xref: /netbsd-src/sys/arch/powerpc/booke/dev/pq3etsec.c (revision e89934bbf778a6d6d6894877c4da59d0c7835b0f)
1 /*	$NetBSD: pq3etsec.c,v 1.29 2016/12/15 09:28:04 ozaki-r Exp $	*/
2 /*-
3  * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to The NetBSD Foundation
7  * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8  * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9  *
10  * This material is based upon work supported by the Defense Advanced Research
11  * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12  * Contract No. N66001-09-C-2073.
13  * Approved for Public Release, Distribution Unlimited
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 #include "opt_inet.h"
38 #include "opt_mpc85xx.h"
39 #include "opt_multiprocessor.h"
40 #include "opt_net_mpsafe.h"
41 
42 #include <sys/cdefs.h>
43 
44 __KERNEL_RCSID(0, "$NetBSD: pq3etsec.c,v 1.29 2016/12/15 09:28:04 ozaki-r Exp $");
45 
46 #include <sys/param.h>
47 #include <sys/cpu.h>
48 #include <sys/device.h>
49 #include <sys/mbuf.h>
50 #include <sys/ioctl.h>
51 #include <sys/intr.h>
52 #include <sys/bus.h>
53 #include <sys/kernel.h>
54 #include <sys/kmem.h>
55 #include <sys/proc.h>
56 #include <sys/atomic.h>
57 #include <sys/callout.h>
58 #include <sys/sysctl.h>
59 
60 #include <net/if.h>
61 #include <net/if_dl.h>
62 #include <net/if_ether.h>
63 #include <net/if_media.h>
64 
65 #include <dev/mii/miivar.h>
66 
67 #include <net/bpf.h>
68 
69 #ifdef INET
70 #include <netinet/in.h>
71 #include <netinet/in_systm.h>
72 #include <netinet/ip.h>
73 #include <netinet/in_offload.h>
74 #endif /* INET */
75 #ifdef INET6
76 #include <netinet6/in6.h>
77 #include <netinet/ip6.h>
78 #endif
79 #include <netinet6/in6_offload.h>
80 
81 #include <powerpc/spr.h>
82 #include <powerpc/booke/spr.h>
83 
84 #include <powerpc/booke/cpuvar.h>
85 #include <powerpc/booke/e500var.h>
86 #include <powerpc/booke/e500reg.h>
87 #include <powerpc/booke/etsecreg.h>
88 
89 #define	M_HASFCB		M_LINK2	/* tx packet has FCB prepended */
90 
91 #define	ETSEC_MAXTXMBUFS	30
92 #define	ETSEC_NTXSEGS		30
93 #define	ETSEC_MAXRXMBUFS	511
94 #define	ETSEC_MINRXMBUFS	32
95 #define	ETSEC_NRXSEGS		1
96 
97 #define	IFCAP_RCTRL_IPCSEN	IFCAP_CSUM_IPv4_Rx
98 #define	IFCAP_RCTRL_TUCSEN	(IFCAP_CSUM_TCPv4_Rx\
99 				 |IFCAP_CSUM_UDPv4_Rx\
100 				 |IFCAP_CSUM_TCPv6_Rx\
101 				 |IFCAP_CSUM_UDPv6_Rx)
102 
103 #define	IFCAP_TCTRL_IPCSEN	IFCAP_CSUM_IPv4_Tx
104 #define	IFCAP_TCTRL_TUCSEN	(IFCAP_CSUM_TCPv4_Tx\
105 				 |IFCAP_CSUM_UDPv4_Tx\
106 				 |IFCAP_CSUM_TCPv6_Tx\
107 				 |IFCAP_CSUM_UDPv6_Tx)
108 
109 #define	IFCAP_ETSEC		(IFCAP_RCTRL_IPCSEN|IFCAP_RCTRL_TUCSEN\
110 				 |IFCAP_TCTRL_IPCSEN|IFCAP_TCTRL_TUCSEN)
111 
112 #define	M_CSUM_IP	(M_CSUM_CIP|M_CSUM_CTU)
113 #define	M_CSUM_IP6	(M_CSUM_TCPv6|M_CSUM_UDPv6)
114 #define	M_CSUM_TUP	(M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TCPv6|M_CSUM_UDPv6)
115 #define	M_CSUM_UDP	(M_CSUM_UDPv4|M_CSUM_UDPv6)
116 #define	M_CSUM_IP4	(M_CSUM_IPv4|M_CSUM_UDPv4|M_CSUM_TCPv4)
117 #define	M_CSUM_CIP	(M_CSUM_IPv4)
118 #define	M_CSUM_CTU	(M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TCPv6|M_CSUM_UDPv6)
119 
120 struct pq3etsec_txqueue {
121 	bus_dmamap_t txq_descmap;
122 	volatile struct txbd *txq_consumer;
123 	volatile struct txbd *txq_producer;
124 	volatile struct txbd *txq_first;
125 	volatile struct txbd *txq_last;
126 	struct ifqueue txq_mbufs;
127 	struct mbuf *txq_next;
128 #ifdef ETSEC_DEBUG
129 	struct mbuf *txq_lmbufs[512];
130 #endif
131 	uint32_t txq_qmask;
132 	uint32_t txq_free;
133 	uint32_t txq_threshold;
134 	uint32_t txq_lastintr;
135 	bus_size_t txq_reg_tbase;
136 	bus_dma_segment_t txq_descmap_seg;
137 };
138 
139 struct pq3etsec_rxqueue {
140 	bus_dmamap_t rxq_descmap;
141 	volatile struct rxbd *rxq_consumer;
142 	volatile struct rxbd *rxq_producer;
143 	volatile struct rxbd *rxq_first;
144 	volatile struct rxbd *rxq_last;
145 	struct mbuf *rxq_mhead;
146 	struct mbuf **rxq_mtail;
147 	struct mbuf *rxq_mconsumer;
148 #ifdef ETSEC_DEBUG
149 	struct mbuf *rxq_mbufs[512];
150 #endif
151 	uint32_t rxq_qmask;
152 	uint32_t rxq_inuse;
153 	uint32_t rxq_threshold;
154 	bus_size_t rxq_reg_rbase;
155 	bus_size_t rxq_reg_rbptr;
156 	bus_dma_segment_t rxq_descmap_seg;
157 };
158 
159 struct pq3etsec_mapcache {
160 	u_int dmc_nmaps;
161 	u_int dmc_maxseg;
162 	u_int dmc_maxmaps;
163 	u_int dmc_maxmapsize;
164 	bus_dmamap_t dmc_maps[0];
165 };
166 
167 struct pq3etsec_softc {
168 	device_t sc_dev;
169 	device_t sc_mdio_dev;
170 	struct ethercom sc_ec;
171 #define sc_if		sc_ec.ec_if
172 	struct mii_data sc_mii;
173 	bus_space_tag_t sc_bst;
174 	bus_space_handle_t sc_bsh;
175 	bus_space_handle_t sc_mdio_bsh;
176 	bus_dma_tag_t sc_dmat;
177 	int sc_phy_addr;
178 	prop_dictionary_t sc_intrmap;
179 	uint32_t sc_intrmask;
180 
181 	uint32_t sc_soft_flags;
182 #define	SOFT_RESET		0x0001
183 #define	SOFT_RXINTR		0x0010
184 #define	SOFT_RXBSY		0x0020
185 #define	SOFT_TXINTR		0x0100
186 #define	SOFT_TXERROR		0x0200
187 
188 	struct pq3etsec_txqueue sc_txq;
189 	struct pq3etsec_rxqueue sc_rxq;
190 	uint32_t sc_txerrors;
191 	uint32_t sc_rxerrors;
192 
193 	size_t sc_rx_adjlen;
194 
195 	/*
196 	 * Copies of various ETSEC registers.
197 	 */
198 	uint32_t sc_imask;
199 	uint32_t sc_maccfg1;
200 	uint32_t sc_maccfg2;
201 	uint32_t sc_maxfrm;
202 	uint32_t sc_ecntrl;
203 	uint32_t sc_dmactrl;
204 	uint32_t sc_macstnaddr1;
205 	uint32_t sc_macstnaddr2;
206 	uint32_t sc_tctrl;
207 	uint32_t sc_rctrl;
208 	uint32_t sc_gaddr[16];
209 	uint64_t sc_macaddrs[15];
210 
211 	void *sc_tx_ih;
212 	void *sc_rx_ih;
213 	void *sc_error_ih;
214 	void *sc_soft_ih;
215 
216 	kmutex_t *sc_lock;
217 	kmutex_t *sc_hwlock;
218 
219 	struct evcnt sc_ev_tx_stall;
220 	struct evcnt sc_ev_tx_intr;
221 	struct evcnt sc_ev_rx_stall;
222 	struct evcnt sc_ev_rx_intr;
223 	struct evcnt sc_ev_error_intr;
224 	struct evcnt sc_ev_soft_intr;
225 	struct evcnt sc_ev_tx_pause;
226 	struct evcnt sc_ev_rx_pause;
227 	struct evcnt sc_ev_mii_ticks;
228 
229 	struct callout sc_mii_callout;
230 	uint64_t sc_mii_last_tick;
231 
232 	struct ifqueue sc_rx_bufcache;
233 	struct pq3etsec_mapcache *sc_rx_mapcache;
234 	struct pq3etsec_mapcache *sc_tx_mapcache;
235 
236 	/* Interrupt Coalescing parameters */
237 	int sc_ic_rx_time;
238 	int sc_ic_rx_count;
239 	int sc_ic_tx_time;
240 	int sc_ic_tx_count;
241 };
242 
243 #define	ETSEC_IC_RX_ENABLED(sc)						\
244 	((sc)->sc_ic_rx_time != 0 && (sc)->sc_ic_rx_count != 0)
245 #define	ETSEC_IC_TX_ENABLED(sc)						\
246 	((sc)->sc_ic_tx_time != 0 && (sc)->sc_ic_tx_count != 0)
247 
248 struct pq3mdio_softc {
249 	device_t mdio_dev;
250 
251 	kmutex_t *mdio_lock;
252 
253 	bus_space_tag_t mdio_bst;
254 	bus_space_handle_t mdio_bsh;
255 };
256 
257 static int pq3etsec_match(device_t, cfdata_t, void *);
258 static void pq3etsec_attach(device_t, device_t, void *);
259 
260 static int pq3mdio_match(device_t, cfdata_t, void *);
261 static void pq3mdio_attach(device_t, device_t, void *);
262 
263 static void pq3etsec_ifstart(struct ifnet *);
264 static void pq3etsec_ifwatchdog(struct ifnet *);
265 static int pq3etsec_ifinit(struct ifnet *);
266 static void pq3etsec_ifstop(struct ifnet *, int);
267 static int pq3etsec_ifioctl(struct ifnet *, u_long, void *);
268 
269 static int pq3etsec_mapcache_create(struct pq3etsec_softc *,
270     struct pq3etsec_mapcache **, size_t, size_t, size_t);
271 static void pq3etsec_mapcache_destroy(struct pq3etsec_softc *,
272     struct pq3etsec_mapcache *);
273 static bus_dmamap_t pq3etsec_mapcache_get(struct pq3etsec_softc *,
274     struct pq3etsec_mapcache *);
275 static void pq3etsec_mapcache_put(struct pq3etsec_softc *,
276     struct pq3etsec_mapcache *, bus_dmamap_t);
277 
278 static int pq3etsec_txq_attach(struct pq3etsec_softc *,
279     struct pq3etsec_txqueue *, u_int);
280 static void pq3etsec_txq_purge(struct pq3etsec_softc *,
281     struct pq3etsec_txqueue *);
282 static void pq3etsec_txq_reset(struct pq3etsec_softc *,
283     struct pq3etsec_txqueue *);
284 static bool pq3etsec_txq_consume(struct pq3etsec_softc *,
285     struct pq3etsec_txqueue *);
286 static bool pq3etsec_txq_produce(struct pq3etsec_softc *,
287     struct pq3etsec_txqueue *, struct mbuf *m);
288 static bool pq3etsec_txq_active_p(struct pq3etsec_softc *,
289     struct pq3etsec_txqueue *);
290 
291 static int pq3etsec_rxq_attach(struct pq3etsec_softc *,
292     struct pq3etsec_rxqueue *, u_int);
293 static bool pq3etsec_rxq_produce(struct pq3etsec_softc *,
294     struct pq3etsec_rxqueue *);
295 static void pq3etsec_rxq_purge(struct pq3etsec_softc *,
296     struct pq3etsec_rxqueue *, bool);
297 static void pq3etsec_rxq_reset(struct pq3etsec_softc *,
298     struct pq3etsec_rxqueue *);
299 
300 static void pq3etsec_mc_setup(struct pq3etsec_softc *);
301 
302 static void pq3etsec_mii_tick(void *);
303 static int pq3etsec_rx_intr(void *);
304 static int pq3etsec_tx_intr(void *);
305 static int pq3etsec_error_intr(void *);
306 static void pq3etsec_soft_intr(void *);
307 
308 static void pq3etsec_set_ic_rx(struct pq3etsec_softc *);
309 static void pq3etsec_set_ic_tx(struct pq3etsec_softc *);
310 
311 static void pq3etsec_sysctl_setup(struct sysctllog **, struct pq3etsec_softc *);
312 
313 CFATTACH_DECL_NEW(pq3etsec, sizeof(struct pq3etsec_softc),
314     pq3etsec_match, pq3etsec_attach, NULL, NULL);
315 
316 CFATTACH_DECL_NEW(pq3mdio_tsec, sizeof(struct pq3mdio_softc),
317     pq3mdio_match, pq3mdio_attach, NULL, NULL);
318 
319 CFATTACH_DECL_NEW(pq3mdio_cpunode, sizeof(struct pq3mdio_softc),
320     pq3mdio_match, pq3mdio_attach, NULL, NULL);
321 
322 static inline uint32_t
323 etsec_mdio_read(struct pq3mdio_softc *mdio, bus_size_t off)
324 {
325 	return bus_space_read_4(mdio->mdio_bst, mdio->mdio_bsh, off);
326 }
327 
328 static inline void
329 etsec_mdio_write(struct pq3mdio_softc *mdio, bus_size_t off, uint32_t data)
330 {
331 	bus_space_write_4(mdio->mdio_bst, mdio->mdio_bsh, off, data);
332 }
333 
334 static inline uint32_t
335 etsec_read(struct pq3etsec_softc *sc, bus_size_t off)
336 {
337 	return bus_space_read_4(sc->sc_bst, sc->sc_bsh, off);
338 }
339 
340 static int
341 pq3mdio_find(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
342 {
343 	return strcmp(cf->cf_name, "mdio") == 0;
344 }
345 
346 static int
347 pq3mdio_match(device_t parent, cfdata_t cf, void *aux)
348 {
349 	const uint16_t svr = (mfspr(SPR_SVR) & ~0x80000) >> 16;
350 	const bool p1025_p = (svr == (SVR_P1025v1 >> 16)
351 	    || svr == (SVR_P1016v1 >> 16));
352 
353 	if (device_is_a(parent, "cpunode")) {
354 		if (!p1025_p
355 		    || !e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
356 			return 0;
357 
358 		return 1;
359 	}
360 
361 	if (device_is_a(parent, "tsec")) {
362 		if (p1025_p
363 		    || !e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
364 			return 0;
365 
366 		return 1;
367 	}
368 
369 	return 0;
370 }
371 
372 static void
373 pq3mdio_attach(device_t parent, device_t self, void *aux)
374 {
375 	struct pq3mdio_softc * const mdio = device_private(self);
376 	struct cpunode_attach_args * const cna = aux;
377 	struct cpunode_locators * const cnl = &cna->cna_locs;
378 
379 	mdio->mdio_dev = self;
380 	mdio->mdio_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
381 
382 	if (device_is_a(parent, "cpunode")) {
383 		struct cpunode_softc * const psc = device_private(parent);
384 		psc->sc_children |= cna->cna_childmask;
385 
386 		mdio->mdio_bst = cna->cna_memt;
387 		if (bus_space_map(mdio->mdio_bst, cnl->cnl_addr,
388 				cnl->cnl_size, 0, &mdio->mdio_bsh) != 0) {
389 			aprint_error(": error mapping registers @ %#x\n",
390 			    cnl->cnl_addr);
391 			return;
392 		}
393 	} else {
394 		struct pq3etsec_softc * const sc = device_private(parent);
395 
396 		KASSERT(device_is_a(parent, "tsec"));
397 		KASSERTMSG(cnl->cnl_addr == ETSEC1_BASE
398 		    || cnl->cnl_addr == ETSEC2_BASE
399 		    || cnl->cnl_addr == ETSEC3_BASE
400 		    || cnl->cnl_addr == ETSEC4_BASE,
401 		    "unknown tsec addr %x", cnl->cnl_addr);
402 
403 		mdio->mdio_bst = sc->sc_bst;
404 		mdio->mdio_bsh = sc->sc_bsh;
405 	}
406 
407 	aprint_normal("\n");
408 }
409 
410 static int
411 pq3mdio_mii_readreg(device_t self, int phy, int reg)
412 {
413 	struct pq3mdio_softc * const mdio = device_private(self);
414 	uint32_t miimcom = etsec_mdio_read(mdio, MIIMCOM);
415 
416 	mutex_enter(mdio->mdio_lock);
417 
418 	etsec_mdio_write(mdio, MIIMADD,
419 	    __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
420 
421 	etsec_mdio_write(mdio, MIIMCOM, 0);	/* clear any past bits */
422 	etsec_mdio_write(mdio, MIIMCOM, MIIMCOM_READ);
423 
424 	while (etsec_mdio_read(mdio, MIIMIND) != 0) {
425 			delay(1);
426 	}
427 	int data = etsec_mdio_read(mdio, MIIMSTAT);
428 
429 	if (miimcom == MIIMCOM_SCAN)
430 		etsec_mdio_write(mdio, MIIMCOM, miimcom);
431 
432 #if 0
433 	aprint_normal_dev(mdio->mdio_dev, "%s: phy %d reg %d: %#x\n",
434 	    __func__, phy, reg, data);
435 #endif
436 	mutex_exit(mdio->mdio_lock);
437 	return data;
438 }
439 
440 static void
441 pq3mdio_mii_writereg(device_t self, int phy, int reg, int data)
442 {
443 	struct pq3mdio_softc * const mdio = device_private(self);
444 	uint32_t miimcom = etsec_mdio_read(mdio, MIIMCOM);
445 
446 #if 0
447 	aprint_normal_dev(mdio->mdio_dev, "%s: phy %d reg %d: %#x\n",
448 	    __func__, phy, reg, data);
449 #endif
450 
451 	mutex_enter(mdio->mdio_lock);
452 
453 	etsec_mdio_write(mdio, MIIMADD,
454 	    __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
455 	etsec_mdio_write(mdio, MIIMCOM, 0);	/* clear any past bits */
456 	etsec_mdio_write(mdio, MIIMCON, data);
457 
458 	int timo = 1000;	/* 1ms */
459 	while ((etsec_mdio_read(mdio, MIIMIND) & MIIMIND_BUSY) && --timo > 0) {
460 			delay(1);
461 	}
462 
463 	if (miimcom == MIIMCOM_SCAN)
464 		etsec_mdio_write(mdio, MIIMCOM, miimcom);
465 
466 	mutex_exit(mdio->mdio_lock);
467 }
468 
469 static inline void
470 etsec_write(struct pq3etsec_softc *sc, bus_size_t off, uint32_t data)
471 {
472 	bus_space_write_4(sc->sc_bst, sc->sc_bsh, off, data);
473 }
474 
475 static void
476 pq3etsec_mii_statchg(struct ifnet *ifp)
477 {
478 	struct pq3etsec_softc * const sc = ifp->if_softc;
479 	struct mii_data * const mii = &sc->sc_mii;
480 
481 	uint32_t maccfg1 = sc->sc_maccfg1;
482 	uint32_t maccfg2 = sc->sc_maccfg2;
483 	uint32_t ecntrl = sc->sc_ecntrl;
484 
485 	maccfg1 &= ~(MACCFG1_TX_FLOW|MACCFG1_RX_FLOW);
486 	maccfg2 &= ~(MACCFG2_IFMODE|MACCFG2_FD);
487 
488 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
489 		maccfg2 |= MACCFG2_FD;
490 	}
491 
492 	/*
493 	 * Now deal with the flow control bits.
494 	 */
495 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO
496 	    && (mii->mii_media_active & IFM_ETH_FMASK)) {
497 		if (mii->mii_media_active & IFM_ETH_RXPAUSE)
498 			maccfg1 |= MACCFG1_RX_FLOW;
499 		if (mii->mii_media_active & IFM_ETH_TXPAUSE)
500 			maccfg1 |= MACCFG1_TX_FLOW;
501 	}
502 
503 	/*
504 	 * Now deal with the speed.
505 	 */
506 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
507 		maccfg2 |= MACCFG2_IFMODE_GMII;
508 	} else {
509 		maccfg2 |= MACCFG2_IFMODE_MII;
510 		ecntrl &= ~ECNTRL_R100M;
511 		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_10_T) {
512 			ecntrl |= ECNTRL_R100M;
513 		}
514 	}
515 
516 	/*
517 	 * If things are different, re-init things.
518 	 */
519 	if (maccfg1 != sc->sc_maccfg1
520 	    || maccfg2 != sc->sc_maccfg2
521 	    || ecntrl != sc->sc_ecntrl) {
522 		if (sc->sc_if.if_flags & IFF_RUNNING)
523 			atomic_or_uint(&sc->sc_soft_flags, SOFT_RESET);
524 		sc->sc_maccfg1 = maccfg1;
525 		sc->sc_maccfg2 = maccfg2;
526 		sc->sc_ecntrl = ecntrl;
527 	}
528 }
529 
530 #if 0
531 static void
532 pq3etsec_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
533 {
534 	struct pq3etsec_softc * const sc = ifp->if_softc;
535 
536 	mii_pollstat(&sc->sc_mii);
537 	ether_mediastatus(ifp, ifmr);
538         ifmr->ifm_status = sc->sc_mii.mii_media_status;
539         ifmr->ifm_active = sc->sc_mii.mii_media_active;
540 }
541 
542 static int
543 pq3etsec_mediachange(struct ifnet *ifp)
544 {
545 	struct pq3etsec_softc * const sc = ifp->if_softc;
546 
547 	if ((ifp->if_flags & IFF_UP) == 0)
548 		return 0;
549 
550 	int rv = mii_mediachg(&sc->sc_mii);
551 	return (rv == ENXIO) ? 0 : rv;
552 }
553 #endif
554 
555 static int
556 pq3etsec_match(device_t parent, cfdata_t cf, void *aux)
557 {
558 
559 	if (!e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
560 		return 0;
561 
562 	return 1;
563 }
564 
565 static void
566 pq3etsec_attach(device_t parent, device_t self, void *aux)
567 {
568 	struct cpunode_softc * const psc = device_private(parent);
569 	struct pq3etsec_softc * const sc = device_private(self);
570 	struct cpunode_attach_args * const cna = aux;
571 	struct cpunode_locators * const cnl = &cna->cna_locs;
572 	cfdata_t cf = device_cfdata(self);
573 	int error;
574 
575 	psc->sc_children |= cna->cna_childmask;
576 	sc->sc_dev = self;
577 	sc->sc_bst = cna->cna_memt;
578 	sc->sc_dmat = &booke_bus_dma_tag;
579 
580 	/*
581 	 * Pull out the mdio bus and phy we are supposed to use.
582 	 */
583 	const int mdio = cf->cf_loc[CPUNODECF_MDIO];
584 	const int phy = cf->cf_loc[CPUNODECF_PHY];
585 	if (mdio != CPUNODECF_MDIO_DEFAULT)
586 		aprint_normal(" mdio %d", mdio);
587 
588 	/*
589 	 * See if the phy is in the config file...
590 	 */
591 	if (phy != CPUNODECF_PHY_DEFAULT) {
592 		sc->sc_phy_addr = phy;
593 	} else {
594 		unsigned char prop_name[20];
595 		snprintf(prop_name, sizeof(prop_name), "tsec%u-phy-addr",
596 		    cnl->cnl_instance);
597 		sc->sc_phy_addr = board_info_get_number(prop_name);
598 	}
599 	if (sc->sc_phy_addr != MII_PHY_ANY)
600 		aprint_normal(" phy %d", sc->sc_phy_addr);
601 
602 	error = bus_space_map(sc->sc_bst, cnl->cnl_addr, cnl->cnl_size, 0,
603 	    &sc->sc_bsh);
604 	if (error) {
605 		aprint_error(": error mapping registers: %d\n", error);
606 		return;
607 	}
608 
609 	/*
610 	 * Assume firmware has aready set the mac address and fetch it
611 	 * before we reinit it.
612 	 */
613 	sc->sc_macstnaddr2 = etsec_read(sc, MACSTNADDR2);
614 	sc->sc_macstnaddr1 = etsec_read(sc, MACSTNADDR1);
615 	sc->sc_rctrl = RCTRL_DEFAULT;
616 	sc->sc_ecntrl = etsec_read(sc, ECNTRL);
617 	sc->sc_maccfg1 = etsec_read(sc, MACCFG1);
618 	sc->sc_maccfg2 = etsec_read(sc, MACCFG2) | MACCFG2_DEFAULT;
619 
620 	if (sc->sc_macstnaddr1 == 0 && sc->sc_macstnaddr2 == 0) {
621 		size_t len;
622 		const uint8_t *mac_addr =
623 		    board_info_get_data("tsec-mac-addr-base", &len);
624 		KASSERT(len == ETHER_ADDR_LEN);
625 		sc->sc_macstnaddr2 =
626 		    (mac_addr[1] << 24)
627 		    | (mac_addr[0] << 16);
628 		sc->sc_macstnaddr1 =
629 		    ((mac_addr[5] + cnl->cnl_instance - 1) << 24)
630 		    | (mac_addr[4] << 16)
631 		    | (mac_addr[3] << 8)
632 		    | (mac_addr[2] << 0);
633 #if 0
634 		aprint_error(": mac-address unknown\n");
635 		return;
636 #endif
637 	}
638 
639 	sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
640 	sc->sc_hwlock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_VM);
641 
642 	callout_init(&sc->sc_mii_callout, CALLOUT_MPSAFE);
643 	callout_setfunc(&sc->sc_mii_callout, pq3etsec_mii_tick, sc);
644 
645 	/* Disable interrupts */
646 	etsec_write(sc, IMASK, 0);
647 
648 	error = pq3etsec_rxq_attach(sc, &sc->sc_rxq, 0);
649 	if (error) {
650 		aprint_error(": failed to init rxq: %d\n", error);
651 		return;
652 	}
653 
654 	error = pq3etsec_txq_attach(sc, &sc->sc_txq, 0);
655 	if (error) {
656 		aprint_error(": failed to init txq: %d\n", error);
657 		return;
658 	}
659 
660 	error = pq3etsec_mapcache_create(sc, &sc->sc_rx_mapcache,
661 	    ETSEC_MAXRXMBUFS, MCLBYTES, ETSEC_NRXSEGS);
662 	if (error) {
663 		aprint_error(": failed to allocate rx dmamaps: %d\n", error);
664 		return;
665 	}
666 
667 	error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
668 	    ETSEC_MAXTXMBUFS, MCLBYTES, ETSEC_NTXSEGS);
669 	if (error) {
670 		aprint_error(": failed to allocate tx dmamaps: %d\n", error);
671 		return;
672 	}
673 
674 	sc->sc_tx_ih = intr_establish(cnl->cnl_intrs[0], IPL_VM, IST_ONCHIP,
675 	    pq3etsec_tx_intr, sc);
676 	if (sc->sc_tx_ih == NULL) {
677 		aprint_error(": failed to establish tx interrupt: %d\n",
678 		    cnl->cnl_intrs[0]);
679 		return;
680 	}
681 
682 	sc->sc_rx_ih = intr_establish(cnl->cnl_intrs[1], IPL_VM, IST_ONCHIP,
683 	    pq3etsec_rx_intr, sc);
684 	if (sc->sc_rx_ih == NULL) {
685 		aprint_error(": failed to establish rx interrupt: %d\n",
686 		    cnl->cnl_intrs[1]);
687 		return;
688 	}
689 
690 	sc->sc_error_ih = intr_establish(cnl->cnl_intrs[2], IPL_VM, IST_ONCHIP,
691 	    pq3etsec_error_intr, sc);
692 	if (sc->sc_error_ih == NULL) {
693 		aprint_error(": failed to establish error interrupt: %d\n",
694 		    cnl->cnl_intrs[2]);
695 		return;
696 	}
697 
698 	int softint_flags = SOFTINT_NET;
699 #if !defined(MULTIPROCESSOR) || defined(NET_MPSAFE)
700 	softint_flags |= SOFTINT_MPSAFE;
701 #endif	/* !MULTIPROCESSOR || NET_MPSAFE */
702 	sc->sc_soft_ih = softint_establish(softint_flags,
703 	    pq3etsec_soft_intr, sc);
704 	if (sc->sc_soft_ih == NULL) {
705 		aprint_error(": failed to establish soft interrupt\n");
706 		return;
707 	}
708 
709 	/*
710 	 * If there was no MDIO
711 	 */
712 	if (mdio == CPUNODECF_MDIO_DEFAULT) {
713 		aprint_normal("\n");
714 		cfdata_t mdio_cf = config_search_ia(pq3mdio_find, self, NULL, cna);
715 		if (mdio_cf != NULL) {
716 			sc->sc_mdio_dev = config_attach(self, mdio_cf, cna, NULL);
717 		}
718 	} else {
719 		sc->sc_mdio_dev = device_find_by_driver_unit("mdio", mdio);
720 		if (sc->sc_mdio_dev == NULL) {
721 			aprint_error(": failed to locate mdio device\n");
722 			return;
723 		}
724 		aprint_normal("\n");
725 	}
726 
727 	etsec_write(sc, ATTR, ATTR_DEFAULT);
728 	etsec_write(sc, ATTRELI, ATTRELI_DEFAULT);
729 
730 	/* Enable interrupt coalesing */
731 	sc->sc_ic_rx_time = 768;
732 	sc->sc_ic_rx_count = 16;
733 	sc->sc_ic_tx_time = 768;
734 	sc->sc_ic_tx_count = 16;
735 	pq3etsec_set_ic_rx(sc);
736 	pq3etsec_set_ic_tx(sc);
737 	pq3etsec_sysctl_setup(NULL, sc);
738 
739 	char enaddr[ETHER_ADDR_LEN] = {
740 	    [0] = sc->sc_macstnaddr2 >> 16,
741 	    [1] = sc->sc_macstnaddr2 >> 24,
742 	    [2] = sc->sc_macstnaddr1 >>  0,
743 	    [3] = sc->sc_macstnaddr1 >>  8,
744 	    [4] = sc->sc_macstnaddr1 >> 16,
745 	    [5] = sc->sc_macstnaddr1 >> 24,
746 	};
747 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
748 	   ether_sprintf(enaddr));
749 
750 	const char * const xname = device_xname(sc->sc_dev);
751 	struct ethercom * const ec = &sc->sc_ec;
752 	struct ifnet * const ifp = &ec->ec_if;
753 
754 	ec->ec_mii = &sc->sc_mii;
755 
756 	sc->sc_mii.mii_ifp = ifp;
757 	sc->sc_mii.mii_readreg = pq3mdio_mii_readreg;
758 	sc->sc_mii.mii_writereg = pq3mdio_mii_writereg;
759 	sc->sc_mii.mii_statchg = pq3etsec_mii_statchg;
760 
761 	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
762 	    ether_mediastatus);
763 
764 	if (sc->sc_mdio_dev != NULL && sc->sc_phy_addr < 32) {
765 		mii_attach(sc->sc_mdio_dev, &sc->sc_mii, 0xffffffff,
766 		    sc->sc_phy_addr, MII_OFFSET_ANY, MIIF_DOPAUSE);
767 
768 		if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
769 			ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
770 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
771 		} else {
772 			callout_schedule(&sc->sc_mii_callout, hz);
773 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
774 		}
775 	} else {
776 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
777 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_1000_T|IFM_FDX);
778 	}
779 
780 	ec->ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING
781 	    | ETHERCAP_JUMBO_MTU;
782 
783 	strlcpy(ifp->if_xname, xname, IFNAMSIZ);
784 	ifp->if_softc = sc;
785 	ifp->if_capabilities = IFCAP_ETSEC;
786 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
787 	ifp->if_ioctl = pq3etsec_ifioctl;
788 	ifp->if_start = pq3etsec_ifstart;
789 	ifp->if_watchdog = pq3etsec_ifwatchdog;
790 	ifp->if_init = pq3etsec_ifinit;
791 	ifp->if_stop = pq3etsec_ifstop;
792 	IFQ_SET_READY(&ifp->if_snd);
793 
794 	/*
795 	 * Attach the interface.
796 	 */
797 	if_initialize(ifp);
798 	ether_ifattach(ifp, enaddr);
799 	if_register(ifp);
800 
801 	pq3etsec_ifstop(ifp, true);
802 
803 	evcnt_attach_dynamic(&sc->sc_ev_rx_stall, EVCNT_TYPE_MISC,
804 	    NULL, xname, "rx stall");
805 	evcnt_attach_dynamic(&sc->sc_ev_tx_stall, EVCNT_TYPE_MISC,
806 	    NULL, xname, "tx stall");
807 	evcnt_attach_dynamic(&sc->sc_ev_tx_intr, EVCNT_TYPE_INTR,
808 	    NULL, xname, "tx intr");
809 	evcnt_attach_dynamic(&sc->sc_ev_rx_intr, EVCNT_TYPE_INTR,
810 	    NULL, xname, "rx intr");
811 	evcnt_attach_dynamic(&sc->sc_ev_error_intr, EVCNT_TYPE_INTR,
812 	    NULL, xname, "error intr");
813 	evcnt_attach_dynamic(&sc->sc_ev_soft_intr, EVCNT_TYPE_INTR,
814 	    NULL, xname, "soft intr");
815 	evcnt_attach_dynamic(&sc->sc_ev_tx_pause, EVCNT_TYPE_MISC,
816 	    NULL, xname, "tx pause");
817 	evcnt_attach_dynamic(&sc->sc_ev_rx_pause, EVCNT_TYPE_MISC,
818 	    NULL, xname, "rx pause");
819 	evcnt_attach_dynamic(&sc->sc_ev_mii_ticks, EVCNT_TYPE_MISC,
820 	    NULL, xname, "mii ticks");
821 }
822 
823 static uint64_t
824 pq3etsec_macaddr_create(const uint8_t *lladdr)
825 {
826 	uint64_t macaddr = 0;
827 
828 	lladdr += ETHER_ADDR_LEN;
829 	for (u_int i = ETHER_ADDR_LEN; i-- > 0; ) {
830 		macaddr = (macaddr << 8) | *--lladdr;
831 	}
832 	return macaddr << 16;
833 }
834 
835 static int
836 pq3etsec_ifinit(struct ifnet *ifp)
837 {
838 	struct pq3etsec_softc * const sc = ifp->if_softc;
839 	int error = 0;
840 
841 	sc->sc_maxfrm = max(ifp->if_mtu + 32, MCLBYTES);
842 	if (ifp->if_mtu > ETHERMTU_JUMBO)
843 		return error;
844 
845 	KASSERT(ifp->if_flags & IFF_UP);
846 
847 	/*
848 	 * Stop the interface (steps 1 to 4 in the Soft Reset and
849 	 * Reconfigurating Procedure.
850 	 */
851 	pq3etsec_ifstop(ifp, 0);
852 
853 	/*
854 	 * If our frame size has changed (or it's our first time through)
855 	 * destroy the existing transmit mapcache.
856 	 */
857 	if (sc->sc_tx_mapcache != NULL
858 	    && sc->sc_maxfrm != sc->sc_tx_mapcache->dmc_maxmapsize) {
859 		pq3etsec_mapcache_destroy(sc, sc->sc_tx_mapcache);
860 		sc->sc_tx_mapcache = NULL;
861 	}
862 
863 	if (sc->sc_tx_mapcache == NULL) {
864 		error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
865 		    ETSEC_MAXTXMBUFS, sc->sc_maxfrm, ETSEC_NTXSEGS);
866 		if (error)
867 			return error;
868 	}
869 
870 	sc->sc_ev_mii_ticks.ev_count++;
871 	mii_tick(&sc->sc_mii);
872 
873 	if (ifp->if_flags & IFF_PROMISC) {
874 		sc->sc_rctrl |= RCTRL_PROM;
875 	} else {
876 		sc->sc_rctrl &= ~RCTRL_PROM;
877 	}
878 
879 	uint32_t rctrl_prsdep = 0;
880 	sc->sc_rctrl &= ~(RCTRL_IPCSEN|RCTRL_TUCSEN|RCTRL_VLEX|RCTRL_PRSDEP);
881 	if (VLAN_ATTACHED(&sc->sc_ec)) {
882 		sc->sc_rctrl |= RCTRL_VLEX;
883 		rctrl_prsdep = RCTRL_PRSDEP_L2;
884 	}
885 	if (ifp->if_capenable & IFCAP_RCTRL_IPCSEN) {
886 		sc->sc_rctrl |= RCTRL_IPCSEN;
887 		rctrl_prsdep = RCTRL_PRSDEP_L3;
888 	}
889 	if (ifp->if_capenable & IFCAP_RCTRL_TUCSEN) {
890 		sc->sc_rctrl |= RCTRL_TUCSEN;
891 		rctrl_prsdep = RCTRL_PRSDEP_L4;
892 	}
893 	sc->sc_rctrl |= rctrl_prsdep;
894 #if 0
895 	if (sc->sc_rctrl & (RCTRL_IPCSEN|RCTRL_TUCSEN|RCTRL_VLEX|RCTRL_PRSDEP))
896 		aprint_normal_dev(sc->sc_dev,
897 		    "rctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlex=%"PRIuMAX" prsdep=%"PRIuMAX"\n",
898 		    sc->sc_rctrl,
899 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_IPCSEN),
900 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_TUCSEN),
901 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_VLEX),
902 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_PRSDEP));
903 #endif
904 
905 	sc->sc_tctrl &= ~(TCTRL_IPCSEN|TCTRL_TUCSEN|TCTRL_VLINS);
906 	if (VLAN_ATTACHED(&sc->sc_ec))		/* is this really true */
907 		sc->sc_tctrl |= TCTRL_VLINS;
908 	if (ifp->if_capenable & IFCAP_TCTRL_IPCSEN)
909 		sc->sc_tctrl |= TCTRL_IPCSEN;
910 	if (ifp->if_capenable & IFCAP_TCTRL_TUCSEN)
911 		sc->sc_tctrl |= TCTRL_TUCSEN;
912 #if 0
913 	if (sc->sc_tctrl & (TCTRL_IPCSEN|TCTRL_TUCSEN|TCTRL_VLINS))
914 		aprint_normal_dev(sc->sc_dev,
915 		    "tctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlins=%"PRIuMAX"\n",
916 		    sc->sc_tctrl,
917 		    __SHIFTOUT(sc->sc_tctrl, TCTRL_IPCSEN),
918 		    __SHIFTOUT(sc->sc_tctrl, TCTRL_TUCSEN),
919 		    __SHIFTOUT(sc->sc_tctrl, TCTRL_VLINS));
920 #endif
921 
922 	sc->sc_maccfg1 &= ~(MACCFG1_TX_EN|MACCFG1_RX_EN);
923 
924 	const uint64_t macstnaddr =
925 	    pq3etsec_macaddr_create(CLLADDR(ifp->if_sadl));
926 
927 	sc->sc_imask = IEVENT_DPE;
928 
929 	/* 5. Load TDBPH, TBASEH, TBASE0-TBASE7 with new Tx BD pointers */
930 	pq3etsec_rxq_reset(sc, &sc->sc_rxq);
931 	pq3etsec_rxq_produce(sc, &sc->sc_rxq);	/* fill with rx buffers */
932 
933 	/* 6. Load RDBPH, RBASEH, RBASE0-RBASE7 with new Rx BD pointers */
934 	pq3etsec_txq_reset(sc, &sc->sc_txq);
935 
936 	/* 7. Setup other MAC registers (MACCFG2, MAXFRM, etc.) */
937 	KASSERT(MACCFG2_PADCRC & sc->sc_maccfg2);
938 	etsec_write(sc, MAXFRM, sc->sc_maxfrm);
939 	etsec_write(sc, MACSTNADDR1, (uint32_t)(macstnaddr >> 32));
940 	etsec_write(sc, MACSTNADDR2, (uint32_t)(macstnaddr >>  0));
941 	etsec_write(sc, MACCFG1, sc->sc_maccfg1);
942 	etsec_write(sc, MACCFG2, sc->sc_maccfg2);
943 	etsec_write(sc, ECNTRL, sc->sc_ecntrl);
944 
945 	/* 8. Setup group address hash table (GADDR0-GADDR15) */
946 	pq3etsec_mc_setup(sc);
947 
948 	/* 9. Setup receive frame filer table (via RQFAR, RQFCR, and RQFPR) */
949 	etsec_write(sc, MRBLR, MCLBYTES);
950 
951 	/* 10. Setup WWR, WOP, TOD bits in DMACTRL register */
952 	sc->sc_dmactrl |= DMACTRL_DEFAULT;
953 	etsec_write(sc, DMACTRL, sc->sc_dmactrl);
954 
955 	/* 11. Enable transmit queues in TQUEUE, and ensure that the transmit scheduling mode is correctly set in TCTRL. */
956 	etsec_write(sc, TQUEUE, TQUEUE_EN0);
957 	sc->sc_imask |= IEVENT_TXF|IEVENT_TXE|IEVENT_TXC;
958 
959 	etsec_write(sc, TCTRL, sc->sc_tctrl);	/* for TOE stuff */
960 
961 	/* 12. Enable receive queues in RQUEUE, */
962 	etsec_write(sc, RQUEUE, RQUEUE_EN0|RQUEUE_EX0);
963 	sc->sc_imask |= IEVENT_RXF|IEVENT_BSY|IEVENT_RXC;
964 
965 	/*     and optionally set TOE functionality in RCTRL. */
966 	etsec_write(sc, RCTRL, sc->sc_rctrl);
967 	sc->sc_rx_adjlen = __SHIFTOUT(sc->sc_rctrl, RCTRL_PAL);
968 	if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF)
969 		sc->sc_rx_adjlen += sizeof(struct rxfcb);
970 
971 	/* 13. Clear THLT and TXF bits in TSTAT register by writing 1 to them */
972 	etsec_write(sc, TSTAT, TSTAT_THLT | TSTAT_TXF);
973 
974 	/* 14. Clear QHLT and RXF bits in RSTAT register by writing 1 to them.*/
975 	etsec_write(sc, RSTAT, RSTAT_QHLT | RSTAT_RXF);
976 
977 	/* 15. Clear GRS/GTS bits in DMACTRL (do not change other bits) */
978 	sc->sc_dmactrl &= ~(DMACTRL_GRS|DMACTRL_GTS);
979 	etsec_write(sc, DMACTRL, sc->sc_dmactrl);
980 
981 	/* 16. Enable Tx_EN/Rx_EN in MACCFG1 register */
982 	etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
983 	etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
984 
985 	sc->sc_soft_flags = 0;
986 
987 	etsec_write(sc, IMASK, sc->sc_imask);
988 
989 	ifp->if_flags |= IFF_RUNNING;
990 
991 	return error;
992 }
993 
994 static void
995 pq3etsec_ifstop(struct ifnet *ifp, int disable)
996 {
997 	struct pq3etsec_softc * const sc = ifp->if_softc;
998 
999 	KASSERT(!cpu_intr_p());
1000 	const uint32_t imask_gsc_mask = IEVENT_GTSC|IEVENT_GRSC;
1001 	/*
1002 	 * Clear the GTSC and GRSC from the interrupt mask until
1003 	 * we are ready for them.  Then clear them from IEVENT,
1004 	 * request the graceful shutdown, and then enable the
1005 	 * GTSC and GRSC bits in the mask.  This should cause the
1006 	 * error interrupt to fire which will issue a wakeup to
1007 	 * allow us to resume.
1008 	 */
1009 
1010 	/*
1011 	 * 1. Set GRS/GTS bits in DMACTRL register
1012 	 */
1013 	sc->sc_dmactrl |= DMACTRL_GRS|DMACTRL_GTS;
1014 	etsec_write(sc, IMASK, sc->sc_imask & ~imask_gsc_mask);
1015 	etsec_write(sc, IEVENT, imask_gsc_mask);
1016 	etsec_write(sc, DMACTRL, sc->sc_dmactrl);
1017 
1018 	if (etsec_read(sc, MACCFG1) & (MACCFG1_TX_EN|MACCFG1_RX_EN)) {
1019 		/*
1020 		 * 2. Poll GRSC/GTSC bits in IEVENT register until both are set
1021 		 */
1022 		etsec_write(sc, IMASK, sc->sc_imask | imask_gsc_mask);
1023 
1024 		u_int timo = 1000;
1025 		uint32_t ievent = etsec_read(sc, IEVENT);
1026 		while ((ievent & imask_gsc_mask) != imask_gsc_mask) {
1027 			if (--timo == 0) {
1028 				aprint_error_dev(sc->sc_dev,
1029 				    "WARNING: "
1030 				    "request to stop failed (IEVENT=%#x)\n",
1031 				    ievent);
1032 				break;
1033 			}
1034 			delay(10);
1035 			ievent = etsec_read(sc, IEVENT);
1036 		}
1037 	}
1038 
1039 	/*
1040 	 * Now reset the controller.
1041 	 *
1042 	 * 3. Set SOFT_RESET bit in MACCFG1 register
1043 	 * 4. Clear SOFT_RESET bit in MACCFG1 register
1044 	 */
1045 	etsec_write(sc, MACCFG1, MACCFG1_SOFT_RESET);
1046 	etsec_write(sc, MACCFG1, 0);
1047 	etsec_write(sc, IMASK, 0);
1048 	etsec_write(sc, IEVENT, ~0);
1049 	sc->sc_imask = 0;
1050 	ifp->if_flags &= ~IFF_RUNNING;
1051 
1052 	uint32_t tbipa = etsec_read(sc, TBIPA);
1053 	if (tbipa == sc->sc_phy_addr) {
1054 		aprint_normal_dev(sc->sc_dev, "relocating TBI\n");
1055 		etsec_write(sc, TBIPA, 0x1f);
1056 	}
1057 	uint32_t miimcfg = etsec_read(sc, MIIMCFG);
1058 	etsec_write(sc, MIIMCFG, MIIMCFG_RESET);
1059 	etsec_write(sc, MIIMCFG, miimcfg);
1060 
1061 	/*
1062 	 * Let's consume any remaing transmitted packets.  And if we are
1063 	 * disabling the interface, purge ourselves of any untransmitted
1064 	 * packets.  But don't consume any received packets, just drop them.
1065 	 * If we aren't disabling the interface, save the mbufs in the
1066 	 * receive queue for reuse.
1067 	 */
1068 	pq3etsec_rxq_purge(sc, &sc->sc_rxq, disable);
1069 	pq3etsec_txq_consume(sc, &sc->sc_txq);
1070 	if (disable) {
1071 		pq3etsec_txq_purge(sc, &sc->sc_txq);
1072 		IFQ_PURGE(&ifp->if_snd);
1073 	}
1074 }
1075 
1076 static void
1077 pq3etsec_ifwatchdog(struct ifnet *ifp)
1078 {
1079 }
1080 
1081 static void
1082 pq3etsec_mc_setup(
1083 	struct pq3etsec_softc *sc)
1084 {
1085 	struct ethercom * const ec = &sc->sc_ec;
1086 	struct ifnet * const ifp = &sc->sc_if;
1087 	struct ether_multi *enm;
1088 	struct ether_multistep step;
1089 	uint32_t *gaddr = sc->sc_gaddr + ((sc->sc_rctrl & RCTRL_GHTX) ? 0 : 8);
1090 	const uint32_t crc_shift = 32 - ((sc->sc_rctrl & RCTRL_GHTX) ? 9 : 8);
1091 
1092 	memset(sc->sc_gaddr, 0, sizeof(sc->sc_gaddr));
1093 	memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
1094 
1095 	ifp->if_flags &= ~IFF_ALLMULTI;
1096 
1097 	ETHER_FIRST_MULTI(step, ec, enm);
1098 	for (u_int i = 0; enm != NULL; ) {
1099 		const char *addr = enm->enm_addrlo;
1100 		if (memcmp(addr, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
1101 			ifp->if_flags |= IFF_ALLMULTI;
1102 			memset(gaddr, 0xff, 32 << (crc_shift & 1));
1103 			memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
1104 			break;
1105 		}
1106 		if ((sc->sc_rctrl & RCTRL_EMEN)
1107 		    && i < __arraycount(sc->sc_macaddrs)) {
1108 			sc->sc_macaddrs[i++] = pq3etsec_macaddr_create(addr);
1109 		} else {
1110 			uint32_t crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
1111 #if 0
1112 			printf("%s: %s: crc=%#x: %#x: [%u,%u]=%#x\n", __func__,
1113 			    ether_sprintf(addr), crc,
1114 			    crc >> crc_shift,
1115 			    crc >> (crc_shift + 5),
1116 			    (crc >> crc_shift) & 31,
1117 			    1 << (((crc >> crc_shift) & 31) ^ 31));
1118 #endif
1119 			/*
1120 			 * The documentation doesn't completely follow PowerPC
1121 			 * bit order.  The BE crc32 (H) for 01:00:5E:00:00:01
1122 			 * is 0x7fa32d9b.  By empirical testing, the
1123 			 * corresponding hash bit is word 3, bit 31 (ppc bit
1124 			 * order).  Since 3 << 31 | 31 is 0x7f, we deduce
1125 			 * H[0:2] selects the register while H[3:7] selects
1126 			 * the bit (ppc bit order).
1127 			 */
1128 			crc >>= crc_shift;
1129 			gaddr[crc / 32] |= 1 << ((crc & 31) ^ 31);
1130 		}
1131 		ETHER_NEXT_MULTI(step, enm);
1132 	}
1133 	for (u_int i = 0; i < 8; i++) {
1134 		etsec_write(sc, IGADDR(i), sc->sc_gaddr[i]);
1135 		etsec_write(sc, GADDR(i), sc->sc_gaddr[i+8]);
1136 #if 0
1137 		if (sc->sc_gaddr[i] || sc->sc_gaddr[i+8])
1138 		printf("%s: IGADDR%u(%#x)=%#x GADDR%u(%#x)=%#x\n", __func__,
1139 		    i, IGADDR(i), etsec_read(sc, IGADDR(i)),
1140 		    i, GADDR(i), etsec_read(sc, GADDR(i)));
1141 #endif
1142 	}
1143 	for (u_int i = 0; i < __arraycount(sc->sc_macaddrs); i++) {
1144 		uint64_t macaddr = sc->sc_macaddrs[i];
1145 		etsec_write(sc, MACnADDR1(i), (uint32_t)(macaddr >> 32));
1146 		etsec_write(sc, MACnADDR2(i), (uint32_t)(macaddr >>  0));
1147 #if 0
1148 		if (macaddr)
1149 		printf("%s: MAC%02uADDR2(%08x)=%#x MAC%02uADDR2(%#x)=%08x\n", __func__,
1150 		    i+1, MACnADDR1(i), etsec_read(sc, MACnADDR1(i)),
1151 		    i+1, MACnADDR2(i), etsec_read(sc, MACnADDR2(i)));
1152 #endif
1153 	}
1154 }
1155 
1156 static int
1157 pq3etsec_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
1158 {
1159 	struct pq3etsec_softc *sc  = ifp->if_softc;
1160 	struct ifreq * const ifr = data;
1161 	const int s = splnet();
1162 	int error;
1163 
1164 	switch (cmd) {
1165 	case SIOCSIFMEDIA:
1166 	case SIOCGIFMEDIA:
1167 		/* Flow control requires full-duplex mode. */
1168 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1169 		    (ifr->ifr_media & IFM_FDX) == 0)
1170 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1171 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1172 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1173 				/* We can do both TXPAUSE and RXPAUSE. */
1174 				ifr->ifr_media |=
1175 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1176 			}
1177 		}
1178 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1179 		break;
1180 
1181 	default:
1182 		error = ether_ioctl(ifp, cmd, data);
1183 		if (error != ENETRESET)
1184 			break;
1185 
1186 		if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
1187 			error = 0;
1188 			if (ifp->if_flags & IFF_RUNNING)
1189 				pq3etsec_mc_setup(sc);
1190 			break;
1191 		}
1192 		error = pq3etsec_ifinit(ifp);
1193 		break;
1194 	}
1195 
1196 	splx(s);
1197 	return error;
1198 }
1199 
1200 static void
1201 pq3etsec_rxq_desc_presync(
1202 	struct pq3etsec_softc *sc,
1203 	struct pq3etsec_rxqueue *rxq,
1204 	volatile struct rxbd *rxbd,
1205 	size_t count)
1206 {
1207 	bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1208 	    (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1209 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1210 }
1211 
1212 static void
1213 pq3etsec_rxq_desc_postsync(
1214 	struct pq3etsec_softc *sc,
1215 	struct pq3etsec_rxqueue *rxq,
1216 	volatile struct rxbd *rxbd,
1217 	size_t count)
1218 {
1219 	bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1220 	    (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1221 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1222 }
1223 
1224 static void
1225 pq3etsec_txq_desc_presync(
1226 	struct pq3etsec_softc *sc,
1227 	struct pq3etsec_txqueue *txq,
1228 	volatile struct txbd *txbd,
1229 	size_t count)
1230 {
1231 	bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1232 	    (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1233 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1234 }
1235 
1236 static void
1237 pq3etsec_txq_desc_postsync(
1238 	struct pq3etsec_softc *sc,
1239 	struct pq3etsec_txqueue *txq,
1240 	volatile struct txbd *txbd,
1241 	size_t count)
1242 {
1243 	bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1244 	    (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1245 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1246 }
1247 
1248 static bus_dmamap_t
1249 pq3etsec_mapcache_get(
1250 	struct pq3etsec_softc *sc,
1251 	struct pq3etsec_mapcache *dmc)
1252 {
1253 	KASSERT(dmc->dmc_nmaps > 0);
1254 	KASSERT(dmc->dmc_maps[dmc->dmc_nmaps-1] != NULL);
1255 	return dmc->dmc_maps[--dmc->dmc_nmaps];
1256 }
1257 
1258 static void
1259 pq3etsec_mapcache_put(
1260 	struct pq3etsec_softc *sc,
1261 	struct pq3etsec_mapcache *dmc,
1262 	bus_dmamap_t map)
1263 {
1264 	KASSERT(map != NULL);
1265 	KASSERT(dmc->dmc_nmaps < dmc->dmc_maxmaps);
1266 	dmc->dmc_maps[dmc->dmc_nmaps++] = map;
1267 }
1268 
1269 static void
1270 pq3etsec_mapcache_destroy(
1271 	struct pq3etsec_softc *sc,
1272 	struct pq3etsec_mapcache *dmc)
1273 {
1274 	const size_t dmc_size =
1275 	    offsetof(struct pq3etsec_mapcache, dmc_maps[dmc->dmc_maxmaps]);
1276 
1277 	for (u_int i = 0; i < dmc->dmc_maxmaps; i++) {
1278 		bus_dmamap_destroy(sc->sc_dmat, dmc->dmc_maps[i]);
1279 	}
1280 	kmem_intr_free(dmc, dmc_size);
1281 }
1282 
1283 static int
1284 pq3etsec_mapcache_create(
1285 	struct pq3etsec_softc *sc,
1286 	struct pq3etsec_mapcache **dmc_p,
1287 	size_t maxmaps,
1288 	size_t maxmapsize,
1289 	size_t maxseg)
1290 {
1291 	const size_t dmc_size =
1292 	    offsetof(struct pq3etsec_mapcache, dmc_maps[maxmaps]);
1293 	struct pq3etsec_mapcache * const dmc =
1294 		kmem_intr_zalloc(dmc_size, KM_NOSLEEP);
1295 
1296 	dmc->dmc_maxmaps = maxmaps;
1297 	dmc->dmc_nmaps = maxmaps;
1298 	dmc->dmc_maxmapsize = maxmapsize;
1299 	dmc->dmc_maxseg = maxseg;
1300 
1301 	for (u_int i = 0; i < maxmaps; i++) {
1302 		int error = bus_dmamap_create(sc->sc_dmat, dmc->dmc_maxmapsize,
1303 		     dmc->dmc_maxseg, dmc->dmc_maxmapsize, 0,
1304 		     BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW, &dmc->dmc_maps[i]);
1305 		if (error) {
1306 			aprint_error_dev(sc->sc_dev,
1307 			    "failed to creat dma map cache "
1308 			    "entry %u of %zu: %d\n",
1309 			    i, maxmaps, error);
1310 			while (i-- > 0) {
1311 				bus_dmamap_destroy(sc->sc_dmat,
1312 				    dmc->dmc_maps[i]);
1313 			}
1314 			kmem_intr_free(dmc, dmc_size);
1315 			return error;
1316 		}
1317 		KASSERT(dmc->dmc_maps[i] != NULL);
1318 	}
1319 
1320 	*dmc_p = dmc;
1321 
1322 	return 0;
1323 }
1324 
1325 #if 0
1326 static void
1327 pq3etsec_dmamem_free(
1328 	bus_dma_tag_t dmat,
1329 	size_t map_size,
1330 	bus_dma_segment_t *seg,
1331 	bus_dmamap_t map,
1332 	void *kvap)
1333 {
1334 	bus_dmamap_destroy(dmat, map);
1335 	bus_dmamem_unmap(dmat, kvap, map_size);
1336 	bus_dmamem_free(dmat, seg, 1);
1337 }
1338 #endif
1339 
1340 static int
1341 pq3etsec_dmamem_alloc(
1342 	bus_dma_tag_t dmat,
1343 	size_t map_size,
1344 	bus_dma_segment_t *seg,
1345 	bus_dmamap_t *map,
1346 	void **kvap)
1347 {
1348 	int error;
1349 	int nseg;
1350 
1351 	*kvap = NULL;
1352 	*map = NULL;
1353 
1354 	error = bus_dmamem_alloc(dmat, map_size, PAGE_SIZE, 0,
1355 	   seg, 1, &nseg, 0);
1356 	if (error)
1357 		return error;
1358 
1359 	KASSERT(nseg == 1);
1360 
1361 	error = bus_dmamem_map(dmat, seg, nseg, map_size, (void **)kvap,
1362 	    BUS_DMA_COHERENT);
1363 	if (error == 0) {
1364 		error = bus_dmamap_create(dmat, map_size, 1, map_size, 0, 0,
1365 		    map);
1366 		if (error == 0) {
1367 			error = bus_dmamap_load(dmat, *map, *kvap, map_size,
1368 			    NULL, 0);
1369 			if (error == 0)
1370 				return 0;
1371 			bus_dmamap_destroy(dmat, *map);
1372 			*map = NULL;
1373 		}
1374 		bus_dmamem_unmap(dmat, *kvap, map_size);
1375 		*kvap = NULL;
1376 	}
1377 	bus_dmamem_free(dmat, seg, nseg);
1378 	return 0;
1379 }
1380 
1381 static struct mbuf *
1382 pq3etsec_rx_buf_alloc(
1383 	struct pq3etsec_softc *sc)
1384 {
1385 	struct mbuf *m = m_gethdr(M_DONTWAIT, MT_DATA);
1386 	if (m == NULL) {
1387 		printf("%s:%d: %s\n", __func__, __LINE__, "m_gethdr");
1388 		return NULL;
1389 	}
1390 	MCLGET(m, M_DONTWAIT);
1391 	if ((m->m_flags & M_EXT) == 0) {
1392 		printf("%s:%d: %s\n", __func__, __LINE__, "MCLGET");
1393 		m_freem(m);
1394 		return NULL;
1395 	}
1396 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1397 
1398 	bus_dmamap_t map = pq3etsec_mapcache_get(sc, sc->sc_rx_mapcache);
1399 	if (map == NULL) {
1400 		printf("%s:%d: %s\n", __func__, __LINE__, "map get");
1401 		m_freem(m);
1402 		return NULL;
1403 	}
1404 	M_SETCTX(m, map);
1405 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1406 	int error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1407 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1408 	if (error) {
1409 		aprint_error_dev(sc->sc_dev, "fail to load rx dmamap: %d\n",
1410 		    error);
1411 		M_SETCTX(m, NULL);
1412 		m_freem(m);
1413 		pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1414 		return NULL;
1415 	}
1416 	KASSERT(map->dm_mapsize == MCLBYTES);
1417 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1418 	    BUS_DMASYNC_PREREAD);
1419 
1420 	return m;
1421 }
1422 
1423 static void
1424 pq3etsec_rx_map_unload(
1425 	struct pq3etsec_softc *sc,
1426 	struct mbuf *m)
1427 {
1428 	KASSERT(m);
1429 	for (; m != NULL; m = m->m_next) {
1430 		bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1431 		KASSERT(map);
1432 		KASSERT(map->dm_mapsize == MCLBYTES);
1433 		bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_len,
1434 		    BUS_DMASYNC_POSTREAD);
1435 		bus_dmamap_unload(sc->sc_dmat, map);
1436 		pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1437 		M_SETCTX(m, NULL);
1438 	}
1439 }
1440 
1441 static bool
1442 pq3etsec_rxq_produce(
1443 	struct pq3etsec_softc *sc,
1444 	struct pq3etsec_rxqueue *rxq)
1445 {
1446 	volatile struct rxbd *producer = rxq->rxq_producer;
1447 #if 0
1448 	size_t inuse = rxq->rxq_inuse;
1449 #endif
1450 	while (rxq->rxq_inuse < rxq->rxq_threshold) {
1451 		struct mbuf *m;
1452 		IF_DEQUEUE(&sc->sc_rx_bufcache, m);
1453 		if (m == NULL) {
1454 			m = pq3etsec_rx_buf_alloc(sc);
1455 			if (m == NULL) {
1456 				printf("%s: pq3etsec_rx_buf_alloc failed\n", __func__);
1457 				break;
1458 			}
1459 		}
1460 		bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1461 		KASSERT(map);
1462 
1463 #ifdef ETSEC_DEBUG
1464 		KASSERT(rxq->rxq_mbufs[producer-rxq->rxq_first] == NULL);
1465 		rxq->rxq_mbufs[producer-rxq->rxq_first] = m;
1466 #endif
1467 
1468 		/* rxbd_len is write-only by the ETSEC */
1469 		producer->rxbd_bufptr = map->dm_segs[0].ds_addr;
1470 		membar_producer();
1471 		producer->rxbd_flags |= RXBD_E;
1472 		if (__predict_false(rxq->rxq_mhead == NULL)) {
1473 			KASSERT(producer == rxq->rxq_consumer);
1474 			rxq->rxq_mconsumer = m;
1475 		}
1476 		*rxq->rxq_mtail = m;
1477 		rxq->rxq_mtail = &m->m_next;
1478 		m->m_len = MCLBYTES;
1479 		m->m_next = NULL;
1480 		rxq->rxq_inuse++;
1481 		if (++producer == rxq->rxq_last) {
1482 			membar_producer();
1483 			pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1484 			    rxq->rxq_last - rxq->rxq_producer);
1485 			producer = rxq->rxq_producer = rxq->rxq_first;
1486 		}
1487 	}
1488 	if (producer != rxq->rxq_producer) {
1489 		membar_producer();
1490 		pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1491 		    producer - rxq->rxq_producer);
1492 		rxq->rxq_producer = producer;
1493 	}
1494 	uint32_t qhlt = etsec_read(sc, RSTAT) & RSTAT_QHLT;
1495 	if (qhlt) {
1496 		KASSERT(qhlt & rxq->rxq_qmask);
1497 		sc->sc_ev_rx_stall.ev_count++;
1498 		etsec_write(sc, RSTAT, RSTAT_QHLT & rxq->rxq_qmask);
1499 	}
1500 #if 0
1501 	aprint_normal_dev(sc->sc_dev,
1502 	    "%s: buffers inuse went from %zu to %zu\n",
1503 	    __func__, inuse, rxq->rxq_inuse);
1504 #endif
1505 	return true;
1506 }
1507 
1508 static bool
1509 pq3etsec_rx_offload(
1510 	struct pq3etsec_softc *sc,
1511 	struct mbuf *m,
1512 	const struct rxfcb *fcb)
1513 {
1514 	if (fcb->rxfcb_flags & RXFCB_VLN) {
1515 		VLAN_INPUT_TAG(&sc->sc_if, m, fcb->rxfcb_vlctl,
1516 		    m_freem(m); return false);
1517 	}
1518 	if ((fcb->rxfcb_flags & RXFCB_IP) == 0
1519 	    || (fcb->rxfcb_flags & (RXFCB_CIP|RXFCB_CTU)) == 0)
1520 		return true;
1521 	int csum_flags = 0;
1522 	if ((fcb->rxfcb_flags & (RXFCB_IP6|RXFCB_CIP)) == RXFCB_CIP) {
1523 		csum_flags |= M_CSUM_IPv4;
1524 		if (fcb->rxfcb_flags & RXFCB_EIP)
1525 			csum_flags |= M_CSUM_IPv4_BAD;
1526 	}
1527 	if ((fcb->rxfcb_flags & RXFCB_CTU) == RXFCB_CTU) {
1528 		int ipv_flags;
1529 		if (fcb->rxfcb_flags & RXFCB_IP6)
1530 			ipv_flags = M_CSUM_TCPv6|M_CSUM_UDPv6;
1531 		else
1532 			ipv_flags = M_CSUM_TCPv4|M_CSUM_UDPv4;
1533 		if (fcb->rxfcb_pro == IPPROTO_TCP) {
1534 			csum_flags |= (M_CSUM_TCPv4|M_CSUM_TCPv6) & ipv_flags;
1535 		} else {
1536 			csum_flags |= (M_CSUM_UDPv4|M_CSUM_UDPv6) & ipv_flags;
1537 		}
1538 		if (fcb->rxfcb_flags & RXFCB_ETU)
1539 			csum_flags |= M_CSUM_TCP_UDP_BAD;
1540 	}
1541 
1542 	m->m_pkthdr.csum_flags = csum_flags;
1543 	return true;
1544 }
1545 
1546 static void
1547 pq3etsec_rx_input(
1548 	struct pq3etsec_softc *sc,
1549 	struct mbuf *m,
1550 	uint16_t rxbd_flags)
1551 {
1552 	struct ifnet * const ifp = &sc->sc_if;
1553 
1554 	pq3etsec_rx_map_unload(sc, m);
1555 
1556 	if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF) {
1557 		struct rxfcb fcb = *mtod(m, struct rxfcb *);
1558 		if (!pq3etsec_rx_offload(sc, m, &fcb))
1559 			return;
1560 	}
1561 	m_adj(m, sc->sc_rx_adjlen);
1562 
1563 	if (rxbd_flags & RXBD_M)
1564 		m->m_flags |= M_PROMISC;
1565 	if (rxbd_flags & RXBD_BC)
1566 		m->m_flags |= M_BCAST;
1567 	if (rxbd_flags & RXBD_MC)
1568 		m->m_flags |= M_MCAST;
1569 	m->m_flags |= M_HASFCS;
1570 	m_set_rcvif(m, &sc->sc_if);
1571 
1572 	ifp->if_ibytes += m->m_pkthdr.len;
1573 
1574 	/*
1575 	 * Let's give it to the network subsystm to deal with.
1576 	 */
1577 	int s = splnet();
1578 	if_input(ifp, m);
1579 	splx(s);
1580 }
1581 
1582 static void
1583 pq3etsec_rxq_consume(
1584 	struct pq3etsec_softc *sc,
1585 	struct pq3etsec_rxqueue *rxq)
1586 {
1587 	struct ifnet * const ifp = &sc->sc_if;
1588 	volatile struct rxbd *consumer = rxq->rxq_consumer;
1589 	size_t rxconsumed = 0;
1590 
1591 	etsec_write(sc, RSTAT, RSTAT_RXF & rxq->rxq_qmask);
1592 
1593 	for (;;) {
1594 		if (consumer == rxq->rxq_producer) {
1595 			rxq->rxq_consumer = consumer;
1596 			rxq->rxq_inuse -= rxconsumed;
1597 			KASSERT(rxq->rxq_inuse == 0);
1598 			return;
1599 		}
1600 		pq3etsec_rxq_desc_postsync(sc, rxq, consumer, 1);
1601 		const uint16_t rxbd_flags = consumer->rxbd_flags;
1602 		if (rxbd_flags & RXBD_E) {
1603 			rxq->rxq_consumer = consumer;
1604 			rxq->rxq_inuse -= rxconsumed;
1605 			return;
1606 		}
1607 		KASSERT(rxq->rxq_mconsumer != NULL);
1608 #ifdef ETSEC_DEBUG
1609 		KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1610 #endif
1611 #if 0
1612 		printf("%s: rxdb[%u]: flags=%#x len=%#x: %08x %08x %08x %08x\n",
1613 		    __func__,
1614 		    consumer - rxq->rxq_first, rxbd_flags, consumer->rxbd_len,
1615 		    mtod(rxq->rxq_mconsumer, int *)[0],
1616 		    mtod(rxq->rxq_mconsumer, int *)[1],
1617 		    mtod(rxq->rxq_mconsumer, int *)[2],
1618 		    mtod(rxq->rxq_mconsumer, int *)[3]);
1619 #endif
1620 		/*
1621 		 * We own this packet again.  Clear all flags except wrap.
1622 		 */
1623 		rxconsumed++;
1624 		consumer->rxbd_flags = rxbd_flags & (RXBD_W|RXBD_I);
1625 
1626 		/*
1627 		 * If this descriptor has the LAST bit set and no errors,
1628 		 * it's a valid input packet.
1629 		 */
1630 		if ((rxbd_flags & (RXBD_L|RXBD_ERRORS)) == RXBD_L) {
1631 			size_t rxbd_len = consumer->rxbd_len;
1632 			struct mbuf *m = rxq->rxq_mhead;
1633 			struct mbuf *m_last = rxq->rxq_mconsumer;
1634 			if ((rxq->rxq_mhead = m_last->m_next) == NULL)
1635 				rxq->rxq_mtail = &rxq->rxq_mhead;
1636 			rxq->rxq_mconsumer = rxq->rxq_mhead;
1637 			m_last->m_next = NULL;
1638 			m_last->m_len = rxbd_len & (MCLBYTES - 1);
1639 			m->m_pkthdr.len = rxbd_len;
1640 			pq3etsec_rx_input(sc, m, rxbd_flags);
1641 		} else if (rxbd_flags & RXBD_L) {
1642 			KASSERT(rxbd_flags & RXBD_ERRORS);
1643 			struct mbuf *m;
1644 			/*
1645 			 * We encountered an error, take the mbufs and add
1646 			 * then to the rx bufcache so we can reuse them.
1647 			 */
1648 			ifp->if_ierrors++;
1649 			for (m = rxq->rxq_mhead;
1650 			     m != rxq->rxq_mconsumer;
1651 			     m = m->m_next) {
1652 				IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1653 			}
1654 			m = rxq->rxq_mconsumer;
1655 			if ((rxq->rxq_mhead = m->m_next) == NULL)
1656 				rxq->rxq_mtail = &rxq->rxq_mhead;
1657 			rxq->rxq_mconsumer = m->m_next;
1658 			IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1659 		} else {
1660 			rxq->rxq_mconsumer = rxq->rxq_mconsumer->m_next;
1661 		}
1662 #ifdef ETSEC_DEBUG
1663 		rxq->rxq_mbufs[consumer - rxq->rxq_first] = NULL;
1664 #endif
1665 
1666 		/*
1667 		 * Wrap at the last entry!
1668 		 */
1669 		if (rxbd_flags & RXBD_W) {
1670 			KASSERT(consumer + 1 == rxq->rxq_last);
1671 			consumer = rxq->rxq_first;
1672 		} else {
1673 			consumer++;
1674 		}
1675 #ifdef ETSEC_DEBUG
1676 		KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1677 #endif
1678 	}
1679 }
1680 
1681 static void
1682 pq3etsec_rxq_purge(
1683 	struct pq3etsec_softc *sc,
1684 	struct pq3etsec_rxqueue *rxq,
1685 	bool discard)
1686 {
1687 	struct mbuf *m;
1688 
1689 	if ((m = rxq->rxq_mhead) != NULL) {
1690 #ifdef ETSEC_DEBUG
1691 		memset(rxq->rxq_mbufs, 0, sizeof(rxq->rxq_mbufs));
1692 #endif
1693 
1694 		if (discard) {
1695 			pq3etsec_rx_map_unload(sc, m);
1696 			m_freem(m);
1697 		} else {
1698 			while (m != NULL) {
1699 				struct mbuf *m0 = m->m_next;
1700 				m->m_next = NULL;
1701 				IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1702 				m = m0;
1703 			}
1704 		}
1705 
1706 	}
1707 
1708 	rxq->rxq_mconsumer = NULL;
1709 	rxq->rxq_mhead = NULL;
1710 	rxq->rxq_mtail = &rxq->rxq_mhead;
1711 	rxq->rxq_inuse = 0;
1712 }
1713 
1714 static void
1715 pq3etsec_rxq_reset(
1716 	struct pq3etsec_softc *sc,
1717 	struct pq3etsec_rxqueue *rxq)
1718 {
1719 	/*
1720 	 * sync all the descriptors
1721 	 */
1722 	pq3etsec_rxq_desc_postsync(sc, rxq, rxq->rxq_first,
1723 	    rxq->rxq_last - rxq->rxq_first);
1724 
1725 	/*
1726 	 * Make sure we own all descriptors in the ring.
1727 	 */
1728 	volatile struct rxbd *rxbd;
1729 	for (rxbd = rxq->rxq_first; rxbd < rxq->rxq_last - 1; rxbd++) {
1730 		rxbd->rxbd_flags = RXBD_I;
1731 	}
1732 
1733 	/*
1734 	 * Last descriptor has the wrap flag.
1735 	 */
1736 	rxbd->rxbd_flags = RXBD_W|RXBD_I;
1737 
1738 	/*
1739 	 * Reset the producer consumer indexes.
1740 	 */
1741 	rxq->rxq_consumer = rxq->rxq_first;
1742 	rxq->rxq_producer = rxq->rxq_first;
1743 	rxq->rxq_inuse = 0;
1744 	if (rxq->rxq_threshold < ETSEC_MINRXMBUFS)
1745 		rxq->rxq_threshold = ETSEC_MINRXMBUFS;
1746 
1747 	sc->sc_imask |= IEVENT_RXF|IEVENT_BSY;
1748 
1749 	/*
1750 	 * Restart the transmit at the first descriptor
1751 	 */
1752 	etsec_write(sc, rxq->rxq_reg_rbase, rxq->rxq_descmap->dm_segs->ds_addr);
1753 }
1754 
1755 static int
1756 pq3etsec_rxq_attach(
1757 	struct pq3etsec_softc *sc,
1758 	struct pq3etsec_rxqueue *rxq,
1759 	u_int qno)
1760 {
1761 	size_t map_size = PAGE_SIZE;
1762 	size_t desc_count = map_size / sizeof(struct rxbd);
1763 	int error;
1764 	void *descs;
1765 
1766 	error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1767 	   &rxq->rxq_descmap_seg, &rxq->rxq_descmap, &descs);
1768 	if (error)
1769 		return error;
1770 
1771 	memset(descs, 0, map_size);
1772 	rxq->rxq_first = descs;
1773 	rxq->rxq_last = rxq->rxq_first + desc_count;
1774 	rxq->rxq_consumer = descs;
1775 	rxq->rxq_producer = descs;
1776 
1777 	pq3etsec_rxq_purge(sc, rxq, true);
1778 	pq3etsec_rxq_reset(sc, rxq);
1779 
1780 	rxq->rxq_reg_rbase = RBASEn(qno);
1781 	rxq->rxq_qmask = RSTAT_QHLTn(qno) | RSTAT_RXFn(qno);
1782 
1783 	return 0;
1784 }
1785 
1786 static bool
1787 pq3etsec_txq_active_p(
1788 	struct pq3etsec_softc * const sc,
1789 	struct pq3etsec_txqueue *txq)
1790 {
1791 	return !IF_IS_EMPTY(&txq->txq_mbufs);
1792 }
1793 
1794 static bool
1795 pq3etsec_txq_fillable_p(
1796 	struct pq3etsec_softc * const sc,
1797 	struct pq3etsec_txqueue *txq)
1798 {
1799 	return txq->txq_free >= txq->txq_threshold;
1800 }
1801 
1802 static int
1803 pq3etsec_txq_attach(
1804 	struct pq3etsec_softc *sc,
1805 	struct pq3etsec_txqueue *txq,
1806 	u_int qno)
1807 {
1808 	size_t map_size = PAGE_SIZE;
1809 	size_t desc_count = map_size / sizeof(struct txbd);
1810 	int error;
1811 	void *descs;
1812 
1813 	error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1814 	   &txq->txq_descmap_seg, &txq->txq_descmap, &descs);
1815 	if (error)
1816 		return error;
1817 
1818 	memset(descs, 0, map_size);
1819 	txq->txq_first = descs;
1820 	txq->txq_last = txq->txq_first + desc_count;
1821 	txq->txq_consumer = descs;
1822 	txq->txq_producer = descs;
1823 
1824 	IFQ_SET_MAXLEN(&txq->txq_mbufs, ETSEC_MAXTXMBUFS);
1825 
1826 	txq->txq_reg_tbase = TBASEn(qno);
1827 	txq->txq_qmask = TSTAT_THLTn(qno) | TSTAT_TXFn(qno);
1828 
1829 	pq3etsec_txq_reset(sc, txq);
1830 
1831 	return 0;
1832 }
1833 
1834 static int
1835 pq3etsec_txq_map_load(
1836 	struct pq3etsec_softc *sc,
1837 	struct pq3etsec_txqueue *txq,
1838 	struct mbuf *m)
1839 {
1840 	bus_dmamap_t map;
1841 	int error;
1842 
1843 	map = M_GETCTX(m, bus_dmamap_t);
1844 	if (map != NULL)
1845 		return 0;
1846 
1847 	map = pq3etsec_mapcache_get(sc, sc->sc_tx_mapcache);
1848 	if (map == NULL)
1849 		return ENOMEM;
1850 
1851 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1852 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1853 	if (error)
1854 		return error;
1855 
1856 	bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_pkthdr.len,
1857 	    BUS_DMASYNC_PREWRITE);
1858 	M_SETCTX(m, map);
1859 	return 0;
1860 }
1861 
1862 static void
1863 pq3etsec_txq_map_unload(
1864 	struct pq3etsec_softc *sc,
1865 	struct pq3etsec_txqueue *txq,
1866 	struct mbuf *m)
1867 {
1868 	KASSERT(m);
1869 	bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1870 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1871 	    BUS_DMASYNC_POSTWRITE);
1872 	bus_dmamap_unload(sc->sc_dmat, map);
1873 	pq3etsec_mapcache_put(sc, sc->sc_tx_mapcache, map);
1874 }
1875 
1876 static bool
1877 pq3etsec_txq_produce(
1878 	struct pq3etsec_softc *sc,
1879 	struct pq3etsec_txqueue *txq,
1880 	struct mbuf *m)
1881 {
1882 	bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1883 
1884 	if (map->dm_nsegs > txq->txq_free)
1885 		return false;
1886 
1887 	/*
1888 	 * TCP Offload flag must be set in the first descriptor.
1889 	 */
1890 	volatile struct txbd *producer = txq->txq_producer;
1891 	uint16_t last_flags = TXBD_L;
1892 	uint16_t first_flags = TXBD_R
1893 	    | ((m->m_flags & M_HASFCB) ? TXBD_TOE : 0);
1894 
1895 	/*
1896 	 * If we've produced enough descriptors without consuming any
1897 	 * we need to ask for an interrupt to reclaim some.
1898 	 */
1899 	txq->txq_lastintr += map->dm_nsegs;
1900 	if (ETSEC_IC_TX_ENABLED(sc)
1901 	    || txq->txq_lastintr >= txq->txq_threshold
1902 	    || txq->txq_mbufs.ifq_len + 1 == txq->txq_mbufs.ifq_maxlen) {
1903 		txq->txq_lastintr = 0;
1904 		last_flags |= TXBD_I;
1905 	}
1906 
1907 #ifdef ETSEC_DEBUG
1908 	KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1909 #endif
1910 	KASSERT(producer != txq->txq_last);
1911 	producer->txbd_bufptr = map->dm_segs[0].ds_addr;
1912 	producer->txbd_len = map->dm_segs[0].ds_len;
1913 
1914 	if (map->dm_nsegs > 1) {
1915 		volatile struct txbd *start = producer + 1;
1916 		size_t count = map->dm_nsegs - 1;
1917 		for (u_int i = 1; i < map->dm_nsegs; i++) {
1918 			if (__predict_false(++producer == txq->txq_last)) {
1919 				producer = txq->txq_first;
1920 				if (start < txq->txq_last) {
1921 					pq3etsec_txq_desc_presync(sc, txq,
1922 					    start, txq->txq_last - start);
1923 					count -= txq->txq_last - start;
1924 				}
1925 				start = txq->txq_first;
1926 			}
1927 #ifdef ETSEC_DEBUG
1928 			KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1929 #endif
1930 			producer->txbd_bufptr = map->dm_segs[i].ds_addr;
1931 			producer->txbd_len = map->dm_segs[i].ds_len;
1932 			producer->txbd_flags = TXBD_R
1933 			    | (producer->txbd_flags & TXBD_W)
1934 			    | (i == map->dm_nsegs - 1 ? last_flags : 0);
1935 #if 0
1936 			printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__, producer - txq->txq_first,
1937 			    producer->txbd_flags, producer->txbd_len, producer->txbd_bufptr);
1938 #endif
1939 		}
1940 		pq3etsec_txq_desc_presync(sc, txq, start, count);
1941 	} else {
1942 		first_flags |= last_flags;
1943 	}
1944 
1945 	membar_producer();
1946 	txq->txq_producer->txbd_flags =
1947 	    first_flags | (txq->txq_producer->txbd_flags & TXBD_W);
1948 #if 0
1949 	printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__,
1950 	    txq->txq_producer - txq->txq_first, txq->txq_producer->txbd_flags,
1951 	    txq->txq_producer->txbd_len, txq->txq_producer->txbd_bufptr);
1952 #endif
1953 	pq3etsec_txq_desc_presync(sc, txq, txq->txq_producer, 1);
1954 
1955 	/*
1956 	 * Reduce free count by the number of segments we consumed.
1957 	 */
1958 	txq->txq_free -= map->dm_nsegs;
1959 	KASSERT(map->dm_nsegs == 1 || txq->txq_producer != producer);
1960 	KASSERT(map->dm_nsegs == 1 || (txq->txq_producer->txbd_flags & TXBD_L) == 0);
1961 	KASSERT(producer->txbd_flags & TXBD_L);
1962 #ifdef ETSEC_DEBUG
1963 	txq->txq_lmbufs[producer - txq->txq_first] = m;
1964 #endif
1965 
1966 #if 0
1967 	printf("%s: mbuf %p: produced a %u byte packet in %u segments (%u..%u)\n",
1968 	    __func__, m, m->m_pkthdr.len, map->dm_nsegs,
1969 	    txq->txq_producer - txq->txq_first, producer - txq->txq_first);
1970 #endif
1971 
1972 	if (++producer == txq->txq_last)
1973 		txq->txq_producer = txq->txq_first;
1974 	else
1975 		txq->txq_producer = producer;
1976 	IF_ENQUEUE(&txq->txq_mbufs, m);
1977 
1978 	/*
1979 	 * Restart the transmitter.
1980 	 */
1981 	etsec_write(sc, TSTAT, txq->txq_qmask & TSTAT_THLT);	/* W1C */
1982 
1983 	return true;
1984 }
1985 
1986 static void
1987 pq3etsec_tx_offload(
1988 	struct pq3etsec_softc *sc,
1989 	struct pq3etsec_txqueue *txq,
1990 	struct mbuf **mp)
1991 {
1992 	struct mbuf *m = *mp;
1993 	u_int csum_flags = m->m_pkthdr.csum_flags;
1994 	struct m_tag *vtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m);
1995 
1996 	KASSERT(m->m_flags & M_PKTHDR);
1997 
1998 	/*
1999 	 * Let see if we are doing any offload first.
2000 	 */
2001 	if (csum_flags == 0 && vtag == 0) {
2002 		m->m_flags &= ~M_HASFCB;
2003 		return;
2004 	}
2005 
2006 	uint16_t flags = 0;
2007 	if (csum_flags & M_CSUM_IP) {
2008 		flags |= TXFCB_IP
2009 		    | ((csum_flags & M_CSUM_IP6) ? TXFCB_IP6 : 0)
2010 		    | ((csum_flags & M_CSUM_TUP) ? TXFCB_TUP : 0)
2011 		    | ((csum_flags & M_CSUM_UDP) ? TXFCB_UDP : 0)
2012 		    | ((csum_flags & M_CSUM_CIP) ? TXFCB_CIP : 0)
2013 		    | ((csum_flags & M_CSUM_CTU) ? TXFCB_CTU : 0);
2014 	}
2015 	if (vtag) {
2016 		flags |= TXFCB_VLN;
2017 	}
2018 	if (flags == 0) {
2019 		m->m_flags &= ~M_HASFCB;
2020 		return;
2021 	}
2022 
2023 	struct txfcb fcb;
2024 	fcb.txfcb_flags = flags;
2025 	if (csum_flags & M_CSUM_IPv4)
2026 		fcb.txfcb_l4os = M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
2027 	else
2028 		fcb.txfcb_l4os = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
2029 	fcb.txfcb_l3os = ETHER_HDR_LEN;
2030 	fcb.txfcb_phcs = 0;
2031 	fcb.txfcb_vlctl = vtag ? VLAN_TAG_VALUE(vtag) & 0xffff : 0;
2032 
2033 #if 0
2034 	printf("%s: csum_flags=%#x: txfcb flags=%#x lsos=%u l4os=%u phcs=%u vlctl=%#x\n",
2035 	    __func__, csum_flags, fcb.txfcb_flags, fcb.txfcb_l3os, fcb.txfcb_l4os,
2036 	    fcb.txfcb_phcs, fcb.txfcb_vlctl);
2037 #endif
2038 
2039 	if (M_LEADINGSPACE(m) >= sizeof(fcb)) {
2040 		m->m_data -= sizeof(fcb);
2041 		m->m_len += sizeof(fcb);
2042 	} else if (!(m->m_flags & M_EXT) && MHLEN - m->m_len >= sizeof(fcb)) {
2043 		memmove(m->m_pktdat + sizeof(fcb), m->m_data, m->m_len);
2044 		m->m_data = m->m_pktdat;
2045 		m->m_len += sizeof(fcb);
2046 	} else {
2047 		struct mbuf *mn;
2048 		MGET(mn, M_DONTWAIT, m->m_type);
2049 		if (mn == NULL) {
2050 			if (csum_flags & M_CSUM_IP4) {
2051 #ifdef INET
2052 				ip_undefer_csum(m, ETHER_HDR_LEN,
2053 				    csum_flags & M_CSUM_IP4);
2054 #else
2055 				panic("%s: impossible M_CSUM flags %#x",
2056 				    device_xname(sc->sc_dev), csum_flags);
2057 #endif
2058 			} else if (csum_flags & M_CSUM_IP6) {
2059 #ifdef INET6
2060 				ip6_undefer_csum(m, ETHER_HDR_LEN,
2061 				    csum_flags & M_CSUM_IP6);
2062 #else
2063 				panic("%s: impossible M_CSUM flags %#x",
2064 				    device_xname(sc->sc_dev), csum_flags);
2065 #endif
2066 			} else if (vtag) {
2067 			}
2068 
2069 			m->m_flags &= ~M_HASFCB;
2070 			return;
2071 		}
2072 
2073 		M_MOVE_PKTHDR(mn, m);
2074 		mn->m_next = m;
2075 		m = mn;
2076 		MH_ALIGN(m, sizeof(fcb));
2077 		m->m_len = sizeof(fcb);
2078 		*mp = m;
2079 	}
2080 	m->m_pkthdr.len += sizeof(fcb);
2081 	m->m_flags |= M_HASFCB;
2082 	*mtod(m, struct txfcb *) = fcb;
2083 	return;
2084 }
2085 
2086 static bool
2087 pq3etsec_txq_enqueue(
2088 	struct pq3etsec_softc *sc,
2089 	struct pq3etsec_txqueue *txq)
2090 {
2091 	for (;;) {
2092 		if (IF_QFULL(&txq->txq_mbufs))
2093 			return false;
2094 		struct mbuf *m = txq->txq_next;
2095 		if (m == NULL) {
2096 			int s = splnet();
2097 			IFQ_DEQUEUE(&sc->sc_if.if_snd, m);
2098 			splx(s);
2099 			if (m == NULL)
2100 				return true;
2101 			M_SETCTX(m, NULL);
2102 			pq3etsec_tx_offload(sc, txq, &m);
2103 		} else {
2104 			txq->txq_next = NULL;
2105 		}
2106 		int error = pq3etsec_txq_map_load(sc, txq, m);
2107 		if (error) {
2108 			aprint_error_dev(sc->sc_dev,
2109 			    "discarded packet due to "
2110 			    "dmamap load failure: %d\n", error);
2111 			m_freem(m);
2112 			continue;
2113 		}
2114 		KASSERT(txq->txq_next == NULL);
2115 		if (!pq3etsec_txq_produce(sc, txq, m)) {
2116 			txq->txq_next = m;
2117 			return false;
2118 		}
2119 		KASSERT(txq->txq_next == NULL);
2120 	}
2121 }
2122 
2123 static bool
2124 pq3etsec_txq_consume(
2125 	struct pq3etsec_softc *sc,
2126 	struct pq3etsec_txqueue *txq)
2127 {
2128 	struct ifnet * const ifp = &sc->sc_if;
2129 	volatile struct txbd *consumer = txq->txq_consumer;
2130 	size_t txfree = 0;
2131 
2132 #if 0
2133 	printf("%s: entry: free=%zu\n", __func__, txq->txq_free);
2134 #endif
2135 	etsec_write(sc, TSTAT, TSTAT_TXF & txq->txq_qmask);
2136 
2137 	for (;;) {
2138 		if (consumer == txq->txq_producer) {
2139 			txq->txq_consumer = consumer;
2140 			txq->txq_free += txfree;
2141 			txq->txq_lastintr -= min(txq->txq_lastintr, txfree);
2142 #if 0
2143 			printf("%s: empty: freed %zu descriptors going form %zu to %zu\n",
2144 			    __func__, txfree, txq->txq_free - txfree, txq->txq_free);
2145 #endif
2146 			KASSERT(txq->txq_lastintr == 0);
2147 			KASSERT(txq->txq_free == txq->txq_last - txq->txq_first - 1);
2148 			return true;
2149 		}
2150 		pq3etsec_txq_desc_postsync(sc, txq, consumer, 1);
2151 		const uint16_t txbd_flags = consumer->txbd_flags;
2152 		if (txbd_flags & TXBD_R) {
2153 			txq->txq_consumer = consumer;
2154 			txq->txq_free += txfree;
2155 			txq->txq_lastintr -= min(txq->txq_lastintr, txfree);
2156 #if 0
2157 			printf("%s: freed %zu descriptors\n",
2158 			    __func__, txfree);
2159 #endif
2160 			return pq3etsec_txq_fillable_p(sc, txq);
2161 		}
2162 
2163 		/*
2164 		 * If this is the last descriptor in the chain, get the
2165 		 * mbuf, free its dmamap, and free the mbuf chain itself.
2166 		 */
2167 		if (txbd_flags & TXBD_L) {
2168 			struct mbuf *m;
2169 
2170 			IF_DEQUEUE(&txq->txq_mbufs, m);
2171 #ifdef ETSEC_DEBUG
2172 			KASSERTMSG(
2173 			    m == txq->txq_lmbufs[consumer-txq->txq_first],
2174 			    "%s: %p [%u]: flags %#x m (%p) != %p (%p)",
2175 			    __func__, consumer, consumer - txq->txq_first,
2176 			    txbd_flags, m,
2177 			    &txq->txq_lmbufs[consumer-txq->txq_first],
2178 			    txq->txq_lmbufs[consumer-txq->txq_first]);
2179 #endif
2180 			KASSERT(m);
2181 			pq3etsec_txq_map_unload(sc, txq, m);
2182 #if 0
2183 			printf("%s: mbuf %p: consumed a %u byte packet\n",
2184 			    __func__, m, m->m_pkthdr.len);
2185 #endif
2186 			if (m->m_flags & M_HASFCB)
2187 				m_adj(m, sizeof(struct txfcb));
2188 			bpf_mtap(ifp, m);
2189 			ifp->if_opackets++;
2190 			ifp->if_obytes += m->m_pkthdr.len;
2191 			if (m->m_flags & M_MCAST)
2192 				ifp->if_omcasts++;
2193 			if (txbd_flags & TXBD_ERRORS)
2194 				ifp->if_oerrors++;
2195 			m_freem(m);
2196 #ifdef ETSEC_DEBUG
2197 			txq->txq_lmbufs[consumer - txq->txq_first] = NULL;
2198 #endif
2199 		} else {
2200 #ifdef ETSEC_DEBUG
2201 			KASSERT(txq->txq_lmbufs[consumer-txq->txq_first] == NULL);
2202 #endif
2203 		}
2204 
2205 		/*
2206 		 * We own this packet again.  Clear all flags except wrap.
2207 		 */
2208 		txfree++;
2209 		//consumer->txbd_flags = txbd_flags & TXBD_W;
2210 
2211 		/*
2212 		 * Wrap at the last entry!
2213 		 */
2214 		if (txbd_flags & TXBD_W) {
2215 			KASSERT(consumer + 1 == txq->txq_last);
2216 			consumer = txq->txq_first;
2217 		} else {
2218 			consumer++;
2219 			KASSERT(consumer < txq->txq_last);
2220 		}
2221 	}
2222 }
2223 
2224 static void
2225 pq3etsec_txq_purge(
2226 	struct pq3etsec_softc *sc,
2227 	struct pq3etsec_txqueue *txq)
2228 {
2229 	struct mbuf *m;
2230 	KASSERT((etsec_read(sc, MACCFG1) & MACCFG1_TX_EN) == 0);
2231 
2232 	for (;;) {
2233 		IF_DEQUEUE(&txq->txq_mbufs, m);
2234 		if (m == NULL)
2235 			break;
2236 		pq3etsec_txq_map_unload(sc, txq, m);
2237 		m_freem(m);
2238 	}
2239 	if ((m = txq->txq_next) != NULL) {
2240 		txq->txq_next = NULL;
2241 		pq3etsec_txq_map_unload(sc, txq, m);
2242 		m_freem(m);
2243 	}
2244 #ifdef ETSEC_DEBUG
2245 	memset(txq->txq_lmbufs, 0, sizeof(txq->txq_lmbufs));
2246 #endif
2247 }
2248 
2249 static void
2250 pq3etsec_txq_reset(
2251 	struct pq3etsec_softc *sc,
2252 	struct pq3etsec_txqueue *txq)
2253 {
2254 	/*
2255 	 * sync all the descriptors
2256 	 */
2257 	pq3etsec_txq_desc_postsync(sc, txq, txq->txq_first,
2258 	    txq->txq_last - txq->txq_first);
2259 
2260 	/*
2261 	 * Make sure we own all descriptors in the ring.
2262 	 */
2263 	volatile struct txbd *txbd;
2264 	for (txbd = txq->txq_first; txbd < txq->txq_last - 1; txbd++) {
2265 		txbd->txbd_flags = 0;
2266 	}
2267 
2268 	/*
2269 	 * Last descriptor has the wrap flag.
2270 	 */
2271 	txbd->txbd_flags = TXBD_W;
2272 
2273 	/*
2274 	 * Reset the producer consumer indexes.
2275 	 */
2276 	txq->txq_consumer = txq->txq_first;
2277 	txq->txq_producer = txq->txq_first;
2278 	txq->txq_free = txq->txq_last - txq->txq_first - 1;
2279 	txq->txq_threshold = txq->txq_free / 2;
2280 	txq->txq_lastintr = 0;
2281 
2282 	/*
2283 	 * What do we want to get interrupted on?
2284 	 */
2285 	sc->sc_imask |= IEVENT_TXF|IEVENT_TXE;
2286 
2287 	/*
2288 	 * Restart the transmit at the first descriptor
2289 	 */
2290 	etsec_write(sc, txq->txq_reg_tbase, txq->txq_descmap->dm_segs->ds_addr);
2291 }
2292 
2293 static void
2294 pq3etsec_ifstart(struct ifnet *ifp)
2295 {
2296 	struct pq3etsec_softc * const sc = ifp->if_softc;
2297 
2298 	if (__predict_false((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)) {
2299 		return;
2300 	}
2301 
2302 	atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2303 	softint_schedule(sc->sc_soft_ih);
2304 }
2305 
2306 static void
2307 pq3etsec_tx_error(
2308 	struct pq3etsec_softc * const sc)
2309 {
2310 	struct pq3etsec_txqueue * const txq = &sc->sc_txq;
2311 
2312 	pq3etsec_txq_consume(sc, txq);
2313 
2314 	if (pq3etsec_txq_fillable_p(sc, txq))
2315 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
2316 	if (sc->sc_txerrors & (IEVENT_LC|IEVENT_CRL|IEVENT_XFUN|IEVENT_BABT)) {
2317 	} else if (sc->sc_txerrors & IEVENT_EBERR) {
2318 	}
2319 
2320 	if (pq3etsec_txq_active_p(sc, txq))
2321 		etsec_write(sc, TSTAT, TSTAT_THLT & txq->txq_qmask);
2322 	if (!pq3etsec_txq_enqueue(sc, txq)) {
2323 		sc->sc_ev_tx_stall.ev_count++;
2324 		sc->sc_if.if_flags |= IFF_OACTIVE;
2325 	}
2326 
2327 	sc->sc_txerrors = 0;
2328 }
2329 
2330 int
2331 pq3etsec_tx_intr(void *arg)
2332 {
2333 	struct pq3etsec_softc * const sc = arg;
2334 
2335 	mutex_enter(sc->sc_hwlock);
2336 
2337 	sc->sc_ev_tx_intr.ev_count++;
2338 
2339 	uint32_t ievent = etsec_read(sc, IEVENT);
2340 	ievent &= IEVENT_TXF|IEVENT_TXB;
2341 	etsec_write(sc, IEVENT, ievent);	/* write 1 to clear */
2342 
2343 #if 0
2344 	aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2345 	    __func__, ievent, etsec_read(sc, IMASK));
2346 #endif
2347 
2348 	if (ievent == 0) {
2349 		mutex_exit(sc->sc_hwlock);
2350 		return 0;
2351 	}
2352 
2353 	sc->sc_imask &= ~(IEVENT_TXF|IEVENT_TXB);
2354 	atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2355 	etsec_write(sc, IMASK, sc->sc_imask);
2356 	softint_schedule(sc->sc_soft_ih);
2357 
2358 	mutex_exit(sc->sc_hwlock);
2359 
2360 	return 1;
2361 }
2362 
2363 int
2364 pq3etsec_rx_intr(void *arg)
2365 {
2366 	struct pq3etsec_softc * const sc = arg;
2367 
2368 	mutex_enter(sc->sc_hwlock);
2369 
2370 	sc->sc_ev_rx_intr.ev_count++;
2371 
2372 	uint32_t ievent = etsec_read(sc, IEVENT);
2373 	ievent &= IEVENT_RXF|IEVENT_RXB;
2374 	etsec_write(sc, IEVENT, ievent);	/* write 1 to clear */
2375 	if (ievent == 0) {
2376 		mutex_exit(sc->sc_hwlock);
2377 		return 0;
2378 	}
2379 
2380 #if 0
2381 	aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x\n", __func__, ievent);
2382 #endif
2383 
2384 	sc->sc_imask &= ~(IEVENT_RXF|IEVENT_RXB);
2385 	atomic_or_uint(&sc->sc_soft_flags, SOFT_RXINTR);
2386 	etsec_write(sc, IMASK, sc->sc_imask);
2387 	softint_schedule(sc->sc_soft_ih);
2388 
2389 	mutex_exit(sc->sc_hwlock);
2390 
2391 	return 1;
2392 }
2393 
2394 int
2395 pq3etsec_error_intr(void *arg)
2396 {
2397 	struct pq3etsec_softc * const sc = arg;
2398 
2399 	mutex_enter(sc->sc_hwlock);
2400 
2401 	sc->sc_ev_error_intr.ev_count++;
2402 
2403 	for (int rv = 0, soft_flags = 0;; rv = 1) {
2404 		uint32_t ievent = etsec_read(sc, IEVENT);
2405 		ievent &= ~(IEVENT_RXF|IEVENT_RXB|IEVENT_TXF|IEVENT_TXB);
2406 		etsec_write(sc, IEVENT, ievent);	/* write 1 to clear */
2407 		if (ievent == 0) {
2408 			if (soft_flags) {
2409 				atomic_or_uint(&sc->sc_soft_flags, soft_flags);
2410 				softint_schedule(sc->sc_soft_ih);
2411 			}
2412 			mutex_exit(sc->sc_hwlock);
2413 			return rv;
2414 		}
2415 #if 0
2416 		aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2417 		    __func__, ievent, etsec_read(sc, IMASK));
2418 #endif
2419 
2420 		if (ievent & (IEVENT_GRSC|IEVENT_GTSC)) {
2421 			sc->sc_imask &= ~(IEVENT_GRSC|IEVENT_GTSC);
2422 			etsec_write(sc, IMASK, sc->sc_imask);
2423 			wakeup(sc);
2424 		}
2425 		if (ievent & (IEVENT_MMRD|IEVENT_MMWR)) {
2426 			sc->sc_imask &= ~(IEVENT_MMRD|IEVENT_MMWR);
2427 			etsec_write(sc, IMASK, sc->sc_imask);
2428 			wakeup(&sc->sc_mii);
2429 		}
2430 		if (ievent & IEVENT_BSY) {
2431 			soft_flags |= SOFT_RXBSY;
2432 			sc->sc_imask &= ~IEVENT_BSY;
2433 			etsec_write(sc, IMASK, sc->sc_imask);
2434 		}
2435 		if (ievent & IEVENT_TXE) {
2436 			soft_flags |= SOFT_TXERROR;
2437 			sc->sc_imask &= ~IEVENT_TXE;
2438 			sc->sc_txerrors |= ievent;
2439 		}
2440 		if (ievent & IEVENT_TXC) {
2441 			sc->sc_ev_tx_pause.ev_count++;
2442 		}
2443 		if (ievent & IEVENT_RXC) {
2444 			sc->sc_ev_rx_pause.ev_count++;
2445 		}
2446 		if (ievent & IEVENT_DPE) {
2447 			soft_flags |= SOFT_RESET;
2448 			sc->sc_imask &= ~IEVENT_DPE;
2449 			etsec_write(sc, IMASK, sc->sc_imask);
2450 		}
2451 	}
2452 }
2453 
2454 void
2455 pq3etsec_soft_intr(void *arg)
2456 {
2457 	struct pq3etsec_softc * const sc = arg;
2458 	struct ifnet * const ifp = &sc->sc_if;
2459 	uint32_t imask = 0;
2460 
2461 	mutex_enter(sc->sc_lock);
2462 
2463 	u_int soft_flags = atomic_swap_uint(&sc->sc_soft_flags, 0);
2464 
2465 	sc->sc_ev_soft_intr.ev_count++;
2466 
2467 	if (soft_flags & SOFT_RESET) {
2468 		int s = splnet();
2469 		pq3etsec_ifinit(ifp);
2470 		splx(s);
2471 		soft_flags = 0;
2472 	}
2473 
2474 	if (soft_flags & SOFT_RXBSY) {
2475 		struct pq3etsec_rxqueue * const rxq = &sc->sc_rxq;
2476 		size_t threshold = 5 * rxq->rxq_threshold / 4;
2477 		if (threshold >= rxq->rxq_last - rxq->rxq_first) {
2478 			threshold = rxq->rxq_last - rxq->rxq_first - 1;
2479 		} else {
2480 			imask |= IEVENT_BSY;
2481 		}
2482 		aprint_normal_dev(sc->sc_dev,
2483 		    "increasing receive buffers from %zu to %zu\n",
2484 		    rxq->rxq_threshold, threshold);
2485 		rxq->rxq_threshold = threshold;
2486 	}
2487 
2488 	if ((soft_flags & SOFT_TXINTR)
2489 	    || pq3etsec_txq_active_p(sc, &sc->sc_txq)) {
2490 		/*
2491 		 * Let's do what we came here for.  Consume transmitted
2492 		 * packets off the the transmit ring.
2493 		 */
2494 		if (!pq3etsec_txq_consume(sc, &sc->sc_txq)
2495 		    || !pq3etsec_txq_enqueue(sc, &sc->sc_txq)) {
2496 			sc->sc_ev_tx_stall.ev_count++;
2497 			ifp->if_flags |= IFF_OACTIVE;
2498 		} else {
2499 			ifp->if_flags &= ~IFF_OACTIVE;
2500 		}
2501 		imask |= IEVENT_TXF;
2502 	}
2503 
2504 	if (soft_flags & (SOFT_RXINTR|SOFT_RXBSY)) {
2505 		/*
2506 		 * Let's consume
2507 		 */
2508 		pq3etsec_rxq_consume(sc, &sc->sc_rxq);
2509 		imask |= IEVENT_RXF;
2510 	}
2511 
2512 	if (soft_flags & SOFT_TXERROR) {
2513 		pq3etsec_tx_error(sc);
2514 		imask |= IEVENT_TXE;
2515 	}
2516 
2517 	if (ifp->if_flags & IFF_RUNNING) {
2518 		pq3etsec_rxq_produce(sc, &sc->sc_rxq);
2519 		mutex_spin_enter(sc->sc_hwlock);
2520 		sc->sc_imask |= imask;
2521 		etsec_write(sc, IMASK, sc->sc_imask);
2522 		mutex_spin_exit(sc->sc_hwlock);
2523 	} else {
2524 		KASSERT((soft_flags & SOFT_RXBSY) == 0);
2525 	}
2526 
2527 	mutex_exit(sc->sc_lock);
2528 }
2529 
2530 static void
2531 pq3etsec_mii_tick(void *arg)
2532 {
2533 	struct pq3etsec_softc * const sc = arg;
2534 	mutex_enter(sc->sc_lock);
2535 	callout_ack(&sc->sc_mii_callout);
2536 	sc->sc_ev_mii_ticks.ev_count++;
2537 #ifdef DEBUG
2538 	uint64_t now = mftb();
2539 	if (now - sc->sc_mii_last_tick < cpu_timebase - 5000) {
2540 		aprint_debug_dev(sc->sc_dev, "%s: diff=%"PRIu64"\n",
2541 		    __func__, now - sc->sc_mii_last_tick);
2542 		callout_stop(&sc->sc_mii_callout);
2543 	}
2544 #endif
2545 	mii_tick(&sc->sc_mii);
2546 	int s = splnet();
2547 	if (sc->sc_soft_flags & SOFT_RESET)
2548 		softint_schedule(sc->sc_soft_ih);
2549 	splx(s);
2550 	callout_schedule(&sc->sc_mii_callout, hz);
2551 #ifdef DEBUG
2552 	sc->sc_mii_last_tick = now;
2553 #endif
2554 	mutex_exit(sc->sc_lock);
2555 }
2556 
2557 static void
2558 pq3etsec_set_ic_rx(struct pq3etsec_softc *sc)
2559 {
2560 	uint32_t reg;
2561 
2562 	if (ETSEC_IC_RX_ENABLED(sc)) {
2563 		reg = RXIC_ICEN;
2564 		reg |= RXIC_ICFT_SET(sc->sc_ic_rx_count);
2565 		reg |= RXIC_ICTT_SET(sc->sc_ic_rx_time);
2566 	} else {
2567 		/* Disable RX interrupt coalescing */
2568 		reg = 0;
2569 	}
2570 
2571 	etsec_write(sc, RXIC, reg);
2572 }
2573 
2574 static void
2575 pq3etsec_set_ic_tx(struct pq3etsec_softc *sc)
2576 {
2577 	uint32_t reg;
2578 
2579 	if (ETSEC_IC_TX_ENABLED(sc)) {
2580 		reg = TXIC_ICEN;
2581 		reg |= TXIC_ICFT_SET(sc->sc_ic_tx_count);
2582 		reg |= TXIC_ICTT_SET(sc->sc_ic_tx_time);
2583 	} else {
2584 		/* Disable TX interrupt coalescing */
2585 		reg = 0;
2586 	}
2587 
2588 	etsec_write(sc, TXIC, reg);
2589 }
2590 
2591 /*
2592  * sysctl
2593  */
2594 static int
2595 pq3etsec_sysctl_ic_time_helper(SYSCTLFN_ARGS, int *valuep)
2596 {
2597 	struct sysctlnode node = *rnode;
2598 	struct pq3etsec_softc *sc = rnode->sysctl_data;
2599 	int value = *valuep;
2600 	int error;
2601 
2602 	node.sysctl_data = &value;
2603 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2604 	if (error != 0 || newp == NULL)
2605 		return error;
2606 
2607 	if (value < 0 || value > 65535)
2608 		return EINVAL;
2609 
2610 	mutex_enter(sc->sc_lock);
2611 	*valuep = value;
2612 	if (valuep == &sc->sc_ic_rx_time)
2613 		pq3etsec_set_ic_rx(sc);
2614 	else
2615 		pq3etsec_set_ic_tx(sc);
2616 	mutex_exit(sc->sc_lock);
2617 
2618 	return 0;
2619 }
2620 
2621 static int
2622 pq3etsec_sysctl_ic_count_helper(SYSCTLFN_ARGS, int *valuep)
2623 {
2624 	struct sysctlnode node = *rnode;
2625 	struct pq3etsec_softc *sc = rnode->sysctl_data;
2626 	int value = *valuep;
2627 	int error;
2628 
2629 	node.sysctl_data = &value;
2630 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2631 	if (error != 0 || newp == NULL)
2632 		return error;
2633 
2634 	if (value < 0 || value > 255)
2635 		return EINVAL;
2636 
2637 	mutex_enter(sc->sc_lock);
2638 	*valuep = value;
2639 	if (valuep == &sc->sc_ic_rx_count)
2640 		pq3etsec_set_ic_rx(sc);
2641 	else
2642 		pq3etsec_set_ic_tx(sc);
2643 	mutex_exit(sc->sc_lock);
2644 
2645 	return 0;
2646 }
2647 
2648 static int
2649 pq3etsec_sysctl_ic_rx_time_helper(SYSCTLFN_ARGS)
2650 {
2651 	struct pq3etsec_softc *sc = rnode->sysctl_data;
2652 
2653 	return pq3etsec_sysctl_ic_time_helper(SYSCTLFN_CALL(rnode),
2654 	    &sc->sc_ic_rx_time);
2655 }
2656 
2657 static int
2658 pq3etsec_sysctl_ic_rx_count_helper(SYSCTLFN_ARGS)
2659 {
2660 	struct pq3etsec_softc *sc = rnode->sysctl_data;
2661 
2662 	return pq3etsec_sysctl_ic_count_helper(SYSCTLFN_CALL(rnode),
2663 	    &sc->sc_ic_rx_count);
2664 }
2665 
2666 static int
2667 pq3etsec_sysctl_ic_tx_time_helper(SYSCTLFN_ARGS)
2668 {
2669 	struct pq3etsec_softc *sc = rnode->sysctl_data;
2670 
2671 	return pq3etsec_sysctl_ic_time_helper(SYSCTLFN_CALL(rnode),
2672 	    &sc->sc_ic_tx_time);
2673 }
2674 
2675 static int
2676 pq3etsec_sysctl_ic_tx_count_helper(SYSCTLFN_ARGS)
2677 {
2678 	struct pq3etsec_softc *sc = rnode->sysctl_data;
2679 
2680 	return pq3etsec_sysctl_ic_count_helper(SYSCTLFN_CALL(rnode),
2681 	    &sc->sc_ic_tx_count);
2682 }
2683 
2684 static void pq3etsec_sysctl_setup(struct sysctllog **clog,
2685     struct pq3etsec_softc *sc)
2686 {
2687 	const struct sysctlnode *cnode, *rnode;
2688 
2689 	if (sysctl_createv(clog, 0, NULL, &rnode,
2690 	    CTLFLAG_PERMANENT,
2691 	    CTLTYPE_NODE, device_xname(sc->sc_dev),
2692 	    SYSCTL_DESCR("TSEC interface"),
2693 	    NULL, 0, NULL, 0,
2694 	    CTL_HW, CTL_CREATE, CTL_EOL) != 0)
2695 		goto bad;
2696 
2697 	if (sysctl_createv(clog, 0, &rnode, &rnode,
2698 	    CTLFLAG_PERMANENT,
2699 	    CTLTYPE_NODE, "int_coal",
2700 	    SYSCTL_DESCR("Interrupts coalescing"),
2701 	    NULL, 0, NULL, 0,
2702 	    CTL_CREATE, CTL_EOL) != 0)
2703 		goto bad;
2704 
2705 	if (sysctl_createv(clog, 0, &rnode, &cnode,
2706 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2707 	    CTLTYPE_INT, "rx_time",
2708 	    SYSCTL_DESCR("RX time threshold (0-65535)"),
2709 	    pq3etsec_sysctl_ic_rx_time_helper, 0, (void *)sc, 0,
2710 	    CTL_CREATE, CTL_EOL) != 0)
2711 		goto bad;
2712 
2713 	if (sysctl_createv(clog, 0, &rnode, &cnode,
2714 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2715 	    CTLTYPE_INT, "rx_count",
2716 	    SYSCTL_DESCR("RX frame count threshold (0-255)"),
2717 	    pq3etsec_sysctl_ic_rx_count_helper, 0, (void *)sc, 0,
2718 	    CTL_CREATE, CTL_EOL) != 0)
2719 		goto bad;
2720 
2721 	if (sysctl_createv(clog, 0, &rnode, &cnode,
2722 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2723 	    CTLTYPE_INT, "tx_time",
2724 	    SYSCTL_DESCR("TX time threshold (0-65535)"),
2725 	    pq3etsec_sysctl_ic_tx_time_helper, 0, (void *)sc, 0,
2726 	    CTL_CREATE, CTL_EOL) != 0)
2727 		goto bad;
2728 
2729 	if (sysctl_createv(clog, 0, &rnode, &cnode,
2730 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2731 	    CTLTYPE_INT, "tx_count",
2732 	    SYSCTL_DESCR("TX frame count threshold (0-255)"),
2733 	    pq3etsec_sysctl_ic_tx_count_helper, 0, (void *)sc, 0,
2734 	    CTL_CREATE, CTL_EOL) != 0)
2735 		goto bad;
2736 
2737 	return;
2738 
2739  bad:
2740 	aprint_error_dev(sc->sc_dev, "could not attach sysctl nodes\n");
2741 }
2742