xref: /netbsd-src/sys/arch/powerpc/booke/dev/pq3etsec.c (revision 9f9778c7718c33e8ace620f78fba76a31fc8d7d6)
1 /*	$NetBSD: pq3etsec.c,v 1.61 2025/01/07 17:39:45 andvar Exp $	*/
2 /*-
3  * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to The NetBSD Foundation
7  * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8  * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9  *
10  * This material is based upon work supported by the Defense Advanced Research
11  * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12  * Contract No. N66001-09-C-2073.
13  * Approved for Public Release, Distribution Unlimited
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: pq3etsec.c,v 1.61 2025/01/07 17:39:45 andvar Exp $");
39 
40 #ifdef _KERNEL_OPT
41 #include "opt_inet.h"
42 #include "opt_mpc85xx.h"
43 #include "opt_multiprocessor.h"
44 #include "opt_net_mpsafe.h"
45 #endif
46 
47 #include <sys/param.h>
48 #include <sys/cpu.h>
49 #include <sys/device.h>
50 #include <sys/mbuf.h>
51 #include <sys/ioctl.h>
52 #include <sys/intr.h>
53 #include <sys/bus.h>
54 #include <sys/kernel.h>
55 #include <sys/kmem.h>
56 #include <sys/proc.h>
57 #include <sys/atomic.h>
58 #include <sys/callout.h>
59 #include <sys/sysctl.h>
60 
61 #include <sys/rndsource.h>
62 
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_ether.h>
66 #include <net/if_media.h>
67 #include <net/bpf.h>
68 
69 #include <dev/mii/miivar.h>
70 
71 #ifdef INET
72 #include <netinet/in.h>
73 #include <netinet/in_systm.h>
74 #include <netinet/ip.h>
75 #include <netinet/in_offload.h>
76 #endif /* INET */
77 #ifdef INET6
78 #include <netinet6/in6.h>
79 #include <netinet/ip6.h>
80 #endif
81 #include <netinet6/in6_offload.h>
82 
83 #include <powerpc/spr.h>
84 #include <powerpc/booke/spr.h>
85 #include <powerpc/booke/cpuvar.h>
86 #include <powerpc/booke/e500var.h>
87 #include <powerpc/booke/e500reg.h>
88 #include <powerpc/booke/etsecreg.h>
89 
90 #define	M_HASFCB		M_LINK2	/* tx packet has FCB prepended */
91 
92 #define	ETSEC_MAXTXMBUFS	30
93 #define	ETSEC_NTXSEGS		30
94 #define	ETSEC_MAXRXMBUFS	511
95 #define	ETSEC_MINRXMBUFS	32
96 #define	ETSEC_NRXSEGS		1
97 
98 #define	IFCAP_RCTRL_IPCSEN	IFCAP_CSUM_IPv4_Rx
99 #define	IFCAP_RCTRL_TUCSEN	(IFCAP_CSUM_TCPv4_Rx	\
100 				 | IFCAP_CSUM_UDPv4_Rx	\
101 				 | IFCAP_CSUM_TCPv6_Rx	\
102 				 | IFCAP_CSUM_UDPv6_Rx)
103 
104 #define	IFCAP_TCTRL_IPCSEN	IFCAP_CSUM_IPv4_Tx
105 #define	IFCAP_TCTRL_TUCSEN	(IFCAP_CSUM_TCPv4_Tx	\
106 				 | IFCAP_CSUM_UDPv4_Tx	\
107 				 | IFCAP_CSUM_TCPv6_Tx	\
108 				 | IFCAP_CSUM_UDPv6_Tx)
109 
110 #define	IFCAP_ETSEC		(IFCAP_RCTRL_IPCSEN | IFCAP_RCTRL_TUCSEN      \
111 				 | IFCAP_TCTRL_IPCSEN | IFCAP_TCTRL_TUCSEN)
112 
113 #define	M_CSUM_IP   (M_CSUM_CIP | M_CSUM_CTU)
114 #define	M_CSUM_IP6  (M_CSUM_TCPv6 | M_CSUM_UDPv6)
115 #define	M_CSUM_TUP  (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)
116 #define	M_CSUM_UDP  (M_CSUM_UDPv4 | M_CSUM_UDPv6)
117 #define	M_CSUM_IP4  (M_CSUM_IPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv4)
118 #define	M_CSUM_CIP  (M_CSUM_IPv4)
119 #define	M_CSUM_CTU  (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)
120 
121 struct pq3etsec_txqueue {
122 	bus_dmamap_t txq_descmap;
123 	volatile struct txbd *txq_consumer;
124 	volatile struct txbd *txq_producer;
125 	volatile struct txbd *txq_first;
126 	volatile struct txbd *txq_last;
127 	struct ifqueue txq_mbufs;
128 	struct mbuf *txq_next;
129 #ifdef ETSEC_DEBUG
130 	struct mbuf *txq_lmbufs[512];
131 #endif
132 	uint32_t txq_qmask;
133 	uint32_t txq_free;
134 	uint32_t txq_threshold;
135 	uint32_t txq_lastintr;
136 	bus_size_t txq_reg_tbase;
137 	bus_dma_segment_t txq_descmap_seg;
138 };
139 
140 struct pq3etsec_rxqueue {
141 	bus_dmamap_t rxq_descmap;
142 	volatile struct rxbd *rxq_consumer;
143 	volatile struct rxbd *rxq_producer;
144 	volatile struct rxbd *rxq_first;
145 	volatile struct rxbd *rxq_last;
146 	struct mbuf *rxq_mhead;
147 	struct mbuf **rxq_mtail;
148 	struct mbuf *rxq_mconsumer;
149 #ifdef ETSEC_DEBUG
150 	struct mbuf *rxq_mbufs[512];
151 #endif
152 	uint32_t rxq_qmask;
153 	uint32_t rxq_inuse;
154 	uint32_t rxq_threshold;
155 	bus_size_t rxq_reg_rbase;
156 	bus_size_t rxq_reg_rbptr;
157 	bus_dma_segment_t rxq_descmap_seg;
158 };
159 
160 struct pq3etsec_mapcache {
161 	u_int dmc_nmaps;
162 	u_int dmc_maxseg;
163 	u_int dmc_maxmaps;
164 	u_int dmc_maxmapsize;
165 	bus_dmamap_t dmc_maps[0];
166 };
167 
168 struct pq3etsec_softc {
169 	device_t sc_dev;
170 	device_t sc_mdio_dev;
171 	struct ethercom sc_ec;
172 #define sc_if		sc_ec.ec_if
173 	struct mii_data sc_mii;
174 	bus_space_tag_t sc_bst;
175 	bus_space_handle_t sc_bsh;
176 	bus_space_handle_t sc_mdio_bsh;
177 	bus_dma_tag_t sc_dmat;
178 	int sc_phy_addr;
179 	prop_dictionary_t sc_intrmap;
180 	uint32_t sc_intrmask;
181 
182 	uint32_t sc_soft_flags;
183 #define	SOFT_RESET		0x0001
184 #define	SOFT_RXINTR		0x0010
185 #define	SOFT_RXBSY		0x0020
186 #define	SOFT_TXINTR		0x0100
187 #define	SOFT_TXERROR		0x0200
188 
189 	struct pq3etsec_txqueue sc_txq;
190 	struct pq3etsec_rxqueue sc_rxq;
191 	uint32_t sc_txerrors;
192 	uint32_t sc_rxerrors;
193 
194 	size_t sc_rx_adjlen;
195 
196 	/*
197 	 * Copies of various ETSEC registers.
198 	 */
199 	uint32_t sc_imask;
200 	uint32_t sc_maccfg1;
201 	uint32_t sc_maccfg2;
202 	uint32_t sc_maxfrm;
203 	uint32_t sc_ecntrl;
204 	uint32_t sc_dmactrl;
205 	uint32_t sc_macstnaddr1;
206 	uint32_t sc_macstnaddr2;
207 	uint32_t sc_tctrl;
208 	uint32_t sc_rctrl;
209 	uint32_t sc_gaddr[16];
210 	uint64_t sc_macaddrs[15];
211 
212 	void *sc_tx_ih;
213 	void *sc_rx_ih;
214 	void *sc_error_ih;
215 	void *sc_soft_ih;
216 
217 	kmutex_t *sc_lock;
218 	kmutex_t *sc_hwlock;
219 
220 	struct evcnt sc_ev_tx_stall;
221 	struct evcnt sc_ev_tx_intr;
222 	struct evcnt sc_ev_rx_stall;
223 	struct evcnt sc_ev_rx_intr;
224 	struct evcnt sc_ev_error_intr;
225 	struct evcnt sc_ev_soft_intr;
226 	struct evcnt sc_ev_tx_pause;
227 	struct evcnt sc_ev_rx_pause;
228 	struct evcnt sc_ev_mii_ticks;
229 
230 	struct callout sc_mii_callout;
231 	uint64_t sc_mii_last_tick;
232 
233 	struct ifqueue sc_rx_bufcache;
234 	struct pq3etsec_mapcache *sc_rx_mapcache;
235 	struct pq3etsec_mapcache *sc_tx_mapcache;
236 
237 	/* Interrupt Coalescing parameters */
238 	int sc_ic_rx_time;
239 	int sc_ic_rx_count;
240 	int sc_ic_tx_time;
241 	int sc_ic_tx_count;
242 
243 	krndsource_t rnd_source;
244 };
245 
246 #define	ETSEC_IC_RX_ENABLED(sc)						\
247 	((sc)->sc_ic_rx_time != 0 && (sc)->sc_ic_rx_count != 0)
248 #define	ETSEC_IC_TX_ENABLED(sc)						\
249 	((sc)->sc_ic_tx_time != 0 && (sc)->sc_ic_tx_count != 0)
250 
251 struct pq3mdio_softc {
252 	device_t mdio_dev;
253 
254 	bus_space_tag_t mdio_bst;
255 	bus_space_handle_t mdio_bsh;
256 };
257 
258 static int pq3etsec_match(device_t, cfdata_t, void *);
259 static void pq3etsec_attach(device_t, device_t, void *);
260 
261 static int pq3mdio_match(device_t, cfdata_t, void *);
262 static void pq3mdio_attach(device_t, device_t, void *);
263 
264 static void pq3etsec_ifstart(struct ifnet *);
265 static void pq3etsec_ifwatchdog(struct ifnet *);
266 static int pq3etsec_ifinit(struct ifnet *);
267 static void pq3etsec_ifstop(struct ifnet *, int);
268 static int pq3etsec_ifioctl(struct ifnet *, u_long, void *);
269 
270 static int pq3etsec_mapcache_create(struct pq3etsec_softc *,
271     struct pq3etsec_mapcache **, size_t, size_t, size_t);
272 static void pq3etsec_mapcache_destroy(struct pq3etsec_softc *,
273     struct pq3etsec_mapcache *);
274 static bus_dmamap_t pq3etsec_mapcache_get(struct pq3etsec_softc *,
275     struct pq3etsec_mapcache *);
276 static void pq3etsec_mapcache_put(struct pq3etsec_softc *,
277     struct pq3etsec_mapcache *, bus_dmamap_t);
278 
279 static int pq3etsec_txq_attach(struct pq3etsec_softc *,
280     struct pq3etsec_txqueue *, u_int);
281 static void pq3etsec_txq_purge(struct pq3etsec_softc *,
282     struct pq3etsec_txqueue *);
283 static void pq3etsec_txq_reset(struct pq3etsec_softc *,
284     struct pq3etsec_txqueue *);
285 static bool pq3etsec_txq_consume(struct pq3etsec_softc *,
286     struct pq3etsec_txqueue *);
287 static bool pq3etsec_txq_produce(struct pq3etsec_softc *,
288     struct pq3etsec_txqueue *, struct mbuf *m);
289 static bool pq3etsec_txq_active_p(struct pq3etsec_softc *,
290     struct pq3etsec_txqueue *);
291 
292 static int pq3etsec_rxq_attach(struct pq3etsec_softc *,
293     struct pq3etsec_rxqueue *, u_int);
294 static bool pq3etsec_rxq_produce(struct pq3etsec_softc *,
295     struct pq3etsec_rxqueue *);
296 static void pq3etsec_rxq_purge(struct pq3etsec_softc *,
297     struct pq3etsec_rxqueue *, bool);
298 static void pq3etsec_rxq_reset(struct pq3etsec_softc *,
299     struct pq3etsec_rxqueue *);
300 
301 static void pq3etsec_mc_setup(struct pq3etsec_softc *);
302 
303 static void pq3etsec_mii_tick(void *);
304 static int pq3etsec_rx_intr(void *);
305 static int pq3etsec_tx_intr(void *);
306 static int pq3etsec_error_intr(void *);
307 static void pq3etsec_soft_intr(void *);
308 
309 static void pq3etsec_set_ic_rx(struct pq3etsec_softc *);
310 static void pq3etsec_set_ic_tx(struct pq3etsec_softc *);
311 
312 static void pq3etsec_sysctl_setup(struct sysctllog **, struct pq3etsec_softc *);
313 
314 CFATTACH_DECL_NEW(pq3etsec, sizeof(struct pq3etsec_softc),
315     pq3etsec_match, pq3etsec_attach, NULL, NULL);
316 
317 CFATTACH_DECL_NEW(pq3mdio_tsec, sizeof(struct pq3mdio_softc),
318     pq3mdio_match, pq3mdio_attach, NULL, NULL);
319 
320 CFATTACH_DECL_NEW(pq3mdio_cpunode, sizeof(struct pq3mdio_softc),
321     pq3mdio_match, pq3mdio_attach, NULL, NULL);
322 
323 static inline uint32_t
324 etsec_mdio_read(struct pq3mdio_softc *mdio, bus_size_t off)
325 {
326 	return bus_space_read_4(mdio->mdio_bst, mdio->mdio_bsh, off);
327 }
328 
329 static inline void
330 etsec_mdio_write(struct pq3mdio_softc *mdio, bus_size_t off, uint32_t data)
331 {
332 	bus_space_write_4(mdio->mdio_bst, mdio->mdio_bsh, off, data);
333 }
334 
335 static inline uint32_t
336 etsec_read(struct pq3etsec_softc *sc, bus_size_t off)
337 {
338 	return bus_space_read_4(sc->sc_bst, sc->sc_bsh, off);
339 }
340 
341 static int
342 pq3mdio_find(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
343 {
344 	return strcmp(cf->cf_name, "mdio") == 0;
345 }
346 
347 static int
348 pq3mdio_match(device_t parent, cfdata_t cf, void *aux)
349 {
350 	const uint16_t svr = (mfspr(SPR_SVR) & ~0x80000) >> 16;
351 	const bool p1025_p = (svr == (SVR_P1025v1 >> 16)
352 	    || svr == (SVR_P1016v1 >> 16));
353 
354 	if (device_is_a(parent, "cpunode")) {
355 		if (!p1025_p
356 		    || !e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
357 			return 0;
358 
359 		return 1;
360 	}
361 
362 	if (device_is_a(parent, "tsec")) {
363 		if (p1025_p
364 		    || !e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
365 			return 0;
366 
367 		return 1;
368 	}
369 
370 	return 0;
371 }
372 
373 static void
374 pq3mdio_attach(device_t parent, device_t self, void *aux)
375 {
376 	struct pq3mdio_softc * const mdio = device_private(self);
377 	struct cpunode_attach_args * const cna = aux;
378 	struct cpunode_locators * const cnl = &cna->cna_locs;
379 
380 	mdio->mdio_dev = self;
381 
382 	if (device_is_a(parent, "cpunode")) {
383 		struct cpunode_softc * const psc = device_private(parent);
384 		psc->sc_children |= cna->cna_childmask;
385 
386 		mdio->mdio_bst = cna->cna_memt;
387 		if (bus_space_map(mdio->mdio_bst, cnl->cnl_addr,
388 				cnl->cnl_size, 0, &mdio->mdio_bsh) != 0) {
389 			aprint_error(": error mapping registers @ %#x\n",
390 			    cnl->cnl_addr);
391 			return;
392 		}
393 	} else {
394 		struct pq3etsec_softc * const sc = device_private(parent);
395 
396 		KASSERT(device_is_a(parent, "tsec"));
397 		KASSERTMSG(cnl->cnl_addr == ETSEC1_BASE
398 		    || cnl->cnl_addr == ETSEC2_BASE
399 		    || cnl->cnl_addr == ETSEC3_BASE
400 		    || cnl->cnl_addr == ETSEC4_BASE,
401 		    "unknown tsec addr %x", cnl->cnl_addr);
402 
403 		mdio->mdio_bst = sc->sc_bst;
404 		mdio->mdio_bsh = sc->sc_bsh;
405 	}
406 
407 	aprint_normal("\n");
408 }
409 
410 static int
411 pq3mdio_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
412 {
413 	struct pq3mdio_softc * const mdio = device_private(self);
414 	uint32_t miimcom = etsec_mdio_read(mdio, MIIMCOM);
415 
416 	etsec_mdio_write(mdio, MIIMADD,
417 	    __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
418 
419 	etsec_mdio_write(mdio, MIIMCOM, 0);	/* clear any past bits */
420 	etsec_mdio_write(mdio, MIIMCOM, MIIMCOM_READ);
421 
422 	while (etsec_mdio_read(mdio, MIIMIND) != 0) {
423 			delay(1);
424 	}
425 	*val = etsec_mdio_read(mdio, MIIMSTAT) &0xffff;
426 
427 	if (miimcom == MIIMCOM_SCAN)
428 		etsec_mdio_write(mdio, MIIMCOM, miimcom);
429 
430 #if 0
431 	aprint_normal_dev(mdio->mdio_dev, "%s: phy %d reg %d: %#x\n",
432 	    __func__, phy, reg, data);
433 #endif
434 	return 0;
435 }
436 
437 static int
438 pq3mdio_mii_writereg(device_t self, int phy, int reg, uint16_t data)
439 {
440 	struct pq3mdio_softc * const mdio = device_private(self);
441 	uint32_t miimcom = etsec_mdio_read(mdio, MIIMCOM);
442 
443 #if 0
444 	aprint_normal_dev(mdio->mdio_dev, "%s: phy %d reg %d: %#x\n",
445 	    __func__, phy, reg, data);
446 #endif
447 
448 	etsec_mdio_write(mdio, MIIMADD,
449 	    __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
450 	etsec_mdio_write(mdio, MIIMCOM, 0);	/* clear any past bits */
451 	etsec_mdio_write(mdio, MIIMCON, data);
452 
453 	int timo = 1000;	/* 1ms */
454 	while ((etsec_mdio_read(mdio, MIIMIND) & MIIMIND_BUSY) && --timo > 0) {
455 			delay(1);
456 	}
457 
458 	if (miimcom == MIIMCOM_SCAN)
459 		etsec_mdio_write(mdio, MIIMCOM, miimcom);
460 
461 	return 0;
462 }
463 
464 static inline void
465 etsec_write(struct pq3etsec_softc *sc, bus_size_t off, uint32_t data)
466 {
467 	bus_space_write_4(sc->sc_bst, sc->sc_bsh, off, data);
468 }
469 
470 static void
471 pq3etsec_mii_statchg(struct ifnet *ifp)
472 {
473 	struct pq3etsec_softc * const sc = ifp->if_softc;
474 	struct mii_data * const mii = &sc->sc_mii;
475 
476 	uint32_t maccfg1 = sc->sc_maccfg1;
477 	uint32_t maccfg2 = sc->sc_maccfg2;
478 	uint32_t ecntrl = sc->sc_ecntrl;
479 
480 	maccfg1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
481 	maccfg2 &= ~(MACCFG2_IFMODE | MACCFG2_FD);
482 
483 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
484 		maccfg2 |= MACCFG2_FD;
485 	}
486 
487 	/*
488 	 * Now deal with the flow control bits.
489 	 */
490 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO
491 	    && (mii->mii_media_active & IFM_ETH_FMASK)) {
492 		if (mii->mii_media_active & IFM_ETH_RXPAUSE)
493 			maccfg1 |= MACCFG1_RX_FLOW;
494 		if (mii->mii_media_active & IFM_ETH_TXPAUSE)
495 			maccfg1 |= MACCFG1_TX_FLOW;
496 	}
497 
498 	/*
499 	 * Now deal with the speed.
500 	 */
501 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
502 		maccfg2 |= MACCFG2_IFMODE_GMII;
503 	} else {
504 		maccfg2 |= MACCFG2_IFMODE_MII;
505 		ecntrl &= ~ECNTRL_R100M;
506 		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_10_T) {
507 			ecntrl |= ECNTRL_R100M;
508 		}
509 	}
510 
511 	/*
512 	 * If things are different, re-init things.
513 	 */
514 	if (maccfg1 != sc->sc_maccfg1
515 	    || maccfg2 != sc->sc_maccfg2
516 	    || ecntrl != sc->sc_ecntrl) {
517 		if (sc->sc_if.if_flags & IFF_RUNNING)
518 			atomic_or_uint(&sc->sc_soft_flags, SOFT_RESET);
519 		sc->sc_maccfg1 = maccfg1;
520 		sc->sc_maccfg2 = maccfg2;
521 		sc->sc_ecntrl = ecntrl;
522 	}
523 }
524 
525 #if 0
526 static void
527 pq3etsec_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
528 {
529 	struct pq3etsec_softc * const sc = ifp->if_softc;
530 
531 	mii_pollstat(&sc->sc_mii);
532 	ether_mediastatus(ifp, ifmr);
533 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
534 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
535 }
536 
537 static int
538 pq3etsec_mediachange(struct ifnet *ifp)
539 {
540 	struct pq3etsec_softc * const sc = ifp->if_softc;
541 
542 	if ((ifp->if_flags & IFF_UP) == 0)
543 		return 0;
544 
545 	int rv = mii_mediachg(&sc->sc_mii);
546 	return (rv == ENXIO) ? 0 : rv;
547 }
548 #endif
549 
550 static int
551 pq3etsec_match(device_t parent, cfdata_t cf, void *aux)
552 {
553 
554 	if (!e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
555 		return 0;
556 
557 	return 1;
558 }
559 
560 static void
561 pq3etsec_attach(device_t parent, device_t self, void *aux)
562 {
563 	struct cpunode_softc * const psc = device_private(parent);
564 	struct pq3etsec_softc * const sc = device_private(self);
565 	struct mii_data * const mii = &sc->sc_mii;
566 	struct cpunode_attach_args * const cna = aux;
567 	struct cpunode_locators * const cnl = &cna->cna_locs;
568 	cfdata_t cf = device_cfdata(self);
569 	int error;
570 
571 	psc->sc_children |= cna->cna_childmask;
572 	sc->sc_dev = self;
573 	sc->sc_bst = cna->cna_memt;
574 	sc->sc_dmat = &booke_bus_dma_tag;
575 
576 	/*
577 	 * Pull out the mdio bus and phy we are supposed to use.
578 	 */
579 	const int mdio = cf->cf_loc[CPUNODECF_MDIO];
580 	const int phy = cf->cf_loc[CPUNODECF_PHY];
581 	if (mdio != CPUNODECF_MDIO_DEFAULT)
582 		aprint_normal(" mdio %d", mdio);
583 
584 	/*
585 	 * See if the phy is in the config file...
586 	 */
587 	if (phy != CPUNODECF_PHY_DEFAULT) {
588 		sc->sc_phy_addr = phy;
589 	} else {
590 		unsigned char prop_name[20];
591 		snprintf(prop_name, sizeof(prop_name), "tsec%u-phy-addr",
592 		    cnl->cnl_instance);
593 		sc->sc_phy_addr = board_info_get_number(prop_name);
594 	}
595 	if (sc->sc_phy_addr != MII_PHY_ANY)
596 		aprint_normal(" phy %d", sc->sc_phy_addr);
597 
598 	error = bus_space_map(sc->sc_bst, cnl->cnl_addr, cnl->cnl_size, 0,
599 	    &sc->sc_bsh);
600 	if (error) {
601 		aprint_error(": error mapping registers: %d\n", error);
602 		return;
603 	}
604 
605 	/*
606 	 * Assume firmware has aready set the mac address and fetch it
607 	 * before we reinit it.
608 	 */
609 	sc->sc_macstnaddr2 = etsec_read(sc, MACSTNADDR2);
610 	sc->sc_macstnaddr1 = etsec_read(sc, MACSTNADDR1);
611 	sc->sc_rctrl = RCTRL_DEFAULT;
612 	sc->sc_ecntrl = etsec_read(sc, ECNTRL);
613 	sc->sc_maccfg1 = etsec_read(sc, MACCFG1);
614 	sc->sc_maccfg2 = etsec_read(sc, MACCFG2) | MACCFG2_DEFAULT;
615 
616 	if (sc->sc_macstnaddr1 == 0 && sc->sc_macstnaddr2 == 0) {
617 		size_t len;
618 		const uint8_t *mac_addr =
619 		    board_info_get_data("tsec-mac-addr-base", &len);
620 		KASSERT(len == ETHER_ADDR_LEN);
621 		sc->sc_macstnaddr2 =
622 		    (mac_addr[1] << 24)
623 		    | (mac_addr[0] << 16);
624 		sc->sc_macstnaddr1 =
625 		    ((mac_addr[5] + cnl->cnl_instance - 1) << 24)
626 		    | (mac_addr[4] << 16)
627 		    | (mac_addr[3] << 8)
628 		    | (mac_addr[2] << 0);
629 #if 0
630 		aprint_error(": mac-address unknown\n");
631 		return;
632 #endif
633 	}
634 
635 	sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
636 	sc->sc_hwlock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_VM);
637 
638 	callout_init(&sc->sc_mii_callout, CALLOUT_MPSAFE);
639 	callout_setfunc(&sc->sc_mii_callout, pq3etsec_mii_tick, sc);
640 
641 	/* Disable interrupts */
642 	etsec_write(sc, IMASK, 0);
643 
644 	error = pq3etsec_rxq_attach(sc, &sc->sc_rxq, 0);
645 	if (error) {
646 		aprint_error(": failed to init rxq: %d\n", error);
647 		goto fail_1;
648 	}
649 
650 	error = pq3etsec_txq_attach(sc, &sc->sc_txq, 0);
651 	if (error) {
652 		aprint_error(": failed to init txq: %d\n", error);
653 		goto fail_2;
654 	}
655 
656 	error = pq3etsec_mapcache_create(sc, &sc->sc_rx_mapcache,
657 	    ETSEC_MAXRXMBUFS, MCLBYTES, ETSEC_NRXSEGS);
658 	if (error) {
659 		aprint_error(": failed to allocate rx dmamaps: %d\n", error);
660 		goto fail_3;
661 	}
662 
663 	error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
664 	    ETSEC_MAXTXMBUFS, MCLBYTES, ETSEC_NTXSEGS);
665 	if (error) {
666 		aprint_error(": failed to allocate tx dmamaps: %d\n", error);
667 		goto fail_4;
668 	}
669 
670 	sc->sc_tx_ih = intr_establish(cnl->cnl_intrs[0], IPL_VM, IST_ONCHIP,
671 	    pq3etsec_tx_intr, sc);
672 	if (sc->sc_tx_ih == NULL) {
673 		aprint_error(": failed to establish tx interrupt: %d\n",
674 		    cnl->cnl_intrs[0]);
675 		goto fail_5;
676 	}
677 
678 	sc->sc_rx_ih = intr_establish(cnl->cnl_intrs[1], IPL_VM, IST_ONCHIP,
679 	    pq3etsec_rx_intr, sc);
680 	if (sc->sc_rx_ih == NULL) {
681 		aprint_error(": failed to establish rx interrupt: %d\n",
682 		    cnl->cnl_intrs[1]);
683 		goto fail_6;
684 	}
685 
686 	sc->sc_error_ih = intr_establish(cnl->cnl_intrs[2], IPL_VM, IST_ONCHIP,
687 	    pq3etsec_error_intr, sc);
688 	if (sc->sc_error_ih == NULL) {
689 		aprint_error(": failed to establish error interrupt: %d\n",
690 		    cnl->cnl_intrs[2]);
691 		goto fail_7;
692 	}
693 
694 	int softint_flags = SOFTINT_NET;
695 #if !defined(MULTIPROCESSOR) || defined(NET_MPSAFE)
696 	softint_flags |= SOFTINT_MPSAFE;
697 #endif	/* !MULTIPROCESSOR || NET_MPSAFE */
698 	sc->sc_soft_ih = softint_establish(softint_flags,
699 	    pq3etsec_soft_intr, sc);
700 	if (sc->sc_soft_ih == NULL) {
701 		aprint_error(": failed to establish soft interrupt\n");
702 		goto fail_8;
703 	}
704 
705 	/*
706 	 * If there was no MDIO
707 	 */
708 	if (mdio == CPUNODECF_MDIO_DEFAULT) {
709 		aprint_normal("\n");
710 		cfdata_t mdio_cf = config_search(self, cna,
711 		    CFARGS(.submatch = pq3mdio_find));
712 		if (mdio_cf != NULL) {
713 			sc->sc_mdio_dev =
714 			    config_attach(self, mdio_cf, cna, NULL, CFARGS_NONE);
715 		}
716 	} else {
717 		sc->sc_mdio_dev = device_find_by_driver_unit("mdio", mdio);
718 		if (sc->sc_mdio_dev == NULL) {
719 			aprint_error(": failed to locate mdio device\n");
720 			goto fail_9;
721 		}
722 		aprint_normal("\n");
723 	}
724 
725 	etsec_write(sc, ATTR, ATTR_DEFAULT);
726 	etsec_write(sc, ATTRELI, ATTRELI_DEFAULT);
727 
728 	/* Enable interrupt coalescing */
729 	sc->sc_ic_rx_time = 768;
730 	sc->sc_ic_rx_count = 16;
731 	sc->sc_ic_tx_time = 768;
732 	sc->sc_ic_tx_count = 16;
733 	pq3etsec_set_ic_rx(sc);
734 	pq3etsec_set_ic_tx(sc);
735 
736 	char enaddr[ETHER_ADDR_LEN] = {
737 	    [0] = sc->sc_macstnaddr2 >> 16,
738 	    [1] = sc->sc_macstnaddr2 >> 24,
739 	    [2] = sc->sc_macstnaddr1 >>	 0,
740 	    [3] = sc->sc_macstnaddr1 >>	 8,
741 	    [4] = sc->sc_macstnaddr1 >> 16,
742 	    [5] = sc->sc_macstnaddr1 >> 24,
743 	};
744 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
745 	   ether_sprintf(enaddr));
746 
747 	const char * const xname = device_xname(sc->sc_dev);
748 	struct ethercom * const ec = &sc->sc_ec;
749 	struct ifnet * const ifp = &ec->ec_if;
750 
751 	ec->ec_mii = mii;
752 
753 	mii->mii_ifp = ifp;
754 	mii->mii_readreg = pq3mdio_mii_readreg;
755 	mii->mii_writereg = pq3mdio_mii_writereg;
756 	mii->mii_statchg = pq3etsec_mii_statchg;
757 
758 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
759 
760 	if (sc->sc_mdio_dev != NULL && sc->sc_phy_addr < 32) {
761 		mii_attach(sc->sc_mdio_dev, mii, 0xffffffff,
762 		    sc->sc_phy_addr, MII_OFFSET_ANY, MIIF_DOPAUSE);
763 
764 		if (LIST_FIRST(&mii->mii_phys) == NULL) {
765 			ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE,
766 			    0, NULL);
767 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
768 		} else {
769 			callout_schedule(&sc->sc_mii_callout, hz);
770 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
771 		}
772 	} else {
773 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_1000_T | IFM_FDX,
774 		    0, NULL);
775 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_1000_T | IFM_FDX);
776 	}
777 
778 	ec->ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING
779 	    | ETHERCAP_JUMBO_MTU;
780 	ec->ec_capenable = ETHERCAP_VLAN_HWTAGGING;
781 
782 	strlcpy(ifp->if_xname, xname, IFNAMSIZ);
783 	ifp->if_softc = sc;
784 	ifp->if_capabilities = IFCAP_ETSEC;
785 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
786 	ifp->if_ioctl = pq3etsec_ifioctl;
787 	ifp->if_start = pq3etsec_ifstart;
788 	ifp->if_watchdog = pq3etsec_ifwatchdog;
789 	ifp->if_init = pq3etsec_ifinit;
790 	ifp->if_stop = pq3etsec_ifstop;
791 	IFQ_SET_READY(&ifp->if_snd);
792 
793 	/*
794 	 * Attach the interface.
795 	 */
796 	if_initialize(ifp);
797 	pq3etsec_sysctl_setup(NULL, sc);
798 	if_attach(ifp);
799 	if_deferred_start_init(ifp, NULL);
800 	ether_ifattach(ifp, enaddr);
801 
802 	rnd_attach_source(&sc->rnd_source, xname, RND_TYPE_NET,
803 	    RND_FLAG_DEFAULT);
804 
805 	pq3etsec_ifstop(ifp, true);
806 
807 	evcnt_attach_dynamic(&sc->sc_ev_rx_stall, EVCNT_TYPE_MISC,
808 	    NULL, xname, "rx stall");
809 	evcnt_attach_dynamic(&sc->sc_ev_tx_stall, EVCNT_TYPE_MISC,
810 	    NULL, xname, "tx stall");
811 	evcnt_attach_dynamic(&sc->sc_ev_tx_intr, EVCNT_TYPE_INTR,
812 	    NULL, xname, "tx intr");
813 	evcnt_attach_dynamic(&sc->sc_ev_rx_intr, EVCNT_TYPE_INTR,
814 	    NULL, xname, "rx intr");
815 	evcnt_attach_dynamic(&sc->sc_ev_error_intr, EVCNT_TYPE_INTR,
816 	    NULL, xname, "error intr");
817 	evcnt_attach_dynamic(&sc->sc_ev_soft_intr, EVCNT_TYPE_INTR,
818 	    NULL, xname, "soft intr");
819 	evcnt_attach_dynamic(&sc->sc_ev_tx_pause, EVCNT_TYPE_MISC,
820 	    NULL, xname, "tx pause");
821 	evcnt_attach_dynamic(&sc->sc_ev_rx_pause, EVCNT_TYPE_MISC,
822 	    NULL, xname, "rx pause");
823 	evcnt_attach_dynamic(&sc->sc_ev_mii_ticks, EVCNT_TYPE_MISC,
824 	    NULL, xname, "mii ticks");
825 	return;
826 
827 fail_9:
828 	softint_disestablish(sc->sc_soft_ih);
829 fail_8:
830 	intr_disestablish(sc->sc_error_ih);
831 fail_7:
832 	intr_disestablish(sc->sc_rx_ih);
833 fail_6:
834 	intr_disestablish(sc->sc_tx_ih);
835 fail_5:
836 	pq3etsec_mapcache_destroy(sc, sc->sc_tx_mapcache);
837 fail_4:
838 	pq3etsec_mapcache_destroy(sc, sc->sc_rx_mapcache);
839 fail_3:
840 #if 0 /* notyet */
841 	pq3etsec_txq_detach(sc);
842 #endif
843 fail_2:
844 #if 0 /* notyet */
845 	pq3etsec_rxq_detach(sc);
846 #endif
847 fail_1:
848 	callout_destroy(&sc->sc_mii_callout);
849 	mutex_obj_free(sc->sc_lock);
850 	mutex_obj_free(sc->sc_hwlock);
851 	bus_space_unmap(sc->sc_bst, sc->sc_bsh, cnl->cnl_size);
852 }
853 
854 static uint64_t
855 pq3etsec_macaddr_create(const uint8_t *lladdr)
856 {
857 	uint64_t macaddr = 0;
858 
859 	lladdr += ETHER_ADDR_LEN;
860 	for (u_int i = ETHER_ADDR_LEN; i-- > 0; ) {
861 		macaddr = (macaddr << 8) | *--lladdr;
862 	}
863 	return macaddr << 16;
864 }
865 
866 static int
867 pq3etsec_ifinit(struct ifnet *ifp)
868 {
869 	struct pq3etsec_softc * const sc = ifp->if_softc;
870 	int error = 0;
871 
872 	sc->sc_maxfrm = uimax(ifp->if_mtu + 32, MCLBYTES);
873 	if (ifp->if_mtu > ETHERMTU_JUMBO)
874 		return error;
875 
876 	KASSERT(ifp->if_flags & IFF_UP);
877 
878 	/*
879 	 * Stop the interface (steps 1 to 4 in the Soft Reset and
880 	 * Reconfigurating Procedure.
881 	 */
882 	pq3etsec_ifstop(ifp, 0);
883 
884 	/*
885 	 * If our frame size has changed (or it's our first time through)
886 	 * destroy the existing transmit mapcache.
887 	 */
888 	if (sc->sc_tx_mapcache != NULL
889 	    && sc->sc_maxfrm != sc->sc_tx_mapcache->dmc_maxmapsize) {
890 		pq3etsec_mapcache_destroy(sc, sc->sc_tx_mapcache);
891 		sc->sc_tx_mapcache = NULL;
892 	}
893 
894 	if (sc->sc_tx_mapcache == NULL) {
895 		error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
896 		    ETSEC_MAXTXMBUFS, sc->sc_maxfrm, ETSEC_NTXSEGS);
897 		if (error)
898 			return error;
899 	}
900 
901 	sc->sc_ev_mii_ticks.ev_count++;
902 	mii_tick(&sc->sc_mii);
903 
904 	if (ifp->if_flags & IFF_PROMISC) {
905 		sc->sc_rctrl |= RCTRL_PROM;
906 	} else {
907 		sc->sc_rctrl &= ~RCTRL_PROM;
908 	}
909 
910 	uint32_t rctrl_prsdep = 0;
911 	sc->sc_rctrl &=
912 	    ~(RCTRL_IPCSEN | RCTRL_TUCSEN | RCTRL_VLEX | RCTRL_PRSDEP);
913 	if (VLAN_ATTACHED(&sc->sc_ec)) {
914 		sc->sc_rctrl |= RCTRL_VLEX;
915 		rctrl_prsdep = RCTRL_PRSDEP_L2;
916 	}
917 	if (ifp->if_capenable & IFCAP_RCTRL_IPCSEN) {
918 		sc->sc_rctrl |= RCTRL_IPCSEN;
919 		rctrl_prsdep = RCTRL_PRSDEP_L3;
920 	}
921 	if (ifp->if_capenable & IFCAP_RCTRL_TUCSEN) {
922 		sc->sc_rctrl |= RCTRL_TUCSEN;
923 		rctrl_prsdep = RCTRL_PRSDEP_L4;
924 	}
925 	sc->sc_rctrl |= rctrl_prsdep;
926 #if 0
927 	if (sc->sc_rctrl
928 	    & (RCTRL_IPCSEN | RCTRL_TUCSEN | RCTRL_VLEX | RCTRL_PRSDEP))
929 		aprint_normal_dev(sc->sc_dev,
930 		    "rctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlex=%"PRIuMAX" prsdep=%"PRIuMAX"\n",
931 		    sc->sc_rctrl,
932 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_IPCSEN),
933 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_TUCSEN),
934 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_VLEX),
935 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_PRSDEP));
936 #endif
937 
938 	sc->sc_tctrl &= ~(TCTRL_IPCSEN | TCTRL_TUCSEN | TCTRL_VLINS);
939 	if (VLAN_ATTACHED(&sc->sc_ec))		/* is this really true */
940 		sc->sc_tctrl |= TCTRL_VLINS;
941 	if (ifp->if_capenable & IFCAP_TCTRL_IPCSEN)
942 		sc->sc_tctrl |= TCTRL_IPCSEN;
943 	if (ifp->if_capenable & IFCAP_TCTRL_TUCSEN)
944 		sc->sc_tctrl |= TCTRL_TUCSEN;
945 #if 0
946 	if (sc->sc_tctrl & (TCTRL_IPCSEN | TCTRL_TUCSEN | TCTRL_VLINS))
947 		aprint_normal_dev(sc->sc_dev,
948 		    "tctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlins=%"PRIuMAX"\n",
949 		    sc->sc_tctrl,
950 		    __SHIFTOUT(sc->sc_tctrl, TCTRL_IPCSEN),
951 		    __SHIFTOUT(sc->sc_tctrl, TCTRL_TUCSEN),
952 		    __SHIFTOUT(sc->sc_tctrl, TCTRL_VLINS));
953 #endif
954 
955 	sc->sc_maccfg1 &= ~(MACCFG1_TX_EN | MACCFG1_RX_EN);
956 
957 	const uint64_t macstnaddr =
958 	    pq3etsec_macaddr_create(CLLADDR(ifp->if_sadl));
959 
960 	sc->sc_imask = IEVENT_DPE;
961 
962 	/* 5. Load TDBPH, TBASEH, TBASE0-TBASE7 with new Tx BD pointers */
963 	pq3etsec_rxq_reset(sc, &sc->sc_rxq);
964 	pq3etsec_rxq_produce(sc, &sc->sc_rxq);	/* fill with rx buffers */
965 
966 	/* 6. Load RDBPH, RBASEH, RBASE0-RBASE7 with new Rx BD pointers */
967 	pq3etsec_txq_reset(sc, &sc->sc_txq);
968 
969 	/* 7. Setup other MAC registers (MACCFG2, MAXFRM, etc.) */
970 	KASSERT(MACCFG2_PADCRC & sc->sc_maccfg2);
971 	etsec_write(sc, MAXFRM, sc->sc_maxfrm);
972 	etsec_write(sc, MACSTNADDR1, (uint32_t)(macstnaddr >> 32));
973 	etsec_write(sc, MACSTNADDR2, (uint32_t)(macstnaddr >>  0));
974 	etsec_write(sc, MACCFG1, sc->sc_maccfg1);
975 	etsec_write(sc, MACCFG2, sc->sc_maccfg2);
976 	etsec_write(sc, ECNTRL, sc->sc_ecntrl);
977 
978 	/* 8. Setup group address hash table (GADDR0-GADDR15) */
979 	pq3etsec_mc_setup(sc);
980 
981 	/* 9. Setup receive frame filer table (via RQFAR, RQFCR, and RQFPR) */
982 	etsec_write(sc, MRBLR, MCLBYTES);
983 
984 	/* 10. Setup WWR, WOP, TOD bits in DMACTRL register */
985 	sc->sc_dmactrl |= DMACTRL_DEFAULT;
986 	etsec_write(sc, DMACTRL, sc->sc_dmactrl);
987 
988 	/* 11. Enable transmit queues in TQUEUE, and ensure that the transmit scheduling mode is correctly set in TCTRL. */
989 	etsec_write(sc, TQUEUE, TQUEUE_EN0);
990 	sc->sc_imask |= IEVENT_TXF | IEVENT_TXE | IEVENT_TXC;
991 
992 	etsec_write(sc, TCTRL, sc->sc_tctrl);	/* for TOE stuff */
993 
994 	/* 12. Enable receive queues in RQUEUE, */
995 	etsec_write(sc, RQUEUE, RQUEUE_EN0 | RQUEUE_EX0);
996 	sc->sc_imask |= IEVENT_RXF | IEVENT_BSY | IEVENT_RXC;
997 
998 	/*     and optionally set TOE functionality in RCTRL. */
999 	etsec_write(sc, RCTRL, sc->sc_rctrl);
1000 	sc->sc_rx_adjlen = __SHIFTOUT(sc->sc_rctrl, RCTRL_PAL);
1001 	if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF)
1002 		sc->sc_rx_adjlen += sizeof(struct rxfcb);
1003 
1004 	/* 13. Clear THLT and TXF bits in TSTAT register by writing 1 to them */
1005 	etsec_write(sc, TSTAT, TSTAT_THLT | TSTAT_TXF);
1006 
1007 	/* 14. Clear QHLT and RXF bits in RSTAT register by writing 1 to them.*/
1008 	etsec_write(sc, RSTAT, RSTAT_QHLT | RSTAT_RXF);
1009 
1010 	/* 15. Clear GRS/GTS bits in DMACTRL (do not change other bits) */
1011 	sc->sc_dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
1012 	etsec_write(sc, DMACTRL, sc->sc_dmactrl);
1013 
1014 	/* 16. Enable Tx_EN/Rx_EN in MACCFG1 register */
1015 	etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
1016 	etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
1017 
1018 	sc->sc_soft_flags = 0;
1019 
1020 	etsec_write(sc, IMASK, sc->sc_imask);
1021 
1022 	ifp->if_flags |= IFF_RUNNING;
1023 
1024 	return error;
1025 }
1026 
1027 static void
1028 pq3etsec_ifstop(struct ifnet *ifp, int disable)
1029 {
1030 	struct pq3etsec_softc * const sc = ifp->if_softc;
1031 
1032 	KASSERT(!cpu_intr_p());
1033 	const uint32_t imask_gsc_mask = IEVENT_GTSC | IEVENT_GRSC;
1034 	/*
1035 	 * Clear the GTSC and GRSC from the interrupt mask until
1036 	 * we are ready for them.  Then clear them from IEVENT,
1037 	 * request the graceful shutdown, and then enable the
1038 	 * GTSC and GRSC bits in the mask.  This should cause the
1039 	 * error interrupt to fire which will issue a wakeup to
1040 	 * allow us to resume.
1041 	 */
1042 
1043 	/*
1044 	 * 1. Set GRS/GTS bits in DMACTRL register
1045 	 */
1046 	sc->sc_dmactrl |= DMACTRL_GRS | DMACTRL_GTS;
1047 	etsec_write(sc, IMASK, sc->sc_imask & ~imask_gsc_mask);
1048 	etsec_write(sc, IEVENT, imask_gsc_mask);
1049 	etsec_write(sc, DMACTRL, sc->sc_dmactrl);
1050 
1051 	if (etsec_read(sc, MACCFG1) & (MACCFG1_TX_EN | MACCFG1_RX_EN)) {
1052 		/*
1053 		 * 2. Poll GRSC/GTSC bits in IEVENT register until both are set
1054 		 */
1055 		etsec_write(sc, IMASK, sc->sc_imask | imask_gsc_mask);
1056 
1057 		u_int timo = 1000;
1058 		uint32_t ievent = etsec_read(sc, IEVENT);
1059 		while ((ievent & imask_gsc_mask) != imask_gsc_mask) {
1060 			if (--timo == 0) {
1061 				aprint_error_dev(sc->sc_dev,
1062 				    "WARNING: "
1063 				    "request to stop failed (IEVENT=%#x)\n",
1064 				    ievent);
1065 				break;
1066 			}
1067 			delay(10);
1068 			ievent = etsec_read(sc, IEVENT);
1069 		}
1070 	}
1071 
1072 	/*
1073 	 * Now reset the controller.
1074 	 *
1075 	 * 3. Set SOFT_RESET bit in MACCFG1 register
1076 	 * 4. Clear SOFT_RESET bit in MACCFG1 register
1077 	 */
1078 	etsec_write(sc, MACCFG1, MACCFG1_SOFT_RESET);
1079 	etsec_write(sc, MACCFG1, 0);
1080 	etsec_write(sc, IMASK, 0);
1081 	etsec_write(sc, IEVENT, ~0);
1082 	sc->sc_imask = 0;
1083 	ifp->if_flags &= ~IFF_RUNNING;
1084 
1085 	uint32_t tbipa = etsec_read(sc, TBIPA);
1086 	if (tbipa == sc->sc_phy_addr) {
1087 		aprint_normal_dev(sc->sc_dev, "relocating TBI\n");
1088 		etsec_write(sc, TBIPA, 0x1f);
1089 	}
1090 	uint32_t miimcfg = etsec_read(sc, MIIMCFG);
1091 	etsec_write(sc, MIIMCFG, MIIMCFG_RESET);
1092 	etsec_write(sc, MIIMCFG, miimcfg);
1093 
1094 	/*
1095 	 * Let's consume any remaining transmitted packets.  And if we are
1096 	 * disabling the interface, purge ourselves of any untransmitted
1097 	 * packets.  But don't consume any received packets, just drop them.
1098 	 * If we aren't disabling the interface, save the mbufs in the
1099 	 * receive queue for reuse.
1100 	 */
1101 	pq3etsec_rxq_purge(sc, &sc->sc_rxq, disable);
1102 	pq3etsec_txq_consume(sc, &sc->sc_txq);
1103 	if (disable) {
1104 		pq3etsec_txq_purge(sc, &sc->sc_txq);
1105 		IFQ_PURGE(&ifp->if_snd);
1106 	}
1107 }
1108 
1109 static void
1110 pq3etsec_ifwatchdog(struct ifnet *ifp)
1111 {
1112 }
1113 
1114 static void
1115 pq3etsec_mc_setup(
1116 	struct pq3etsec_softc *sc)
1117 {
1118 	struct ethercom * const ec = &sc->sc_ec;
1119 	struct ifnet * const ifp = &sc->sc_if;
1120 	struct ether_multi *enm;
1121 	struct ether_multistep step;
1122 	uint32_t *gaddr = sc->sc_gaddr + ((sc->sc_rctrl & RCTRL_GHTX) ? 0 : 8);
1123 	const uint32_t crc_shift = 32 - ((sc->sc_rctrl & RCTRL_GHTX) ? 9 : 8);
1124 
1125 	memset(sc->sc_gaddr, 0, sizeof(sc->sc_gaddr));
1126 	memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
1127 
1128 	ifp->if_flags &= ~IFF_ALLMULTI;
1129 
1130 	ETHER_LOCK(ec);
1131 	ETHER_FIRST_MULTI(step, ec, enm);
1132 	for (u_int i = 0; enm != NULL; ) {
1133 		const char *addr = enm->enm_addrlo;
1134 		if (memcmp(addr, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
1135 			ifp->if_flags |= IFF_ALLMULTI;
1136 			memset(gaddr, 0xff, 32 << (crc_shift & 1));
1137 			memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
1138 			break;
1139 		}
1140 		if ((sc->sc_rctrl & RCTRL_EMEN)
1141 		    && i < __arraycount(sc->sc_macaddrs)) {
1142 			sc->sc_macaddrs[i++] = pq3etsec_macaddr_create(addr);
1143 		} else {
1144 			uint32_t crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
1145 #if 0
1146 			printf("%s: %s: crc=%#x: %#x: [%u,%u]=%#x\n", __func__,
1147 			    ether_sprintf(addr), crc,
1148 			    crc >> crc_shift,
1149 			    crc >> (crc_shift + 5),
1150 			    (crc >> crc_shift) & 31,
1151 			    1 << (((crc >> crc_shift) & 31) ^ 31));
1152 #endif
1153 			/*
1154 			 * The documentation doesn't completely follow PowerPC
1155 			 * bit order.  The BE crc32 (H) for 01:00:5E:00:00:01
1156 			 * is 0x7fa32d9b.  By empirical testing, the
1157 			 * corresponding hash bit is word 3, bit 31 (ppc bit
1158 			 * order).  Since 3 << 31 | 31 is 0x7f, we deduce
1159 			 * H[0:2] selects the register while H[3:7] selects
1160 			 * the bit (ppc bit order).
1161 			 */
1162 			crc >>= crc_shift;
1163 			gaddr[crc / 32] |= 1 << ((crc & 31) ^ 31);
1164 		}
1165 		ETHER_NEXT_MULTI(step, enm);
1166 	}
1167 	ETHER_UNLOCK(ec);
1168 	for (u_int i = 0; i < 8; i++) {
1169 		etsec_write(sc, IGADDR(i), sc->sc_gaddr[i]);
1170 		etsec_write(sc, GADDR(i), sc->sc_gaddr[i+8]);
1171 #if 0
1172 		if (sc->sc_gaddr[i] || sc->sc_gaddr[i+8])
1173 		printf("%s: IGADDR%u(%#x)=%#x GADDR%u(%#x)=%#x\n", __func__,
1174 		    i, IGADDR(i), etsec_read(sc, IGADDR(i)),
1175 		    i, GADDR(i), etsec_read(sc, GADDR(i)));
1176 #endif
1177 	}
1178 	for (u_int i = 0; i < __arraycount(sc->sc_macaddrs); i++) {
1179 		uint64_t macaddr = sc->sc_macaddrs[i];
1180 		etsec_write(sc, MACnADDR1(i), (uint32_t)(macaddr >> 32));
1181 		etsec_write(sc, MACnADDR2(i), (uint32_t)(macaddr >>  0));
1182 #if 0
1183 		if (macaddr)
1184 		printf("%s: MAC%02uADDR2(%08x)=%#x MAC%02uADDR2(%#x)=%08x\n", __func__,
1185 		    i+1, MACnADDR1(i), etsec_read(sc, MACnADDR1(i)),
1186 		    i+1, MACnADDR2(i), etsec_read(sc, MACnADDR2(i)));
1187 #endif
1188 	}
1189 }
1190 
1191 static int
1192 pq3etsec_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
1193 {
1194 	struct pq3etsec_softc *sc  = ifp->if_softc;
1195 	struct ifreq * const ifr = data;
1196 	const int s = splnet();
1197 	int error;
1198 
1199 	switch (cmd) {
1200 	case SIOCSIFMEDIA:
1201 		/* Flow control requires full-duplex mode. */
1202 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1203 		    (ifr->ifr_media & IFM_FDX) == 0)
1204 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1205 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1206 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1207 				/* We can do both TXPAUSE and RXPAUSE. */
1208 				ifr->ifr_media |=
1209 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1210 			}
1211 		}
1212 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1213 		break;
1214 
1215 	default:
1216 		error = ether_ioctl(ifp, cmd, data);
1217 		if (error != ENETRESET)
1218 			break;
1219 
1220 		if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
1221 			error = 0;
1222 			if (ifp->if_flags & IFF_RUNNING)
1223 				pq3etsec_mc_setup(sc);
1224 			break;
1225 		}
1226 		error = pq3etsec_ifinit(ifp);
1227 		break;
1228 	}
1229 
1230 	splx(s);
1231 	return error;
1232 }
1233 
1234 static void
1235 pq3etsec_rxq_desc_presync(
1236 	struct pq3etsec_softc *sc,
1237 	struct pq3etsec_rxqueue *rxq,
1238 	volatile struct rxbd *rxbd,
1239 	size_t count)
1240 {
1241 	bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1242 	    (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1243 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1244 }
1245 
1246 static void
1247 pq3etsec_rxq_desc_postsync(
1248 	struct pq3etsec_softc *sc,
1249 	struct pq3etsec_rxqueue *rxq,
1250 	volatile struct rxbd *rxbd,
1251 	size_t count)
1252 {
1253 	bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1254 	    (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1255 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1256 }
1257 
1258 static void
1259 pq3etsec_txq_desc_presync(
1260 	struct pq3etsec_softc *sc,
1261 	struct pq3etsec_txqueue *txq,
1262 	volatile struct txbd *txbd,
1263 	size_t count)
1264 {
1265 	bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1266 	    (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1267 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1268 }
1269 
1270 static void
1271 pq3etsec_txq_desc_postsync(
1272 	struct pq3etsec_softc *sc,
1273 	struct pq3etsec_txqueue *txq,
1274 	volatile struct txbd *txbd,
1275 	size_t count)
1276 {
1277 	bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1278 	    (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1279 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1280 }
1281 
1282 static bus_dmamap_t
1283 pq3etsec_mapcache_get(
1284 	struct pq3etsec_softc *sc,
1285 	struct pq3etsec_mapcache *dmc)
1286 {
1287 	KASSERT(dmc->dmc_nmaps > 0);
1288 	KASSERT(dmc->dmc_maps[dmc->dmc_nmaps-1] != NULL);
1289 	return dmc->dmc_maps[--dmc->dmc_nmaps];
1290 }
1291 
1292 static void
1293 pq3etsec_mapcache_put(
1294 	struct pq3etsec_softc *sc,
1295 	struct pq3etsec_mapcache *dmc,
1296 	bus_dmamap_t map)
1297 {
1298 	KASSERT(map != NULL);
1299 	KASSERT(dmc->dmc_nmaps < dmc->dmc_maxmaps);
1300 	dmc->dmc_maps[dmc->dmc_nmaps++] = map;
1301 }
1302 
1303 static void
1304 pq3etsec_mapcache_destroy(
1305 	struct pq3etsec_softc *sc,
1306 	struct pq3etsec_mapcache *dmc)
1307 {
1308 	const size_t dmc_size =
1309 	    offsetof(struct pq3etsec_mapcache, dmc_maps[dmc->dmc_maxmaps]);
1310 
1311 	for (u_int i = 0; i < dmc->dmc_maxmaps; i++) {
1312 		bus_dmamap_destroy(sc->sc_dmat, dmc->dmc_maps[i]);
1313 	}
1314 	kmem_intr_free(dmc, dmc_size);
1315 }
1316 
1317 static int
1318 pq3etsec_mapcache_create(
1319 	struct pq3etsec_softc *sc,
1320 	struct pq3etsec_mapcache **dmc_p,
1321 	size_t maxmaps,
1322 	size_t maxmapsize,
1323 	size_t maxseg)
1324 {
1325 	const size_t dmc_size =
1326 	    offsetof(struct pq3etsec_mapcache, dmc_maps[maxmaps]);
1327 	struct pq3etsec_mapcache * const dmc =
1328 		kmem_intr_zalloc(dmc_size, KM_NOSLEEP);
1329 
1330 	dmc->dmc_maxmaps = maxmaps;
1331 	dmc->dmc_nmaps = maxmaps;
1332 	dmc->dmc_maxmapsize = maxmapsize;
1333 	dmc->dmc_maxseg = maxseg;
1334 
1335 	for (u_int i = 0; i < maxmaps; i++) {
1336 		int error = bus_dmamap_create(sc->sc_dmat, dmc->dmc_maxmapsize,
1337 		     dmc->dmc_maxseg, dmc->dmc_maxmapsize, 0,
1338 		     BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dmc->dmc_maps[i]);
1339 		if (error) {
1340 			aprint_error_dev(sc->sc_dev,
1341 			    "failed to creat dma map cache "
1342 			    "entry %u of %zu: %d\n",
1343 			    i, maxmaps, error);
1344 			while (i-- > 0) {
1345 				bus_dmamap_destroy(sc->sc_dmat,
1346 				    dmc->dmc_maps[i]);
1347 			}
1348 			kmem_intr_free(dmc, dmc_size);
1349 			return error;
1350 		}
1351 		KASSERT(dmc->dmc_maps[i] != NULL);
1352 	}
1353 
1354 	*dmc_p = dmc;
1355 
1356 	return 0;
1357 }
1358 
1359 #if 0
1360 static void
1361 pq3etsec_dmamem_free(
1362 	bus_dma_tag_t dmat,
1363 	size_t map_size,
1364 	bus_dma_segment_t *seg,
1365 	bus_dmamap_t map,
1366 	void *kvap)
1367 {
1368 	bus_dmamap_destroy(dmat, map);
1369 	bus_dmamem_unmap(dmat, kvap, map_size);
1370 	bus_dmamem_free(dmat, seg, 1);
1371 }
1372 #endif
1373 
1374 static int
1375 pq3etsec_dmamem_alloc(
1376 	bus_dma_tag_t dmat,
1377 	size_t map_size,
1378 	bus_dma_segment_t *seg,
1379 	bus_dmamap_t *map,
1380 	void **kvap)
1381 {
1382 	int error;
1383 	int nseg;
1384 
1385 	*kvap = NULL;
1386 	*map = NULL;
1387 
1388 	error = bus_dmamem_alloc(dmat, map_size, PAGE_SIZE, 0,
1389 	   seg, 1, &nseg, 0);
1390 	if (error)
1391 		return error;
1392 
1393 	KASSERT(nseg == 1);
1394 
1395 	error = bus_dmamem_map(dmat, seg, nseg, map_size, (void **)kvap,
1396 	    BUS_DMA_COHERENT);
1397 	if (error == 0) {
1398 		error = bus_dmamap_create(dmat, map_size, 1, map_size, 0, 0,
1399 		    map);
1400 		if (error == 0) {
1401 			error = bus_dmamap_load(dmat, *map, *kvap, map_size,
1402 			    NULL, 0);
1403 			if (error == 0)
1404 				return 0;
1405 			bus_dmamap_destroy(dmat, *map);
1406 			*map = NULL;
1407 		}
1408 		bus_dmamem_unmap(dmat, *kvap, map_size);
1409 		*kvap = NULL;
1410 	}
1411 	bus_dmamem_free(dmat, seg, nseg);
1412 	return 0;
1413 }
1414 
1415 static struct mbuf *
1416 pq3etsec_rx_buf_alloc(
1417 	struct pq3etsec_softc *sc)
1418 {
1419 	struct mbuf *m = m_gethdr(M_DONTWAIT, MT_DATA);
1420 	if (m == NULL) {
1421 		printf("%s:%d: %s\n", __func__, __LINE__, "m_gethdr");
1422 		return NULL;
1423 	}
1424 	MCLGET(m, M_DONTWAIT);
1425 	if ((m->m_flags & M_EXT) == 0) {
1426 		printf("%s:%d: %s\n", __func__, __LINE__, "MCLGET");
1427 		m_freem(m);
1428 		return NULL;
1429 	}
1430 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1431 
1432 	bus_dmamap_t map = pq3etsec_mapcache_get(sc, sc->sc_rx_mapcache);
1433 	if (map == NULL) {
1434 		printf("%s:%d: %s\n", __func__, __LINE__, "map get");
1435 		m_freem(m);
1436 		return NULL;
1437 	}
1438 	M_SETCTX(m, map);
1439 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1440 	int error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1441 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
1442 	if (error) {
1443 		aprint_error_dev(sc->sc_dev, "fail to load rx dmamap: %d\n",
1444 		    error);
1445 		M_SETCTX(m, NULL);
1446 		m_freem(m);
1447 		pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1448 		return NULL;
1449 	}
1450 	KASSERT(map->dm_mapsize == MCLBYTES);
1451 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1452 	    BUS_DMASYNC_PREREAD);
1453 
1454 	return m;
1455 }
1456 
1457 static void
1458 pq3etsec_rx_map_unload(
1459 	struct pq3etsec_softc *sc,
1460 	struct mbuf *m)
1461 {
1462 	KASSERT(m);
1463 	for (; m != NULL; m = m->m_next) {
1464 		bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1465 		KASSERT(map);
1466 		KASSERT(map->dm_mapsize == MCLBYTES);
1467 		bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_len,
1468 		    BUS_DMASYNC_POSTREAD);
1469 		bus_dmamap_unload(sc->sc_dmat, map);
1470 		pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1471 		M_SETCTX(m, NULL);
1472 	}
1473 }
1474 
1475 static bool
1476 pq3etsec_rxq_produce(
1477 	struct pq3etsec_softc *sc,
1478 	struct pq3etsec_rxqueue *rxq)
1479 {
1480 	volatile struct rxbd *producer = rxq->rxq_producer;
1481 #if 0
1482 	size_t inuse = rxq->rxq_inuse;
1483 #endif
1484 	while (rxq->rxq_inuse < rxq->rxq_threshold) {
1485 		struct mbuf *m;
1486 		IF_DEQUEUE(&sc->sc_rx_bufcache, m);
1487 		if (m == NULL) {
1488 			m = pq3etsec_rx_buf_alloc(sc);
1489 			if (m == NULL) {
1490 				printf("%s: pq3etsec_rx_buf_alloc failed\n", __func__);
1491 				break;
1492 			}
1493 		}
1494 		bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1495 		KASSERT(map);
1496 
1497 #ifdef ETSEC_DEBUG
1498 		KASSERT(rxq->rxq_mbufs[producer-rxq->rxq_first] == NULL);
1499 		rxq->rxq_mbufs[producer-rxq->rxq_first] = m;
1500 #endif
1501 
1502 		/* rxbd_len is write-only by the ETSEC */
1503 		producer->rxbd_bufptr = map->dm_segs[0].ds_addr;
1504 		membar_producer();
1505 		producer->rxbd_flags |= RXBD_E;
1506 		if (__predict_false(rxq->rxq_mhead == NULL)) {
1507 			KASSERT(producer == rxq->rxq_consumer);
1508 			rxq->rxq_mconsumer = m;
1509 		}
1510 		*rxq->rxq_mtail = m;
1511 		rxq->rxq_mtail = &m->m_next;
1512 		m->m_len = MCLBYTES;
1513 		m->m_next = NULL;
1514 		rxq->rxq_inuse++;
1515 		if (++producer == rxq->rxq_last) {
1516 			membar_producer();
1517 			pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1518 			    rxq->rxq_last - rxq->rxq_producer);
1519 			producer = rxq->rxq_producer = rxq->rxq_first;
1520 		}
1521 	}
1522 	if (producer != rxq->rxq_producer) {
1523 		membar_producer();
1524 		pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1525 		    producer - rxq->rxq_producer);
1526 		rxq->rxq_producer = producer;
1527 	}
1528 	uint32_t qhlt = etsec_read(sc, RSTAT) & RSTAT_QHLT;
1529 	if (qhlt) {
1530 		KASSERT(qhlt & rxq->rxq_qmask);
1531 		sc->sc_ev_rx_stall.ev_count++;
1532 		etsec_write(sc, RSTAT, RSTAT_QHLT & rxq->rxq_qmask);
1533 	}
1534 #if 0
1535 	aprint_normal_dev(sc->sc_dev,
1536 	    "%s: buffers inuse went from %zu to %zu\n",
1537 	    __func__, inuse, rxq->rxq_inuse);
1538 #endif
1539 	return true;
1540 }
1541 
1542 static bool
1543 pq3etsec_rx_offload(
1544 	struct pq3etsec_softc *sc,
1545 	struct mbuf *m,
1546 	const struct rxfcb *fcb)
1547 {
1548 	if (fcb->rxfcb_flags & RXFCB_VLN) {
1549 		vlan_set_tag(m, fcb->rxfcb_vlctl);
1550 	}
1551 	if ((fcb->rxfcb_flags & RXFCB_IP) == 0
1552 	    || (fcb->rxfcb_flags & (RXFCB_CIP | RXFCB_CTU)) == 0)
1553 		return true;
1554 	int csum_flags = 0;
1555 	if ((fcb->rxfcb_flags & (RXFCB_IP6 | RXFCB_CIP)) == RXFCB_CIP) {
1556 		csum_flags |= M_CSUM_IPv4;
1557 		if (fcb->rxfcb_flags & RXFCB_EIP)
1558 			csum_flags |= M_CSUM_IPv4_BAD;
1559 	}
1560 	if ((fcb->rxfcb_flags & RXFCB_CTU) == RXFCB_CTU) {
1561 		int ipv_flags;
1562 		if (fcb->rxfcb_flags & RXFCB_IP6)
1563 			ipv_flags = M_CSUM_TCPv6 | M_CSUM_UDPv6;
1564 		else
1565 			ipv_flags = M_CSUM_TCPv4 | M_CSUM_UDPv4;
1566 		if (fcb->rxfcb_pro == IPPROTO_TCP) {
1567 			csum_flags |= (M_CSUM_TCPv4 |M_CSUM_TCPv6) & ipv_flags;
1568 		} else {
1569 			csum_flags |= (M_CSUM_UDPv4 |M_CSUM_UDPv6) & ipv_flags;
1570 		}
1571 		if (fcb->rxfcb_flags & RXFCB_ETU)
1572 			csum_flags |= M_CSUM_TCP_UDP_BAD;
1573 	}
1574 
1575 	m->m_pkthdr.csum_flags = csum_flags;
1576 	return true;
1577 }
1578 
1579 static void
1580 pq3etsec_rx_input(
1581 	struct pq3etsec_softc *sc,
1582 	struct mbuf *m,
1583 	uint16_t rxbd_flags)
1584 {
1585 	struct ifnet * const ifp = &sc->sc_if;
1586 
1587 	pq3etsec_rx_map_unload(sc, m);
1588 
1589 	if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF) {
1590 		struct rxfcb fcb = *mtod(m, struct rxfcb *);
1591 		if (!pq3etsec_rx_offload(sc, m, &fcb))
1592 			return;
1593 	}
1594 	m_adj(m, sc->sc_rx_adjlen);
1595 
1596 	if (rxbd_flags & RXBD_M)
1597 		m->m_flags |= M_PROMISC;
1598 	if (rxbd_flags & RXBD_BC)
1599 		m->m_flags |= M_BCAST;
1600 	if (rxbd_flags & RXBD_MC)
1601 		m->m_flags |= M_MCAST;
1602 	m->m_flags |= M_HASFCS;
1603 	m_set_rcvif(m, &sc->sc_if);
1604 
1605 	/*
1606 	 * Let's give it to the network subsystm to deal with.
1607 	 */
1608 	if_percpuq_enqueue(ifp->if_percpuq, m);
1609 }
1610 
1611 static void
1612 pq3etsec_rxq_consume(
1613 	struct pq3etsec_softc *sc,
1614 	struct pq3etsec_rxqueue *rxq)
1615 {
1616 	struct ifnet * const ifp = &sc->sc_if;
1617 	volatile struct rxbd *consumer = rxq->rxq_consumer;
1618 	size_t rxconsumed = 0;
1619 
1620 	etsec_write(sc, RSTAT, RSTAT_RXF & rxq->rxq_qmask);
1621 
1622 	for (;;) {
1623 		if (consumer == rxq->rxq_producer) {
1624 			rxq->rxq_consumer = consumer;
1625 			rxq->rxq_inuse -= rxconsumed;
1626 			KASSERT(rxq->rxq_inuse == 0);
1627 			break;
1628 		}
1629 		pq3etsec_rxq_desc_postsync(sc, rxq, consumer, 1);
1630 		const uint16_t rxbd_flags = consumer->rxbd_flags;
1631 		if (rxbd_flags & RXBD_E) {
1632 			rxq->rxq_consumer = consumer;
1633 			rxq->rxq_inuse -= rxconsumed;
1634 			break;
1635 		}
1636 		KASSERT(rxq->rxq_mconsumer != NULL);
1637 #ifdef ETSEC_DEBUG
1638 		KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1639 #endif
1640 #if 0
1641 		printf("%s: rxdb[%u]: flags=%#x len=%#x: %08x %08x %08x %08x\n",
1642 		    __func__,
1643 		    consumer - rxq->rxq_first, rxbd_flags, consumer->rxbd_len,
1644 		    mtod(rxq->rxq_mconsumer, int *)[0],
1645 		    mtod(rxq->rxq_mconsumer, int *)[1],
1646 		    mtod(rxq->rxq_mconsumer, int *)[2],
1647 		    mtod(rxq->rxq_mconsumer, int *)[3]);
1648 #endif
1649 		/*
1650 		 * We own this packet again.  Clear all flags except wrap.
1651 		 */
1652 		rxconsumed++;
1653 		consumer->rxbd_flags = rxbd_flags & (RXBD_W | RXBD_I);
1654 
1655 		/*
1656 		 * If this descriptor has the LAST bit set and no errors,
1657 		 * it's a valid input packet.
1658 		 */
1659 		if ((rxbd_flags & (RXBD_L | RXBD_ERRORS)) == RXBD_L) {
1660 			size_t rxbd_len = consumer->rxbd_len;
1661 			struct mbuf *m = rxq->rxq_mhead;
1662 			struct mbuf *m_last = rxq->rxq_mconsumer;
1663 			if ((rxq->rxq_mhead = m_last->m_next) == NULL)
1664 				rxq->rxq_mtail = &rxq->rxq_mhead;
1665 			rxq->rxq_mconsumer = rxq->rxq_mhead;
1666 			m_last->m_next = NULL;
1667 			m_last->m_len = rxbd_len & (MCLBYTES - 1);
1668 			m->m_pkthdr.len = rxbd_len;
1669 			pq3etsec_rx_input(sc, m, rxbd_flags);
1670 		} else if (rxbd_flags & RXBD_L) {
1671 			KASSERT(rxbd_flags & RXBD_ERRORS);
1672 			struct mbuf *m;
1673 			/*
1674 			 * We encountered an error, take the mbufs and add
1675 			 * then to the rx bufcache so we can reuse them.
1676 			 */
1677 			if_statinc(ifp, if_ierrors);
1678 			for (m = rxq->rxq_mhead;
1679 			     m != rxq->rxq_mconsumer;
1680 			     m = m->m_next) {
1681 				IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1682 			}
1683 			m = rxq->rxq_mconsumer;
1684 			if ((rxq->rxq_mhead = m->m_next) == NULL)
1685 				rxq->rxq_mtail = &rxq->rxq_mhead;
1686 			rxq->rxq_mconsumer = m->m_next;
1687 			IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1688 		} else {
1689 			rxq->rxq_mconsumer = rxq->rxq_mconsumer->m_next;
1690 		}
1691 #ifdef ETSEC_DEBUG
1692 		rxq->rxq_mbufs[consumer - rxq->rxq_first] = NULL;
1693 #endif
1694 
1695 		/*
1696 		 * Wrap at the last entry!
1697 		 */
1698 		if (rxbd_flags & RXBD_W) {
1699 			KASSERT(consumer + 1 == rxq->rxq_last);
1700 			consumer = rxq->rxq_first;
1701 		} else {
1702 			consumer++;
1703 		}
1704 #ifdef ETSEC_DEBUG
1705 		KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1706 #endif
1707 	}
1708 
1709 	if (rxconsumed != 0)
1710 		rnd_add_uint32(&sc->rnd_source, rxconsumed);
1711 }
1712 
1713 static void
1714 pq3etsec_rxq_purge(
1715 	struct pq3etsec_softc *sc,
1716 	struct pq3etsec_rxqueue *rxq,
1717 	bool discard)
1718 {
1719 	struct mbuf *m;
1720 
1721 	if ((m = rxq->rxq_mhead) != NULL) {
1722 #ifdef ETSEC_DEBUG
1723 		memset(rxq->rxq_mbufs, 0, sizeof(rxq->rxq_mbufs));
1724 #endif
1725 
1726 		if (discard) {
1727 			pq3etsec_rx_map_unload(sc, m);
1728 			m_freem(m);
1729 		} else {
1730 			while (m != NULL) {
1731 				struct mbuf *m0 = m->m_next;
1732 				m->m_next = NULL;
1733 				IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1734 				m = m0;
1735 			}
1736 		}
1737 	}
1738 
1739 	rxq->rxq_mconsumer = NULL;
1740 	rxq->rxq_mhead = NULL;
1741 	rxq->rxq_mtail = &rxq->rxq_mhead;
1742 	rxq->rxq_inuse = 0;
1743 }
1744 
1745 static void
1746 pq3etsec_rxq_reset(
1747 	struct pq3etsec_softc *sc,
1748 	struct pq3etsec_rxqueue *rxq)
1749 {
1750 	/*
1751 	 * sync all the descriptors
1752 	 */
1753 	pq3etsec_rxq_desc_postsync(sc, rxq, rxq->rxq_first,
1754 	    rxq->rxq_last - rxq->rxq_first);
1755 
1756 	/*
1757 	 * Make sure we own all descriptors in the ring.
1758 	 */
1759 	volatile struct rxbd *rxbd;
1760 	for (rxbd = rxq->rxq_first; rxbd < rxq->rxq_last - 1; rxbd++) {
1761 		rxbd->rxbd_flags = RXBD_I;
1762 	}
1763 
1764 	/*
1765 	 * Last descriptor has the wrap flag.
1766 	 */
1767 	rxbd->rxbd_flags = RXBD_W | RXBD_I;
1768 
1769 	/*
1770 	 * Reset the producer consumer indexes.
1771 	 */
1772 	rxq->rxq_consumer = rxq->rxq_first;
1773 	rxq->rxq_producer = rxq->rxq_first;
1774 	rxq->rxq_inuse = 0;
1775 	if (rxq->rxq_threshold < ETSEC_MINRXMBUFS)
1776 		rxq->rxq_threshold = ETSEC_MINRXMBUFS;
1777 
1778 	sc->sc_imask |= IEVENT_RXF | IEVENT_BSY;
1779 
1780 	/*
1781 	 * Restart the transmit at the first descriptor
1782 	 */
1783 	etsec_write(sc, rxq->rxq_reg_rbase, rxq->rxq_descmap->dm_segs->ds_addr);
1784 }
1785 
1786 static int
1787 pq3etsec_rxq_attach(
1788 	struct pq3etsec_softc *sc,
1789 	struct pq3etsec_rxqueue *rxq,
1790 	u_int qno)
1791 {
1792 	size_t map_size = PAGE_SIZE;
1793 	size_t desc_count = map_size / sizeof(struct rxbd);
1794 	int error;
1795 	void *descs;
1796 
1797 	error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1798 	   &rxq->rxq_descmap_seg, &rxq->rxq_descmap, &descs);
1799 	if (error)
1800 		return error;
1801 
1802 	memset(descs, 0, map_size);
1803 	rxq->rxq_first = descs;
1804 	rxq->rxq_last = rxq->rxq_first + desc_count;
1805 	rxq->rxq_consumer = descs;
1806 	rxq->rxq_producer = descs;
1807 
1808 	pq3etsec_rxq_purge(sc, rxq, true);
1809 	pq3etsec_rxq_reset(sc, rxq);
1810 
1811 	rxq->rxq_reg_rbase = RBASEn(qno);
1812 	rxq->rxq_qmask = RSTAT_QHLTn(qno) | RSTAT_RXFn(qno);
1813 
1814 	return 0;
1815 }
1816 
1817 static bool
1818 pq3etsec_txq_active_p(
1819 	struct pq3etsec_softc * const sc,
1820 	struct pq3etsec_txqueue *txq)
1821 {
1822 	return !IF_IS_EMPTY(&txq->txq_mbufs);
1823 }
1824 
1825 static bool
1826 pq3etsec_txq_fillable_p(
1827 	struct pq3etsec_softc * const sc,
1828 	struct pq3etsec_txqueue *txq)
1829 {
1830 	return txq->txq_free >= txq->txq_threshold;
1831 }
1832 
1833 static int
1834 pq3etsec_txq_attach(
1835 	struct pq3etsec_softc *sc,
1836 	struct pq3etsec_txqueue *txq,
1837 	u_int qno)
1838 {
1839 	size_t map_size = PAGE_SIZE;
1840 	size_t desc_count = map_size / sizeof(struct txbd);
1841 	int error;
1842 	void *descs;
1843 
1844 	error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1845 	   &txq->txq_descmap_seg, &txq->txq_descmap, &descs);
1846 	if (error)
1847 		return error;
1848 
1849 	memset(descs, 0, map_size);
1850 	txq->txq_first = descs;
1851 	txq->txq_last = txq->txq_first + desc_count;
1852 	txq->txq_consumer = descs;
1853 	txq->txq_producer = descs;
1854 
1855 	IFQ_SET_MAXLEN(&txq->txq_mbufs, ETSEC_MAXTXMBUFS);
1856 
1857 	txq->txq_reg_tbase = TBASEn(qno);
1858 	txq->txq_qmask = TSTAT_THLTn(qno) | TSTAT_TXFn(qno);
1859 
1860 	pq3etsec_txq_reset(sc, txq);
1861 
1862 	return 0;
1863 }
1864 
1865 static int
1866 pq3etsec_txq_map_load(
1867 	struct pq3etsec_softc *sc,
1868 	struct pq3etsec_txqueue *txq,
1869 	struct mbuf *m)
1870 {
1871 	bus_dmamap_t map;
1872 	int error;
1873 
1874 	map = M_GETCTX(m, bus_dmamap_t);
1875 	if (map != NULL)
1876 		return 0;
1877 
1878 	map = pq3etsec_mapcache_get(sc, sc->sc_tx_mapcache);
1879 	if (map == NULL)
1880 		return ENOMEM;
1881 
1882 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1883 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1884 	if (error)
1885 		return error;
1886 
1887 	bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_pkthdr.len,
1888 	    BUS_DMASYNC_PREWRITE);
1889 	M_SETCTX(m, map);
1890 	return 0;
1891 }
1892 
1893 static void
1894 pq3etsec_txq_map_unload(
1895 	struct pq3etsec_softc *sc,
1896 	struct pq3etsec_txqueue *txq,
1897 	struct mbuf *m)
1898 {
1899 	KASSERT(m);
1900 	bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1901 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1902 	    BUS_DMASYNC_POSTWRITE);
1903 	bus_dmamap_unload(sc->sc_dmat, map);
1904 	pq3etsec_mapcache_put(sc, sc->sc_tx_mapcache, map);
1905 }
1906 
1907 static bool
1908 pq3etsec_txq_produce(
1909 	struct pq3etsec_softc *sc,
1910 	struct pq3etsec_txqueue *txq,
1911 	struct mbuf *m)
1912 {
1913 	bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1914 
1915 	if (map->dm_nsegs > txq->txq_free)
1916 		return false;
1917 
1918 	/*
1919 	 * TCP Offload flag must be set in the first descriptor.
1920 	 */
1921 	volatile struct txbd *producer = txq->txq_producer;
1922 	uint16_t last_flags = TXBD_L;
1923 	uint16_t first_flags = TXBD_R
1924 	    | ((m->m_flags & M_HASFCB) ? TXBD_TOE : 0);
1925 
1926 	/*
1927 	 * If we've produced enough descriptors without consuming any
1928 	 * we need to ask for an interrupt to reclaim some.
1929 	 */
1930 	txq->txq_lastintr += map->dm_nsegs;
1931 	if (ETSEC_IC_TX_ENABLED(sc)
1932 	    || txq->txq_lastintr >= txq->txq_threshold
1933 	    || txq->txq_mbufs.ifq_len + 1 == txq->txq_mbufs.ifq_maxlen) {
1934 		txq->txq_lastintr = 0;
1935 		last_flags |= TXBD_I;
1936 	}
1937 
1938 #ifdef ETSEC_DEBUG
1939 	KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1940 #endif
1941 	KASSERT(producer != txq->txq_last);
1942 	producer->txbd_bufptr = map->dm_segs[0].ds_addr;
1943 	producer->txbd_len = map->dm_segs[0].ds_len;
1944 
1945 	if (map->dm_nsegs > 1) {
1946 		volatile struct txbd *start = producer + 1;
1947 		size_t count = map->dm_nsegs - 1;
1948 		for (u_int i = 1; i < map->dm_nsegs; i++) {
1949 			if (__predict_false(++producer == txq->txq_last)) {
1950 				producer = txq->txq_first;
1951 				if (start < txq->txq_last) {
1952 					pq3etsec_txq_desc_presync(sc, txq,
1953 					    start, txq->txq_last - start);
1954 					count -= txq->txq_last - start;
1955 				}
1956 				start = txq->txq_first;
1957 			}
1958 #ifdef ETSEC_DEBUG
1959 			KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1960 #endif
1961 			producer->txbd_bufptr = map->dm_segs[i].ds_addr;
1962 			producer->txbd_len = map->dm_segs[i].ds_len;
1963 			producer->txbd_flags = TXBD_R
1964 			    | (producer->txbd_flags & TXBD_W)
1965 			    | (i == map->dm_nsegs - 1 ? last_flags : 0);
1966 #if 0
1967 			printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__, producer - txq->txq_first,
1968 			    producer->txbd_flags, producer->txbd_len, producer->txbd_bufptr);
1969 #endif
1970 		}
1971 		pq3etsec_txq_desc_presync(sc, txq, start, count);
1972 	} else {
1973 		first_flags |= last_flags;
1974 	}
1975 
1976 	membar_producer();
1977 	txq->txq_producer->txbd_flags =
1978 	    first_flags | (txq->txq_producer->txbd_flags & TXBD_W);
1979 #if 0
1980 	printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__,
1981 	    txq->txq_producer - txq->txq_first, txq->txq_producer->txbd_flags,
1982 	    txq->txq_producer->txbd_len, txq->txq_producer->txbd_bufptr);
1983 #endif
1984 	pq3etsec_txq_desc_presync(sc, txq, txq->txq_producer, 1);
1985 
1986 	/*
1987 	 * Reduce free count by the number of segments we consumed.
1988 	 */
1989 	txq->txq_free -= map->dm_nsegs;
1990 	KASSERT(map->dm_nsegs == 1 || txq->txq_producer != producer);
1991 	KASSERT(map->dm_nsegs == 1 || (txq->txq_producer->txbd_flags & TXBD_L) == 0);
1992 	KASSERT(producer->txbd_flags & TXBD_L);
1993 #ifdef ETSEC_DEBUG
1994 	txq->txq_lmbufs[producer - txq->txq_first] = m;
1995 #endif
1996 
1997 #if 0
1998 	printf("%s: mbuf %p: produced a %u byte packet in %u segments (%u..%u)\n",
1999 	    __func__, m, m->m_pkthdr.len, map->dm_nsegs,
2000 	    txq->txq_producer - txq->txq_first, producer - txq->txq_first);
2001 #endif
2002 
2003 	if (++producer == txq->txq_last)
2004 		txq->txq_producer = txq->txq_first;
2005 	else
2006 		txq->txq_producer = producer;
2007 	IF_ENQUEUE(&txq->txq_mbufs, m);
2008 
2009 	/*
2010 	 * Restart the transmitter.
2011 	 */
2012 	etsec_write(sc, TSTAT, txq->txq_qmask & TSTAT_THLT);	/* W1C */
2013 
2014 	return true;
2015 }
2016 
2017 static void
2018 pq3etsec_tx_offload(
2019 	struct pq3etsec_softc *sc,
2020 	struct pq3etsec_txqueue *txq,
2021 	struct mbuf **mp)
2022 {
2023 	struct mbuf *m = *mp;
2024 	u_int csum_flags = m->m_pkthdr.csum_flags;
2025 	bool have_vtag;
2026 	uint16_t vtag;
2027 
2028 	KASSERT(m->m_flags & M_PKTHDR);
2029 
2030 	have_vtag = vlan_has_tag(m);
2031 	vtag = (have_vtag) ? vlan_get_tag(m) : 0;
2032 
2033 	/*
2034 	 * Let see if we are doing any offload first.
2035 	 */
2036 	if (csum_flags == 0 && !have_vtag) {
2037 		m->m_flags &= ~M_HASFCB;
2038 		return;
2039 	}
2040 
2041 	uint16_t flags = 0;
2042 	if (csum_flags & M_CSUM_IP) {
2043 		flags |= TXFCB_IP
2044 		    | ((csum_flags & M_CSUM_IP6) ? TXFCB_IP6 : 0)
2045 		    | ((csum_flags & M_CSUM_TUP) ? TXFCB_TUP : 0)
2046 		    | ((csum_flags & M_CSUM_UDP) ? TXFCB_UDP : 0)
2047 		    | ((csum_flags & M_CSUM_CIP) ? TXFCB_CIP : 0)
2048 		    | ((csum_flags & M_CSUM_CTU) ? TXFCB_CTU : 0);
2049 	}
2050 	if (have_vtag) {
2051 		flags |= TXFCB_VLN;
2052 	}
2053 	if (flags == 0) {
2054 		m->m_flags &= ~M_HASFCB;
2055 		return;
2056 	}
2057 
2058 	struct txfcb fcb;
2059 	fcb.txfcb_flags = flags;
2060 	if (csum_flags & M_CSUM_IPv4)
2061 		fcb.txfcb_l4os = M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
2062 	else
2063 		fcb.txfcb_l4os = M_CSUM_DATA_IPv6_IPHL(m->m_pkthdr.csum_data);
2064 	fcb.txfcb_l3os = ETHER_HDR_LEN;
2065 	fcb.txfcb_phcs = 0;
2066 	fcb.txfcb_vlctl = vtag;
2067 
2068 #if 0
2069 	printf("%s: csum_flags=%#x: txfcb flags=%#x lsos=%u l4os=%u phcs=%u vlctl=%#x\n",
2070 	    __func__, csum_flags, fcb.txfcb_flags, fcb.txfcb_l3os, fcb.txfcb_l4os,
2071 	    fcb.txfcb_phcs, fcb.txfcb_vlctl);
2072 #endif
2073 
2074 	if (M_LEADINGSPACE(m) >= sizeof(fcb)) {
2075 		m->m_data -= sizeof(fcb);
2076 		m->m_len += sizeof(fcb);
2077 	} else if (!(m->m_flags & M_EXT) && MHLEN - m->m_len >= sizeof(fcb)) {
2078 		memmove(m->m_pktdat + sizeof(fcb), m->m_data, m->m_len);
2079 		m->m_data = m->m_pktdat;
2080 		m->m_len += sizeof(fcb);
2081 	} else {
2082 		struct mbuf *mn;
2083 		MGET(mn, M_DONTWAIT, m->m_type);
2084 		if (mn == NULL) {
2085 			if (csum_flags & M_CSUM_IP4) {
2086 #ifdef INET
2087 				in_undefer_cksum(m, ETHER_HDR_LEN,
2088 				    csum_flags & M_CSUM_IP4);
2089 #else
2090 				panic("%s: impossible M_CSUM flags %#x",
2091 				    device_xname(sc->sc_dev), csum_flags);
2092 #endif
2093 			} else if (csum_flags & M_CSUM_IP6) {
2094 #ifdef INET6
2095 				in6_undefer_cksum(m, ETHER_HDR_LEN,
2096 				    csum_flags & M_CSUM_IP6);
2097 #else
2098 				panic("%s: impossible M_CSUM flags %#x",
2099 				    device_xname(sc->sc_dev), csum_flags);
2100 #endif
2101 			}
2102 
2103 			m->m_flags &= ~M_HASFCB;
2104 			return;
2105 		}
2106 
2107 		m_move_pkthdr(mn, m);
2108 		mn->m_next = m;
2109 		m = mn;
2110 		m_align(m, sizeof(fcb));
2111 		m->m_len = sizeof(fcb);
2112 		*mp = m;
2113 	}
2114 	m->m_pkthdr.len += sizeof(fcb);
2115 	m->m_flags |= M_HASFCB;
2116 	*mtod(m, struct txfcb *) = fcb;
2117 	return;
2118 }
2119 
2120 static bool
2121 pq3etsec_txq_enqueue(
2122 	struct pq3etsec_softc *sc,
2123 	struct pq3etsec_txqueue *txq)
2124 {
2125 	for (;;) {
2126 		if (IF_QFULL(&txq->txq_mbufs))
2127 			return false;
2128 		struct mbuf *m = txq->txq_next;
2129 		if (m == NULL) {
2130 			int s = splnet();
2131 			IFQ_DEQUEUE(&sc->sc_if.if_snd, m);
2132 			splx(s);
2133 			if (m == NULL)
2134 				return true;
2135 			M_SETCTX(m, NULL);
2136 			pq3etsec_tx_offload(sc, txq, &m);
2137 		} else {
2138 			txq->txq_next = NULL;
2139 		}
2140 		int error = pq3etsec_txq_map_load(sc, txq, m);
2141 		if (error) {
2142 			aprint_error_dev(sc->sc_dev,
2143 			    "discarded packet due to "
2144 			    "dmamap load failure: %d\n", error);
2145 			m_freem(m);
2146 			continue;
2147 		}
2148 		KASSERT(txq->txq_next == NULL);
2149 		if (!pq3etsec_txq_produce(sc, txq, m)) {
2150 			txq->txq_next = m;
2151 			return false;
2152 		}
2153 		KASSERT(txq->txq_next == NULL);
2154 	}
2155 }
2156 
2157 static bool
2158 pq3etsec_txq_consume(
2159 	struct pq3etsec_softc *sc,
2160 	struct pq3etsec_txqueue *txq)
2161 {
2162 	struct ifnet * const ifp = &sc->sc_if;
2163 	volatile struct txbd *consumer = txq->txq_consumer;
2164 	size_t txfree = 0;
2165 	bool ret;
2166 
2167 #if 0
2168 	printf("%s: entry: free=%zu\n", __func__, txq->txq_free);
2169 #endif
2170 	etsec_write(sc, TSTAT, TSTAT_TXF & txq->txq_qmask);
2171 
2172 	for (;;) {
2173 		if (consumer == txq->txq_producer) {
2174 			txq->txq_consumer = consumer;
2175 			txq->txq_free += txfree;
2176 			txq->txq_lastintr -= uimin(txq->txq_lastintr, txfree);
2177 			KASSERT(txq->txq_lastintr == 0);
2178 			KASSERT(txq->txq_free ==
2179 			    txq->txq_last - txq->txq_first - 1);
2180 			ret = true;
2181 			break;
2182 		}
2183 		pq3etsec_txq_desc_postsync(sc, txq, consumer, 1);
2184 		const uint16_t txbd_flags = consumer->txbd_flags;
2185 		if (txbd_flags & TXBD_R) {
2186 			txq->txq_consumer = consumer;
2187 			txq->txq_free += txfree;
2188 			txq->txq_lastintr -= uimin(txq->txq_lastintr, txfree);
2189 			ret = pq3etsec_txq_fillable_p(sc, txq);
2190 			break;
2191 		}
2192 
2193 		/*
2194 		 * If this is the last descriptor in the chain, get the
2195 		 * mbuf, free its dmamap, and free the mbuf chain itself.
2196 		 */
2197 		if (txbd_flags & TXBD_L) {
2198 			struct mbuf *m;
2199 
2200 			IF_DEQUEUE(&txq->txq_mbufs, m);
2201 #ifdef ETSEC_DEBUG
2202 			KASSERTMSG(
2203 			    m == txq->txq_lmbufs[consumer-txq->txq_first],
2204 			    "%s: %p [%u]: flags %#x m (%p) != %p (%p)",
2205 			    __func__, consumer, consumer - txq->txq_first,
2206 			    txbd_flags, m,
2207 			    &txq->txq_lmbufs[consumer-txq->txq_first],
2208 			    txq->txq_lmbufs[consumer-txq->txq_first]);
2209 #endif
2210 			KASSERT(m);
2211 			pq3etsec_txq_map_unload(sc, txq, m);
2212 #if 0
2213 			printf("%s: mbuf %p: consumed a %u byte packet\n",
2214 			    __func__, m, m->m_pkthdr.len);
2215 #endif
2216 			if (m->m_flags & M_HASFCB)
2217 				m_adj(m, sizeof(struct txfcb));
2218 			bpf_mtap(ifp, m, BPF_D_OUT);
2219 			net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
2220 			if_statinc_ref(ifp, nsr, if_opackets);
2221 			if_statadd_ref(ifp, nsr, if_obytes, m->m_pkthdr.len);
2222 			if (m->m_flags & M_MCAST)
2223 				if_statinc_ref(ifp, nsr, if_omcasts);
2224 			if (txbd_flags & TXBD_ERRORS)
2225 				if_statinc_ref(ifp, nsr, if_oerrors);
2226 			IF_STAT_PUTREF(ifp);
2227 			m_freem(m);
2228 #ifdef ETSEC_DEBUG
2229 			txq->txq_lmbufs[consumer - txq->txq_first] = NULL;
2230 #endif
2231 		} else {
2232 #ifdef ETSEC_DEBUG
2233 			KASSERT(txq->txq_lmbufs[consumer-txq->txq_first] == NULL);
2234 #endif
2235 		}
2236 
2237 		/*
2238 		 * We own this packet again.  Clear all flags except wrap.
2239 		 */
2240 		txfree++;
2241 		//consumer->txbd_flags = txbd_flags & TXBD_W;
2242 
2243 		/*
2244 		 * Wrap at the last entry!
2245 		 */
2246 		if (txbd_flags & TXBD_W) {
2247 			KASSERT(consumer + 1 == txq->txq_last);
2248 			consumer = txq->txq_first;
2249 		} else {
2250 			consumer++;
2251 			KASSERT(consumer < txq->txq_last);
2252 		}
2253 	}
2254 
2255 	if (txfree != 0)
2256 		rnd_add_uint32(&sc->rnd_source, txfree);
2257 	return ret;
2258 }
2259 
2260 static void
2261 pq3etsec_txq_purge(
2262 	struct pq3etsec_softc *sc,
2263 	struct pq3etsec_txqueue *txq)
2264 {
2265 	struct mbuf *m;
2266 	KASSERT((etsec_read(sc, MACCFG1) & MACCFG1_TX_EN) == 0);
2267 
2268 	for (;;) {
2269 		IF_DEQUEUE(&txq->txq_mbufs, m);
2270 		if (m == NULL)
2271 			break;
2272 		pq3etsec_txq_map_unload(sc, txq, m);
2273 		m_freem(m);
2274 	}
2275 	if ((m = txq->txq_next) != NULL) {
2276 		txq->txq_next = NULL;
2277 		pq3etsec_txq_map_unload(sc, txq, m);
2278 		m_freem(m);
2279 	}
2280 #ifdef ETSEC_DEBUG
2281 	memset(txq->txq_lmbufs, 0, sizeof(txq->txq_lmbufs));
2282 #endif
2283 }
2284 
2285 static void
2286 pq3etsec_txq_reset(
2287 	struct pq3etsec_softc *sc,
2288 	struct pq3etsec_txqueue *txq)
2289 {
2290 	/*
2291 	 * sync all the descriptors
2292 	 */
2293 	pq3etsec_txq_desc_postsync(sc, txq, txq->txq_first,
2294 	    txq->txq_last - txq->txq_first);
2295 
2296 	/*
2297 	 * Make sure we own all descriptors in the ring.
2298 	 */
2299 	volatile struct txbd *txbd;
2300 	for (txbd = txq->txq_first; txbd < txq->txq_last - 1; txbd++) {
2301 		txbd->txbd_flags = 0;
2302 	}
2303 
2304 	/*
2305 	 * Last descriptor has the wrap flag.
2306 	 */
2307 	txbd->txbd_flags = TXBD_W;
2308 
2309 	/*
2310 	 * Reset the producer consumer indexes.
2311 	 */
2312 	txq->txq_consumer = txq->txq_first;
2313 	txq->txq_producer = txq->txq_first;
2314 	txq->txq_free = txq->txq_last - txq->txq_first - 1;
2315 	txq->txq_threshold = txq->txq_free / 2;
2316 	txq->txq_lastintr = 0;
2317 
2318 	/*
2319 	 * What do we want to get interrupted on?
2320 	 */
2321 	sc->sc_imask |= IEVENT_TXF | IEVENT_TXE;
2322 
2323 	/*
2324 	 * Restart the transmit at the first descriptor
2325 	 */
2326 	etsec_write(sc, txq->txq_reg_tbase, txq->txq_descmap->dm_segs->ds_addr);
2327 }
2328 
2329 static void
2330 pq3etsec_ifstart(struct ifnet *ifp)
2331 {
2332 	struct pq3etsec_softc * const sc = ifp->if_softc;
2333 
2334 	if (__predict_false((ifp->if_flags & IFF_RUNNING) == 0)) {
2335 		return;
2336 	}
2337 
2338 	atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2339 	softint_schedule(sc->sc_soft_ih);
2340 }
2341 
2342 static void
2343 pq3etsec_tx_error(
2344 	struct pq3etsec_softc * const sc)
2345 {
2346 	struct pq3etsec_txqueue * const txq = &sc->sc_txq;
2347 
2348 	pq3etsec_txq_consume(sc, txq);
2349 
2350 	if (sc->sc_txerrors
2351 	    & (IEVENT_LC | IEVENT_CRL | IEVENT_XFUN | IEVENT_BABT)) {
2352 	} else if (sc->sc_txerrors & IEVENT_EBERR) {
2353 	}
2354 
2355 	if (pq3etsec_txq_active_p(sc, txq))
2356 		etsec_write(sc, TSTAT, TSTAT_THLT & txq->txq_qmask);
2357 	if (!pq3etsec_txq_enqueue(sc, txq)) {
2358 		sc->sc_ev_tx_stall.ev_count++;
2359 	}
2360 
2361 	sc->sc_txerrors = 0;
2362 }
2363 
2364 int
2365 pq3etsec_tx_intr(void *arg)
2366 {
2367 	struct pq3etsec_softc * const sc = arg;
2368 
2369 	mutex_enter(sc->sc_hwlock);
2370 
2371 	sc->sc_ev_tx_intr.ev_count++;
2372 
2373 	uint32_t ievent = etsec_read(sc, IEVENT);
2374 	ievent &= IEVENT_TXF | IEVENT_TXB;
2375 	etsec_write(sc, IEVENT, ievent);	/* write 1 to clear */
2376 
2377 #if 0
2378 	aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2379 	    __func__, ievent, etsec_read(sc, IMASK));
2380 #endif
2381 
2382 	if (ievent == 0) {
2383 		mutex_exit(sc->sc_hwlock);
2384 		return 0;
2385 	}
2386 
2387 	sc->sc_imask &= ~(IEVENT_TXF | IEVENT_TXB);
2388 	atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2389 	etsec_write(sc, IMASK, sc->sc_imask);
2390 	softint_schedule(sc->sc_soft_ih);
2391 
2392 	mutex_exit(sc->sc_hwlock);
2393 
2394 	return 1;
2395 }
2396 
2397 int
2398 pq3etsec_rx_intr(void *arg)
2399 {
2400 	struct pq3etsec_softc * const sc = arg;
2401 
2402 	mutex_enter(sc->sc_hwlock);
2403 
2404 	sc->sc_ev_rx_intr.ev_count++;
2405 
2406 	uint32_t ievent = etsec_read(sc, IEVENT);
2407 	ievent &= IEVENT_RXF | IEVENT_RXB;
2408 	etsec_write(sc, IEVENT, ievent);	/* write 1 to clear */
2409 	if (ievent == 0) {
2410 		mutex_exit(sc->sc_hwlock);
2411 		return 0;
2412 	}
2413 
2414 #if 0
2415 	aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x\n", __func__, ievent);
2416 #endif
2417 
2418 	sc->sc_imask &= ~(IEVENT_RXF | IEVENT_RXB);
2419 	atomic_or_uint(&sc->sc_soft_flags, SOFT_RXINTR);
2420 	etsec_write(sc, IMASK, sc->sc_imask);
2421 	softint_schedule(sc->sc_soft_ih);
2422 
2423 	mutex_exit(sc->sc_hwlock);
2424 
2425 	return 1;
2426 }
2427 
2428 int
2429 pq3etsec_error_intr(void *arg)
2430 {
2431 	struct pq3etsec_softc * const sc = arg;
2432 
2433 	mutex_enter(sc->sc_hwlock);
2434 
2435 	sc->sc_ev_error_intr.ev_count++;
2436 
2437 	for (int rv = 0, soft_flags = 0;; rv = 1) {
2438 		uint32_t ievent = etsec_read(sc, IEVENT);
2439 		ievent &= ~(IEVENT_RXF | IEVENT_RXB | IEVENT_TXF | IEVENT_TXB);
2440 		etsec_write(sc, IEVENT, ievent);	/* write 1 to clear */
2441 		if (ievent == 0) {
2442 			if (soft_flags) {
2443 				atomic_or_uint(&sc->sc_soft_flags, soft_flags);
2444 				softint_schedule(sc->sc_soft_ih);
2445 			}
2446 			mutex_exit(sc->sc_hwlock);
2447 			return rv;
2448 		}
2449 #if 0
2450 		aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2451 		    __func__, ievent, etsec_read(sc, IMASK));
2452 #endif
2453 
2454 		if (ievent & (IEVENT_GRSC | IEVENT_GTSC)) {
2455 			sc->sc_imask &= ~(IEVENT_GRSC | IEVENT_GTSC);
2456 			etsec_write(sc, IMASK, sc->sc_imask);
2457 			wakeup(sc);
2458 		}
2459 		if (ievent & (IEVENT_MMRD | IEVENT_MMWR)) {
2460 			sc->sc_imask &= ~(IEVENT_MMRD | IEVENT_MMWR);
2461 			etsec_write(sc, IMASK, sc->sc_imask);
2462 			wakeup(&sc->sc_mii);
2463 		}
2464 		if (ievent & IEVENT_BSY) {
2465 			soft_flags |= SOFT_RXBSY;
2466 			sc->sc_imask &= ~IEVENT_BSY;
2467 			etsec_write(sc, IMASK, sc->sc_imask);
2468 		}
2469 		if (ievent & IEVENT_TXE) {
2470 			soft_flags |= SOFT_TXERROR;
2471 			sc->sc_imask &= ~IEVENT_TXE;
2472 			sc->sc_txerrors |= ievent;
2473 		}
2474 		if (ievent & IEVENT_TXC) {
2475 			sc->sc_ev_tx_pause.ev_count++;
2476 		}
2477 		if (ievent & IEVENT_RXC) {
2478 			sc->sc_ev_rx_pause.ev_count++;
2479 		}
2480 		if (ievent & IEVENT_DPE) {
2481 			soft_flags |= SOFT_RESET;
2482 			sc->sc_imask &= ~IEVENT_DPE;
2483 			etsec_write(sc, IMASK, sc->sc_imask);
2484 		}
2485 	}
2486 }
2487 
2488 void
2489 pq3etsec_soft_intr(void *arg)
2490 {
2491 	struct pq3etsec_softc * const sc = arg;
2492 	struct ifnet * const ifp = &sc->sc_if;
2493 	uint32_t imask = 0;
2494 
2495 	mutex_enter(sc->sc_lock);
2496 
2497 	u_int soft_flags = atomic_swap_uint(&sc->sc_soft_flags, 0);
2498 
2499 	sc->sc_ev_soft_intr.ev_count++;
2500 
2501 	if (soft_flags & SOFT_RESET) {
2502 		int s = splnet();
2503 		pq3etsec_ifinit(ifp);
2504 		splx(s);
2505 		soft_flags = 0;
2506 	}
2507 
2508 	if (soft_flags & SOFT_RXBSY) {
2509 		struct pq3etsec_rxqueue * const rxq = &sc->sc_rxq;
2510 		size_t threshold = 5 * rxq->rxq_threshold / 4;
2511 		if (threshold >= rxq->rxq_last - rxq->rxq_first) {
2512 			threshold = rxq->rxq_last - rxq->rxq_first - 1;
2513 		} else {
2514 			imask |= IEVENT_BSY;
2515 		}
2516 		aprint_normal_dev(sc->sc_dev,
2517 		    "increasing receive buffers from %zu to %zu\n",
2518 		    rxq->rxq_threshold, threshold);
2519 		rxq->rxq_threshold = threshold;
2520 	}
2521 
2522 	if ((soft_flags & SOFT_TXINTR)
2523 	    || pq3etsec_txq_active_p(sc, &sc->sc_txq)) {
2524 		/*
2525 		 * Let's do what we came here for.  Consume transmitted
2526 		 * packets off the transmit ring.
2527 		 */
2528 		if (!pq3etsec_txq_consume(sc, &sc->sc_txq)
2529 		    || !pq3etsec_txq_enqueue(sc, &sc->sc_txq)) {
2530 			sc->sc_ev_tx_stall.ev_count++;
2531 		}
2532 		imask |= IEVENT_TXF;
2533 	}
2534 
2535 	if (soft_flags & (SOFT_RXINTR | SOFT_RXBSY)) {
2536 		/* Let's consume */
2537 		pq3etsec_rxq_consume(sc, &sc->sc_rxq);
2538 		imask |= IEVENT_RXF;
2539 	}
2540 
2541 	if (soft_flags & SOFT_TXERROR) {
2542 		pq3etsec_tx_error(sc);
2543 		imask |= IEVENT_TXE;
2544 	}
2545 
2546 	if (ifp->if_flags & IFF_RUNNING) {
2547 		pq3etsec_rxq_produce(sc, &sc->sc_rxq);
2548 		mutex_spin_enter(sc->sc_hwlock);
2549 		sc->sc_imask |= imask;
2550 		etsec_write(sc, IMASK, sc->sc_imask);
2551 		mutex_spin_exit(sc->sc_hwlock);
2552 	} else {
2553 		KASSERT((soft_flags & SOFT_RXBSY) == 0);
2554 	}
2555 
2556 	mutex_exit(sc->sc_lock);
2557 }
2558 
2559 static void
2560 pq3etsec_mii_tick(void *arg)
2561 {
2562 	struct pq3etsec_softc * const sc = arg;
2563 	mutex_enter(sc->sc_lock);
2564 	callout_ack(&sc->sc_mii_callout);
2565 	sc->sc_ev_mii_ticks.ev_count++;
2566 #ifdef DEBUG
2567 	uint64_t now = mftb();
2568 	if (now - sc->sc_mii_last_tick < cpu_timebase - 5000) {
2569 		aprint_debug_dev(sc->sc_dev, "%s: diff=%"PRIu64"\n",
2570 		    __func__, now - sc->sc_mii_last_tick);
2571 		callout_stop(&sc->sc_mii_callout);
2572 	}
2573 #endif
2574 	mii_tick(&sc->sc_mii);
2575 	int s = splnet();
2576 	if (sc->sc_soft_flags & SOFT_RESET)
2577 		softint_schedule(sc->sc_soft_ih);
2578 	splx(s);
2579 	callout_schedule(&sc->sc_mii_callout, hz);
2580 #ifdef DEBUG
2581 	sc->sc_mii_last_tick = now;
2582 #endif
2583 	mutex_exit(sc->sc_lock);
2584 }
2585 
2586 static void
2587 pq3etsec_set_ic_rx(struct pq3etsec_softc *sc)
2588 {
2589 	uint32_t reg;
2590 
2591 	if (ETSEC_IC_RX_ENABLED(sc)) {
2592 		reg = RXIC_ICEN;
2593 		reg |= RXIC_ICFT_SET(sc->sc_ic_rx_count);
2594 		reg |= RXIC_ICTT_SET(sc->sc_ic_rx_time);
2595 	} else {
2596 		/* Disable RX interrupt coalescing */
2597 		reg = 0;
2598 	}
2599 
2600 	etsec_write(sc, RXIC, reg);
2601 }
2602 
2603 static void
2604 pq3etsec_set_ic_tx(struct pq3etsec_softc *sc)
2605 {
2606 	uint32_t reg;
2607 
2608 	if (ETSEC_IC_TX_ENABLED(sc)) {
2609 		reg = TXIC_ICEN;
2610 		reg |= TXIC_ICFT_SET(sc->sc_ic_tx_count);
2611 		reg |= TXIC_ICTT_SET(sc->sc_ic_tx_time);
2612 	} else {
2613 		/* Disable TX interrupt coalescing */
2614 		reg = 0;
2615 	}
2616 
2617 	etsec_write(sc, TXIC, reg);
2618 }
2619 
2620 /*
2621  * sysctl
2622  */
2623 static int
2624 pq3etsec_sysctl_ic_time_helper(SYSCTLFN_ARGS, int *valuep)
2625 {
2626 	struct sysctlnode node = *rnode;
2627 	struct pq3etsec_softc *sc = rnode->sysctl_data;
2628 	int value = *valuep;
2629 	int error;
2630 
2631 	node.sysctl_data = &value;
2632 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2633 	if (error != 0 || newp == NULL)
2634 		return error;
2635 
2636 	if (value < 0 || value > 65535)
2637 		return EINVAL;
2638 
2639 	mutex_enter(sc->sc_lock);
2640 	*valuep = value;
2641 	if (valuep == &sc->sc_ic_rx_time)
2642 		pq3etsec_set_ic_rx(sc);
2643 	else
2644 		pq3etsec_set_ic_tx(sc);
2645 	mutex_exit(sc->sc_lock);
2646 
2647 	return 0;
2648 }
2649 
2650 static int
2651 pq3etsec_sysctl_ic_count_helper(SYSCTLFN_ARGS, int *valuep)
2652 {
2653 	struct sysctlnode node = *rnode;
2654 	struct pq3etsec_softc *sc = rnode->sysctl_data;
2655 	int value = *valuep;
2656 	int error;
2657 
2658 	node.sysctl_data = &value;
2659 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2660 	if (error != 0 || newp == NULL)
2661 		return error;
2662 
2663 	if (value < 0 || value > 255)
2664 		return EINVAL;
2665 
2666 	mutex_enter(sc->sc_lock);
2667 	*valuep = value;
2668 	if (valuep == &sc->sc_ic_rx_count)
2669 		pq3etsec_set_ic_rx(sc);
2670 	else
2671 		pq3etsec_set_ic_tx(sc);
2672 	mutex_exit(sc->sc_lock);
2673 
2674 	return 0;
2675 }
2676 
2677 static int
2678 pq3etsec_sysctl_ic_rx_time_helper(SYSCTLFN_ARGS)
2679 {
2680 	struct pq3etsec_softc *sc = rnode->sysctl_data;
2681 
2682 	return pq3etsec_sysctl_ic_time_helper(SYSCTLFN_CALL(rnode),
2683 	    &sc->sc_ic_rx_time);
2684 }
2685 
2686 static int
2687 pq3etsec_sysctl_ic_rx_count_helper(SYSCTLFN_ARGS)
2688 {
2689 	struct pq3etsec_softc *sc = rnode->sysctl_data;
2690 
2691 	return pq3etsec_sysctl_ic_count_helper(SYSCTLFN_CALL(rnode),
2692 	    &sc->sc_ic_rx_count);
2693 }
2694 
2695 static int
2696 pq3etsec_sysctl_ic_tx_time_helper(SYSCTLFN_ARGS)
2697 {
2698 	struct pq3etsec_softc *sc = rnode->sysctl_data;
2699 
2700 	return pq3etsec_sysctl_ic_time_helper(SYSCTLFN_CALL(rnode),
2701 	    &sc->sc_ic_tx_time);
2702 }
2703 
2704 static int
2705 pq3etsec_sysctl_ic_tx_count_helper(SYSCTLFN_ARGS)
2706 {
2707 	struct pq3etsec_softc *sc = rnode->sysctl_data;
2708 
2709 	return pq3etsec_sysctl_ic_count_helper(SYSCTLFN_CALL(rnode),
2710 	    &sc->sc_ic_tx_count);
2711 }
2712 
2713 static void pq3etsec_sysctl_setup(struct sysctllog **clog,
2714     struct pq3etsec_softc *sc)
2715 {
2716 	const struct sysctlnode *cnode, *rnode;
2717 
2718 	if (sysctl_createv(clog, 0, NULL, &rnode,
2719 	    CTLFLAG_PERMANENT,
2720 	    CTLTYPE_NODE, device_xname(sc->sc_dev),
2721 	    SYSCTL_DESCR("TSEC interface"),
2722 	    NULL, 0, NULL, 0,
2723 	    CTL_HW, CTL_CREATE, CTL_EOL) != 0)
2724 		goto bad;
2725 
2726 	if (sysctl_createv(clog, 0, &rnode, &rnode,
2727 	    CTLFLAG_PERMANENT,
2728 	    CTLTYPE_NODE, "int_coal",
2729 	    SYSCTL_DESCR("Interrupts coalescing"),
2730 	    NULL, 0, NULL, 0,
2731 	    CTL_CREATE, CTL_EOL) != 0)
2732 		goto bad;
2733 
2734 	if (sysctl_createv(clog, 0, &rnode, &cnode,
2735 	    CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2736 	    CTLTYPE_INT, "rx_time",
2737 	    SYSCTL_DESCR("RX time threshold (0-65535)"),
2738 	    pq3etsec_sysctl_ic_rx_time_helper, 0, (void *)sc, 0,
2739 	    CTL_CREATE, CTL_EOL) != 0)
2740 		goto bad;
2741 
2742 	if (sysctl_createv(clog, 0, &rnode, &cnode,
2743 	    CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2744 	    CTLTYPE_INT, "rx_count",
2745 	    SYSCTL_DESCR("RX frame count threshold (0-255)"),
2746 	    pq3etsec_sysctl_ic_rx_count_helper, 0, (void *)sc, 0,
2747 	    CTL_CREATE, CTL_EOL) != 0)
2748 		goto bad;
2749 
2750 	if (sysctl_createv(clog, 0, &rnode, &cnode,
2751 	    CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2752 	    CTLTYPE_INT, "tx_time",
2753 	    SYSCTL_DESCR("TX time threshold (0-65535)"),
2754 	    pq3etsec_sysctl_ic_tx_time_helper, 0, (void *)sc, 0,
2755 	    CTL_CREATE, CTL_EOL) != 0)
2756 		goto bad;
2757 
2758 	if (sysctl_createv(clog, 0, &rnode, &cnode,
2759 	    CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2760 	    CTLTYPE_INT, "tx_count",
2761 	    SYSCTL_DESCR("TX frame count threshold (0-255)"),
2762 	    pq3etsec_sysctl_ic_tx_count_helper, 0, (void *)sc, 0,
2763 	    CTL_CREATE, CTL_EOL) != 0)
2764 		goto bad;
2765 
2766 	return;
2767 
2768  bad:
2769 	aprint_error_dev(sc->sc_dev, "could not attach sysctl nodes\n");
2770 }
2771