyet */
851 	pq3etsec_txq_detach(sc);
852 #endif
853 fail_2:
854 #if 0 /* notyet */
855 	pq3etsec_rxq_detach(sc);
856 #endif
857 fail_1:
858 	callout_destroy(&sc->sc_mii_callout);
859 	mutex_obj_free(sc->sc_lock);
860 	mutex_obj_free(sc->sc_hwlock);
861 	bus_space_unmap(sc->sc_bst, sc->sc_bsh, cnl->cnl_size);
862 }
863 
864 static uint64_t
865 pq3etsec_macaddr_create(const uint8_t *lladdr)
866 {
867 	uint64_t macaddr = 0;
868 
869 	lladdr += ETHER_ADDR_LEN;
870 	for (u_int i = ETHER_ADDR_LEN; i-- > 0; ) {
871 		macaddr = (macaddr << 8) | *--lladdr;
872 	}
873 	return macaddr << 16;
874 }
875 
876 static int
877 pq3etsec_ifinit(struct ifnet *ifp)
878 {
879 	struct pq3etsec_softc * const sc = ifp->if_softc;
880 	int error = 0;
881 
882 	sc->sc_maxfrm = uimax(ifp->if_mtu + 32, MCLBYTES);
883 	if (ifp->if_mtu > ETHERMTU_JUMBO)
884 		return error;
885 
886 	KASSERT(ifp->if_flags & IFF_UP);
887 
888 	/*
889 	 * Stop the interface (steps 1 to 4 in the Soft Reset and
890 	 * Reconfigurating Procedure.
891 	 */
892 	pq3etsec_ifstop(ifp, 0);
893 
894 	/*
895 	 * If our frame size has changed (or it's our first time through)
896 	 * destroy the existing transmit mapcache.
897 	 */
898 	if (sc->sc_tx_mapcache != NULL
899 	    && sc->sc_maxfrm != sc->sc_tx_mapcache->dmc_maxmapsize) {
900 		pq3etsec_mapcache_destroy(sc, sc->sc_tx_mapcache);
901 		sc->sc_tx_mapcache = NULL;
902 	}
903 
904 	if (sc->sc_tx_mapcache == NULL) {
905 		error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
906 		    ETSEC_MAXTXMBUFS, sc->sc_maxfrm, ETSEC_NTXSEGS);
907 		if (error)
908 			return error;
909 	}
910 
911 	sc->sc_ev_mii_ticks.ev_count++;
912 	mii_tick(&sc->sc_mii);
913 
914 	if (ifp->if_flags & IFF_PROMISC) {
915 		sc->sc_rctrl |= RCTRL_PROM;
916 	} else {
917 		sc->sc_rctrl &= ~RCTRL_PROM;
918 	}
919 
920 	uint32_t rctrl_prsdep = 0;
921 	sc->sc_rctrl &=
922 	    ~(RCTRL_IPCSEN | RCTRL_TUCSEN | RCTRL_VLEX | RCTRL_PRSDEP);
923 	if (VLAN_ATTACHED(&sc->sc_ec)) {
924 		sc->sc_rctrl |= RCTRL_VLEX;
925 		rctrl_prsdep = RCTRL_PRSDEP_L2;
926 	}
927 	if (ifp->if_capenable & IFCAP_RCTRL_IPCSEN) {
928 		sc->sc_rctrl |= RCTRL_IPCSEN;
929 		rctrl_prsdep = RCTRL_PRSDEP_L3;
930 	}
931 	if (ifp->if_capenable & IFCAP_RCTRL_TUCSEN) {
932 		sc->sc_rctrl |= RCTRL_TUCSEN;
933 		rctrl_prsdep = RCTRL_PRSDEP_L4;
934 	}
935 	sc->sc_rctrl |= rctrl_prsdep;
936 #if 0
937 	if (sc->sc_rctrl
938 	    & (RCTRL_IPCSEN | RCTRL_TUCSEN | RCTRL_VLEX | RCTRL_PRSDEP))
939 		aprint_normal_dev(sc->sc_dev,
940 		    "rctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlex=%"PRIuMAX" prsdep=%"PRIuMAX"\n",
941 		    sc->sc_rctrl,
942 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_IPCSEN),
943 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_TUCSEN),
944 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_VLEX),
945 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_PRSDEP));
946 #endif
947 
948 	sc->sc_tctrl &= ~(TCTRL_IPCSEN | TCTRL_TUCSEN | TCTRL_VLINS);
949 	if (VLAN_ATTACHED(&sc->sc_ec))		/* is this really true */
950 		sc->sc_tctrl |= TCTRL_VLINS;
951 	if (ifp->if_capenable & IFCAP_TCTRL_IPCSEN)
952 		sc->sc_tctrl |= TCTRL_IPCSEN;
953 	if (ifp->if_capenable & IFCAP_TCTRL_TUCSEN)
954 		sc->sc_tctrl |= TCTRL_TUCSEN;
955 #if 0
956 	if (sc->sc_tctrl & (TCTRL_IPCSEN | TCTRL_TUCSEN | TCTRL_VLINS))
957 		aprint_normal_dev(sc->sc_dev,
958 		    "tctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlins=%"PRIuMAX"\n",
959 		    sc->sc_tctrl,
960 		    __SHIFTOUT(sc->sc_tctrl, TCTRL_IPCSEN),
961 		    __SHIFTOUT(sc->sc_tctrl, TCTRL_TUCSEN),
962 		    __SHIFTOUT(sc->sc_tctrl, TCTRL_VLINS));
963 #endif
964 
965 	sc->sc_maccfg1 &= ~(MACCFG1_TX_EN | MACCFG1_RX_EN);
966 
967 	const uint64_t macstnaddr =
968 	    pq3etsec_macaddr_create(CLLADDR(ifp->if_sadl));
969 
970 	sc->sc_imask = IEVENT_DPE;
971 
972 	/* 5. Load TDBPH, TBASEH, TBASE0-TBASE7 with new Tx BD pointers */
973 	pq3etsec_rxq_reset(sc, &sc->sc_rxq);
974 	pq3etsec_rxq_produce(sc, &sc->sc_rxq);	/* fill with rx buffers */
975 
976 	/* 6. Load RDBPH, RBASEH, RBASE0-RBASE7 with new Rx BD pointers */
977 	pq3etsec_txq_reset(sc, &sc->sc_txq);
978 
979 	/* 7. Setup other MAC registers (MACCFG2, MAXFRM, etc.) */
980 	KASSERT(MACCFG2_PADCRC & sc->sc_maccfg2);
981 	etsec_write(sc, MAXFRM, sc->sc_maxfrm);
982 	etsec_write(sc, MACSTNADDR1, (uint32_t)(macstnaddr >> 32));
983 	etsec_write(sc, MACSTNADDR2, (uint32_t)(macstnaddr >>  0));
984 	etsec_write(sc, MACCFG1, sc->sc_maccfg1);
985 	etsec_write(sc, MACCFG2, sc->sc_maccfg2);
986 	etsec_write(sc, ECNTRL, sc->sc_ecntrl);
987 
988 	/* 8. Setup group address hash table (GADDR0-GADDR15) */
989 	pq3etsec_mc_setup(sc);
990 
991 	/* 9. Setup receive frame filer table (via RQFAR, RQFCR, and RQFPR) */
992 	etsec_write(sc, MRBLR, MCLBYTES);
993 
994 	/* 10. Setup WWR, WOP, TOD bits in DMACTRL register */
995 	sc->sc_dmactrl |= DMACTRL_DEFAULT;
996 	etsec_write(sc, DMACTRL, sc->sc_dmactrl);
997 
998 	/* 11. Enable transmit queues in TQUEUE, and ensure that the transmit scheduling mode is correctly set in TCTRL. */
999 	etsec_write(sc, TQUEUE, TQUEUE_EN0);
1000 	sc->sc_imask |= IEVENT_TXF | IEVENT_TXE | IEVENT_TXC;
1001 
1002 	etsec_write(sc, TCTRL, sc->sc_tctrl);	/* for TOE stuff */
1003 
1004 	/* 12. Enable receive queues in RQUEUE, */
1005 	etsec_write(sc, RQUEUE, RQUEUE_EN0 | RQUEUE_EX0);
1006 	sc->sc_imask |= IEVENT_RXF | IEVENT_BSY | IEVENT_RXC;
1007 
1008 	/*     and optionally set TOE functionality in RCTRL. */
1009 	etsec_write(sc, RCTRL, sc->sc_rctrl);
1010 	sc->sc_rx_adjlen = __SHIFTOUT(sc->sc_rctrl, RCTRL_PAL);
1011 	if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF)
1012 		sc->sc_rx_adjlen += sizeof(struct rxfcb);
1013 
1014 	/* 13. Clear THLT and TXF bits in TSTAT register by writing 1 to them */
1015 	etsec_write(sc, TSTAT, TSTAT_THLT | TSTAT_TXF);
1016 
1017 	/* 14. Clear QHLT and RXF bits in RSTAT register by writing 1 to them.*/
1018 	etsec_write(sc, RSTAT, RSTAT_QHLT | RSTAT_RXF);
1019 
1020 	/* 15. Clear GRS/GTS bits in DMACTRL (do not change other bits) */
1021 	sc->sc_dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
1022 	etsec_write(sc, DMACTRL, sc->sc_dmactrl);
1023 
1024 	/* 16. Enable Tx_EN/Rx_EN in MACCFG1 register */
1025 	etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
1026 	etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
1027 
1028 	sc->sc_soft_flags = 0;
1029 
1030 	etsec_write(sc, IMASK, sc->sc_imask);
1031 
1032 	ifp->if_flags |= IFF_RUNNING;
1033 
1034 	return error;
1035 }
1036 
1037 static void
1038 pq3etsec_ifstop(struct ifnet *ifp, int disable)
1039 {
1040 	struct pq3etsec_softc * const sc = ifp->if_softc;
1041 
1042 	KASSERT(!cpu_intr_p());
1043 	const uint32_t imask_gsc_mask = IEVENT_GTSC | IEVENT_GRSC;
1044 	/*
1045 	 * Clear the GTSC and GRSC from the interrupt mask until
1046 	 * we are ready for them.  Then clear them from IEVENT,
1047 	 * request the graceful shutdown, and then enable the
1048 	 * GTSC and GRSC bits in the mask.  This should cause the
1049 	 * error interrupt to fire which will issue a wakeup to
1050 	 * allow us to resume.
1051 	 */
1052 
1053 	/*
1054 	 * 1. Set GRS/GTS bits in DMACTRL register
1055 	 */
1056 	sc->sc_dmactrl |= DMACTRL_GRS | DMACTRL_GTS;
1057 	etsec_write(sc, IMASK, sc->sc_imask & ~imask_gsc_mask);
1058 	etsec_write(sc, IEVENT, imask_gsc_mask);
1059 	etsec_write(sc, DMACTRL, sc->sc_dmactrl);
1060 
1061 	if (etsec_read(sc, MACCFG1) & (MACCFG1_TX_EN | MACCFG1_RX_EN)) {
1062 		/*
1063 		 * 2. Poll GRSC/GTSC bits in IEVENT register until both are set
1064 		 */
1065 		etsec_write(sc, IMASK, sc->sc_imask | imask_gsc_mask);
1066 
1067 		u_int timo = 1000;
1068 		uint32_t ievent = etsec_read(sc, IEVENT);
1069 		while ((ievent & imask_gsc_mask) != imask_gsc_mask) {
1070 			if (--timo == 0) {
1071 				aprint_error_dev(sc->sc_dev,
1072 				    "WARNING: "
1073 				    "request to stop failed (IEVENT=%#x)\n",
1074 				    ievent);
1075 				break;
1076 			}
1077 			delay(10);
1078 			ievent = etsec_read(sc, IEVENT);
1079 		}
1080 	}
1081 
1082 	/*
1083 	 * Now reset the controller.
1084 	 *
1085 	 * 3. Set SOFT_RESET bit in MACCFG1 register
1086 	 * 4. Clear SOFT_RESET bit in MACCFG1 register
1087 	 */
1088 	etsec_write(sc, MACCFG1, MACCFG1_SOFT_RESET);
1089 	etsec_write(sc, MACCFG1, 0);
1090 	etsec_write(sc, IMASK, 0);
1091 	etsec_write(sc, IEVENT, ~0);
1092 	sc->sc_imask = 0;
1093 	ifp->if_flags &= ~IFF_RUNNING;
1094 
1095 	uint32_t tbipa = etsec_read(sc, TBIPA);
1096 	if (tbipa == sc->sc_phy_addr) {
1097 		aprint_normal_dev(sc->sc_dev, "relocating TBI\n");
1098 		etsec_write(sc, TBIPA, 0x1f);
1099 	}
1100 	uint32_t miimcfg = etsec_read(sc, MIIMCFG);
1101 	etsec_write(sc, MIIMCFG, MIIMCFG_RESET);
1102 	etsec_write(sc, MIIMCFG, miimcfg);
1103 
1104 	/*
1105 	 * Let's consume any remaing transmitted packets.  And if we are
1106 	 * disabling the interface, purge ourselves of any untransmitted
1107 	 * packets.  But don't consume any received packets, just drop them.
1108 	 * If we aren't disabling the interface, save the mbufs in the
1109 	 * receive queue for reuse.
1110 	 */
1111 	pq3etsec_rxq_purge(sc, &sc->sc_rxq, disable);
1112 	pq3etsec_txq_consume(sc, &sc->sc_txq);
1113 	if (disable) {
1114 		pq3etsec_txq_purge(sc, &sc->sc_txq);
1115 		IFQ_PURGE(&ifp->if_snd);
1116 	}
1117 }
1118 
1119 static void
1120 pq3etsec_ifwatchdog(struct ifnet *ifp)
1121 {
1122 }
1123 
1124 static void
1125 pq3etsec_mc_setup(
1126 	struct pq3etsec_softc *sc)
1127 {
1128 	struct ethercom * const ec = &sc->sc_ec;
1129 	struct ifnet * const ifp = &sc->sc_if;
1130 	struct ether_multi *enm;
1131 	struct ether_multistep step;
1132 	uint32_t *gaddr = sc->sc_gaddr + ((sc->sc_rctrl & RCTRL_GHTX) ? 0 : 8);
1133 	const uint32_t crc_shift = 32 - ((sc->sc_rctrl & RCTRL_GHTX) ? 9 : 8);
1134 
1135 	memset(sc->sc_gaddr, 0, sizeof(sc->sc_gaddr));
1136 	memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
1137 
1138 	ifp->if_flags &= ~IFF_ALLMULTI;
1139 
1140 	ETHER_LOCK(ec);
1141 	ETHER_FIRST_MULTI(step, ec, enm);
1142 	for (u_int i = 0; enm != NULL; ) {
1143 		const char *addr = enm->enm_addrlo;
1144 		if (memcmp(addr, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
1145 			ifp->if_flags |= IFF_ALLMULTI;
1146 			memset(gaddr, 0xff, 32 << (crc_shift & 1));
1147 			memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
1148 			break;
1149 		}
1150 		if ((sc->sc_rctrl & RCTRL_EMEN)
1151 		    && i < __arraycount(sc->sc_macaddrs)) {
1152 			sc->sc_macaddrs[i++] = pq3etsec_macaddr_create(addr);
1153 		} else {
1154 			uint32_t crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
1155 #if 0
1156 			printf("%s: %s: crc=%#x: %#x: [%u,%u]=%#x\n", __func__,
1157 			    ether_sprintf(addr), crc,
1158 			    crc >> crc_shift,
1159 			    crc >> (crc_shift + 5),
1160 			    (crc >> crc_shift) & 31,
1161 			    1 << (((crc >> crc_shift) & 31) ^ 31));
1162 #endif
1163 			/*
1164 			 * The documentation doesn't completely follow PowerPC
1165 			 * bit order.  The BE crc32 (H) for 01:00:5E:00:00:01
1166 			 * is 0x7fa32d9b.  By empirical testing, the
1167 			 * corresponding hash bit is word 3, bit 31 (ppc bit
1168 			 * order).  Since 3 << 31 | 31 is 0x7f, we deduce
1169 			 * H[0:2] selects the register while H[3:7] selects
1170 			 * the bit (ppc bit order).
1171 			 */
1172 			crc >>= crc_shift;
1173 			gaddr[crc / 32] |= 1 << ((crc & 31) ^ 31);
1174 		}
1175 		ETHER_NEXT_MULTI(step, enm);
1176 	}
1177 	ETHER_UNLOCK(ec);
1178 	for (u_int i = 0; i < 8; i++) {
1179 		etsec_write(sc, IGADDR(i), sc->sc_gaddr[i]);
1180 		etsec_write(sc, GADDR(i), sc->sc_gaddr[i+8]);
1181 #if 0
1182 		if (sc->sc_gaddr[i] || sc->sc_gaddr[i+8])
1183 		printf("%s: IGADDR%u(%#x)=%#x GADDR%u(%#x)=%#x\n", __func__,
1184 		    i, IGADDR(i), etsec_read(sc, IGADDR(i)),
1185 		    i, GADDR(i), etsec_read(sc, GADDR(i)));
1186 #endif
1187 	}
1188 	for (u_int i = 0; i < __arraycount(sc->sc_macaddrs); i++) {
1189 		uint64_t macaddr = sc->sc_macaddrs[i];
1190 		etsec_write(sc, MACnADDR1(i), (uint32_t)(macaddr >> 32));
1191 		etsec_write(sc, MACnADDR2(i), (uint32_t)(macaddr >>  0));
1192 #if 0
1193 		if (macaddr)
1194 		printf("%s: MAC%02uADDR2(%08x)=%#x MAC%02uADDR2(%#x)=%08x\n", __func__,
1195 		    i+1, MACnADDR1(i), etsec_read(sc, MACnADDR1(i)),
1196 		    i+1, MACnADDR2(i), etsec_read(sc, MACnADDR2(i)));
1197 #endif
1198 	}
1199 }
1200 
1201 static int
1202 pq3etsec_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
1203 {
1204 	struct pq3etsec_softc *sc  = ifp->if_softc;
1205 	struct ifreq * const ifr = data;
1206 	const int s = splnet();
1207 	int error;
1208 
1209 	switch (cmd) {
1210 	case SIOCSIFMEDIA:
1211 		/* Flow control requires full-duplex mode. */
1212 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1213 		    (ifr->ifr_media & IFM_FDX) == 0)
1214 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1215 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1216 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1217 				/* We can do both TXPAUSE and RXPAUSE. */
1218 				ifr->ifr_media |=
1219 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1220 			}
1221 		}
1222 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1223 		break;
1224 
1225 	default:
1226 		error = ether_ioctl(ifp, cmd, data);
1227 		if (error != ENETRESET)
1228 			break;
1229 
1230 		if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
1231 			error = 0;
1232 			if (ifp->if_flags & IFF_RUNNING)
1233 				pq3etsec_mc_setup(sc);
1234 			break;
1235 		}
1236 		error = pq3etsec_ifinit(ifp);
1237 		break;
1238 	}
1239 
1240 	splx(s);
1241 	return error;
1242 }
1243 
1244 static void
1245 pq3etsec_rxq_desc_presync(
1246 	struct pq3etsec_softc *sc,
1247 	struct pq3etsec_rxqueue *rxq,
1248 	volatile struct rxbd *rxbd,
1249 	size_t count)
1250 {
1251 	bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1252 	    (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1253 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1254 }
1255 
1256 static void
1257 pq3etsec_rxq_desc_postsync(
1258 	struct pq3etsec_softc *sc,
1259 	struct pq3etsec_rxqueue *rxq,
1260 	volatile struct rxbd *rxbd,
1261 	size_t count)
1262 {
1263 	bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1264 	    (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1265 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1266 }
1267 
1268 static void
1269 pq3etsec_txq_desc_presync(
1270 	struct pq3etsec_softc *sc,
1271 	struct pq3etsec_txqueue *txq,
1272 	volatile struct txbd *txbd,
1273 	size_t count)
1274 {
1275 	bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1276 	    (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1277 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1278 }
1279 
1280 static void
1281 pq3etsec_txq_desc_postsync(
1282 	struct pq3etsec_softc *sc,
1283 	struct pq3etsec_txqueue *txq,
1284 	volatile struct txbd *txbd,
1285 	size_t count)
1286 {
1287 	bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1288 	    (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1289 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1290 }
1291 
1292 static bus_dmamap_t
1293 pq3etsec_mapcache_get(
1294 	struct pq3etsec_softc *sc,
1295 	struct pq3etsec_mapcache *dmc)
1296 {
1297 	KASSERT(dmc->dmc_nmaps > 0);
1298 	KASSERT(dmc->dmc_maps[dmc->dmc_nmaps-1] != NULL);
1299 	return dmc->dmc_maps[--dmc->dmc_nmaps];
1300 }
1301 
1302 static void
1303 pq3etsec_mapcache_put(
1304 	struct pq3etsec_softc *sc,
1305 	struct pq3etsec_mapcache *dmc,
1306 	bus_dmamap_t map)
1307 {
1308 	KASSERT(map != NULL);
1309 	KASSERT(dmc->dmc_nmaps < dmc->dmc_maxmaps);
1310 	dmc->dmc_maps[dmc->dmc_nmaps++] = map;
1311 }
1312 
1313 static void
1314 pq3etsec_mapcache_destroy(
1315 	struct pq3etsec_softc *sc,
1316 	struct pq3etsec_mapcache *dmc)
1317 {
1318 	const size_t dmc_size =
1319 	    offsetof(struct pq3etsec_mapcache, dmc_maps[dmc->dmc_maxmaps]);
1320 
1321 	for (u_int i = 0; i < dmc->dmc_maxmaps; i++) {
1322 		bus_dmamap_destroy(sc->sc_dmat, dmc->dmc_maps[i]);
1323 	}
1324 	kmem_intr_free(dmc, dmc_size);
1325 }
1326 
1327 static int
1328 pq3etsec_mapcache_create(
1329 	struct pq3etsec_softc *sc,
1330 	struct pq3etsec_mapcache **dmc_p,
1331 	size_t maxmaps,
1332 	size_t maxmapsize,
1333 	size_t maxseg)
1334 {
1335 	const size_t dmc_size =
1336 	    offsetof(struct pq3etsec_mapcache, dmc_maps[maxmaps]);
1337 	struct pq3etsec_mapcache * const dmc =
1338 		kmem_intr_zalloc(dmc_size, KM_NOSLEEP);
1339 
1340 	dmc->dmc_maxmaps = maxmaps;
1341 	dmc->dmc_nmaps = maxmaps;
1342 	dmc->dmc_maxmapsize = maxmapsize;
1343 	dmc->dmc_maxseg = maxseg;
1344 
1345 	for (u_int i = 0; i < maxmaps; i++) {
1346 		int error = bus_dmamap_create(sc->sc_dmat, dmc->dmc_maxmapsize,
1347 		     dmc->dmc_maxseg, dmc->dmc_maxmapsize, 0,
1348 		     BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dmc->dmc_maps[i]);
1349 		if (error) {
1350 			aprint_error_dev(sc->sc_dev,
1351 			    "failed to creat dma map cache "
1352 			    "entry %u of %zu: %d\n",
1353 			    i, maxmaps, error);
1354 			while (i-- > 0) {
1355 				bus_dmamap_destroy(sc->sc_dmat,
1356 				    dmc->dmc_maps[i]);
1357 			}
1358 			kmem_intr_free(dmc, dmc_size);
1359 			return error;
1360 		}
1361 		KASSERT(dmc->dmc_maps[i] != NULL);
1362 	}
1363 
1364 	*dmc_p = dmc;
1365 
1366 	return 0;
1367 }
1368 
1369 #if 0
1370 static void
1371 pq3etsec_dmamem_free(
1372 	bus_dma_tag_t dmat,
1373 	size_t map_size,
1374 	bus_dma_segment_t *seg,
1375 	bus_dmamap_t map,
1376 	void *kvap)
1377 {
1378 	bus_dmamap_destroy(dmat, map);
1379 	bus_dmamem_unmap(dmat, kvap, map_size);
1380 	bus_dmamem_free(dmat, seg, 1);
1381 }
1382 #endif
1383 
1384 static int
1385 pq3etsec_dmamem_alloc(
1386 	bus_dma_tag_t dmat,
1387 	size_t map_size,
1388 	bus_dma_segment_t *seg,
1389 	bus_dmamap_t *map,
1390 	void **kvap)
1391 {
1392 	int error;
1393 	int nseg;
1394 
1395 	*kvap = NULL;
1396 	*map = NULL;
1397 
1398 	error = bus_dmamem_alloc(dmat, map_size, PAGE_SIZE, 0,
1399 	   seg, 1, &nseg, 0);
1400 	if (error)
1401 		return error;
1402 
1403 	KASSERT(nseg == 1);
1404 
1405 	error = bus_dmamem_map(dmat, seg, nseg, map_size, (void **)kvap,
1406 	    BUS_DMA_COHERENT);
1407 	if (error == 0) {
1408 		error = bus_dmamap_create(dmat, map_size, 1, map_size, 0, 0,
1409 		    map);
1410 		if (error == 0) {
1411 			error = bus_dmamap_load(dmat, *map, *kvap, map_size,
1412 			    NULL, 0);
1413 			if (error == 0)
1414 				return 0;
1415 			bus_dmamap_destroy(dmat, *map);
1416 			*map = NULL;
1417 		}
1418 		bus_dmamem_unmap(dmat, *kvap, map_size);
1419 		*kvap = NULL;
1420 	}
1421 	bus_dmamem_free(dmat, seg, nseg);
1422 	return 0;
1423 }
1424 
1425 static struct mbuf *
1426 pq3etsec_rx_buf_alloc(
1427 	struct pq3etsec_softc *sc)
1428 {
1429 	struct mbuf *m = m_gethdr(M_DONTWAIT, MT_DATA);
1430 	if (m == NULL) {
1431 		printf("%s:%d: %s\n", __func__, __LINE__, "m_gethdr");
1432 		return NULL;
1433 	}
1434 	MCLGET(m, M_DONTWAIT);
1435 	if ((m->m_flags & M_EXT) == 0) {
1436 		printf("%s:%d: %s\n", __func__, __LINE__, "MCLGET");
1437 		m_freem(m);
1438 		return NULL;
1439 	}
1440 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1441 
1442 	bus_dmamap_t map = pq3etsec_mapcache_get(sc, sc->sc_rx_mapcache);
1443 	if (map == NULL) {
1444 		printf("%s:%d: %s\n", __func__, __LINE__, "map get");
1445 		m_freem(m);
1446 		return NULL;
1447 	}
1448 	M_SETCTX(m, map);
1449 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1450 	int error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1451 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
1452 	if (error) {
1453 		aprint_error_dev(sc->sc_dev, "fail to load rx dmamap: %d\n",
1454 		    error);
1455 		M_SETCTX(m, NULL);
1456 		m_freem(m);
1457 		pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1458 		return NULL;
1459 	}
1460 	KASSERT(map->dm_mapsize == MCLBYTES);
1461 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1462 	    BUS_DMASYNC_PREREAD);
1463 
1464 	return m;
1465 }
1466 
1467 static void
1468 pq3etsec_rx_map_unload(
1469 	struct pq3etsec_softc *sc,
1470 	struct mbuf *m)
1471 {
1472 	KASSERT(m);
1473 	for (; m != NULL; m = m->m_next) {
1474 		bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1475 		KASSERT(map);
1476 		KASSERT(map->dm_mapsize == MCLBYTES);
1477 		bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_len,
1478 		    BUS_DMASYNC_POSTREAD);
1479 		bus_dmamap_unload(sc->sc_dmat, map);
1480 		pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1481 		M_SETCTX(m, NULL);
1482 	}
1483 }
1484 
1485 static bool
1486 pq3etsec_rxq_produce(
1487 	struct pq3etsec_softc *sc,
1488 	struct pq3etsec_rxqueue *rxq)
1489 {
1490 	volatile struct rxbd *producer = rxq->rxq_producer;
1491 #if 0
1492 	size_t inuse = rxq->rxq_inuse;
1493 #endif
1494 	while (rxq->rxq_inuse < rxq->rxq_threshold) {
1495 		struct mbuf *m;
1496 		IF_DEQUEUE(&sc->sc_rx_bufcache, m);
1497 		if (m == NULL) {
1498 			m = pq3etsec_rx_buf_alloc(sc);
1499 			if (m == NULL) {
1500 				printf("%s: pq3etsec_rx_buf_alloc failed\n", __func__);
1501 				break;
1502 			}
1503 		}
1504 		bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1505 		KASSERT(map);
1506 
1507 #ifdef ETSEC_DEBUG
1508 		KASSERT(rxq->rxq_mbufs[producer-rxq->rxq_first] == NULL);
1509 		rxq->rxq_mbufs[producer-rxq->rxq_first] = m;
1510 #endif
1511 
1512 		/* rxbd_len is write-only by the ETSEC */
1513 		producer->rxbd_bufptr = map->dm_segs[0].ds_addr;
1514 		membar_producer();
1515 		producer->rxbd_flags |= RXBD_E;
1516 		if (__predict_false(rxq->rxq_mhead == NULL)) {
1517 			KASSERT(producer == rxq->rxq_consumer);
1518 			rxq->rxq_mconsumer = m;
1519 		}
1520 		*rxq->rxq_mtail = m;
1521 		rxq->rxq_mtail = &m->m_next;
1522 		m->m_len = MCLBYTES;
1523 		m->m_next = NULL;
1524 		rxq->rxq_inuse++;
1525 		if (++producer == rxq->rxq_last) {
1526 			membar_producer();
1527 			pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1528 			    rxq->rxq_last - rxq->rxq_producer);
1529 			producer = rxq->rxq_producer = rxq->rxq_first;
1530 		}
1531 	}
1532 	if (producer != rxq->rxq_producer) {
1533 		membar_producer();
1534 		pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1535 		    producer - rxq->rxq_producer);
1536 		rxq->rxq_producer = producer;
1537 	}
1538 	uint32_t qhlt = etsec_read(sc, RSTAT) & RSTAT_QHLT;
1539 	if (qhlt) {
1540 		KASSERT(qhlt & rxq->rxq_qmask);
1541 		sc->sc_ev_rx_stall.ev_count++;
1542 		etsec_write(sc, RSTAT, RSTAT_QHLT & rxq->rxq_qmask);
1543 	}
1544 #if 0
1545 	aprint_normal_dev(sc->sc_dev,
1546 	    "%s: buffers inuse went from %zu to %zu\n",
1547 	    __func__, inuse, rxq->rxq_inuse);
1548 #endif
1549 	return true;
1550 }
1551 
1552 static bool
1553 pq3etsec_rx_offload(
1554 	struct pq3etsec_softc *sc,
1555 	struct mbuf *m,
1556 	const struct rxfcb *fcb)
1557 {
1558 	if (fcb->rxfcb_flags & RXFCB_VLN) {
1559 		vlan_set_tag(m, fcb->rxfcb_vlctl);
1560 	}
1561 	if ((fcb->rxfcb_flags & RXFCB_IP) == 0
1562 	    || (fcb->rxfcb_flags & (RXFCB_CIP | RXFCB_CTU)) == 0)
1563 		return true;
1564 	int csum_flags = 0;
1565 	if ((fcb->rxfcb_flags & (RXFCB_IP6 | RXFCB_CIP)) == RXFCB_CIP) {
1566 		csum_flags |= M_CSUM_IPv4;
1567 		if (fcb->rxfcb_flags & RXFCB_EIP)
1568 			csum_flags |= M_CSUM_IPv4_BAD;
1569 	}
1570 	if ((fcb->rxfcb_flags & RXFCB_CTU) == RXFCB_CTU) {
1571 		int ipv_flags;
1572 		if (fcb->rxfcb_flags & RXFCB_IP6)
1573 			ipv_flags = M_CSUM_TCPv6 | M_CSUM_UDPv6;
1574 		else
1575 			ipv_flags = M_CSUM_TCPv4 | M_CSUM_UDPv4;
1576 		if (fcb->rxfcb_pro == IPPROTO_TCP) {
1577 			csum_flags |= (M_CSUM_TCPv4 |M_CSUM_TCPv6) & ipv_flags;
1578 		} else {
1579 			csum_flags |= (M_CSUM_UDPv4 |M_CSUM_UDPv6) & ipv_flags;
1580 		}
1581 		if (fcb->rxfcb_flags & RXFCB_ETU)
1582 			csum_flags |= M_CSUM_TCP_UDP_BAD;
1583 	}
1584 
1585 	m->m_pkthdr.csum_flags = csum_flags;
1586 	return true;
1587 }
1588 
1589 static void
1590 pq3etsec_rx_input(
1591 	struct pq3etsec_softc *sc,
1592 	struct mbuf *m,
1593 	uint16_t rxbd_flags)
1594 {
1595 	struct ifnet * const ifp = &sc->sc_if;
1596 
1597 	pq3etsec_rx_map_unload(sc, m);
1598 
1599 	if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF) {
1600 		struct rxfcb fcb = *mtod(m, struct rxfcb *);
1601 		if (!pq3etsec_rx_offload(sc, m, &fcb))
1602 			return;
1603 	}
1604 	m_adj(m, sc->sc_rx_adjlen);
1605 
1606 	if (rxbd_flags & RXBD_M)
1607 		m->m_flags |= M_PROMISC;
1608 	if (rxbd_flags & RXBD_BC)
1609 		m->m_flags |= M_BCAST;
1610 	if (rxbd_flags & RXBD_MC)
1611 		m->m_flags |= M_MCAST;
1612 	m->m_flags |= M_HASFCS;
1613 	m_set_rcvif(m, &sc->sc_if);
1614 
1615 	/*
1616 	 * Let's give it to the network subsystm to deal with.
1617 	 */
1618 	if_percpuq_enqueue(ifp->if_percpuq, m);
1619 }
1620 
1621 static void
1622 pq3etsec_rxq_consume(
1623 	struct pq3etsec_softc *sc,
1624 	struct pq3etsec_rxqueue *rxq)
1625 {
1626 	struct ifnet * const ifp = &sc->sc_if;
1627 	volatile struct rxbd *consumer = rxq->rxq_consumer;
1628 	size_t rxconsumed = 0;
1629 
1630 	etsec_write(sc, RSTAT, RSTAT_RXF & rxq->rxq_qmask);
1631 
1632 	for (;;) {
1633 		if (consumer == rxq->rxq_producer) {
1634 			rxq->rxq_consumer = consumer;
1635 			rxq->rxq_inuse -= rxconsumed;
1636 			KASSERT(rxq->rxq_inuse == 0);
1637 			break;
1638 		}
1639 		pq3etsec_rxq_desc_postsync(sc, rxq, consumer, 1);
1640 		const uint16_t rxbd_flags = consumer->rxbd_flags;
1641 		if (rxbd_flags & RXBD_E) {
1642 			rxq->rxq_consumer = consumer;
1643 			rxq->rxq_inuse -= rxconsumed;
1644 			break;
1645 		}
1646 		KASSERT(rxq->rxq_mconsumer != NULL);
1647 #ifdef ETSEC_DEBUG
1648 		KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1649 #endif
1650 #if 0
1651 		printf("%s: rxdb[%u]: flags=%#x len=%#x: %08x %08x %08x %08x\n",
1652 		    __func__,
1653 		    consumer - rxq->rxq_first, rxbd_flags, consumer->rxbd_len,
1654 		    mtod(rxq->rxq_mconsumer, int *)[0],
1655 		    mtod(rxq->rxq_mconsumer, int *)[1],
1656 		    mtod(rxq->rxq_mconsumer, int *)[2],
1657 		    mtod(rxq->rxq_mconsumer, int *)[3]);
1658 #endif
1659 		/*
1660 		 * We own this packet again.  Clear all flags except wrap.
1661 		 */
1662 		rxconsumed++;
1663 		consumer->rxbd_flags = rxbd_flags & (RXBD_W | RXBD_I);
1664 
1665 		/*
1666 		 * If this descriptor has the LAST bit set and no errors,
1667 		 * it's a valid input packet.
1668 		 */
1669 		if ((rxbd_flags & (RXBD_L | RXBD_ERRORS)) == RXBD_L) {
1670 			size_t rxbd_len = consumer->rxbd_len;
1671 			struct mbuf *m = rxq->rxq_mhead;
1672 			struct mbuf *m_last = rxq->rxq_mconsumer;
1673 			if ((rxq->rxq_mhead = m_last->m_next) == NULL)
1674 				rxq->rxq_mtail = &rxq->rxq_mhead;
1675 			rxq->rxq_mconsumer = rxq->rxq_mhead;
1676 			m_last->m_next = NULL;
1677 			m_last->m_len = rxbd_len & (MCLBYTES - 1);
1678 			m->m_pkthdr.len = rxbd_len;
1679 			pq3etsec_rx_input(sc, m, rxbd_flags);
1680 		} else if (rxbd_flags & RXBD_L) {
1681 			KASSERT(rxbd_flags & RXBD_ERRORS);
1682 			struct mbuf *m;
1683 			/*
1684 			 * We encountered an error, take the mbufs and add
1685 			 * then to the rx bufcache so we can reuse them.
1686 			 */
1687 			if_statinc(ifp, if_ierrors);
1688 			for (m = rxq->rxq_mhead;
1689 			     m != rxq->rxq_mconsumer;
1690 			     m = m->m_next) {
1691 				IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1692 			}
1693 			m = rxq->rxq_mconsumer;
1694 			if ((rxq->rxq_mhead = m->m_next) == NULL)
1695 				rxq->rxq_mtail = &rxq->rxq_mhead;
1696 			rxq->rxq_mconsumer = m->m_next;
1697 			IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1698 		} else {
1699 			rxq->rxq_mconsumer = rxq->rxq_mconsumer->m_next;
1700 		}
1701 #ifdef ETSEC_DEBUG
1702 		rxq->rxq_mbufs[consumer - rxq->rxq_first] = NULL;
1703 #endif
1704 
1705 		/*
1706 		 * Wrap at the last entry!
1707 		 */
1708 		if (rxbd_flags & RXBD_W) {
1709 			KASSERT(consumer + 1 == rxq->rxq_last);
1710 			consumer = rxq->rxq_first;
1711 		} else {
1712 			consumer++;
1713 		}
1714 #ifdef ETSEC_DEBUG
1715 		KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1716 #endif
1717 	}
1718 
1719 	if (rxconsumed != 0)
1720 		rnd_add_uint32(&sc->rnd_source, rxconsumed);
1721 }
1722 
1723 static void
1724 pq3etsec_rxq_purge(
1725 	struct pq3etsec_softc *sc,
1726 	struct pq3etsec_rxqueue *rxq,
1727 	bool discard)
1728 {
1729 	struct mbuf *m;
1730 
1731 	if ((m = rxq->rxq_mhead) != NULL) {
1732 #ifdef ETSEC_DEBUG
1733 		memset(rxq->rxq_mbufs, 0, sizeof(rxq->rxq_mbufs));
1734 #endif
1735 
1736 		if (discard) {
1737 			pq3etsec_rx_map_unload(sc, m);
1738 			m_freem(m);
1739 		} else {
1740 			while (m != NULL) {
1741 				struct mbuf *m0 = m->m_next;
1742 				m->m_next = NULL;
1743 				IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1744 				m = m0;
1745 			}
1746 		}
1747 	}
1748 
1749 	rxq->rxq_mconsumer = NULL;
1750 	rxq->rxq_mhead = NULL;
1751 	rxq->rxq_mtail = &rxq->rxq_mhead;
1752 	rxq->rxq_inuse = 0;
1753 }
1754 
1755 static void
1756 pq3etsec_rxq_reset(
1757 	struct pq3etsec_softc *sc,
1758 	struct pq3etsec_rxqueue *rxq)
1759 {
1760 	/*
1761 	 * sync all the descriptors
1762 	 */
1763 	pq3etsec_rxq_desc_postsync(sc, rxq, rxq->rxq_first,
1764 	    rxq->rxq_last - rxq->rxq_first);
1765 
1766 	/*
1767 	 * Make sure we own all descriptors in the ring.
1768 	 */
1769 	volatile struct rxbd *rxbd;
1770 	for (rxbd = rxq->rxq_first; rxbd < rxq->rxq_last - 1; rxbd++) {
1771 		rxbd->rxbd_flags = RXBD_I;
1772 	}
1773 
1774 	/*
1775 	 * Last descriptor has the wrap flag.
1776 	 */
1777 	rxbd->rxbd_flags = RXBD_W | RXBD_I;
1778 
1779 	/*
1780 	 * Reset the producer consumer indexes.
1781 	 */
1782 	rxq->rxq_consumer = rxq->rxq_first;
1783 	rxq->rxq_producer = rxq->rxq_first;
1784 	rxq->rxq_inuse = 0;
1785 	if (rxq->rxq_threshold < ETSEC_MINRXMBUFS)
1786 		rxq->rxq_threshold = ETSEC_MINRXMBUFS;
1787 
1788 	sc->sc_imask |= IEVENT_RXF | IEVENT_BSY;
1789 
1790 	/*
1791 	 * Restart the transmit at the first descriptor
1792 	 */
1793 	etsec_write(sc, rxq->rxq_reg_rbase, rxq->rxq_descmap->dm_segs->ds_addr);
1794 }
1795 
1796 static int
1797 pq3etsec_rxq_attach(
1798 	struct pq3etsec_softc *sc,
1799 	struct pq3etsec_rxqueue *rxq,
1800 	u_int qno)
1801 {
1802 	size_t map_size = PAGE_SIZE;
1803 	size_t desc_count = map_size / sizeof(struct rxbd);
1804 	int error;
1805 	void *descs;
1806 
1807 	error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1808 	   &rxq->rxq_descmap_seg, &rxq->rxq_descmap, &descs);
1809 	if (error)
1810 		return error;
1811 
1812 	memset(descs, 0, map_size);
1813 	rxq->rxq_first = descs;
1814 	rxq->rxq_last = rxq->rxq_first + desc_count;
1815 	rxq->rxq_consumer = descs;
1816 	rxq->rxq_producer = descs;
1817 
1818 	pq3etsec_rxq_purge(sc, rxq, true);
1819 	pq3etsec_rxq_reset(sc, rxq);
1820 
1821 	rxq->rxq_reg_rbase = RBASEn(qno);
1822 	rxq->rxq_qmask = RSTAT_QHLTn(qno) | RSTAT_RXFn(qno);
1823 
1824 	return 0;
1825 }
1826 
1827 static bool
1828 pq3etsec_txq_active_p(
1829 	struct pq3etsec_softc * const sc,
1830 	struct pq3etsec_txqueue *txq)
1831 {
1832 	return !IF_IS_EMPTY(&txq->txq_mbufs);
1833 }
1834 
1835 static bool
1836 pq3etsec_txq_fillable_p(
1837 	struct pq3etsec_softc * const sc,
1838 	struct pq3etsec_txqueue *txq)
1839 {
1840 	return txq->txq_free >= txq->txq_threshold;
1841 }
1842 
1843 static int
1844 pq3etsec_txq_attach(
1845 	struct pq3etsec_softc *sc,
1846 	struct pq3etsec_txqueue *txq,
1847 	u_int qno)
1848 {
1849 	size_t map_size = PAGE_SIZE;
1850 	size_t desc_count = map_size / sizeof(struct txbd);
1851 	int error;
1852 	void *descs;
1853 
1854 	error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1855 	   &txq->txq_descmap_seg, &txq->txq_descmap, &descs);
1856 	if (error)
1857 		return error;
1858 
1859 	memset(descs, 0, map_size);
1860 	txq->txq_first = descs;
1861 	txq->txq_last = txq->txq_first + desc_count;
1862 	txq->txq_consumer = descs;
1863 	txq->txq_producer = descs;
1864 
1865 	IFQ_SET_MAXLEN(&txq->txq_mbufs, ETSEC_MAXTXMBUFS);
1866 
1867 	txq->txq_reg_tbase = TBASEn(qno);
1868 	txq->txq_qmask = TSTAT_THLTn(qno) | TSTAT_TXFn(qno);
1869 
1870 	pq3etsec_txq_reset(sc, txq);
1871 
1872 	return 0;
1873 }
1874 
1875 static int
1876 pq3etsec_txq_map_load(
1877 	struct pq3etsec_softc *sc,
1878 	struct pq3etsec_txqueue *txq,
1879 	struct mbuf *m)
1880 {
1881 	bus_dmamap_t map;
1882 	int error;
1883 
1884 	map = M_GETCTX(m, bus_dmamap_t);
1885 	if (map != NULL)
1886 		return 0;
1887 
1888 	map = pq3etsec_mapcache_get(sc, sc->sc_tx_mapcache);
1889 	if (map == NULL)
1890 		return ENOMEM;
1891 
1892 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1893 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1894 	if (error)
1895 		return error;
1896 
1897 	bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_pkthdr.len,
1898 	    BUS_DMASYNC_PREWRITE);
1899 	M_SETCTX(m, map);
1900 	return 0;
1901 }
1902 
1903 static void
1904 pq3etsec_txq_map_unload(
1905 	struct pq3etsec_softc *sc,
1906 	struct pq3etsec_txqueue *txq,
1907 	struct mbuf *m)
1908 {
1909 	KASSERT(m);
1910 	bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1911 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1912 	    BUS_DMASYNC_POSTWRITE);
1913 	bus_dmamap_unload(sc->sc_dmat, map);
1914 	pq3etsec_mapcache_put(sc, sc->sc_tx_mapcache, map);
1915 }
1916 
1917 static bool
1918 pq3etsec_txq_produce(
1919 	struct pq3etsec_softc *sc,
1920 	struct pq3etsec_txqueue *txq,
1921 	struct mbuf *m)
1922 {
1923 	bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1924 
1925 	if (map->dm_nsegs > txq->txq_free)
1926 		return false;
1927 
1928 	/*
1929 	 * TCP Offload flag must be set in the first descriptor.
1930 	 */
1931 	volatile struct txbd *producer = txq->txq_producer;
1932 	uint16_t last_flags = TXBD_L;
1933 	uint16_t first_flags = TXBD_R
1934 	    | ((m->m_flags & M_HASFCB) ? TXBD_TOE : 0);
1935 
1936 	/*
1937 	 * If we've produced enough descriptors without consuming any
1938 	 * we need to ask for an interrupt to reclaim some.
1939 	 */
1940 	txq->txq_lastintr += map->dm_nsegs;
1941 	if (ETSEC_IC_TX_ENABLED(sc)
1942 	    || txq->txq_lastintr >= txq->txq_threshold
1943 	    || txq->txq_mbufs.ifq_len + 1 == txq->txq_mbufs.ifq_maxlen) {
1944 		txq->txq_lastintr = 0;
1945 		last_flags |= TXBD_I;
1946 	}
1947 
1948 #ifdef ETSEC_DEBUG
1949 	KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1950 #endif
1951 	KASSERT(producer != txq->txq_last);
1952 	producer->txbd_bufptr = map->dm_segs[0].ds_addr;
1953 	producer->txbd_len = map->dm_segs[0].ds_len;
1954 
1955 	if (map->dm_nsegs > 1) {
1956 		volatile struct txbd *start = producer + 1;
1957 		size_t count = map->dm_nsegs - 1;
1958 		for (u_int i = 1; i < map->dm_nsegs; i++) {
1959 			if (__predict_false(++producer == txq->txq_last)) {
1960 				producer = txq->txq_first;
1961 				if (start < txq->txq_last) {
1962 					pq3etsec_txq_desc_presync(sc, txq,
1963 					    start, txq->txq_last - start);
1964 					count -= txq->txq_last - start;
1965 				}
1966 				start = txq->txq_first;
1967 			}
1968 #ifdef ETSEC_DEBUG
1969 			KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1970 #endif
1971 			producer->txbd_bufptr = map->dm_segs[i].ds_addr;
1972 			producer->txbd_len = map->dm_segs[i].ds_len;
1973 			producer->txbd_flags = TXBD_R
1974 			    | (producer->txbd_flags & TXBD_W)
1975 			    | (i == map->dm_nsegs - 1 ? last_flags : 0);
1976 #if 0
1977 			printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__, producer - txq->txq_first,
1978 			    producer->txbd_flags, producer->txbd_len, producer->txbd_bufptr);
1979 #endif
1980 		}
1981 		pq3etsec_txq_desc_presync(sc, txq, start, count);
1982 	} else {
1983 		first_flags |= last_flags;
1984 	}
1985 
1986 	membar_producer();
1987 	txq->txq_producer->txbd_flags =
1988 	    first_flags | (txq->txq_producer->txbd_flags & TXBD_W);
1989 #if 0
1990 	printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__,
1991 	    txq->txq_producer - txq->txq_first, txq->txq_producer->txbd_flags,
1992 	    txq->txq_producer->txbd_len, txq->txq_producer->txbd_bufptr);
1993 #endif
1994 	pq3etsec_txq_desc_presync(sc, txq, txq->txq_producer, 1);
1995 
1996 	/*
1997 	 * Reduce free count by the number of segments we consumed.
1998 	 */
1999 	txq->txq_free -= map->dm_nsegs;
2000 	KASSERT(map->dm_nsegs == 1 || txq->txq_producer != producer);
2001 	KASSERT(map->dm_nsegs == 1 || (txq->txq_producer->txbd_flags & TXBD_L) == 0);
2002 	KASSERT(producer->txbd_flags & TXBD_L);
2003 #ifdef ETSEC_DEBUG
2004 	txq->txq_lmbufs[producer - txq->txq_first] = m;
2005 #endif
2006 
2007 #if 0
2008 	printf("%s: mbuf %p: produced a %u byte packet in %u segments (%u..%u)\n",
2009 	    __func__, m, m->m_pkthdr.len, map->dm_nsegs,
2010 	    txq->txq_producer - txq->txq_first, producer - txq->txq_first);
2011 #endif
2012 
2013 	if (++producer == txq->txq_last)
2014 		txq->txq_producer = txq->txq_first;
2015 	else
2016 		txq->txq_producer = producer;
2017 	IF_ENQUEUE(&txq->txq_mbufs, m);
2018 
2019 	/*
2020 	 * Restart the transmitter.
2021 	 */
2022 	etsec_write(sc, TSTAT, txq->txq_qmask & TSTAT_THLT);	/* W1C */
2023 
2024 	return true;
2025 }
2026 
2027 static void
2028 pq3etsec_tx_offload(
2029 	struct pq3etsec_softc *sc,
2030 	struct pq3etsec_txqueue *txq,
2031 	struct mbuf **mp)
2032 {
2033 	struct mbuf *m = *mp;
2034 	u_int csum_flags = m->m_pkthdr.csum_flags;
2035 	bool have_vtag;
2036 	uint16_t vtag;
2037 
2038 	KASSERT(m->m_flags & M_PKTHDR);
2039 
2040 	have_vtag = vlan_has_tag(m);
2041 	vtag = (have_vtag) ? vlan_get_tag(m) : 0;
2042 
2043 	/*
2044 	 * Let see if we are doing any offload first.
2045 	 */
2046 	if (csum_flags == 0 && !have_vtag) {
2047 		m->m_flags &= ~M_HASFCB;
2048 		return;
2049 	}
2050 
2051 	uint16_t flags = 0;
2052 	if (csum_flags & M_CSUM_IP) {
2053 		flags |= TXFCB_IP
2054 		    | ((csum_flags & M_CSUM_IP6) ? TXFCB_IP6 : 0)
2055 		    | ((csum_flags & M_CSUM_TUP) ? TXFCB_TUP : 0)
2056 		    | ((csum_flags & M_CSUM_UDP) ? TXFCB_UDP : 0)
2057 		    | ((csum_flags & M_CSUM_CIP) ? TXFCB_CIP : 0)
2058 		    | ((csum_flags & M_CSUM_CTU) ? TXFCB_CTU : 0);
2059 	}
2060 	if (have_vtag) {
2061 		flags |= TXFCB_VLN;
2062 	}
2063 	if (flags == 0) {
2064 		m->m_flags &= ~M_HASFCB;
2065 		return;
2066 	}
2067 
2068 	struct txfcb fcb;
2069 	fcb.txfcb_flags = flags;
2070 	if (csum_flags & M_CSUM_IPv4)
2071 		fcb.txfcb_l4os = M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
2072 	else
2073 		fcb.txfcb_l4os = M_CSUM_DATA_IPv6_IPHL(m->m_pkthdr.csum_data);
2074 	fcb.txfcb_l3os = ETHER_HDR_LEN;
2075 	fcb.txfcb_phcs = 0;
2076 	fcb.txfcb_vlctl = vtag;
2077 
2078 #if 0
2079 	printf("%s: csum_flags=%#x: txfcb flags=%#x lsos=%u l4os=%u phcs=%u vlctl=%#x\n",
2080 	    __func__, csum_flags, fcb.txfcb_flags, fcb.txfcb_l3os, fcb.txfcb_l4os,
2081 	    fcb.txfcb_phcs, fcb.txfcb_vlctl);
2082 #endif
2083 
2084 	if (M_LEADINGSPACE(m) >= sizeof(fcb)) {
2085 		m->m_data -= sizeof(fcb);
2086 		m->m_len += sizeof(fcb);
2087 	} else if (!(m->m_flags & M_EXT) && MHLEN - m->m_len >= sizeof(fcb)) {
2088 		memmove(m->m_pktdat + sizeof(fcb), m->m_data, m->m_len);
2089 		m->m_data = m->m_pktdat;
2090 		m->m_len += sizeof(fcb);
2091 	} else {
2092 		struct mbuf *mn;
2093 		MGET(mn, M_DONTWAIT, m->m_type);
2094 		if (mn == NULL) {
2095 			if (csum_flags & M_CSUM_IP4) {
2096 #ifdef INET
2097 				in_undefer_cksum(m, ETHER_HDR_LEN,
2098 				    csum_flags & M_CSUM_IP4);
2099 #else
2100 				panic("%s: impossible M_CSUM flags %#x",
2101 				    device_xname(sc->sc_dev), csum_flags);
2102 #endif
2103 			} else if (csum_flags & M_CSUM_IP6) {
2104 #ifdef INET6
2105 				in6_undefer_cksum(m, ETHER_HDR_LEN,
2106 				    csum_flags & M_CSUM_IP6);
2107 #else
2108 				panic("%s: impossible M_CSUM flags %#x",
2109 				    device_xname(sc->sc_dev), csum_flags);
2110 #endif
2111 			}
2112 
2113 			m->m_flags &= ~M_HASFCB;
2114 			return;
2115 		}
2116 
2117 		m_move_pkthdr(mn, m);
2118 		mn->m_next = m;
2119 		m = mn;
2120 		m_align(m, sizeof(fcb));
2121 		m->m_len = sizeof(fcb);
2122 		*mp = m;
2123 	}
2124 	m->m_pkthdr.len += sizeof(fcb);
2125 	m->m_flags |= M_HASFCB;
2126 	*mtod(m, struct txfcb *) = fcb;
2127 	return;
2128 }
2129 
2130 static bool
2131 pq3etsec_txq_enqueue(
2132 	struct pq3etsec_softc *sc,
2133 	struct pq3etsec_txqueue *txq)
2134 {
2135 	for (;;) {
2136 		if (IF_QFULL(&txq->txq_mbufs))
2137 			return false;
2138 		struct mbuf *m = txq->txq_next;
2139 		if (m == NULL) {
2140 			int s = splnet();
2141 			IFQ_DEQUEUE(&sc->sc_if.if_snd, m);
2142 			splx(s);
2143 			if (m == NULL)
2144 				return true;
2145 			M_SETCTX(m, NULL);
2146 			pq3etsec_tx_offload(sc, txq, &m);
2147 		} else {
2148 			txq->txq_next = NULL;
2149 		}
2150 		int error = pq3etsec_txq_map_load(sc, txq, m);
2151 		if (error) {
2152 			aprint_error_dev(sc->sc_dev,
2153 			    "discarded packet due to "
2154 			    "dmamap load failure: %d\n", error);
2155 			m_freem(m);
2156 			continue;
2157 		}
2158 		KASSERT(txq->txq_next == NULL);
2159 		if (!pq3etsec_txq_produce(sc, txq, m)) {
2160 			txq->txq_next = m;
2161 			return false;
2162 		}
2163 		KASSERT(txq->txq_next == NULL);
2164 	}
2165 }
2166 
2167 static bool
2168 pq3etsec_txq_consume(
2169 	struct pq3etsec_softc *sc,
2170 	struct pq3etsec_txqueue *txq)
2171 {
2172 	struct ifnet * const ifp = &sc->sc_if;
2173 	volatile struct txbd *consumer = txq->txq_consumer;
2174 	size_t txfree = 0;
2175 	bool ret;
2176 
2177 #if 0
2178 	printf("%s: entry: free=%zu\n", __func__, txq->txq_free);
2179 #endif
2180 	etsec_write(sc, TSTAT, TSTAT_TXF & txq->txq_qmask);
2181 
2182 	for (;;) {
2183 		if (consumer == txq->txq_producer) {
2184 			txq->txq_consumer = consumer;
2185 			txq->txq_free += txfree;
2186 			txq->txq_lastintr -= uimin(txq->txq_lastintr, txfree);
2187 			KASSERT(txq->txq_lastintr == 0);
2188 			KASSERT(txq->txq_free ==
2189 			    txq->txq_last - txq->txq_first - 1);
2190 			ret = true;
2191 			break;
2192 		}
2193 		pq3etsec_txq_desc_postsync(sc, txq, consumer, 1);
2194 		const uint16_t txbd_flags = consumer->txbd_flags;
2195 		if (txbd_flags & TXBD_R) {
2196 			txq->txq_consumer = consumer;
2197 			txq->txq_free += txfree;
2198 			txq->txq_lastintr -= uimin(txq->txq_lastintr, txfree);
2199 			ret = pq3etsec_txq_fillable_p(sc, txq);
2200 			break;
2201 		}
2202 
2203 		/*
2204 		 * If this is the last descriptor in the chain, get the
2205 		 * mbuf, free its dmamap, and free the mbuf chain itself.
2206 		 */
2207 		if (txbd_flags & TXBD_L) {
2208 			struct mbuf *m;
2209 
2210 			IF_DEQUEUE(&txq->txq_mbufs, m);
2211 #ifdef ETSEC_DEBUG
2212 			KASSERTMSG(
2213 			    m == txq->txq_lmbufs[consumer-txq->txq_first],
2214 			    "%s: %p [%u]: flags %#x m (%p) != %p (%p)",
2215 			    __func__, consumer, consumer - txq->txq_first,
2216 			    txbd_flags, m,
2217 			    &txq->txq_lmbufs[consumer-txq->txq_first],
2218 			    txq->txq_lmbufs[consumer-txq->txq_first]);
2219 #endif
2220 			KASSERT(m);
2221 			pq3etsec_txq_map_unload(sc, txq, m);
2222 #if 0
2223 			printf("%s: mbuf %p: consumed a %u byte packet\n",
2224 			    __func__, m, m->m_pkthdr.len);
2225 #endif
2226 			if (m->m_flags & M_HASFCB)
2227 				m_adj(m, sizeof(struct txfcb));
2228 			bpf_mtap(ifp, m, BPF_D_OUT);
2229 			net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
2230 			if_statinc_ref(nsr, if_opackets);
2231 			if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
2232 			if (m->m_flags & M_MCAST)
2233 				if_statinc_ref(nsr, if_omcasts);
2234 			if (txbd_flags & TXBD_ERRORS)
2235 				if_statinc_ref(nsr, if_oerrors);
2236 			IF_STAT_PUTREF(ifp);
2237 			m_freem(m);
2238 #ifdef ETSEC_DEBUG
2239 			txq->txq_lmbufs[consumer - txq->txq_first] = NULL;
2240 #endif
2241 		} else {
2242 #ifdef ETSEC_DEBUG
2243 			KASSERT(txq->txq_lmbufs[consumer-txq->txq_first] == NULL);
2244 #endif
2245 		}
2246 
2247 		/*
2248 		 * We own this packet again.  Clear all flags except wrap.
2249 		 */
2250 		txfree++;
2251 		//consumer->txbd_flags = txbd_flags & TXBD_W;
2252 
2253 		/*
2254 		 * Wrap at the last entry!
2255 		 */
2256 		if (txbd_flags & TXBD_W) {
2257 			KASSERT(consumer + 1 == txq->txq_last);
2258 			consumer = txq->txq_first;
2259 		} else {
2260 			consumer++;
2261 			KASSERT(consumer < txq->txq_last);
2262 		}
2263 	}
2264 
2265 	if (txfree != 0)
2266 		rnd_add_uint32(&sc->rnd_source, txfree);
2267 	return ret;
2268 }
2269 
2270 static void
2271 pq3etsec_txq_purge(
2272 	struct pq3etsec_softc *sc,
2273 	struct pq3etsec_txqueue *txq)
2274 {
2275 	struct mbuf *m;
2276 	KASSERT((etsec_read(sc, MACCFG1) & MACCFG1_TX_EN) == 0);
2277 
2278 	for (;;) {
2279 		IF_DEQUEUE(&txq->txq_mbufs, m);
2280 		if (m == NULL)
2281 			break;
2282 		pq3etsec_txq_map_unload(sc, txq, m);
2283 		m_freem(m);
2284 	}
2285 	if ((m = txq->txq_next) != NULL) {
2286 		txq->txq_next = NULL;
2287 		pq3etsec_txq_map_unload(sc, txq, m);
2288 		m_freem(m);
2289 	}
2290 #ifdef ETSEC_DEBUG
2291 	memset(txq->txq_lmbufs, 0, sizeof(txq->txq_lmbufs));
2292 #endif
2293 }
2294 
2295 static void
2296 pq3etsec_txq_reset(
2297 	struct pq3etsec_softc *sc,
2298 	struct pq3etsec_txqueue *txq)
2299 {
2300 	/*
2301 	 * sync all the descriptors
2302 	 */
2303 	pq3etsec_txq_desc_postsync(sc, txq, txq->txq_first,
2304 	    txq->txq_last - txq->txq_first);
2305 
2306 	/*
2307 	 * Make sure we own all descriptors in the ring.
2308 	 */
2309 	volatile struct txbd *txbd;
2310 	for (txbd = txq->txq_first; txbd < txq->txq_last - 1; txbd++) {
2311 		txbd->txbd_flags = 0;
2312 	}
2313 
2314 	/*
2315 	 * Last descriptor has the wrap flag.
2316 	 */
2317 	txbd->txbd_flags = TXBD_W;
2318 
2319 	/*
2320 	 * Reset the producer consumer indexes.
2321 	 */
2322 	txq->txq_consumer = txq->txq_first;
2323 	txq->txq_producer = txq->txq_first;
2324 	txq->txq_free = txq->txq_last - txq->txq_first - 1;
2325 	txq->txq_threshold = txq->txq_free / 2;
2326 	txq->txq_lastintr = 0;
2327 
2328 	/*
2329 	 * What do we want to get interrupted on?
2330 	 */
2331 	sc->sc_imask |= IEVENT_TXF | IEVENT_TXE;
2332 
2333 	/*
2334 	 * Restart the transmit at the first descriptor
2335 	 */
2336 	etsec_write(sc, txq->txq_reg_tbase, txq->txq_descmap->dm_segs->ds_addr);
2337 }
2338 
2339 static void
2340 pq3etsec_ifstart(struct ifnet *ifp)
2341 {
2342 	struct pq3etsec_softc * const sc = ifp->if_softc;
2343 
2344 	if (__predict_false((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)) {
2345 		return;
2346 	}
2347 
2348 	atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2349 	softint_schedule(sc->sc_soft_ih);
2350 }
2351 
2352 static void
2353 pq3etsec_tx_error(
2354 	struct pq3etsec_softc * const sc)
2355 {
2356 	struct pq3etsec_txqueue * const txq = &sc->sc_txq;
2357 
2358 	pq3etsec_txq_consume(sc, txq);
2359 
2360 	if (pq3etsec_txq_fillable_p(sc, txq))
2361 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
2362 	if (sc->sc_txerrors
2363 	    & (IEVENT_LC | IEVENT_CRL | IEVENT_XFUN | IEVENT_BABT)) {
2364 	} else if (sc->sc_txerrors & IEVENT_EBERR) {
2365 	}
2366 
2367 	if (pq3etsec_txq_active_p(sc, txq))
2368 		etsec_write(sc, TSTAT, TSTAT_THLT & txq->txq_qmask);
2369 	if (!pq3etsec_txq_enqueue(sc, txq)) {
2370 		sc->sc_ev_tx_stall.ev_count++;
2371 		sc->sc_if.if_flags |= IFF_OACTIVE;
2372 	}
2373 
2374 	sc->sc_txerrors = 0;
2375 }
2376 
2377 int
2378 pq3etsec_tx_intr(void *arg)
2379 {
2380 	struct pq3etsec_softc * const sc = arg;
2381 
2382 	mutex_enter(sc->sc_hwlock);
2383 
2384 	sc->sc_ev_tx_intr.ev_count++;
2385 
2386 	uint32_t ievent = etsec_read(sc, IEVENT);
2387 	ievent &= IEVENT_TXF | IEVENT_TXB;
2388 	etsec_write(sc, IEVENT, ievent);	/* write 1 to clear */
2389 
2390 #if 0
2391 	aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2392 	    __func__, ievent, etsec_read(sc, IMASK));
2393 #endif
2394 
2395 	if (ievent == 0) {
2396 		mutex_exit(sc->sc_hwlock);
2397 		return 0;
2398 	}
2399 
2400 	sc->sc_imask &= ~(IEVENT_TXF | IEVENT_TXB);
2401 	atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2402 	etsec_write(sc, IMASK, sc->sc_imask);
2403 	softint_schedule(sc->sc_soft_ih);
2404 
2405 	mutex_exit(sc->sc_hwlock);
2406 
2407 	return 1;
2408 }
2409 
2410 int
2411 pq3etsec_rx_intr(void *arg)
2412 {
2413 	struct pq3etsec_softc * const sc = arg;
2414 
2415 	mutex_enter(sc->sc_hwlock);
2416 
2417 	sc->sc_ev_rx_intr.ev_count++;
2418 
2419 	uint32_t ievent = etsec_read(sc, IEVENT);
2420 	ievent &= IEVENT_RXF | IEVENT_RXB;
2421 	etsec_write(sc, IEVENT, ievent);	/* write 1 to clear */
2422 	if (ievent == 0) {
2423 		mutex_exit(sc->sc_hwlock);
2424 		return 0;
2425 	}
2426 
2427 #if 0
2428 	aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x\n", __func__, ievent);
2429 #endif
2430 
2431 	sc->sc_imask &= ~(IEVENT_RXF | IEVENT_RXB);
2432 	atomic_or_uint(&sc->sc_soft_flags, SOFT_RXINTR);
2433 	etsec_write(sc, IMASK, sc->sc_imask);
2434 	softint_schedule(sc->sc_soft_ih);
2435 
2436 	mutex_exit(sc->sc_hwlock);
2437 
2438 	return 1;
2439 }
2440 
2441 int
2442 pq3etsec_error_intr(void *arg)
2443 {
2444 	struct pq3etsec_softc * const sc = arg;
2445 
2446 	mutex_enter(sc->sc_hwlock);
2447 
2448 	sc->sc_ev_error_intr.ev_count++;
2449 
2450 	for (int rv = 0, soft_flags = 0;; rv = 1) {
2451 		uint32_t ievent = etsec_read(sc, IEVENT);
2452 		ievent &= ~(IEVENT_RXF | IEVENT_RXB | IEVENT_TXF | IEVENT_TXB);
2453 		etsec_write(sc, IEVENT, ievent);	/* write 1 to clear */
2454 		if (ievent == 0) {
2455 			if (soft_flags) {
2456 				atomic_or_uint(&sc->sc_soft_flags, soft_flags);
2457 				softint_schedule(sc->sc_soft_ih);
2458 			}
2459 			mutex_exit(sc->sc_hwlock);
2460 			return rv;
2461 		}
2462 #if 0
2463 		aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2464 		    __func__, ievent, etsec_read(sc, IMASK));
2465 #endif
2466 
2467 		if (ievent & (IEVENT_GRSC | IEVENT_GTSC)) {
2468 			sc->sc_imask &= ~(IEVENT_GRSC | IEVENT_GTSC);
2469 			etsec_write(sc, IMASK, sc->sc_imask);
2470 			wakeup(sc);
2471 		}
2472 		if (ievent & (IEVENT_MMRD | IEVENT_MMWR)) {
2473 			sc->sc_imask &= ~(IEVENT_MMRD | IEVENT_MMWR);
2474 			etsec_write(sc, IMASK, sc->sc_imask);
2475 			wakeup(&sc->sc_mii);
2476 		}
2477 		if (ievent & IEVENT_BSY) {
2478 			soft_flags |= SOFT_RXBSY;
2479 			sc->sc_imask &= ~IEVENT_BSY;
2480 			etsec_write(sc, IMASK, sc->sc_imask);
2481 		}
2482 		if (ievent & IEVENT_TXE) {
2483 			soft_flags |= SOFT_TXERROR;
2484 			sc->sc_imask &= ~IEVENT_TXE;
2485 			sc->sc_txerrors |= ievent;
2486 		}
2487 		if (ievent & IEVENT_TXC) {
2488 			sc->sc_ev_tx_pause.ev_count++;
2489 		}
2490 		if (ievent & IEVENT_RXC) {
2491 			sc->sc_ev_rx_pause.ev_count++;
2492 		}
2493 		if (ievent & IEVENT_DPE) {
2494 			soft_flags |= SOFT_RESET;
2495 			sc->sc_imask &= ~IEVENT_DPE;
2496 			etsec_write(sc, IMASK, sc->sc_imask);
2497 		}
2498 	}
2499 }
2500 
2501 void
2502 pq3etsec_soft_intr(void *arg)
2503 {
2504 	struct pq3etsec_softc * const sc = arg;
2505 	struct ifnet * const ifp = &sc->sc_if;
2506 	uint32_t imask = 0;
2507 
2508 	mutex_enter(sc->sc_lock);
2509 
2510 	u_int soft_flags = atomic_swap_uint(&sc->sc_soft_flags, 0);
2511 
2512 	sc->sc_ev_soft_intr.ev_count++;
2513 
2514 	if (soft_flags & SOFT_RESET) {
2515 		int s = splnet();
2516 		pq3etsec_ifinit(ifp);
2517 		splx(s);
2518 		soft_flags = 0;
2519 	}
2520 
2521 	if (soft_flags & SOFT_RXBSY) {
2522 		struct pq3etsec_rxqueue * const rxq = &sc->sc_rxq;
2523 		size_t threshold = 5 * rxq->rxq_threshold / 4;
2524 		if (threshold >= rxq->rxq_last - rxq->rxq_first) {
2525 			threshold = rxq->rxq_last - rxq->rxq_first - 1;
2526 		} else {
2527 			imask |= IEVENT_BSY;
2528 		}
2529 		aprint_normal_dev(sc->sc_dev,
2530 		    "increasing receive buffers from %zu to %zu\n",
2531 		    rxq->rxq_threshold, threshold);
2532 		rxq->rxq_threshold = threshold;
2533 	}
2534 
2535 	if ((soft_flags & SOFT_TXINTR)
2536 	    || pq3etsec_txq_active_p(sc, &sc->sc_txq)) {
2537 		/*
2538 		 * Let's do what we came here for.  Consume transmitted
2539 		 * packets off the transmit ring.
2540 		 */
2541 		if (!pq3etsec_txq_consume(sc, &sc->sc_txq)
2542 		    || !pq3etsec_txq_enqueue(sc, &sc->sc_txq)) {
2543 			sc->sc_ev_tx_stall.ev_count++;
2544 			ifp->if_flags |= IFF_OACTIVE;
2545 		} else {
2546 			ifp->if_flags &= ~IFF_OACTIVE;
2547 		}
2548 		imask |= IEVENT_TXF;
2549 	}
2550 
2551 	if (soft_flags & (SOFT_RXINTR | SOFT_RXBSY)) {
2552 		/* Let's consume */
2553 		pq3etsec_rxq_consume(sc, &sc->sc_rxq);
2554 		imask |= IEVENT_RXF;
2555 	}
2556 
2557 	if (soft_flags & SOFT_TXERROR) {
2558 		pq3etsec_tx_error(sc);
2559 		imask |= IEVENT_TXE;
2560 	}
2561 
2562 	if (ifp->if_flags & IFF_RUNNING) {
2563 		pq3etsec_rxq_produce(sc, &sc->sc_rxq);
2564 		mutex_spin_enter(sc->sc_hwlock);
2565 		sc->sc_imask |= imask;
2566 		etsec_write(sc, IMASK, sc->sc_imask);
2567 		mutex_spin_exit(sc->sc_hwlock);
2568 	} else {
2569 		KASSERT((soft_flags & SOFT_RXBSY) == 0);
2570 	}
2571 
2572 	mutex_exit(sc->sc_lock);
2573 }
2574 
2575 static void
2576 pq3etsec_mii_tick(void *arg)
2577 {
2578 	struct pq3etsec_softc * const sc = arg;
2579 	mutex_enter(sc->sc_lock);
2580 	callout_ack(&sc->sc_mii_callout);
2581 	sc->sc_ev_mii_ticks.ev_count++;
2582 #ifdef DEBUG
2583 	uint64_t now = mftb();
2584 	if (now - sc->sc_mii_last_tick < cpu_timebase - 5000) {
2585 		aprint_debug_dev(sc->sc_dev, "%s: diff=%"PRIu64"\n",
2586 		    __func__, now - sc->sc_mii_last_tick);
2587 		callout_stop(&sc->sc_mii_callout);
2588 	}
2589 #endif
2590 	mii_tick(&sc->sc_mii);
2591 	int s = splnet();
2592 	if (sc->sc_soft_flags & SOFT_RESET)
2593 		softint_schedule(sc->sc_soft_ih);
2594 	splx(s);
2595 	callout_schedule(&sc->sc_mii_callout, hz);
2596 #ifdef DEBUG
2597 	sc->sc_mii_last_tick = now;
2598 #endif
2599 	mutex_exit(sc->sc_lock);
2600 }
2601 
2602 static void
2603 pq3etsec_set_ic_rx(struct pq3etsec_softc *sc)
2604 {
2605 	uint32_t reg;
2606 
2607 	if (ETSEC_IC_RX_ENABLED(sc)) {
2608 		reg = RXIC_ICEN;
2609 		reg |= RXIC_ICFT_SET(sc->sc_ic_rx_count);
2610 		reg |= RXIC_ICTT_SET(sc->sc_ic_rx_time);
2611 	} else {
2612 		/* Disable RX interrupt coalescing */
2613 		reg = 0;
2614 	}
2615 
2616 	etsec_write(sc, RXIC, reg);
2617 }
2618 
2619 static void
2620 pq3etsec_set_ic_tx(struct pq3etsec_softc *sc)
2621 {
2622 	uint32_t reg;
2623 
2624 	if (ETSEC_IC_TX_ENABLED(sc)) {
2625 		reg = TXIC_ICEN;
2626 		reg |= TXIC_ICFT_SET(sc->sc_ic_tx_count);
2627 		reg |= TXIC_ICTT_SET(sc->sc_ic_tx_time);
2628 	} else {
2629 		/* Disable TX interrupt coalescing */
2630 		reg = 0;
2631 	}
2632 
2633 	etsec_write(sc, TXIC, reg);
2634 }
2635 
2636 /*
2637  * sysctl
2638  */
2639 static int
2640 pq3etsec_sysctl_ic_time_helper(SYSCTLFN_ARGS, int *valuep)
2641 {
2642 	struct sysctlnode node = *rnode;
2643 	struct pq3etsec_softc *sc = rnode->sysctl_data;
2644 	int value = *valuep;
2645 	int error;
2646 
2647 	node.sysctl_data = &value;
2648 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2649 	if (error != 0 || newp == NULL)
2650 		return error;
2651 
2652 	if (value < 0 || value > 65535)
2653 		return EINVAL;
2654 
2655 	mutex_enter(sc->sc_lock);
2656 	*valuep = value;
2657 	if (valuep == &sc->sc_ic_rx_time)
2658 		pq3etsec_set_ic_rx(sc);
2659 	else
2660 		pq3etsec_set_ic_tx(sc);
2661 	mutex_exit(sc->sc_lock);
2662 
2663 	return 0;
2664 }
2665 
2666 static int
2667 pq3etsec_sysctl_ic_count_helper(SYSCTLFN_ARGS, int *valuep)
2668 {
2669 	struct sysctlnode node = *rnode;
2670 	struct pq3etsec_softc *sc = rnode->sysctl_data;
2671 	int value = *valuep;
2672 	int error;
2673 
2674 	node.sysctl_data = &value;
2675 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2676 	if (error != 0 || newp == NULL)
2677 		return error;
2678 
2679 	if (value < 0 || value > 255)
2680 		return EINVAL;
2681 
2682 	mutex_enter(sc->sc_lock);
2683 	*valuep = value;
2684 	if (valuep == &sc->sc_ic_rx_count)
2685 		pq3etsec_set_ic_rx(sc);
2686 	else
2687 		pq3etsec_set_ic_tx(sc);
2688 	mutex_exit(sc->sc_lock);
2689 
2690 	return 0;
2691 }
2692 
2693 static int
2694 pq3etsec_sysctl_ic_rx_time_helper(SYSCTLFN_ARGS)
2695 {
2696 	struct pq3etsec_softc *sc = rnode->sysctl_data;
2697 
2698 	return pq3etsec_sysctl_ic_time_helper(SYSCTLFN_CALL(rnode),
2699 	    &sc->sc_ic_rx_time);
2700 }
2701 
2702 static int
2703 pq3etsec_sysctl_ic_rx_count_helper(SYSCTLFN_ARGS)
2704 {
2705 	struct pq3etsec_softc *sc = rnode->sysctl_data;
2706 
2707 	return pq3etsec_sysctl_ic_count_helper(SYSCTLFN_CALL(rnode),
2708 	    &sc->sc_ic_rx_count);
2709 }
2710 
2711 static int
2712 pq3etsec_sysctl_ic_tx_time_helper(SYSCTLFN_ARGS)
2713 {
2714 	struct pq3etsec_softc *sc = rnode->sysctl_data;
2715 
2716 	return pq3etsec_sysctl_ic_time_helper(SYSCTLFN_CALL(rnode),
2717 	    &sc->sc_ic_tx_time);
2718 }
2719 
2720 static int
2721 pq3etsec_sysctl_ic_tx_count_helper(SYSCTLFN_ARGS)
2722 {
2723 	struct pq3etsec_softc *sc = rnode->sysctl_data;
2724 
2725 	return pq3etsec_sysctl_ic_count_helper(SYSCTLFN_CALL(rnode),
2726 	    &sc->sc_ic_tx_count);
2727 }
2728 
2729 static void pq3etsec_sysctl_setup(struct sysctllog **clog,
2730     struct pq3etsec_softc *sc)
2731 {
2732 	const struct sysctlnode *cnode, *rnode;
2733 
2734 	if (sysctl_createv(clog, 0, NULL, &rnode,
2735 	    CTLFLAG_PERMANENT,
2736 	    CTLTYPE_NODE, device_xname(sc->sc_dev),
2737 	    SYSCTL_DESCR("TSEC interface"),
2738 	    NULL, 0, NULL, 0,
2739 	    CTL_HW, CTL_CREATE, CTL_EOL) != 0)
2740 		goto bad;
2741 
2742 	if (sysctl_createv(clog, 0, &rnode, &rnode,
2743 	    CTLFLAG_PERMANENT,
2744 	    CTLTYPE_NODE, "int_coal",
2745 	    SYSCTL_DESCR("Interrupts coalescing"),
2746 	    NULL, 0, NULL, 0,
2747 	    CTL_CREATE, CTL_EOL) != 0)
2748 		goto bad;
2749 
2750 	if (sysctl_createv(clog, 0, &rnode, &cnode,
2751 	    CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2752 	    CTLTYPE_INT, "rx_time",
2753 	    SYSCTL_DESCR("RX time threshold (0-65535)"),
2754 	    pq3etsec_sysctl_ic_rx_time_helper, 0, (void *)sc, 0,
2755 	    CTL_CREATE, CTL_EOL) != 0)
2756 		goto bad;
2757 
2758 	if (sysctl_createv(clog, 0, &rnode, &cnode,
2759 	    CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2760 	    CTLTYPE_INT, "rx_count",
2761 	    SYSCTL_DESCR("RX frame count threshold (0-255)"),
2762 	    pq3etsec_sysctl_ic_rx_count_helper, 0, (void *)sc, 0,
2763 	    CTL_CREATE, CTL_EOL) != 0)
2764 		goto bad;
2765 
2766 	if (sysctl_createv(clog, 0, &rnode, &cnode,
2767 	    CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2768 	    CTLTYPE_INT, "tx_time",
2769 	    SYSCTL_DESCR("TX time threshold (0-65535)"),
2770 	    pq3etsec_sysctl_ic_tx_time_helper, 0, (void *)sc, 0,
2771 	    CTL_CREATE, CTL_EOL) != 0)
2772 		goto bad;
2773 
2774 	if (sysctl_createv(clog, 0, &rnode, &cnode,
2775 	    CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2776 	    CTLTYPE_INT, "tx_count",
2777 	    SYSCTL_DESCR("TX frame count threshold (0-255)"),
2778 	    pq3etsec_sysctl_ic_tx_count_helper, 0, (void *)sc, 0,
2779 	    CTL_CREATE, CTL_EOL) != 0)
2780 		goto bad;
2781 
2782 	return;
2783 
2784  bad:
2785 	aprint_error_dev(sc->sc_dev, "could not attach sysctl nodes\n");
2786 }
2787