xref: /netbsd-src/sys/arch/powerpc/booke/dev/pq3etsec.c (revision cef8759bd76c1b621f8eab8faa6f208faabc2e15)
1 /*	$NetBSD: pq3etsec.c,v 1.50 2020/07/06 09:34:16 rin Exp $	*/
2 /*-
3  * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to The NetBSD Foundation
7  * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8  * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9  *
10  * This material is based upon work supported by the Defense Advanced Research
11  * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12  * Contract No. N66001-09-C-2073.
13  * Approved for Public Release, Distribution Unlimited
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: pq3etsec.c,v 1.50 2020/07/06 09:34:16 rin Exp $");
39 
40 #ifdef _KERNEL_OPT
41 #include "opt_inet.h"
42 #include "opt_mpc85xx.h"
43 #include "opt_multiprocessor.h"
44 #include "opt_net_mpsafe.h"
45 #endif
46 
47 #include <sys/param.h>
48 #include <sys/cpu.h>
49 #include <sys/device.h>
50 #include <sys/mbuf.h>
51 #include <sys/ioctl.h>
52 #include <sys/intr.h>
53 #include <sys/bus.h>
54 #include <sys/kernel.h>
55 #include <sys/kmem.h>
56 #include <sys/proc.h>
57 #include <sys/atomic.h>
58 #include <sys/callout.h>
59 #include <sys/sysctl.h>
60 
61 #include <net/if.h>
62 #include <net/if_dl.h>
63 #include <net/if_ether.h>
64 #include <net/if_media.h>
65 #include <net/bpf.h>
66 
67 #include <dev/mii/miivar.h>
68 
69 #ifdef INET
70 #include <netinet/in.h>
71 #include <netinet/in_systm.h>
72 #include <netinet/ip.h>
73 #include <netinet/in_offload.h>
74 #endif /* INET */
75 #ifdef INET6
76 #include <netinet6/in6.h>
77 #include <netinet/ip6.h>
78 #endif
79 #include <netinet6/in6_offload.h>
80 
81 #include <powerpc/spr.h>
82 #include <powerpc/booke/spr.h>
83 #include <powerpc/booke/cpuvar.h>
84 #include <powerpc/booke/e500var.h>
85 #include <powerpc/booke/e500reg.h>
86 #include <powerpc/booke/etsecreg.h>
87 
88 #define	M_HASFCB		M_LINK2	/* tx packet has FCB prepended */
89 
90 #define	ETSEC_MAXTXMBUFS	30
91 #define	ETSEC_NTXSEGS		30
92 #define	ETSEC_MAXRXMBUFS	511
93 #define	ETSEC_MINRXMBUFS	32
94 #define	ETSEC_NRXSEGS		1
95 
96 #define	IFCAP_RCTRL_IPCSEN	IFCAP_CSUM_IPv4_Rx
97 #define	IFCAP_RCTRL_TUCSEN	(IFCAP_CSUM_TCPv4_Rx	\
98 				 | IFCAP_CSUM_UDPv4_Rx	\
99 				 | IFCAP_CSUM_TCPv6_Rx	\
100 				 | IFCAP_CSUM_UDPv6_Rx)
101 
102 #define	IFCAP_TCTRL_IPCSEN	IFCAP_CSUM_IPv4_Tx
103 #define	IFCAP_TCTRL_TUCSEN	(IFCAP_CSUM_TCPv4_Tx	\
104 				 | IFCAP_CSUM_UDPv4_Tx	\
105 				 | IFCAP_CSUM_TCPv6_Tx	\
106 				 | IFCAP_CSUM_UDPv6_Tx)
107 
108 #define	IFCAP_ETSEC		(IFCAP_RCTRL_IPCSEN | IFCAP_RCTRL_TUCSEN      \
109 				 | IFCAP_TCTRL_IPCSEN | IFCAP_TCTRL_TUCSEN)
110 
111 #define	M_CSUM_IP   (M_CSUM_CIP | M_CSUM_CTU)
112 #define	M_CSUM_IP6  (M_CSUM_TCPv6 | M_CSUM_UDPv6)
113 #define	M_CSUM_TUP  (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)
114 #define	M_CSUM_UDP  (M_CSUM_UDPv4 | M_CSUM_UDPv6)
115 #define	M_CSUM_IP4  (M_CSUM_IPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv4)
116 #define	M_CSUM_CIP  (M_CSUM_IPv4)
117 #define	M_CSUM_CTU  (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)
118 
119 struct pq3etsec_txqueue {
120 	bus_dmamap_t txq_descmap;
121 	volatile struct txbd *txq_consumer;
122 	volatile struct txbd *txq_producer;
123 	volatile struct txbd *txq_first;
124 	volatile struct txbd *txq_last;
125 	struct ifqueue txq_mbufs;
126 	struct mbuf *txq_next;
127 #ifdef ETSEC_DEBUG
128 	struct mbuf *txq_lmbufs[512];
129 #endif
130 	uint32_t txq_qmask;
131 	uint32_t txq_free;
132 	uint32_t txq_threshold;
133 	uint32_t txq_lastintr;
134 	bus_size_t txq_reg_tbase;
135 	bus_dma_segment_t txq_descmap_seg;
136 };
137 
138 struct pq3etsec_rxqueue {
139 	bus_dmamap_t rxq_descmap;
140 	volatile struct rxbd *rxq_consumer;
141 	volatile struct rxbd *rxq_producer;
142 	volatile struct rxbd *rxq_first;
143 	volatile struct rxbd *rxq_last;
144 	struct mbuf *rxq_mhead;
145 	struct mbuf **rxq_mtail;
146 	struct mbuf *rxq_mconsumer;
147 #ifdef ETSEC_DEBUG
148 	struct mbuf *rxq_mbufs[512];
149 #endif
150 	uint32_t rxq_qmask;
151 	uint32_t rxq_inuse;
152 	uint32_t rxq_threshold;
153 	bus_size_t rxq_reg_rbase;
154 	bus_size_t rxq_reg_rbptr;
155 	bus_dma_segment_t rxq_descmap_seg;
156 };
157 
158 struct pq3etsec_mapcache {
159 	u_int dmc_nmaps;
160 	u_int dmc_maxseg;
161 	u_int dmc_maxmaps;
162 	u_int dmc_maxmapsize;
163 	bus_dmamap_t dmc_maps[0];
164 };
165 
166 struct pq3etsec_softc {
167 	device_t sc_dev;
168 	device_t sc_mdio_dev;
169 	struct ethercom sc_ec;
170 #define sc_if		sc_ec.ec_if
171 	struct mii_data sc_mii;
172 	bus_space_tag_t sc_bst;
173 	bus_space_handle_t sc_bsh;
174 	bus_space_handle_t sc_mdio_bsh;
175 	bus_dma_tag_t sc_dmat;
176 	int sc_phy_addr;
177 	prop_dictionary_t sc_intrmap;
178 	uint32_t sc_intrmask;
179 
180 	uint32_t sc_soft_flags;
181 #define	SOFT_RESET		0x0001
182 #define	SOFT_RXINTR		0x0010
183 #define	SOFT_RXBSY		0x0020
184 #define	SOFT_TXINTR		0x0100
185 #define	SOFT_TXERROR		0x0200
186 
187 	struct pq3etsec_txqueue sc_txq;
188 	struct pq3etsec_rxqueue sc_rxq;
189 	uint32_t sc_txerrors;
190 	uint32_t sc_rxerrors;
191 
192 	size_t sc_rx_adjlen;
193 
194 	/*
195 	 * Copies of various ETSEC registers.
196 	 */
197 	uint32_t sc_imask;
198 	uint32_t sc_maccfg1;
199 	uint32_t sc_maccfg2;
200 	uint32_t sc_maxfrm;
201 	uint32_t sc_ecntrl;
202 	uint32_t sc_dmactrl;
203 	uint32_t sc_macstnaddr1;
204 	uint32_t sc_macstnaddr2;
205 	uint32_t sc_tctrl;
206 	uint32_t sc_rctrl;
207 	uint32_t sc_gaddr[16];
208 	uint64_t sc_macaddrs[15];
209 
210 	void *sc_tx_ih;
211 	void *sc_rx_ih;
212 	void *sc_error_ih;
213 	void *sc_soft_ih;
214 
215 	kmutex_t *sc_lock;
216 	kmutex_t *sc_hwlock;
217 
218 	struct evcnt sc_ev_tx_stall;
219 	struct evcnt sc_ev_tx_intr;
220 	struct evcnt sc_ev_rx_stall;
221 	struct evcnt sc_ev_rx_intr;
222 	struct evcnt sc_ev_error_intr;
223 	struct evcnt sc_ev_soft_intr;
224 	struct evcnt sc_ev_tx_pause;
225 	struct evcnt sc_ev_rx_pause;
226 	struct evcnt sc_ev_mii_ticks;
227 
228 	struct callout sc_mii_callout;
229 	uint64_t sc_mii_last_tick;
230 
231 	struct ifqueue sc_rx_bufcache;
232 	struct pq3etsec_mapcache *sc_rx_mapcache;
233 	struct pq3etsec_mapcache *sc_tx_mapcache;
234 
235 	/* Interrupt Coalescing parameters */
236 	int sc_ic_rx_time;
237 	int sc_ic_rx_count;
238 	int sc_ic_tx_time;
239 	int sc_ic_tx_count;
240 };
241 
242 #define	ETSEC_IC_RX_ENABLED(sc)						\
243 	((sc)->sc_ic_rx_time != 0 && (sc)->sc_ic_rx_count != 0)
244 #define	ETSEC_IC_TX_ENABLED(sc)						\
245 	((sc)->sc_ic_tx_time != 0 && (sc)->sc_ic_tx_count != 0)
246 
247 struct pq3mdio_softc {
248 	device_t mdio_dev;
249 
250 	kmutex_t *mdio_lock;
251 
252 	bus_space_tag_t mdio_bst;
253 	bus_space_handle_t mdio_bsh;
254 };
255 
256 static int pq3etsec_match(device_t, cfdata_t, void *);
257 static void pq3etsec_attach(device_t, device_t, void *);
258 
259 static int pq3mdio_match(device_t, cfdata_t, void *);
260 static void pq3mdio_attach(device_t, device_t, void *);
261 
262 static void pq3etsec_ifstart(struct ifnet *);
263 static void pq3etsec_ifwatchdog(struct ifnet *);
264 static int pq3etsec_ifinit(struct ifnet *);
265 static void pq3etsec_ifstop(struct ifnet *, int);
266 static int pq3etsec_ifioctl(struct ifnet *, u_long, void *);
267 
268 static int pq3etsec_mapcache_create(struct pq3etsec_softc *,
269     struct pq3etsec_mapcache **, size_t, size_t, size_t);
270 static void pq3etsec_mapcache_destroy(struct pq3etsec_softc *,
271     struct pq3etsec_mapcache *);
272 static bus_dmamap_t pq3etsec_mapcache_get(struct pq3etsec_softc *,
273     struct pq3etsec_mapcache *);
274 static void pq3etsec_mapcache_put(struct pq3etsec_softc *,
275     struct pq3etsec_mapcache *, bus_dmamap_t);
276 
277 static int pq3etsec_txq_attach(struct pq3etsec_softc *,
278     struct pq3etsec_txqueue *, u_int);
279 static void pq3etsec_txq_purge(struct pq3etsec_softc *,
280     struct pq3etsec_txqueue *);
281 static void pq3etsec_txq_reset(struct pq3etsec_softc *,
282     struct pq3etsec_txqueue *);
283 static bool pq3etsec_txq_consume(struct pq3etsec_softc *,
284     struct pq3etsec_txqueue *);
285 static bool pq3etsec_txq_produce(struct pq3etsec_softc *,
286     struct pq3etsec_txqueue *, struct mbuf *m);
287 static bool pq3etsec_txq_active_p(struct pq3etsec_softc *,
288     struct pq3etsec_txqueue *);
289 
290 static int pq3etsec_rxq_attach(struct pq3etsec_softc *,
291     struct pq3etsec_rxqueue *, u_int);
292 static bool pq3etsec_rxq_produce(struct pq3etsec_softc *,
293     struct pq3etsec_rxqueue *);
294 static void pq3etsec_rxq_purge(struct pq3etsec_softc *,
295     struct pq3etsec_rxqueue *, bool);
296 static void pq3etsec_rxq_reset(struct pq3etsec_softc *,
297     struct pq3etsec_rxqueue *);
298 
299 static void pq3etsec_mc_setup(struct pq3etsec_softc *);
300 
301 static void pq3etsec_mii_tick(void *);
302 static int pq3etsec_rx_intr(void *);
303 static int pq3etsec_tx_intr(void *);
304 static int pq3etsec_error_intr(void *);
305 static void pq3etsec_soft_intr(void *);
306 
307 static void pq3etsec_set_ic_rx(struct pq3etsec_softc *);
308 static void pq3etsec_set_ic_tx(struct pq3etsec_softc *);
309 
310 static void pq3etsec_sysctl_setup(struct sysctllog **, struct pq3etsec_softc *);
311 
312 CFATTACH_DECL_NEW(pq3etsec, sizeof(struct pq3etsec_softc),
313     pq3etsec_match, pq3etsec_attach, NULL, NULL);
314 
315 CFATTACH_DECL_NEW(pq3mdio_tsec, sizeof(struct pq3mdio_softc),
316     pq3mdio_match, pq3mdio_attach, NULL, NULL);
317 
318 CFATTACH_DECL_NEW(pq3mdio_cpunode, sizeof(struct pq3mdio_softc),
319     pq3mdio_match, pq3mdio_attach, NULL, NULL);
320 
321 static inline uint32_t
322 etsec_mdio_read(struct pq3mdio_softc *mdio, bus_size_t off)
323 {
324 	return bus_space_read_4(mdio->mdio_bst, mdio->mdio_bsh, off);
325 }
326 
327 static inline void
328 etsec_mdio_write(struct pq3mdio_softc *mdio, bus_size_t off, uint32_t data)
329 {
330 	bus_space_write_4(mdio->mdio_bst, mdio->mdio_bsh, off, data);
331 }
332 
333 static inline uint32_t
334 etsec_read(struct pq3etsec_softc *sc, bus_size_t off)
335 {
336 	return bus_space_read_4(sc->sc_bst, sc->sc_bsh, off);
337 }
338 
339 static int
340 pq3mdio_find(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
341 {
342 	return strcmp(cf->cf_name, "mdio") == 0;
343 }
344 
345 static int
346 pq3mdio_match(device_t parent, cfdata_t cf, void *aux)
347 {
348 	const uint16_t svr = (mfspr(SPR_SVR) & ~0x80000) >> 16;
349 	const bool p1025_p = (svr == (SVR_P1025v1 >> 16)
350 	    || svr == (SVR_P1016v1 >> 16));
351 
352 	if (device_is_a(parent, "cpunode")) {
353 		if (!p1025_p
354 		    || !e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
355 			return 0;
356 
357 		return 1;
358 	}
359 
360 	if (device_is_a(parent, "tsec")) {
361 		if (p1025_p
362 		    || !e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
363 			return 0;
364 
365 		return 1;
366 	}
367 
368 	return 0;
369 }
370 
371 static void
372 pq3mdio_attach(device_t parent, device_t self, void *aux)
373 {
374 	struct pq3mdio_softc * const mdio = device_private(self);
375 	struct cpunode_attach_args * const cna = aux;
376 	struct cpunode_locators * const cnl = &cna->cna_locs;
377 
378 	mdio->mdio_dev = self;
379 	mdio->mdio_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
380 
381 	if (device_is_a(parent, "cpunode")) {
382 		struct cpunode_softc * const psc = device_private(parent);
383 		psc->sc_children |= cna->cna_childmask;
384 
385 		mdio->mdio_bst = cna->cna_memt;
386 		if (bus_space_map(mdio->mdio_bst, cnl->cnl_addr,
387 				cnl->cnl_size, 0, &mdio->mdio_bsh) != 0) {
388 			aprint_error(": error mapping registers @ %#x\n",
389 			    cnl->cnl_addr);
390 			return;
391 		}
392 	} else {
393 		struct pq3etsec_softc * const sc = device_private(parent);
394 
395 		KASSERT(device_is_a(parent, "tsec"));
396 		KASSERTMSG(cnl->cnl_addr == ETSEC1_BASE
397 		    || cnl->cnl_addr == ETSEC2_BASE
398 		    || cnl->cnl_addr == ETSEC3_BASE
399 		    || cnl->cnl_addr == ETSEC4_BASE,
400 		    "unknown tsec addr %x", cnl->cnl_addr);
401 
402 		mdio->mdio_bst = sc->sc_bst;
403 		mdio->mdio_bsh = sc->sc_bsh;
404 	}
405 
406 	aprint_normal("\n");
407 }
408 
409 static int
410 pq3mdio_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
411 {
412 	struct pq3mdio_softc * const mdio = device_private(self);
413 	uint32_t miimcom = etsec_mdio_read(mdio, MIIMCOM);
414 
415 	mutex_enter(mdio->mdio_lock);
416 
417 	etsec_mdio_write(mdio, MIIMADD,
418 	    __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
419 
420 	etsec_mdio_write(mdio, MIIMCOM, 0);	/* clear any past bits */
421 	etsec_mdio_write(mdio, MIIMCOM, MIIMCOM_READ);
422 
423 	while (etsec_mdio_read(mdio, MIIMIND) != 0) {
424 			delay(1);
425 	}
426 	*val = etsec_mdio_read(mdio, MIIMSTAT) &0xffff;
427 
428 	if (miimcom == MIIMCOM_SCAN)
429 		etsec_mdio_write(mdio, MIIMCOM, miimcom);
430 
431 #if 0
432 	aprint_normal_dev(mdio->mdio_dev, "%s: phy %d reg %d: %#x\n",
433 	    __func__, phy, reg, data);
434 #endif
435 	mutex_exit(mdio->mdio_lock);
436 	return 0;
437 }
438 
439 static int
440 pq3mdio_mii_writereg(device_t self, int phy, int reg, uint16_t data)
441 {
442 	struct pq3mdio_softc * const mdio = device_private(self);
443 	uint32_t miimcom = etsec_mdio_read(mdio, MIIMCOM);
444 
445 #if 0
446 	aprint_normal_dev(mdio->mdio_dev, "%s: phy %d reg %d: %#x\n",
447 	    __func__, phy, reg, data);
448 #endif
449 
450 	mutex_enter(mdio->mdio_lock);
451 
452 	etsec_mdio_write(mdio, MIIMADD,
453 	    __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
454 	etsec_mdio_write(mdio, MIIMCOM, 0);	/* clear any past bits */
455 	etsec_mdio_write(mdio, MIIMCON, data);
456 
457 	int timo = 1000;	/* 1ms */
458 	while ((etsec_mdio_read(mdio, MIIMIND) & MIIMIND_BUSY) && --timo > 0) {
459 			delay(1);
460 	}
461 
462 	if (miimcom == MIIMCOM_SCAN)
463 		etsec_mdio_write(mdio, MIIMCOM, miimcom);
464 
465 	mutex_exit(mdio->mdio_lock);
466 
467 	return 0;
468 }
469 
470 static inline void
471 etsec_write(struct pq3etsec_softc *sc, bus_size_t off, uint32_t data)
472 {
473 	bus_space_write_4(sc->sc_bst, sc->sc_bsh, off, data);
474 }
475 
476 static void
477 pq3etsec_mii_statchg(struct ifnet *ifp)
478 {
479 	struct pq3etsec_softc * const sc = ifp->if_softc;
480 	struct mii_data * const mii = &sc->sc_mii;
481 
482 	uint32_t maccfg1 = sc->sc_maccfg1;
483 	uint32_t maccfg2 = sc->sc_maccfg2;
484 	uint32_t ecntrl = sc->sc_ecntrl;
485 
486 	maccfg1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
487 	maccfg2 &= ~(MACCFG2_IFMODE | MACCFG2_FD);
488 
489 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
490 		maccfg2 |= MACCFG2_FD;
491 	}
492 
493 	/*
494 	 * Now deal with the flow control bits.
495 	 */
496 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO
497 	    && (mii->mii_media_active & IFM_ETH_FMASK)) {
498 		if (mii->mii_media_active & IFM_ETH_RXPAUSE)
499 			maccfg1 |= MACCFG1_RX_FLOW;
500 		if (mii->mii_media_active & IFM_ETH_TXPAUSE)
501 			maccfg1 |= MACCFG1_TX_FLOW;
502 	}
503 
504 	/*
505 	 * Now deal with the speed.
506 	 */
507 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
508 		maccfg2 |= MACCFG2_IFMODE_GMII;
509 	} else {
510 		maccfg2 |= MACCFG2_IFMODE_MII;
511 		ecntrl &= ~ECNTRL_R100M;
512 		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_10_T) {
513 			ecntrl |= ECNTRL_R100M;
514 		}
515 	}
516 
517 	/*
518 	 * If things are different, re-init things.
519 	 */
520 	if (maccfg1 != sc->sc_maccfg1
521 	    || maccfg2 != sc->sc_maccfg2
522 	    || ecntrl != sc->sc_ecntrl) {
523 		if (sc->sc_if.if_flags & IFF_RUNNING)
524 			atomic_or_uint(&sc->sc_soft_flags, SOFT_RESET);
525 		sc->sc_maccfg1 = maccfg1;
526 		sc->sc_maccfg2 = maccfg2;
527 		sc->sc_ecntrl = ecntrl;
528 	}
529 }
530 
531 #if 0
532 static void
533 pq3etsec_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
534 {
535 	struct pq3etsec_softc * const sc = ifp->if_softc;
536 
537 	mii_pollstat(&sc->sc_mii);
538 	ether_mediastatus(ifp, ifmr);
539 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
540 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
541 }
542 
543 static int
544 pq3etsec_mediachange(struct ifnet *ifp)
545 {
546 	struct pq3etsec_softc * const sc = ifp->if_softc;
547 
548 	if ((ifp->if_flags & IFF_UP) == 0)
549 		return 0;
550 
551 	int rv = mii_mediachg(&sc->sc_mii);
552 	return (rv == ENXIO) ? 0 : rv;
553 }
554 #endif
555 
556 static int
557 pq3etsec_match(device_t parent, cfdata_t cf, void *aux)
558 {
559 
560 	if (!e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
561 		return 0;
562 
563 	return 1;
564 }
565 
566 static void
567 pq3etsec_attach(device_t parent, device_t self, void *aux)
568 {
569 	struct cpunode_softc * const psc = device_private(parent);
570 	struct pq3etsec_softc * const sc = device_private(self);
571 	struct mii_data * const mii = &sc->sc_mii;
572 	struct cpunode_attach_args * const cna = aux;
573 	struct cpunode_locators * const cnl = &cna->cna_locs;
574 	cfdata_t cf = device_cfdata(self);
575 	int error;
576 
577 	psc->sc_children |= cna->cna_childmask;
578 	sc->sc_dev = self;
579 	sc->sc_bst = cna->cna_memt;
580 	sc->sc_dmat = &booke_bus_dma_tag;
581 
582 	/*
583 	 * Pull out the mdio bus and phy we are supposed to use.
584 	 */
585 	const int mdio = cf->cf_loc[CPUNODECF_MDIO];
586 	const int phy = cf->cf_loc[CPUNODECF_PHY];
587 	if (mdio != CPUNODECF_MDIO_DEFAULT)
588 		aprint_normal(" mdio %d", mdio);
589 
590 	/*
591 	 * See if the phy is in the config file...
592 	 */
593 	if (phy != CPUNODECF_PHY_DEFAULT) {
594 		sc->sc_phy_addr = phy;
595 	} else {
596 		unsigned char prop_name[20];
597 		snprintf(prop_name, sizeof(prop_name), "tsec%u-phy-addr",
598 		    cnl->cnl_instance);
599 		sc->sc_phy_addr = board_info_get_number(prop_name);
600 	}
601 	if (sc->sc_phy_addr != MII_PHY_ANY)
602 		aprint_normal(" phy %d", sc->sc_phy_addr);
603 
604 	error = bus_space_map(sc->sc_bst, cnl->cnl_addr, cnl->cnl_size, 0,
605 	    &sc->sc_bsh);
606 	if (error) {
607 		aprint_error(": error mapping registers: %d\n", error);
608 		return;
609 	}
610 
611 	/*
612 	 * Assume firmware has aready set the mac address and fetch it
613 	 * before we reinit it.
614 	 */
615 	sc->sc_macstnaddr2 = etsec_read(sc, MACSTNADDR2);
616 	sc->sc_macstnaddr1 = etsec_read(sc, MACSTNADDR1);
617 	sc->sc_rctrl = RCTRL_DEFAULT;
618 	sc->sc_ecntrl = etsec_read(sc, ECNTRL);
619 	sc->sc_maccfg1 = etsec_read(sc, MACCFG1);
620 	sc->sc_maccfg2 = etsec_read(sc, MACCFG2) | MACCFG2_DEFAULT;
621 
622 	if (sc->sc_macstnaddr1 == 0 && sc->sc_macstnaddr2 == 0) {
623 		size_t len;
624 		const uint8_t *mac_addr =
625 		    board_info_get_data("tsec-mac-addr-base", &len);
626 		KASSERT(len == ETHER_ADDR_LEN);
627 		sc->sc_macstnaddr2 =
628 		    (mac_addr[1] << 24)
629 		    | (mac_addr[0] << 16);
630 		sc->sc_macstnaddr1 =
631 		    ((mac_addr[5] + cnl->cnl_instance - 1) << 24)
632 		    | (mac_addr[4] << 16)
633 		    | (mac_addr[3] << 8)
634 		    | (mac_addr[2] << 0);
635 #if 0
636 		aprint_error(": mac-address unknown\n");
637 		return;
638 #endif
639 	}
640 
641 	sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
642 	sc->sc_hwlock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_VM);
643 
644 	callout_init(&sc->sc_mii_callout, CALLOUT_MPSAFE);
645 	callout_setfunc(&sc->sc_mii_callout, pq3etsec_mii_tick, sc);
646 
647 	/* Disable interrupts */
648 	etsec_write(sc, IMASK, 0);
649 
650 	error = pq3etsec_rxq_attach(sc, &sc->sc_rxq, 0);
651 	if (error) {
652 		aprint_error(": failed to init rxq: %d\n", error);
653 		goto fail_1;
654 	}
655 
656 	error = pq3etsec_txq_attach(sc, &sc->sc_txq, 0);
657 	if (error) {
658 		aprint_error(": failed to init txq: %d\n", error);
659 		goto fail_2;
660 	}
661 
662 	error = pq3etsec_mapcache_create(sc, &sc->sc_rx_mapcache,
663 	    ETSEC_MAXRXMBUFS, MCLBYTES, ETSEC_NRXSEGS);
664 	if (error) {
665 		aprint_error(": failed to allocate rx dmamaps: %d\n", error);
666 		goto fail_3;
667 	}
668 
669 	error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
670 	    ETSEC_MAXTXMBUFS, MCLBYTES, ETSEC_NTXSEGS);
671 	if (error) {
672 		aprint_error(": failed to allocate tx dmamaps: %d\n", error);
673 		goto fail_4;
674 	}
675 
676 	sc->sc_tx_ih = intr_establish(cnl->cnl_intrs[0], IPL_VM, IST_ONCHIP,
677 	    pq3etsec_tx_intr, sc);
678 	if (sc->sc_tx_ih == NULL) {
679 		aprint_error(": failed to establish tx interrupt: %d\n",
680 		    cnl->cnl_intrs[0]);
681 		goto fail_5;
682 	}
683 
684 	sc->sc_rx_ih = intr_establish(cnl->cnl_intrs[1], IPL_VM, IST_ONCHIP,
685 	    pq3etsec_rx_intr, sc);
686 	if (sc->sc_rx_ih == NULL) {
687 		aprint_error(": failed to establish rx interrupt: %d\n",
688 		    cnl->cnl_intrs[1]);
689 		goto fail_6;
690 	}
691 
692 	sc->sc_error_ih = intr_establish(cnl->cnl_intrs[2], IPL_VM, IST_ONCHIP,
693 	    pq3etsec_error_intr, sc);
694 	if (sc->sc_error_ih == NULL) {
695 		aprint_error(": failed to establish error interrupt: %d\n",
696 		    cnl->cnl_intrs[2]);
697 		goto fail_7;
698 	}
699 
700 	int softint_flags = SOFTINT_NET;
701 #if !defined(MULTIPROCESSOR) || defined(NET_MPSAFE)
702 	softint_flags |= SOFTINT_MPSAFE;
703 #endif	/* !MULTIPROCESSOR || NET_MPSAFE */
704 	sc->sc_soft_ih = softint_establish(softint_flags,
705 	    pq3etsec_soft_intr, sc);
706 	if (sc->sc_soft_ih == NULL) {
707 		aprint_error(": failed to establish soft interrupt\n");
708 		goto fail_8;
709 	}
710 
711 	/*
712 	 * If there was no MDIO
713 	 */
714 	if (mdio == CPUNODECF_MDIO_DEFAULT) {
715 		aprint_normal("\n");
716 		cfdata_t mdio_cf = config_search_ia(pq3mdio_find, self, NULL, cna);
717 		if (mdio_cf != NULL) {
718 			sc->sc_mdio_dev = config_attach(self, mdio_cf, cna, NULL);
719 		}
720 	} else {
721 		sc->sc_mdio_dev = device_find_by_driver_unit("mdio", mdio);
722 		if (sc->sc_mdio_dev == NULL) {
723 			aprint_error(": failed to locate mdio device\n");
724 			goto fail_9;
725 		}
726 		aprint_normal("\n");
727 	}
728 
729 	etsec_write(sc, ATTR, ATTR_DEFAULT);
730 	etsec_write(sc, ATTRELI, ATTRELI_DEFAULT);
731 
732 	/* Enable interrupt coalesing */
733 	sc->sc_ic_rx_time = 768;
734 	sc->sc_ic_rx_count = 16;
735 	sc->sc_ic_tx_time = 768;
736 	sc->sc_ic_tx_count = 16;
737 	pq3etsec_set_ic_rx(sc);
738 	pq3etsec_set_ic_tx(sc);
739 
740 	char enaddr[ETHER_ADDR_LEN] = {
741 	    [0] = sc->sc_macstnaddr2 >> 16,
742 	    [1] = sc->sc_macstnaddr2 >> 24,
743 	    [2] = sc->sc_macstnaddr1 >>	 0,
744 	    [3] = sc->sc_macstnaddr1 >>	 8,
745 	    [4] = sc->sc_macstnaddr1 >> 16,
746 	    [5] = sc->sc_macstnaddr1 >> 24,
747 	};
748 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
749 	   ether_sprintf(enaddr));
750 
751 	const char * const xname = device_xname(sc->sc_dev);
752 	struct ethercom * const ec = &sc->sc_ec;
753 	struct ifnet * const ifp = &ec->ec_if;
754 
755 	ec->ec_mii = mii;
756 
757 	mii->mii_ifp = ifp;
758 	mii->mii_readreg = pq3mdio_mii_readreg;
759 	mii->mii_writereg = pq3mdio_mii_writereg;
760 	mii->mii_statchg = pq3etsec_mii_statchg;
761 
762 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
763 
764 	if (sc->sc_mdio_dev != NULL && sc->sc_phy_addr < 32) {
765 		mii_attach(sc->sc_mdio_dev, mii, 0xffffffff,
766 		    sc->sc_phy_addr, MII_OFFSET_ANY, MIIF_DOPAUSE);
767 
768 		if (LIST_FIRST(&mii->mii_phys) == NULL) {
769 			ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE,
770 			    0, NULL);
771 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
772 		} else {
773 			callout_schedule(&sc->sc_mii_callout, hz);
774 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
775 		}
776 	} else {
777 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_1000_T | IFM_FDX,
778 		    0, NULL);
779 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_1000_T | IFM_FDX);
780 	}
781 
782 	ec->ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING
783 	    | ETHERCAP_JUMBO_MTU;
784 	ec->ec_capenable = ETHERCAP_VLAN_HWTAGGING;
785 
786 	strlcpy(ifp->if_xname, xname, IFNAMSIZ);
787 	ifp->if_softc = sc;
788 	ifp->if_capabilities = IFCAP_ETSEC;
789 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
790 	ifp->if_ioctl = pq3etsec_ifioctl;
791 	ifp->if_start = pq3etsec_ifstart;
792 	ifp->if_watchdog = pq3etsec_ifwatchdog;
793 	ifp->if_init = pq3etsec_ifinit;
794 	ifp->if_stop = pq3etsec_ifstop;
795 	IFQ_SET_READY(&ifp->if_snd);
796 
797 	/*
798 	 * Attach the interface.
799 	 */
800 	error = if_initialize(ifp);
801 	if (error != 0) {
802 		aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
803 		    error);
804 		goto fail_10;
805 	}
806 	pq3etsec_sysctl_setup(NULL, sc);
807 	ether_ifattach(ifp, enaddr);
808 	if_register(ifp);
809 
810 	pq3etsec_ifstop(ifp, true);
811 
812 	evcnt_attach_dynamic(&sc->sc_ev_rx_stall, EVCNT_TYPE_MISC,
813 	    NULL, xname, "rx stall");
814 	evcnt_attach_dynamic(&sc->sc_ev_tx_stall, EVCNT_TYPE_MISC,
815 	    NULL, xname, "tx stall");
816 	evcnt_attach_dynamic(&sc->sc_ev_tx_intr, EVCNT_TYPE_INTR,
817 	    NULL, xname, "tx intr");
818 	evcnt_attach_dynamic(&sc->sc_ev_rx_intr, EVCNT_TYPE_INTR,
819 	    NULL, xname, "rx intr");
820 	evcnt_attach_dynamic(&sc->sc_ev_error_intr, EVCNT_TYPE_INTR,
821 	    NULL, xname, "error intr");
822 	evcnt_attach_dynamic(&sc->sc_ev_soft_intr, EVCNT_TYPE_INTR,
823 	    NULL, xname, "soft intr");
824 	evcnt_attach_dynamic(&sc->sc_ev_tx_pause, EVCNT_TYPE_MISC,
825 	    NULL, xname, "tx pause");
826 	evcnt_attach_dynamic(&sc->sc_ev_rx_pause, EVCNT_TYPE_MISC,
827 	    NULL, xname, "rx pause");
828 	evcnt_attach_dynamic(&sc->sc_ev_mii_ticks, EVCNT_TYPE_MISC,
829 	    NULL, xname, "mii ticks");
830 	return;
831 
832 fail_10:
833 	ifmedia_removeall(&mii->mii_media);
834 	mii_detach(mii, sc->sc_phy_addr, MII_OFFSET_ANY);
835 fail_9:
836 	softint_disestablish(sc->sc_soft_ih);
837 fail_8:
838 	intr_disestablish(sc->sc_error_ih);
839 fail_7:
840 	intr_disestablish(sc->sc_rx_ih);
841 fail_6:
842 	intr_disestablish(sc->sc_tx_ih);
843 fail_5:
844 	pq3etsec_mapcache_destroy(sc, sc->sc_tx_mapcache);
845 fail_4:
846 	pq3etsec_mapcache_destroy(sc, sc->sc_rx_mapcache);
847 fail_3:
848 #if 0 /* notyet */
849 	pq3etsec_txq_detach(sc);
850 #endif
851 fail_2:
852 #if 0 /* notyet */
853 	pq3etsec_rxq_detach(sc);
854 #endif
855 fail_1:
856 	callout_destroy(&sc->sc_mii_callout);
857 	mutex_obj_free(sc->sc_lock);
858 	mutex_obj_free(sc->sc_hwlock);
859 	bus_space_unmap(sc->sc_bst, sc->sc_bsh, cnl->cnl_size);
860 }
861 
862 static uint64_t
863 pq3etsec_macaddr_create(const uint8_t *lladdr)
864 {
865 	uint64_t macaddr = 0;
866 
867 	lladdr += ETHER_ADDR_LEN;
868 	for (u_int i = ETHER_ADDR_LEN; i-- > 0; ) {
869 		macaddr = (macaddr << 8) | *--lladdr;
870 	}
871 	return macaddr << 16;
872 }
873 
874 static int
875 pq3etsec_ifinit(struct ifnet *ifp)
876 {
877 	struct pq3etsec_softc * const sc = ifp->if_softc;
878 	int error = 0;
879 
880 	sc->sc_maxfrm = uimax(ifp->if_mtu + 32, MCLBYTES);
881 	if (ifp->if_mtu > ETHERMTU_JUMBO)
882 		return error;
883 
884 	KASSERT(ifp->if_flags & IFF_UP);
885 
886 	/*
887 	 * Stop the interface (steps 1 to 4 in the Soft Reset and
888 	 * Reconfigurating Procedure.
889 	 */
890 	pq3etsec_ifstop(ifp, 0);
891 
892 	/*
893 	 * If our frame size has changed (or it's our first time through)
894 	 * destroy the existing transmit mapcache.
895 	 */
896 	if (sc->sc_tx_mapcache != NULL
897 	    && sc->sc_maxfrm != sc->sc_tx_mapcache->dmc_maxmapsize) {
898 		pq3etsec_mapcache_destroy(sc, sc->sc_tx_mapcache);
899 		sc->sc_tx_mapcache = NULL;
900 	}
901 
902 	if (sc->sc_tx_mapcache == NULL) {
903 		error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
904 		    ETSEC_MAXTXMBUFS, sc->sc_maxfrm, ETSEC_NTXSEGS);
905 		if (error)
906 			return error;
907 	}
908 
909 	sc->sc_ev_mii_ticks.ev_count++;
910 	mii_tick(&sc->sc_mii);
911 
912 	if (ifp->if_flags & IFF_PROMISC) {
913 		sc->sc_rctrl |= RCTRL_PROM;
914 	} else {
915 		sc->sc_rctrl &= ~RCTRL_PROM;
916 	}
917 
918 	uint32_t rctrl_prsdep = 0;
919 	sc->sc_rctrl &=
920 	    ~(RCTRL_IPCSEN | RCTRL_TUCSEN | RCTRL_VLEX | RCTRL_PRSDEP);
921 	if (VLAN_ATTACHED(&sc->sc_ec)) {
922 		sc->sc_rctrl |= RCTRL_VLEX;
923 		rctrl_prsdep = RCTRL_PRSDEP_L2;
924 	}
925 	if (ifp->if_capenable & IFCAP_RCTRL_IPCSEN) {
926 		sc->sc_rctrl |= RCTRL_IPCSEN;
927 		rctrl_prsdep = RCTRL_PRSDEP_L3;
928 	}
929 	if (ifp->if_capenable & IFCAP_RCTRL_TUCSEN) {
930 		sc->sc_rctrl |= RCTRL_TUCSEN;
931 		rctrl_prsdep = RCTRL_PRSDEP_L4;
932 	}
933 	sc->sc_rctrl |= rctrl_prsdep;
934 #if 0
935 	if (sc->sc_rctrl
936 	    & (RCTRL_IPCSEN | RCTRL_TUCSEN | RCTRL_VLEX | RCTRL_PRSDEP))
937 		aprint_normal_dev(sc->sc_dev,
938 		    "rctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlex=%"PRIuMAX" prsdep=%"PRIuMAX"\n",
939 		    sc->sc_rctrl,
940 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_IPCSEN),
941 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_TUCSEN),
942 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_VLEX),
943 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_PRSDEP));
944 #endif
945 
946 	sc->sc_tctrl &= ~(TCTRL_IPCSEN | TCTRL_TUCSEN | TCTRL_VLINS);
947 	if (VLAN_ATTACHED(&sc->sc_ec))		/* is this really true */
948 		sc->sc_tctrl |= TCTRL_VLINS;
949 	if (ifp->if_capenable & IFCAP_TCTRL_IPCSEN)
950 		sc->sc_tctrl |= TCTRL_IPCSEN;
951 	if (ifp->if_capenable & IFCAP_TCTRL_TUCSEN)
952 		sc->sc_tctrl |= TCTRL_TUCSEN;
953 #if 0
954 	if (sc->sc_tctrl & (TCTRL_IPCSEN | TCTRL_TUCSEN | TCTRL_VLINS))
955 		aprint_normal_dev(sc->sc_dev,
956 		    "tctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlins=%"PRIuMAX"\n",
957 		    sc->sc_tctrl,
958 		    __SHIFTOUT(sc->sc_tctrl, TCTRL_IPCSEN),
959 		    __SHIFTOUT(sc->sc_tctrl, TCTRL_TUCSEN),
960 		    __SHIFTOUT(sc->sc_tctrl, TCTRL_VLINS));
961 #endif
962 
963 	sc->sc_maccfg1 &= ~(MACCFG1_TX_EN | MACCFG1_RX_EN);
964 
965 	const uint64_t macstnaddr =
966 	    pq3etsec_macaddr_create(CLLADDR(ifp->if_sadl));
967 
968 	sc->sc_imask = IEVENT_DPE;
969 
970 	/* 5. Load TDBPH, TBASEH, TBASE0-TBASE7 with new Tx BD pointers */
971 	pq3etsec_rxq_reset(sc, &sc->sc_rxq);
972 	pq3etsec_rxq_produce(sc, &sc->sc_rxq);	/* fill with rx buffers */
973 
974 	/* 6. Load RDBPH, RBASEH, RBASE0-RBASE7 with new Rx BD pointers */
975 	pq3etsec_txq_reset(sc, &sc->sc_txq);
976 
977 	/* 7. Setup other MAC registers (MACCFG2, MAXFRM, etc.) */
978 	KASSERT(MACCFG2_PADCRC & sc->sc_maccfg2);
979 	etsec_write(sc, MAXFRM, sc->sc_maxfrm);
980 	etsec_write(sc, MACSTNADDR1, (uint32_t)(macstnaddr >> 32));
981 	etsec_write(sc, MACSTNADDR2, (uint32_t)(macstnaddr >>  0));
982 	etsec_write(sc, MACCFG1, sc->sc_maccfg1);
983 	etsec_write(sc, MACCFG2, sc->sc_maccfg2);
984 	etsec_write(sc, ECNTRL, sc->sc_ecntrl);
985 
986 	/* 8. Setup group address hash table (GADDR0-GADDR15) */
987 	pq3etsec_mc_setup(sc);
988 
989 	/* 9. Setup receive frame filer table (via RQFAR, RQFCR, and RQFPR) */
990 	etsec_write(sc, MRBLR, MCLBYTES);
991 
992 	/* 10. Setup WWR, WOP, TOD bits in DMACTRL register */
993 	sc->sc_dmactrl |= DMACTRL_DEFAULT;
994 	etsec_write(sc, DMACTRL, sc->sc_dmactrl);
995 
996 	/* 11. Enable transmit queues in TQUEUE, and ensure that the transmit scheduling mode is correctly set in TCTRL. */
997 	etsec_write(sc, TQUEUE, TQUEUE_EN0);
998 	sc->sc_imask |= IEVENT_TXF | IEVENT_TXE | IEVENT_TXC;
999 
1000 	etsec_write(sc, TCTRL, sc->sc_tctrl);	/* for TOE stuff */
1001 
1002 	/* 12. Enable receive queues in RQUEUE, */
1003 	etsec_write(sc, RQUEUE, RQUEUE_EN0 | RQUEUE_EX0);
1004 	sc->sc_imask |= IEVENT_RXF | IEVENT_BSY | IEVENT_RXC;
1005 
1006 	/*     and optionally set TOE functionality in RCTRL. */
1007 	etsec_write(sc, RCTRL, sc->sc_rctrl);
1008 	sc->sc_rx_adjlen = __SHIFTOUT(sc->sc_rctrl, RCTRL_PAL);
1009 	if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF)
1010 		sc->sc_rx_adjlen += sizeof(struct rxfcb);
1011 
1012 	/* 13. Clear THLT and TXF bits in TSTAT register by writing 1 to them */
1013 	etsec_write(sc, TSTAT, TSTAT_THLT | TSTAT_TXF);
1014 
1015 	/* 14. Clear QHLT and RXF bits in RSTAT register by writing 1 to them.*/
1016 	etsec_write(sc, RSTAT, RSTAT_QHLT | RSTAT_RXF);
1017 
1018 	/* 15. Clear GRS/GTS bits in DMACTRL (do not change other bits) */
1019 	sc->sc_dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
1020 	etsec_write(sc, DMACTRL, sc->sc_dmactrl);
1021 
1022 	/* 16. Enable Tx_EN/Rx_EN in MACCFG1 register */
1023 	etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
1024 	etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
1025 
1026 	sc->sc_soft_flags = 0;
1027 
1028 	etsec_write(sc, IMASK, sc->sc_imask);
1029 
1030 	ifp->if_flags |= IFF_RUNNING;
1031 
1032 	return error;
1033 }
1034 
1035 static void
1036 pq3etsec_ifstop(struct ifnet *ifp, int disable)
1037 {
1038 	struct pq3etsec_softc * const sc = ifp->if_softc;
1039 
1040 	KASSERT(!cpu_intr_p());
1041 	const uint32_t imask_gsc_mask = IEVENT_GTSC | IEVENT_GRSC;
1042 	/*
1043 	 * Clear the GTSC and GRSC from the interrupt mask until
1044 	 * we are ready for them.  Then clear them from IEVENT,
1045 	 * request the graceful shutdown, and then enable the
1046 	 * GTSC and GRSC bits in the mask.  This should cause the
1047 	 * error interrupt to fire which will issue a wakeup to
1048 	 * allow us to resume.
1049 	 */
1050 
1051 	/*
1052 	 * 1. Set GRS/GTS bits in DMACTRL register
1053 	 */
1054 	sc->sc_dmactrl |= DMACTRL_GRS | DMACTRL_GTS;
1055 	etsec_write(sc, IMASK, sc->sc_imask & ~imask_gsc_mask);
1056 	etsec_write(sc, IEVENT, imask_gsc_mask);
1057 	etsec_write(sc, DMACTRL, sc->sc_dmactrl);
1058 
1059 	if (etsec_read(sc, MACCFG1) & (MACCFG1_TX_EN | MACCFG1_RX_EN)) {
1060 		/*
1061 		 * 2. Poll GRSC/GTSC bits in IEVENT register until both are set
1062 		 */
1063 		etsec_write(sc, IMASK, sc->sc_imask | imask_gsc_mask);
1064 
1065 		u_int timo = 1000;
1066 		uint32_t ievent = etsec_read(sc, IEVENT);
1067 		while ((ievent & imask_gsc_mask) != imask_gsc_mask) {
1068 			if (--timo == 0) {
1069 				aprint_error_dev(sc->sc_dev,
1070 				    "WARNING: "
1071 				    "request to stop failed (IEVENT=%#x)\n",
1072 				    ievent);
1073 				break;
1074 			}
1075 			delay(10);
1076 			ievent = etsec_read(sc, IEVENT);
1077 		}
1078 	}
1079 
1080 	/*
1081 	 * Now reset the controller.
1082 	 *
1083 	 * 3. Set SOFT_RESET bit in MACCFG1 register
1084 	 * 4. Clear SOFT_RESET bit in MACCFG1 register
1085 	 */
1086 	etsec_write(sc, MACCFG1, MACCFG1_SOFT_RESET);
1087 	etsec_write(sc, MACCFG1, 0);
1088 	etsec_write(sc, IMASK, 0);
1089 	etsec_write(sc, IEVENT, ~0);
1090 	sc->sc_imask = 0;
1091 	ifp->if_flags &= ~IFF_RUNNING;
1092 
1093 	uint32_t tbipa = etsec_read(sc, TBIPA);
1094 	if (tbipa == sc->sc_phy_addr) {
1095 		aprint_normal_dev(sc->sc_dev, "relocating TBI\n");
1096 		etsec_write(sc, TBIPA, 0x1f);
1097 	}
1098 	uint32_t miimcfg = etsec_read(sc, MIIMCFG);
1099 	etsec_write(sc, MIIMCFG, MIIMCFG_RESET);
1100 	etsec_write(sc, MIIMCFG, miimcfg);
1101 
1102 	/*
1103 	 * Let's consume any remaing transmitted packets.  And if we are
1104 	 * disabling the interface, purge ourselves of any untransmitted
1105 	 * packets.  But don't consume any received packets, just drop them.
1106 	 * If we aren't disabling the interface, save the mbufs in the
1107 	 * receive queue for reuse.
1108 	 */
1109 	pq3etsec_rxq_purge(sc, &sc->sc_rxq, disable);
1110 	pq3etsec_txq_consume(sc, &sc->sc_txq);
1111 	if (disable) {
1112 		pq3etsec_txq_purge(sc, &sc->sc_txq);
1113 		IFQ_PURGE(&ifp->if_snd);
1114 	}
1115 }
1116 
1117 static void
1118 pq3etsec_ifwatchdog(struct ifnet *ifp)
1119 {
1120 }
1121 
1122 static void
1123 pq3etsec_mc_setup(
1124 	struct pq3etsec_softc *sc)
1125 {
1126 	struct ethercom * const ec = &sc->sc_ec;
1127 	struct ifnet * const ifp = &sc->sc_if;
1128 	struct ether_multi *enm;
1129 	struct ether_multistep step;
1130 	uint32_t *gaddr = sc->sc_gaddr + ((sc->sc_rctrl & RCTRL_GHTX) ? 0 : 8);
1131 	const uint32_t crc_shift = 32 - ((sc->sc_rctrl & RCTRL_GHTX) ? 9 : 8);
1132 
1133 	memset(sc->sc_gaddr, 0, sizeof(sc->sc_gaddr));
1134 	memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
1135 
1136 	ifp->if_flags &= ~IFF_ALLMULTI;
1137 
1138 	ETHER_LOCK(ec);
1139 	ETHER_FIRST_MULTI(step, ec, enm);
1140 	for (u_int i = 0; enm != NULL; ) {
1141 		const char *addr = enm->enm_addrlo;
1142 		if (memcmp(addr, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
1143 			ifp->if_flags |= IFF_ALLMULTI;
1144 			memset(gaddr, 0xff, 32 << (crc_shift & 1));
1145 			memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
1146 			break;
1147 		}
1148 		if ((sc->sc_rctrl & RCTRL_EMEN)
1149 		    && i < __arraycount(sc->sc_macaddrs)) {
1150 			sc->sc_macaddrs[i++] = pq3etsec_macaddr_create(addr);
1151 		} else {
1152 			uint32_t crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
1153 #if 0
1154 			printf("%s: %s: crc=%#x: %#x: [%u,%u]=%#x\n", __func__,
1155 			    ether_sprintf(addr), crc,
1156 			    crc >> crc_shift,
1157 			    crc >> (crc_shift + 5),
1158 			    (crc >> crc_shift) & 31,
1159 			    1 << (((crc >> crc_shift) & 31) ^ 31));
1160 #endif
1161 			/*
1162 			 * The documentation doesn't completely follow PowerPC
1163 			 * bit order.  The BE crc32 (H) for 01:00:5E:00:00:01
1164 			 * is 0x7fa32d9b.  By empirical testing, the
1165 			 * corresponding hash bit is word 3, bit 31 (ppc bit
1166 			 * order).  Since 3 << 31 | 31 is 0x7f, we deduce
1167 			 * H[0:2] selects the register while H[3:7] selects
1168 			 * the bit (ppc bit order).
1169 			 */
1170 			crc >>= crc_shift;
1171 			gaddr[crc / 32] |= 1 << ((crc & 31) ^ 31);
1172 		}
1173 		ETHER_NEXT_MULTI(step, enm);
1174 	}
1175 	ETHER_UNLOCK(ec);
1176 	for (u_int i = 0; i < 8; i++) {
1177 		etsec_write(sc, IGADDR(i), sc->sc_gaddr[i]);
1178 		etsec_write(sc, GADDR(i), sc->sc_gaddr[i+8]);
1179 #if 0
1180 		if (sc->sc_gaddr[i] || sc->sc_gaddr[i+8])
1181 		printf("%s: IGADDR%u(%#x)=%#x GADDR%u(%#x)=%#x\n", __func__,
1182 		    i, IGADDR(i), etsec_read(sc, IGADDR(i)),
1183 		    i, GADDR(i), etsec_read(sc, GADDR(i)));
1184 #endif
1185 	}
1186 	for (u_int i = 0; i < __arraycount(sc->sc_macaddrs); i++) {
1187 		uint64_t macaddr = sc->sc_macaddrs[i];
1188 		etsec_write(sc, MACnADDR1(i), (uint32_t)(macaddr >> 32));
1189 		etsec_write(sc, MACnADDR2(i), (uint32_t)(macaddr >>  0));
1190 #if 0
1191 		if (macaddr)
1192 		printf("%s: MAC%02uADDR2(%08x)=%#x MAC%02uADDR2(%#x)=%08x\n", __func__,
1193 		    i+1, MACnADDR1(i), etsec_read(sc, MACnADDR1(i)),
1194 		    i+1, MACnADDR2(i), etsec_read(sc, MACnADDR2(i)));
1195 #endif
1196 	}
1197 }
1198 
1199 static int
1200 pq3etsec_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
1201 {
1202 	struct pq3etsec_softc *sc  = ifp->if_softc;
1203 	struct ifreq * const ifr = data;
1204 	const int s = splnet();
1205 	int error;
1206 
1207 	switch (cmd) {
1208 	case SIOCSIFMEDIA:
1209 		/* Flow control requires full-duplex mode. */
1210 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1211 		    (ifr->ifr_media & IFM_FDX) == 0)
1212 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1213 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1214 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1215 				/* We can do both TXPAUSE and RXPAUSE. */
1216 				ifr->ifr_media |=
1217 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1218 			}
1219 		}
1220 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1221 		break;
1222 
1223 	default:
1224 		error = ether_ioctl(ifp, cmd, data);
1225 		if (error != ENETRESET)
1226 			break;
1227 
1228 		if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
1229 			error = 0;
1230 			if (ifp->if_flags & IFF_RUNNING)
1231 				pq3etsec_mc_setup(sc);
1232 			break;
1233 		}
1234 		error = pq3etsec_ifinit(ifp);
1235 		break;
1236 	}
1237 
1238 	splx(s);
1239 	return error;
1240 }
1241 
1242 static void
1243 pq3etsec_rxq_desc_presync(
1244 	struct pq3etsec_softc *sc,
1245 	struct pq3etsec_rxqueue *rxq,
1246 	volatile struct rxbd *rxbd,
1247 	size_t count)
1248 {
1249 	bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1250 	    (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1251 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1252 }
1253 
1254 static void
1255 pq3etsec_rxq_desc_postsync(
1256 	struct pq3etsec_softc *sc,
1257 	struct pq3etsec_rxqueue *rxq,
1258 	volatile struct rxbd *rxbd,
1259 	size_t count)
1260 {
1261 	bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1262 	    (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1263 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1264 }
1265 
1266 static void
1267 pq3etsec_txq_desc_presync(
1268 	struct pq3etsec_softc *sc,
1269 	struct pq3etsec_txqueue *txq,
1270 	volatile struct txbd *txbd,
1271 	size_t count)
1272 {
1273 	bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1274 	    (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1275 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1276 }
1277 
1278 static void
1279 pq3etsec_txq_desc_postsync(
1280 	struct pq3etsec_softc *sc,
1281 	struct pq3etsec_txqueue *txq,
1282 	volatile struct txbd *txbd,
1283 	size_t count)
1284 {
1285 	bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1286 	    (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1287 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1288 }
1289 
1290 static bus_dmamap_t
1291 pq3etsec_mapcache_get(
1292 	struct pq3etsec_softc *sc,
1293 	struct pq3etsec_mapcache *dmc)
1294 {
1295 	KASSERT(dmc->dmc_nmaps > 0);
1296 	KASSERT(dmc->dmc_maps[dmc->dmc_nmaps-1] != NULL);
1297 	return dmc->dmc_maps[--dmc->dmc_nmaps];
1298 }
1299 
1300 static void
1301 pq3etsec_mapcache_put(
1302 	struct pq3etsec_softc *sc,
1303 	struct pq3etsec_mapcache *dmc,
1304 	bus_dmamap_t map)
1305 {
1306 	KASSERT(map != NULL);
1307 	KASSERT(dmc->dmc_nmaps < dmc->dmc_maxmaps);
1308 	dmc->dmc_maps[dmc->dmc_nmaps++] = map;
1309 }
1310 
1311 static void
1312 pq3etsec_mapcache_destroy(
1313 	struct pq3etsec_softc *sc,
1314 	struct pq3etsec_mapcache *dmc)
1315 {
1316 	const size_t dmc_size =
1317 	    offsetof(struct pq3etsec_mapcache, dmc_maps[dmc->dmc_maxmaps]);
1318 
1319 	for (u_int i = 0; i < dmc->dmc_maxmaps; i++) {
1320 		bus_dmamap_destroy(sc->sc_dmat, dmc->dmc_maps[i]);
1321 	}
1322 	kmem_intr_free(dmc, dmc_size);
1323 }
1324 
1325 static int
1326 pq3etsec_mapcache_create(
1327 	struct pq3etsec_softc *sc,
1328 	struct pq3etsec_mapcache **dmc_p,
1329 	size_t maxmaps,
1330 	size_t maxmapsize,
1331 	size_t maxseg)
1332 {
1333 	const size_t dmc_size =
1334 	    offsetof(struct pq3etsec_mapcache, dmc_maps[maxmaps]);
1335 	struct pq3etsec_mapcache * const dmc =
1336 		kmem_intr_zalloc(dmc_size, KM_NOSLEEP);
1337 
1338 	dmc->dmc_maxmaps = maxmaps;
1339 	dmc->dmc_nmaps = maxmaps;
1340 	dmc->dmc_maxmapsize = maxmapsize;
1341 	dmc->dmc_maxseg = maxseg;
1342 
1343 	for (u_int i = 0; i < maxmaps; i++) {
1344 		int error = bus_dmamap_create(sc->sc_dmat, dmc->dmc_maxmapsize,
1345 		     dmc->dmc_maxseg, dmc->dmc_maxmapsize, 0,
1346 		     BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dmc->dmc_maps[i]);
1347 		if (error) {
1348 			aprint_error_dev(sc->sc_dev,
1349 			    "failed to creat dma map cache "
1350 			    "entry %u of %zu: %d\n",
1351 			    i, maxmaps, error);
1352 			while (i-- > 0) {
1353 				bus_dmamap_destroy(sc->sc_dmat,
1354 				    dmc->dmc_maps[i]);
1355 			}
1356 			kmem_intr_free(dmc, dmc_size);
1357 			return error;
1358 		}
1359 		KASSERT(dmc->dmc_maps[i] != NULL);
1360 	}
1361 
1362 	*dmc_p = dmc;
1363 
1364 	return 0;
1365 }
1366 
1367 #if 0
1368 static void
1369 pq3etsec_dmamem_free(
1370 	bus_dma_tag_t dmat,
1371 	size_t map_size,
1372 	bus_dma_segment_t *seg,
1373 	bus_dmamap_t map,
1374 	void *kvap)
1375 {
1376 	bus_dmamap_destroy(dmat, map);
1377 	bus_dmamem_unmap(dmat, kvap, map_size);
1378 	bus_dmamem_free(dmat, seg, 1);
1379 }
1380 #endif
1381 
1382 static int
1383 pq3etsec_dmamem_alloc(
1384 	bus_dma_tag_t dmat,
1385 	size_t map_size,
1386 	bus_dma_segment_t *seg,
1387 	bus_dmamap_t *map,
1388 	void **kvap)
1389 {
1390 	int error;
1391 	int nseg;
1392 
1393 	*kvap = NULL;
1394 	*map = NULL;
1395 
1396 	error = bus_dmamem_alloc(dmat, map_size, PAGE_SIZE, 0,
1397 	   seg, 1, &nseg, 0);
1398 	if (error)
1399 		return error;
1400 
1401 	KASSERT(nseg == 1);
1402 
1403 	error = bus_dmamem_map(dmat, seg, nseg, map_size, (void **)kvap,
1404 	    BUS_DMA_COHERENT);
1405 	if (error == 0) {
1406 		error = bus_dmamap_create(dmat, map_size, 1, map_size, 0, 0,
1407 		    map);
1408 		if (error == 0) {
1409 			error = bus_dmamap_load(dmat, *map, *kvap, map_size,
1410 			    NULL, 0);
1411 			if (error == 0)
1412 				return 0;
1413 			bus_dmamap_destroy(dmat, *map);
1414 			*map = NULL;
1415 		}
1416 		bus_dmamem_unmap(dmat, *kvap, map_size);
1417 		*kvap = NULL;
1418 	}
1419 	bus_dmamem_free(dmat, seg, nseg);
1420 	return 0;
1421 }
1422 
1423 static struct mbuf *
1424 pq3etsec_rx_buf_alloc(
1425 	struct pq3etsec_softc *sc)
1426 {
1427 	struct mbuf *m = m_gethdr(M_DONTWAIT, MT_DATA);
1428 	if (m == NULL) {
1429 		printf("%s:%d: %s\n", __func__, __LINE__, "m_gethdr");
1430 		return NULL;
1431 	}
1432 	MCLGET(m, M_DONTWAIT);
1433 	if ((m->m_flags & M_EXT) == 0) {
1434 		printf("%s:%d: %s\n", __func__, __LINE__, "MCLGET");
1435 		m_freem(m);
1436 		return NULL;
1437 	}
1438 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1439 
1440 	bus_dmamap_t map = pq3etsec_mapcache_get(sc, sc->sc_rx_mapcache);
1441 	if (map == NULL) {
1442 		printf("%s:%d: %s\n", __func__, __LINE__, "map get");
1443 		m_freem(m);
1444 		return NULL;
1445 	}
1446 	M_SETCTX(m, map);
1447 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1448 	int error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1449 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
1450 	if (error) {
1451 		aprint_error_dev(sc->sc_dev, "fail to load rx dmamap: %d\n",
1452 		    error);
1453 		M_SETCTX(m, NULL);
1454 		m_freem(m);
1455 		pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1456 		return NULL;
1457 	}
1458 	KASSERT(map->dm_mapsize == MCLBYTES);
1459 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1460 	    BUS_DMASYNC_PREREAD);
1461 
1462 	return m;
1463 }
1464 
1465 static void
1466 pq3etsec_rx_map_unload(
1467 	struct pq3etsec_softc *sc,
1468 	struct mbuf *m)
1469 {
1470 	KASSERT(m);
1471 	for (; m != NULL; m = m->m_next) {
1472 		bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1473 		KASSERT(map);
1474 		KASSERT(map->dm_mapsize == MCLBYTES);
1475 		bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_len,
1476 		    BUS_DMASYNC_POSTREAD);
1477 		bus_dmamap_unload(sc->sc_dmat, map);
1478 		pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1479 		M_SETCTX(m, NULL);
1480 	}
1481 }
1482 
1483 static bool
1484 pq3etsec_rxq_produce(
1485 	struct pq3etsec_softc *sc,
1486 	struct pq3etsec_rxqueue *rxq)
1487 {
1488 	volatile struct rxbd *producer = rxq->rxq_producer;
1489 #if 0
1490 	size_t inuse = rxq->rxq_inuse;
1491 #endif
1492 	while (rxq->rxq_inuse < rxq->rxq_threshold) {
1493 		struct mbuf *m;
1494 		IF_DEQUEUE(&sc->sc_rx_bufcache, m);
1495 		if (m == NULL) {
1496 			m = pq3etsec_rx_buf_alloc(sc);
1497 			if (m == NULL) {
1498 				printf("%s: pq3etsec_rx_buf_alloc failed\n", __func__);
1499 				break;
1500 			}
1501 		}
1502 		bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1503 		KASSERT(map);
1504 
1505 #ifdef ETSEC_DEBUG
1506 		KASSERT(rxq->rxq_mbufs[producer-rxq->rxq_first] == NULL);
1507 		rxq->rxq_mbufs[producer-rxq->rxq_first] = m;
1508 #endif
1509 
1510 		/* rxbd_len is write-only by the ETSEC */
1511 		producer->rxbd_bufptr = map->dm_segs[0].ds_addr;
1512 		membar_producer();
1513 		producer->rxbd_flags |= RXBD_E;
1514 		if (__predict_false(rxq->rxq_mhead == NULL)) {
1515 			KASSERT(producer == rxq->rxq_consumer);
1516 			rxq->rxq_mconsumer = m;
1517 		}
1518 		*rxq->rxq_mtail = m;
1519 		rxq->rxq_mtail = &m->m_next;
1520 		m->m_len = MCLBYTES;
1521 		m->m_next = NULL;
1522 		rxq->rxq_inuse++;
1523 		if (++producer == rxq->rxq_last) {
1524 			membar_producer();
1525 			pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1526 			    rxq->rxq_last - rxq->rxq_producer);
1527 			producer = rxq->rxq_producer = rxq->rxq_first;
1528 		}
1529 	}
1530 	if (producer != rxq->rxq_producer) {
1531 		membar_producer();
1532 		pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1533 		    producer - rxq->rxq_producer);
1534 		rxq->rxq_producer = producer;
1535 	}
1536 	uint32_t qhlt = etsec_read(sc, RSTAT) & RSTAT_QHLT;
1537 	if (qhlt) {
1538 		KASSERT(qhlt & rxq->rxq_qmask);
1539 		sc->sc_ev_rx_stall.ev_count++;
1540 		etsec_write(sc, RSTAT, RSTAT_QHLT & rxq->rxq_qmask);
1541 	}
1542 #if 0
1543 	aprint_normal_dev(sc->sc_dev,
1544 	    "%s: buffers inuse went from %zu to %zu\n",
1545 	    __func__, inuse, rxq->rxq_inuse);
1546 #endif
1547 	return true;
1548 }
1549 
1550 static bool
1551 pq3etsec_rx_offload(
1552 	struct pq3etsec_softc *sc,
1553 	struct mbuf *m,
1554 	const struct rxfcb *fcb)
1555 {
1556 	if (fcb->rxfcb_flags & RXFCB_VLN) {
1557 		vlan_set_tag(m, fcb->rxfcb_vlctl);
1558 	}
1559 	if ((fcb->rxfcb_flags & RXFCB_IP) == 0
1560 	    || (fcb->rxfcb_flags & (RXFCB_CIP | RXFCB_CTU)) == 0)
1561 		return true;
1562 	int csum_flags = 0;
1563 	if ((fcb->rxfcb_flags & (RXFCB_IP6 | RXFCB_CIP)) == RXFCB_CIP) {
1564 		csum_flags |= M_CSUM_IPv4;
1565 		if (fcb->rxfcb_flags & RXFCB_EIP)
1566 			csum_flags |= M_CSUM_IPv4_BAD;
1567 	}
1568 	if ((fcb->rxfcb_flags & RXFCB_CTU) == RXFCB_CTU) {
1569 		int ipv_flags;
1570 		if (fcb->rxfcb_flags & RXFCB_IP6)
1571 			ipv_flags = M_CSUM_TCPv6 | M_CSUM_UDPv6;
1572 		else
1573 			ipv_flags = M_CSUM_TCPv4 | M_CSUM_UDPv4;
1574 		if (fcb->rxfcb_pro == IPPROTO_TCP) {
1575 			csum_flags |= (M_CSUM_TCPv4 |M_CSUM_TCPv6) & ipv_flags;
1576 		} else {
1577 			csum_flags |= (M_CSUM_UDPv4 |M_CSUM_UDPv6) & ipv_flags;
1578 		}
1579 		if (fcb->rxfcb_flags & RXFCB_ETU)
1580 			csum_flags |= M_CSUM_TCP_UDP_BAD;
1581 	}
1582 
1583 	m->m_pkthdr.csum_flags = csum_flags;
1584 	return true;
1585 }
1586 
1587 static void
1588 pq3etsec_rx_input(
1589 	struct pq3etsec_softc *sc,
1590 	struct mbuf *m,
1591 	uint16_t rxbd_flags)
1592 {
1593 	struct ifnet * const ifp = &sc->sc_if;
1594 
1595 	pq3etsec_rx_map_unload(sc, m);
1596 
1597 	if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF) {
1598 		struct rxfcb fcb = *mtod(m, struct rxfcb *);
1599 		if (!pq3etsec_rx_offload(sc, m, &fcb))
1600 			return;
1601 	}
1602 	m_adj(m, sc->sc_rx_adjlen);
1603 
1604 	if (rxbd_flags & RXBD_M)
1605 		m->m_flags |= M_PROMISC;
1606 	if (rxbd_flags & RXBD_BC)
1607 		m->m_flags |= M_BCAST;
1608 	if (rxbd_flags & RXBD_MC)
1609 		m->m_flags |= M_MCAST;
1610 	m->m_flags |= M_HASFCS;
1611 	m_set_rcvif(m, &sc->sc_if);
1612 
1613 	/*
1614 	 * Let's give it to the network subsystm to deal with.
1615 	 */
1616 	int s = splnet();
1617 	if_input(ifp, m);
1618 	splx(s);
1619 }
1620 
1621 static void
1622 pq3etsec_rxq_consume(
1623 	struct pq3etsec_softc *sc,
1624 	struct pq3etsec_rxqueue *rxq)
1625 {
1626 	struct ifnet * const ifp = &sc->sc_if;
1627 	volatile struct rxbd *consumer = rxq->rxq_consumer;
1628 	size_t rxconsumed = 0;
1629 
1630 	etsec_write(sc, RSTAT, RSTAT_RXF & rxq->rxq_qmask);
1631 
1632 	for (;;) {
1633 		if (consumer == rxq->rxq_producer) {
1634 			rxq->rxq_consumer = consumer;
1635 			rxq->rxq_inuse -= rxconsumed;
1636 			KASSERT(rxq->rxq_inuse == 0);
1637 			return;
1638 		}
1639 		pq3etsec_rxq_desc_postsync(sc, rxq, consumer, 1);
1640 		const uint16_t rxbd_flags = consumer->rxbd_flags;
1641 		if (rxbd_flags & RXBD_E) {
1642 			rxq->rxq_consumer = consumer;
1643 			rxq->rxq_inuse -= rxconsumed;
1644 			return;
1645 		}
1646 		KASSERT(rxq->rxq_mconsumer != NULL);
1647 #ifdef ETSEC_DEBUG
1648 		KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1649 #endif
1650 #if 0
1651 		printf("%s: rxdb[%u]: flags=%#x len=%#x: %08x %08x %08x %08x\n",
1652 		    __func__,
1653 		    consumer - rxq->rxq_first, rxbd_flags, consumer->rxbd_len,
1654 		    mtod(rxq->rxq_mconsumer, int *)[0],
1655 		    mtod(rxq->rxq_mconsumer, int *)[1],
1656 		    mtod(rxq->rxq_mconsumer, int *)[2],
1657 		    mtod(rxq->rxq_mconsumer, int *)[3]);
1658 #endif
1659 		/*
1660 		 * We own this packet again.  Clear all flags except wrap.
1661 		 */
1662 		rxconsumed++;
1663 		consumer->rxbd_flags = rxbd_flags & (RXBD_W | RXBD_I);
1664 
1665 		/*
1666 		 * If this descriptor has the LAST bit set and no errors,
1667 		 * it's a valid input packet.
1668 		 */
1669 		if ((rxbd_flags & (RXBD_L | RXBD_ERRORS)) == RXBD_L) {
1670 			size_t rxbd_len = consumer->rxbd_len;
1671 			struct mbuf *m = rxq->rxq_mhead;
1672 			struct mbuf *m_last = rxq->rxq_mconsumer;
1673 			if ((rxq->rxq_mhead = m_last->m_next) == NULL)
1674 				rxq->rxq_mtail = &rxq->rxq_mhead;
1675 			rxq->rxq_mconsumer = rxq->rxq_mhead;
1676 			m_last->m_next = NULL;
1677 			m_last->m_len = rxbd_len & (MCLBYTES - 1);
1678 			m->m_pkthdr.len = rxbd_len;
1679 			pq3etsec_rx_input(sc, m, rxbd_flags);
1680 		} else if (rxbd_flags & RXBD_L) {
1681 			KASSERT(rxbd_flags & RXBD_ERRORS);
1682 			struct mbuf *m;
1683 			/*
1684 			 * We encountered an error, take the mbufs and add
1685 			 * then to the rx bufcache so we can reuse them.
1686 			 */
1687 			if_statinc(ifp, if_ierrors);
1688 			for (m = rxq->rxq_mhead;
1689 			     m != rxq->rxq_mconsumer;
1690 			     m = m->m_next) {
1691 				IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1692 			}
1693 			m = rxq->rxq_mconsumer;
1694 			if ((rxq->rxq_mhead = m->m_next) == NULL)
1695 				rxq->rxq_mtail = &rxq->rxq_mhead;
1696 			rxq->rxq_mconsumer = m->m_next;
1697 			IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1698 		} else {
1699 			rxq->rxq_mconsumer = rxq->rxq_mconsumer->m_next;
1700 		}
1701 #ifdef ETSEC_DEBUG
1702 		rxq->rxq_mbufs[consumer - rxq->rxq_first] = NULL;
1703 #endif
1704 
1705 		/*
1706 		 * Wrap at the last entry!
1707 		 */
1708 		if (rxbd_flags & RXBD_W) {
1709 			KASSERT(consumer + 1 == rxq->rxq_last);
1710 			consumer = rxq->rxq_first;
1711 		} else {
1712 			consumer++;
1713 		}
1714 #ifdef ETSEC_DEBUG
1715 		KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1716 #endif
1717 	}
1718 }
1719 
1720 static void
1721 pq3etsec_rxq_purge(
1722 	struct pq3etsec_softc *sc,
1723 	struct pq3etsec_rxqueue *rxq,
1724 	bool discard)
1725 {
1726 	struct mbuf *m;
1727 
1728 	if ((m = rxq->rxq_mhead) != NULL) {
1729 #ifdef ETSEC_DEBUG
1730 		memset(rxq->rxq_mbufs, 0, sizeof(rxq->rxq_mbufs));
1731 #endif
1732 
1733 		if (discard) {
1734 			pq3etsec_rx_map_unload(sc, m);
1735 			m_freem(m);
1736 		} else {
1737 			while (m != NULL) {
1738 				struct mbuf *m0 = m->m_next;
1739 				m->m_next = NULL;
1740 				IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1741 				m = m0;
1742 			}
1743 		}
1744 	}
1745 
1746 	rxq->rxq_mconsumer = NULL;
1747 	rxq->rxq_mhead = NULL;
1748 	rxq->rxq_mtail = &rxq->rxq_mhead;
1749 	rxq->rxq_inuse = 0;
1750 }
1751 
1752 static void
1753 pq3etsec_rxq_reset(
1754 	struct pq3etsec_softc *sc,
1755 	struct pq3etsec_rxqueue *rxq)
1756 {
1757 	/*
1758 	 * sync all the descriptors
1759 	 */
1760 	pq3etsec_rxq_desc_postsync(sc, rxq, rxq->rxq_first,
1761 	    rxq->rxq_last - rxq->rxq_first);
1762 
1763 	/*
1764 	 * Make sure we own all descriptors in the ring.
1765 	 */
1766 	volatile struct rxbd *rxbd;
1767 	for (rxbd = rxq->rxq_first; rxbd < rxq->rxq_last - 1; rxbd++) {
1768 		rxbd->rxbd_flags = RXBD_I;
1769 	}
1770 
1771 	/*
1772 	 * Last descriptor has the wrap flag.
1773 	 */
1774 	rxbd->rxbd_flags = RXBD_W | RXBD_I;
1775 
1776 	/*
1777 	 * Reset the producer consumer indexes.
1778 	 */
1779 	rxq->rxq_consumer = rxq->rxq_first;
1780 	rxq->rxq_producer = rxq->rxq_first;
1781 	rxq->rxq_inuse = 0;
1782 	if (rxq->rxq_threshold < ETSEC_MINRXMBUFS)
1783 		rxq->rxq_threshold = ETSEC_MINRXMBUFS;
1784 
1785 	sc->sc_imask |= IEVENT_RXF | IEVENT_BSY;
1786 
1787 	/*
1788 	 * Restart the transmit at the first descriptor
1789 	 */
1790 	etsec_write(sc, rxq->rxq_reg_rbase, rxq->rxq_descmap->dm_segs->ds_addr);
1791 }
1792 
1793 static int
1794 pq3etsec_rxq_attach(
1795 	struct pq3etsec_softc *sc,
1796 	struct pq3etsec_rxqueue *rxq,
1797 	u_int qno)
1798 {
1799 	size_t map_size = PAGE_SIZE;
1800 	size_t desc_count = map_size / sizeof(struct rxbd);
1801 	int error;
1802 	void *descs;
1803 
1804 	error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1805 	   &rxq->rxq_descmap_seg, &rxq->rxq_descmap, &descs);
1806 	if (error)
1807 		return error;
1808 
1809 	memset(descs, 0, map_size);
1810 	rxq->rxq_first = descs;
1811 	rxq->rxq_last = rxq->rxq_first + desc_count;
1812 	rxq->rxq_consumer = descs;
1813 	rxq->rxq_producer = descs;
1814 
1815 	pq3etsec_rxq_purge(sc, rxq, true);
1816 	pq3etsec_rxq_reset(sc, rxq);
1817 
1818 	rxq->rxq_reg_rbase = RBASEn(qno);
1819 	rxq->rxq_qmask = RSTAT_QHLTn(qno) | RSTAT_RXFn(qno);
1820 
1821 	return 0;
1822 }
1823 
1824 static bool
1825 pq3etsec_txq_active_p(
1826 	struct pq3etsec_softc * const sc,
1827 	struct pq3etsec_txqueue *txq)
1828 {
1829 	return !IF_IS_EMPTY(&txq->txq_mbufs);
1830 }
1831 
1832 static bool
1833 pq3etsec_txq_fillable_p(
1834 	struct pq3etsec_softc * const sc,
1835 	struct pq3etsec_txqueue *txq)
1836 {
1837 	return txq->txq_free >= txq->txq_threshold;
1838 }
1839 
1840 static int
1841 pq3etsec_txq_attach(
1842 	struct pq3etsec_softc *sc,
1843 	struct pq3etsec_txqueue *txq,
1844 	u_int qno)
1845 {
1846 	size_t map_size = PAGE_SIZE;
1847 	size_t desc_count = map_size / sizeof(struct txbd);
1848 	int error;
1849 	void *descs;
1850 
1851 	error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1852 	   &txq->txq_descmap_seg, &txq->txq_descmap, &descs);
1853 	if (error)
1854 		return error;
1855 
1856 	memset(descs, 0, map_size);
1857 	txq->txq_first = descs;
1858 	txq->txq_last = txq->txq_first + desc_count;
1859 	txq->txq_consumer = descs;
1860 	txq->txq_producer = descs;
1861 
1862 	IFQ_SET_MAXLEN(&txq->txq_mbufs, ETSEC_MAXTXMBUFS);
1863 
1864 	txq->txq_reg_tbase = TBASEn(qno);
1865 	txq->txq_qmask = TSTAT_THLTn(qno) | TSTAT_TXFn(qno);
1866 
1867 	pq3etsec_txq_reset(sc, txq);
1868 
1869 	return 0;
1870 }
1871 
1872 static int
1873 pq3etsec_txq_map_load(
1874 	struct pq3etsec_softc *sc,
1875 	struct pq3etsec_txqueue *txq,
1876 	struct mbuf *m)
1877 {
1878 	bus_dmamap_t map;
1879 	int error;
1880 
1881 	map = M_GETCTX(m, bus_dmamap_t);
1882 	if (map != NULL)
1883 		return 0;
1884 
1885 	map = pq3etsec_mapcache_get(sc, sc->sc_tx_mapcache);
1886 	if (map == NULL)
1887 		return ENOMEM;
1888 
1889 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1890 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1891 	if (error)
1892 		return error;
1893 
1894 	bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_pkthdr.len,
1895 	    BUS_DMASYNC_PREWRITE);
1896 	M_SETCTX(m, map);
1897 	return 0;
1898 }
1899 
1900 static void
1901 pq3etsec_txq_map_unload(
1902 	struct pq3etsec_softc *sc,
1903 	struct pq3etsec_txqueue *txq,
1904 	struct mbuf *m)
1905 {
1906 	KASSERT(m);
1907 	bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1908 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1909 	    BUS_DMASYNC_POSTWRITE);
1910 	bus_dmamap_unload(sc->sc_dmat, map);
1911 	pq3etsec_mapcache_put(sc, sc->sc_tx_mapcache, map);
1912 }
1913 
1914 static bool
1915 pq3etsec_txq_produce(
1916 	struct pq3etsec_softc *sc,
1917 	struct pq3etsec_txqueue *txq,
1918 	struct mbuf *m)
1919 {
1920 	bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1921 
1922 	if (map->dm_nsegs > txq->txq_free)
1923 		return false;
1924 
1925 	/*
1926 	 * TCP Offload flag must be set in the first descriptor.
1927 	 */
1928 	volatile struct txbd *producer = txq->txq_producer;
1929 	uint16_t last_flags = TXBD_L;
1930 	uint16_t first_flags = TXBD_R
1931 	    | ((m->m_flags & M_HASFCB) ? TXBD_TOE : 0);
1932 
1933 	/*
1934 	 * If we've produced enough descriptors without consuming any
1935 	 * we need to ask for an interrupt to reclaim some.
1936 	 */
1937 	txq->txq_lastintr += map->dm_nsegs;
1938 	if (ETSEC_IC_TX_ENABLED(sc)
1939 	    || txq->txq_lastintr >= txq->txq_threshold
1940 	    || txq->txq_mbufs.ifq_len + 1 == txq->txq_mbufs.ifq_maxlen) {
1941 		txq->txq_lastintr = 0;
1942 		last_flags |= TXBD_I;
1943 	}
1944 
1945 #ifdef ETSEC_DEBUG
1946 	KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1947 #endif
1948 	KASSERT(producer != txq->txq_last);
1949 	producer->txbd_bufptr = map->dm_segs[0].ds_addr;
1950 	producer->txbd_len = map->dm_segs[0].ds_len;
1951 
1952 	if (map->dm_nsegs > 1) {
1953 		volatile struct txbd *start = producer + 1;
1954 		size_t count = map->dm_nsegs - 1;
1955 		for (u_int i = 1; i < map->dm_nsegs; i++) {
1956 			if (__predict_false(++producer == txq->txq_last)) {
1957 				producer = txq->txq_first;
1958 				if (start < txq->txq_last) {
1959 					pq3etsec_txq_desc_presync(sc, txq,
1960 					    start, txq->txq_last - start);
1961 					count -= txq->txq_last - start;
1962 				}
1963 				start = txq->txq_first;
1964 			}
1965 #ifdef ETSEC_DEBUG
1966 			KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1967 #endif
1968 			producer->txbd_bufptr = map->dm_segs[i].ds_addr;
1969 			producer->txbd_len = map->dm_segs[i].ds_len;
1970 			producer->txbd_flags = TXBD_R
1971 			    | (producer->txbd_flags & TXBD_W)
1972 			    | (i == map->dm_nsegs - 1 ? last_flags : 0);
1973 #if 0
1974 			printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__, producer - txq->txq_first,
1975 			    producer->txbd_flags, producer->txbd_len, producer->txbd_bufptr);
1976 #endif
1977 		}
1978 		pq3etsec_txq_desc_presync(sc, txq, start, count);
1979 	} else {
1980 		first_flags |= last_flags;
1981 	}
1982 
1983 	membar_producer();
1984 	txq->txq_producer->txbd_flags =
1985 	    first_flags | (txq->txq_producer->txbd_flags & TXBD_W);
1986 #if 0
1987 	printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__,
1988 	    txq->txq_producer - txq->txq_first, txq->txq_producer->txbd_flags,
1989 	    txq->txq_producer->txbd_len, txq->txq_producer->txbd_bufptr);
1990 #endif
1991 	pq3etsec_txq_desc_presync(sc, txq, txq->txq_producer, 1);
1992 
1993 	/*
1994 	 * Reduce free count by the number of segments we consumed.
1995 	 */
1996 	txq->txq_free -= map->dm_nsegs;
1997 	KASSERT(map->dm_nsegs == 1 || txq->txq_producer != producer);
1998 	KASSERT(map->dm_nsegs == 1 || (txq->txq_producer->txbd_flags & TXBD_L) == 0);
1999 	KASSERT(producer->txbd_flags & TXBD_L);
2000 #ifdef ETSEC_DEBUG
2001 	txq->txq_lmbufs[producer - txq->txq_first] = m;
2002 #endif
2003 
2004 #if 0
2005 	printf("%s: mbuf %p: produced a %u byte packet in %u segments (%u..%u)\n",
2006 	    __func__, m, m->m_pkthdr.len, map->dm_nsegs,
2007 	    txq->txq_producer - txq->txq_first, producer - txq->txq_first);
2008 #endif
2009 
2010 	if (++producer == txq->txq_last)
2011 		txq->txq_producer = txq->txq_first;
2012 	else
2013 		txq->txq_producer = producer;
2014 	IF_ENQUEUE(&txq->txq_mbufs, m);
2015 
2016 	/*
2017 	 * Restart the transmitter.
2018 	 */
2019 	etsec_write(sc, TSTAT, txq->txq_qmask & TSTAT_THLT);	/* W1C */
2020 
2021 	return true;
2022 }
2023 
2024 static void
2025 pq3etsec_tx_offload(
2026 	struct pq3etsec_softc *sc,
2027 	struct pq3etsec_txqueue *txq,
2028 	struct mbuf **mp)
2029 {
2030 	struct mbuf *m = *mp;
2031 	u_int csum_flags = m->m_pkthdr.csum_flags;
2032 	bool have_vtag;
2033 	uint16_t vtag;
2034 
2035 	KASSERT(m->m_flags & M_PKTHDR);
2036 
2037 	have_vtag = vlan_has_tag(m);
2038 	vtag = (have_vtag) ? vlan_get_tag(m) : 0;
2039 
2040 	/*
2041 	 * Let see if we are doing any offload first.
2042 	 */
2043 	if (csum_flags == 0 && !have_vtag) {
2044 		m->m_flags &= ~M_HASFCB;
2045 		return;
2046 	}
2047 
2048 	uint16_t flags = 0;
2049 	if (csum_flags & M_CSUM_IP) {
2050 		flags |= TXFCB_IP
2051 		    | ((csum_flags & M_CSUM_IP6) ? TXFCB_IP6 : 0)
2052 		    | ((csum_flags & M_CSUM_TUP) ? TXFCB_TUP : 0)
2053 		    | ((csum_flags & M_CSUM_UDP) ? TXFCB_UDP : 0)
2054 		    | ((csum_flags & M_CSUM_CIP) ? TXFCB_CIP : 0)
2055 		    | ((csum_flags & M_CSUM_CTU) ? TXFCB_CTU : 0);
2056 	}
2057 	if (have_vtag) {
2058 		flags |= TXFCB_VLN;
2059 	}
2060 	if (flags == 0) {
2061 		m->m_flags &= ~M_HASFCB;
2062 		return;
2063 	}
2064 
2065 	struct txfcb fcb;
2066 	fcb.txfcb_flags = flags;
2067 	if (csum_flags & M_CSUM_IPv4)
2068 		fcb.txfcb_l4os = M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
2069 	else
2070 		fcb.txfcb_l4os = M_CSUM_DATA_IPv6_IPHL(m->m_pkthdr.csum_data);
2071 	fcb.txfcb_l3os = ETHER_HDR_LEN;
2072 	fcb.txfcb_phcs = 0;
2073 	fcb.txfcb_vlctl = vtag;
2074 
2075 #if 0
2076 	printf("%s: csum_flags=%#x: txfcb flags=%#x lsos=%u l4os=%u phcs=%u vlctl=%#x\n",
2077 	    __func__, csum_flags, fcb.txfcb_flags, fcb.txfcb_l3os, fcb.txfcb_l4os,
2078 	    fcb.txfcb_phcs, fcb.txfcb_vlctl);
2079 #endif
2080 
2081 	if (M_LEADINGSPACE(m) >= sizeof(fcb)) {
2082 		m->m_data -= sizeof(fcb);
2083 		m->m_len += sizeof(fcb);
2084 	} else if (!(m->m_flags & M_EXT) && MHLEN - m->m_len >= sizeof(fcb)) {
2085 		memmove(m->m_pktdat + sizeof(fcb), m->m_data, m->m_len);
2086 		m->m_data = m->m_pktdat;
2087 		m->m_len += sizeof(fcb);
2088 	} else {
2089 		struct mbuf *mn;
2090 		MGET(mn, M_DONTWAIT, m->m_type);
2091 		if (mn == NULL) {
2092 			if (csum_flags & M_CSUM_IP4) {
2093 #ifdef INET
2094 				in_undefer_cksum(m, ETHER_HDR_LEN,
2095 				    csum_flags & M_CSUM_IP4);
2096 #else
2097 				panic("%s: impossible M_CSUM flags %#x",
2098 				    device_xname(sc->sc_dev), csum_flags);
2099 #endif
2100 			} else if (csum_flags & M_CSUM_IP6) {
2101 #ifdef INET6
2102 				in6_undefer_cksum(m, ETHER_HDR_LEN,
2103 				    csum_flags & M_CSUM_IP6);
2104 #else
2105 				panic("%s: impossible M_CSUM flags %#x",
2106 				    device_xname(sc->sc_dev), csum_flags);
2107 #endif
2108 			}
2109 
2110 			m->m_flags &= ~M_HASFCB;
2111 			return;
2112 		}
2113 
2114 		m_move_pkthdr(mn, m);
2115 		mn->m_next = m;
2116 		m = mn;
2117 		m_align(m, sizeof(fcb));
2118 		m->m_len = sizeof(fcb);
2119 		*mp = m;
2120 	}
2121 	m->m_pkthdr.len += sizeof(fcb);
2122 	m->m_flags |= M_HASFCB;
2123 	*mtod(m, struct txfcb *) = fcb;
2124 	return;
2125 }
2126 
2127 static bool
2128 pq3etsec_txq_enqueue(
2129 	struct pq3etsec_softc *sc,
2130 	struct pq3etsec_txqueue *txq)
2131 {
2132 	for (;;) {
2133 		if (IF_QFULL(&txq->txq_mbufs))
2134 			return false;
2135 		struct mbuf *m = txq->txq_next;
2136 		if (m == NULL) {
2137 			int s = splnet();
2138 			IFQ_DEQUEUE(&sc->sc_if.if_snd, m);
2139 			splx(s);
2140 			if (m == NULL)
2141 				return true;
2142 			M_SETCTX(m, NULL);
2143 			pq3etsec_tx_offload(sc, txq, &m);
2144 		} else {
2145 			txq->txq_next = NULL;
2146 		}
2147 		int error = pq3etsec_txq_map_load(sc, txq, m);
2148 		if (error) {
2149 			aprint_error_dev(sc->sc_dev,
2150 			    "discarded packet due to "
2151 			    "dmamap load failure: %d\n", error);
2152 			m_freem(m);
2153 			continue;
2154 		}
2155 		KASSERT(txq->txq_next == NULL);
2156 		if (!pq3etsec_txq_produce(sc, txq, m)) {
2157 			txq->txq_next = m;
2158 			return false;
2159 		}
2160 		KASSERT(txq->txq_next == NULL);
2161 	}
2162 }
2163 
2164 static bool
2165 pq3etsec_txq_consume(
2166 	struct pq3etsec_softc *sc,
2167 	struct pq3etsec_txqueue *txq)
2168 {
2169 	struct ifnet * const ifp = &sc->sc_if;
2170 	volatile struct txbd *consumer = txq->txq_consumer;
2171 	size_t txfree = 0;
2172 
2173 #if 0
2174 	printf("%s: entry: free=%zu\n", __func__, txq->txq_free);
2175 #endif
2176 	etsec_write(sc, TSTAT, TSTAT_TXF & txq->txq_qmask);
2177 
2178 	for (;;) {
2179 		if (consumer == txq->txq_producer) {
2180 			txq->txq_consumer = consumer;
2181 			txq->txq_free += txfree;
2182 			txq->txq_lastintr -= uimin(txq->txq_lastintr, txfree);
2183 #if 0
2184 			printf("%s: empty: freed %zu descriptors going form %zu to %zu\n",
2185 			    __func__, txfree, txq->txq_free - txfree, txq->txq_free);
2186 #endif
2187 			KASSERT(txq->txq_lastintr == 0);
2188 			KASSERT(txq->txq_free == txq->txq_last - txq->txq_first - 1);
2189 			return true;
2190 		}
2191 		pq3etsec_txq_desc_postsync(sc, txq, consumer, 1);
2192 		const uint16_t txbd_flags = consumer->txbd_flags;
2193 		if (txbd_flags & TXBD_R) {
2194 			txq->txq_consumer = consumer;
2195 			txq->txq_free += txfree;
2196 			txq->txq_lastintr -= uimin(txq->txq_lastintr, txfree);
2197 #if 0
2198 			printf("%s: freed %zu descriptors\n",
2199 			    __func__, txfree);
2200 #endif
2201 			return pq3etsec_txq_fillable_p(sc, txq);
2202 		}
2203 
2204 		/*
2205 		 * If this is the last descriptor in the chain, get the
2206 		 * mbuf, free its dmamap, and free the mbuf chain itself.
2207 		 */
2208 		if (txbd_flags & TXBD_L) {
2209 			struct mbuf *m;
2210 
2211 			IF_DEQUEUE(&txq->txq_mbufs, m);
2212 #ifdef ETSEC_DEBUG
2213 			KASSERTMSG(
2214 			    m == txq->txq_lmbufs[consumer-txq->txq_first],
2215 			    "%s: %p [%u]: flags %#x m (%p) != %p (%p)",
2216 			    __func__, consumer, consumer - txq->txq_first,
2217 			    txbd_flags, m,
2218 			    &txq->txq_lmbufs[consumer-txq->txq_first],
2219 			    txq->txq_lmbufs[consumer-txq->txq_first]);
2220 #endif
2221 			KASSERT(m);
2222 			pq3etsec_txq_map_unload(sc, txq, m);
2223 #if 0
2224 			printf("%s: mbuf %p: consumed a %u byte packet\n",
2225 			    __func__, m, m->m_pkthdr.len);
2226 #endif
2227 			if (m->m_flags & M_HASFCB)
2228 				m_adj(m, sizeof(struct txfcb));
2229 			bpf_mtap(ifp, m, BPF_D_OUT);
2230 			net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
2231 			if_statinc_ref(nsr, if_opackets);
2232 			if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
2233 			if (m->m_flags & M_MCAST)
2234 				if_statinc_ref(nsr, if_omcasts);
2235 			if (txbd_flags & TXBD_ERRORS)
2236 				if_statinc_ref(nsr, if_oerrors);
2237 			IF_STAT_PUTREF(ifp);
2238 			m_freem(m);
2239 #ifdef ETSEC_DEBUG
2240 			txq->txq_lmbufs[consumer - txq->txq_first] = NULL;
2241 #endif
2242 		} else {
2243 #ifdef ETSEC_DEBUG
2244 			KASSERT(txq->txq_lmbufs[consumer-txq->txq_first] == NULL);
2245 #endif
2246 		}
2247 
2248 		/*
2249 		 * We own this packet again.  Clear all flags except wrap.
2250 		 */
2251 		txfree++;
2252 		//consumer->txbd_flags = txbd_flags & TXBD_W;
2253 
2254 		/*
2255 		 * Wrap at the last entry!
2256 		 */
2257 		if (txbd_flags & TXBD_W) {
2258 			KASSERT(consumer + 1 == txq->txq_last);
2259 			consumer = txq->txq_first;
2260 		} else {
2261 			consumer++;
2262 			KASSERT(consumer < txq->txq_last);
2263 		}
2264 	}
2265 }
2266 
2267 static void
2268 pq3etsec_txq_purge(
2269 	struct pq3etsec_softc *sc,
2270 	struct pq3etsec_txqueue *txq)
2271 {
2272 	struct mbuf *m;
2273 	KASSERT((etsec_read(sc, MACCFG1) & MACCFG1_TX_EN) == 0);
2274 
2275 	for (;;) {
2276 		IF_DEQUEUE(&txq->txq_mbufs, m);
2277 		if (m == NULL)
2278 			break;
2279 		pq3etsec_txq_map_unload(sc, txq, m);
2280 		m_freem(m);
2281 	}
2282 	if ((m = txq->txq_next) != NULL) {
2283 		txq->txq_next = NULL;
2284 		pq3etsec_txq_map_unload(sc, txq, m);
2285 		m_freem(m);
2286 	}
2287 #ifdef ETSEC_DEBUG
2288 	memset(txq->txq_lmbufs, 0, sizeof(txq->txq_lmbufs));
2289 #endif
2290 }
2291 
2292 static void
2293 pq3etsec_txq_reset(
2294 	struct pq3etsec_softc *sc,
2295 	struct pq3etsec_txqueue *txq)
2296 {
2297 	/*
2298 	 * sync all the descriptors
2299 	 */
2300 	pq3etsec_txq_desc_postsync(sc, txq, txq->txq_first,
2301 	    txq->txq_last - txq->txq_first);
2302 
2303 	/*
2304 	 * Make sure we own all descriptors in the ring.
2305 	 */
2306 	volatile struct txbd *txbd;
2307 	for (txbd = txq->txq_first; txbd < txq->txq_last - 1; txbd++) {
2308 		txbd->txbd_flags = 0;
2309 	}
2310 
2311 	/*
2312 	 * Last descriptor has the wrap flag.
2313 	 */
2314 	txbd->txbd_flags = TXBD_W;
2315 
2316 	/*
2317 	 * Reset the producer consumer indexes.
2318 	 */
2319 	txq->txq_consumer = txq->txq_first;
2320 	txq->txq_producer = txq->txq_first;
2321 	txq->txq_free = txq->txq_last - txq->txq_first - 1;
2322 	txq->txq_threshold = txq->txq_free / 2;
2323 	txq->txq_lastintr = 0;
2324 
2325 	/*
2326 	 * What do we want to get interrupted on?
2327 	 */
2328 	sc->sc_imask |= IEVENT_TXF | IEVENT_TXE;
2329 
2330 	/*
2331 	 * Restart the transmit at the first descriptor
2332 	 */
2333 	etsec_write(sc, txq->txq_reg_tbase, txq->txq_descmap->dm_segs->ds_addr);
2334 }
2335 
2336 static void
2337 pq3etsec_ifstart(struct ifnet *ifp)
2338 {
2339 	struct pq3etsec_softc * const sc = ifp->if_softc;
2340 
2341 	if (__predict_false((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)) {
2342 		return;
2343 	}
2344 
2345 	atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2346 	softint_schedule(sc->sc_soft_ih);
2347 }
2348 
2349 static void
2350 pq3etsec_tx_error(
2351 	struct pq3etsec_softc * const sc)
2352 {
2353 	struct pq3etsec_txqueue * const txq = &sc->sc_txq;
2354 
2355 	pq3etsec_txq_consume(sc, txq);
2356 
2357 	if (pq3etsec_txq_fillable_p(sc, txq))
2358 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
2359 	if (sc->sc_txerrors
2360 	    & (IEVENT_LC | IEVENT_CRL | IEVENT_XFUN | IEVENT_BABT)) {
2361 	} else if (sc->sc_txerrors & IEVENT_EBERR) {
2362 	}
2363 
2364 	if (pq3etsec_txq_active_p(sc, txq))
2365 		etsec_write(sc, TSTAT, TSTAT_THLT & txq->txq_qmask);
2366 	if (!pq3etsec_txq_enqueue(sc, txq)) {
2367 		sc->sc_ev_tx_stall.ev_count++;
2368 		sc->sc_if.if_flags |= IFF_OACTIVE;
2369 	}
2370 
2371 	sc->sc_txerrors = 0;
2372 }
2373 
2374 int
2375 pq3etsec_tx_intr(void *arg)
2376 {
2377 	struct pq3etsec_softc * const sc = arg;
2378 
2379 	mutex_enter(sc->sc_hwlock);
2380 
2381 	sc->sc_ev_tx_intr.ev_count++;
2382 
2383 	uint32_t ievent = etsec_read(sc, IEVENT);
2384 	ievent &= IEVENT_TXF | IEVENT_TXB;
2385 	etsec_write(sc, IEVENT, ievent);	/* write 1 to clear */
2386 
2387 #if 0
2388 	aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2389 	    __func__, ievent, etsec_read(sc, IMASK));
2390 #endif
2391 
2392 	if (ievent == 0) {
2393 		mutex_exit(sc->sc_hwlock);
2394 		return 0;
2395 	}
2396 
2397 	sc->sc_imask &= ~(IEVENT_TXF | IEVENT_TXB);
2398 	atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2399 	etsec_write(sc, IMASK, sc->sc_imask);
2400 	softint_schedule(sc->sc_soft_ih);
2401 
2402 	mutex_exit(sc->sc_hwlock);
2403 
2404 	return 1;
2405 }
2406 
2407 int
2408 pq3etsec_rx_intr(void *arg)
2409 {
2410 	struct pq3etsec_softc * const sc = arg;
2411 
2412 	mutex_enter(sc->sc_hwlock);
2413 
2414 	sc->sc_ev_rx_intr.ev_count++;
2415 
2416 	uint32_t ievent = etsec_read(sc, IEVENT);
2417 	ievent &= IEVENT_RXF | IEVENT_RXB;
2418 	etsec_write(sc, IEVENT, ievent);	/* write 1 to clear */
2419 	if (ievent == 0) {
2420 		mutex_exit(sc->sc_hwlock);
2421 		return 0;
2422 	}
2423 
2424 #if 0
2425 	aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x\n", __func__, ievent);
2426 #endif
2427 
2428 	sc->sc_imask &= ~(IEVENT_RXF | IEVENT_RXB);
2429 	atomic_or_uint(&sc->sc_soft_flags, SOFT_RXINTR);
2430 	etsec_write(sc, IMASK, sc->sc_imask);
2431 	softint_schedule(sc->sc_soft_ih);
2432 
2433 	mutex_exit(sc->sc_hwlock);
2434 
2435 	return 1;
2436 }
2437 
2438 int
2439 pq3etsec_error_intr(void *arg)
2440 {
2441 	struct pq3etsec_softc * const sc = arg;
2442 
2443 	mutex_enter(sc->sc_hwlock);
2444 
2445 	sc->sc_ev_error_intr.ev_count++;
2446 
2447 	for (int rv = 0, soft_flags = 0;; rv = 1) {
2448 		uint32_t ievent = etsec_read(sc, IEVENT);
2449 		ievent &= ~(IEVENT_RXF | IEVENT_RXB | IEVENT_TXF | IEVENT_TXB);
2450 		etsec_write(sc, IEVENT, ievent);	/* write 1 to clear */
2451 		if (ievent == 0) {
2452 			if (soft_flags) {
2453 				atomic_or_uint(&sc->sc_soft_flags, soft_flags);
2454 				softint_schedule(sc->sc_soft_ih);
2455 			}
2456 			mutex_exit(sc->sc_hwlock);
2457 			return rv;
2458 		}
2459 #if 0
2460 		aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2461 		    __func__, ievent, etsec_read(sc, IMASK));
2462 #endif
2463 
2464 		if (ievent & (IEVENT_GRSC | IEVENT_GTSC)) {
2465 			sc->sc_imask &= ~(IEVENT_GRSC | IEVENT_GTSC);
2466 			etsec_write(sc, IMASK, sc->sc_imask);
2467 			wakeup(sc);
2468 		}
2469 		if (ievent & (IEVENT_MMRD | IEVENT_MMWR)) {
2470 			sc->sc_imask &= ~(IEVENT_MMRD | IEVENT_MMWR);
2471 			etsec_write(sc, IMASK, sc->sc_imask);
2472 			wakeup(&sc->sc_mii);
2473 		}
2474 		if (ievent & IEVENT_BSY) {
2475 			soft_flags |= SOFT_RXBSY;
2476 			sc->sc_imask &= ~IEVENT_BSY;
2477 			etsec_write(sc, IMASK, sc->sc_imask);
2478 		}
2479 		if (ievent & IEVENT_TXE) {
2480 			soft_flags |= SOFT_TXERROR;
2481 			sc->sc_imask &= ~IEVENT_TXE;
2482 			sc->sc_txerrors |= ievent;
2483 		}
2484 		if (ievent & IEVENT_TXC) {
2485 			sc->sc_ev_tx_pause.ev_count++;
2486 		}
2487 		if (ievent & IEVENT_RXC) {
2488 			sc->sc_ev_rx_pause.ev_count++;
2489 		}
2490 		if (ievent & IEVENT_DPE) {
2491 			soft_flags |= SOFT_RESET;
2492 			sc->sc_imask &= ~IEVENT_DPE;
2493 			etsec_write(sc, IMASK, sc->sc_imask);
2494 		}
2495 	}
2496 }
2497 
2498 void
2499 pq3etsec_soft_intr(void *arg)
2500 {
2501 	struct pq3etsec_softc * const sc = arg;
2502 	struct ifnet * const ifp = &sc->sc_if;
2503 	uint32_t imask = 0;
2504 
2505 	mutex_enter(sc->sc_lock);
2506 
2507 	u_int soft_flags = atomic_swap_uint(&sc->sc_soft_flags, 0);
2508 
2509 	sc->sc_ev_soft_intr.ev_count++;
2510 
2511 	if (soft_flags & SOFT_RESET) {
2512 		int s = splnet();
2513 		pq3etsec_ifinit(ifp);
2514 		splx(s);
2515 		soft_flags = 0;
2516 	}
2517 
2518 	if (soft_flags & SOFT_RXBSY) {
2519 		struct pq3etsec_rxqueue * const rxq = &sc->sc_rxq;
2520 		size_t threshold = 5 * rxq->rxq_threshold / 4;
2521 		if (threshold >= rxq->rxq_last - rxq->rxq_first) {
2522 			threshold = rxq->rxq_last - rxq->rxq_first - 1;
2523 		} else {
2524 			imask |= IEVENT_BSY;
2525 		}
2526 		aprint_normal_dev(sc->sc_dev,
2527 		    "increasing receive buffers from %zu to %zu\n",
2528 		    rxq->rxq_threshold, threshold);
2529 		rxq->rxq_threshold = threshold;
2530 	}
2531 
2532 	if ((soft_flags & SOFT_TXINTR)
2533 	    || pq3etsec_txq_active_p(sc, &sc->sc_txq)) {
2534 		/*
2535 		 * Let's do what we came here for.  Consume transmitted
2536 		 * packets off the transmit ring.
2537 		 */
2538 		if (!pq3etsec_txq_consume(sc, &sc->sc_txq)
2539 		    || !pq3etsec_txq_enqueue(sc, &sc->sc_txq)) {
2540 			sc->sc_ev_tx_stall.ev_count++;
2541 			ifp->if_flags |= IFF_OACTIVE;
2542 		} else {
2543 			ifp->if_flags &= ~IFF_OACTIVE;
2544 		}
2545 		imask |= IEVENT_TXF;
2546 	}
2547 
2548 	if (soft_flags & (SOFT_RXINTR | SOFT_RXBSY)) {
2549 		/* Let's consume */
2550 		pq3etsec_rxq_consume(sc, &sc->sc_rxq);
2551 		imask |= IEVENT_RXF;
2552 	}
2553 
2554 	if (soft_flags & SOFT_TXERROR) {
2555 		pq3etsec_tx_error(sc);
2556 		imask |= IEVENT_TXE;
2557 	}
2558 
2559 	if (ifp->if_flags & IFF_RUNNING) {
2560 		pq3etsec_rxq_produce(sc, &sc->sc_rxq);
2561 		mutex_spin_enter(sc->sc_hwlock);
2562 		sc->sc_imask |= imask;
2563 		etsec_write(sc, IMASK, sc->sc_imask);
2564 		mutex_spin_exit(sc->sc_hwlock);
2565 	} else {
2566 		KASSERT((soft_flags & SOFT_RXBSY) == 0);
2567 	}
2568 
2569 	mutex_exit(sc->sc_lock);
2570 }
2571 
2572 static void
2573 pq3etsec_mii_tick(void *arg)
2574 {
2575 	struct pq3etsec_softc * const sc = arg;
2576 	mutex_enter(sc->sc_lock);
2577 	callout_ack(&sc->sc_mii_callout);
2578 	sc->sc_ev_mii_ticks.ev_count++;
2579 #ifdef DEBUG
2580 	uint64_t now = mftb();
2581 	if (now - sc->sc_mii_last_tick < cpu_timebase - 5000) {
2582 		aprint_debug_dev(sc->sc_dev, "%s: diff=%"PRIu64"\n",
2583 		    __func__, now - sc->sc_mii_last_tick);
2584 		callout_stop(&sc->sc_mii_callout);
2585 	}
2586 #endif
2587 	mii_tick(&sc->sc_mii);
2588 	int s = splnet();
2589 	if (sc->sc_soft_flags & SOFT_RESET)
2590 		softint_schedule(sc->sc_soft_ih);
2591 	splx(s);
2592 	callout_schedule(&sc->sc_mii_callout, hz);
2593 #ifdef DEBUG
2594 	sc->sc_mii_last_tick = now;
2595 #endif
2596 	mutex_exit(sc->sc_lock);
2597 }
2598 
2599 static void
2600 pq3etsec_set_ic_rx(struct pq3etsec_softc *sc)
2601 {
2602 	uint32_t reg;
2603 
2604 	if (ETSEC_IC_RX_ENABLED(sc)) {
2605 		reg = RXIC_ICEN;
2606 		reg |= RXIC_ICFT_SET(sc->sc_ic_rx_count);
2607 		reg |= RXIC_ICTT_SET(sc->sc_ic_rx_time);
2608 	} else {
2609 		/* Disable RX interrupt coalescing */
2610 		reg = 0;
2611 	}
2612 
2613 	etsec_write(sc, RXIC, reg);
2614 }
2615 
2616 static void
2617 pq3etsec_set_ic_tx(struct pq3etsec_softc *sc)
2618 {
2619 	uint32_t reg;
2620 
2621 	if (ETSEC_IC_TX_ENABLED(sc)) {
2622 		reg = TXIC_ICEN;
2623 		reg |= TXIC_ICFT_SET(sc->sc_ic_tx_count);
2624 		reg |= TXIC_ICTT_SET(sc->sc_ic_tx_time);
2625 	} else {
2626 		/* Disable TX interrupt coalescing */
2627 		reg = 0;
2628 	}
2629 
2630 	etsec_write(sc, TXIC, reg);
2631 }
2632 
2633 /*
2634  * sysctl
2635  */
2636 static int
2637 pq3etsec_sysctl_ic_time_helper(SYSCTLFN_ARGS, int *valuep)
2638 {
2639 	struct sysctlnode node = *rnode;
2640 	struct pq3etsec_softc *sc = rnode->sysctl_data;
2641 	int value = *valuep;
2642 	int error;
2643 
2644 	node.sysctl_data = &value;
2645 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2646 	if (error != 0 || newp == NULL)
2647 		return error;
2648 
2649 	if (value < 0 || value > 65535)
2650 		return EINVAL;
2651 
2652 	mutex_enter(sc->sc_lock);
2653 	*valuep = value;
2654 	if (valuep == &sc->sc_ic_rx_time)
2655 		pq3etsec_set_ic_rx(sc);
2656 	else
2657 		pq3etsec_set_ic_tx(sc);
2658 	mutex_exit(sc->sc_lock);
2659 
2660 	return 0;
2661 }
2662 
2663 static int
2664 pq3etsec_sysctl_ic_count_helper(SYSCTLFN_ARGS, int *valuep)
2665 {
2666 	struct sysctlnode node = *rnode;
2667 	struct pq3etsec_softc *sc = rnode->sysctl_data;
2668 	int value = *valuep;
2669 	int error;
2670 
2671 	node.sysctl_data = &value;
2672 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2673 	if (error != 0 || newp == NULL)
2674 		return error;
2675 
2676 	if (value < 0 || value > 255)
2677 		return EINVAL;
2678 
2679 	mutex_enter(sc->sc_lock);
2680 	*valuep = value;
2681 	if (valuep == &sc->sc_ic_rx_count)
2682 		pq3etsec_set_ic_rx(sc);
2683 	else
2684 		pq3etsec_set_ic_tx(sc);
2685 	mutex_exit(sc->sc_lock);
2686 
2687 	return 0;
2688 }
2689 
2690 static int
2691 pq3etsec_sysctl_ic_rx_time_helper(SYSCTLFN_ARGS)
2692 {
2693 	struct pq3etsec_softc *sc = rnode->sysctl_data;
2694 
2695 	return pq3etsec_sysctl_ic_time_helper(SYSCTLFN_CALL(rnode),
2696 	    &sc->sc_ic_rx_time);
2697 }
2698 
2699 static int
2700 pq3etsec_sysctl_ic_rx_count_helper(SYSCTLFN_ARGS)
2701 {
2702 	struct pq3etsec_softc *sc = rnode->sysctl_data;
2703 
2704 	return pq3etsec_sysctl_ic_count_helper(SYSCTLFN_CALL(rnode),
2705 	    &sc->sc_ic_rx_count);
2706 }
2707 
2708 static int
2709 pq3etsec_sysctl_ic_tx_time_helper(SYSCTLFN_ARGS)
2710 {
2711 	struct pq3etsec_softc *sc = rnode->sysctl_data;
2712 
2713 	return pq3etsec_sysctl_ic_time_helper(SYSCTLFN_CALL(rnode),
2714 	    &sc->sc_ic_tx_time);
2715 }
2716 
2717 static int
2718 pq3etsec_sysctl_ic_tx_count_helper(SYSCTLFN_ARGS)
2719 {
2720 	struct pq3etsec_softc *sc = rnode->sysctl_data;
2721 
2722 	return pq3etsec_sysctl_ic_count_helper(SYSCTLFN_CALL(rnode),
2723 	    &sc->sc_ic_tx_count);
2724 }
2725 
2726 static void pq3etsec_sysctl_setup(struct sysctllog **clog,
2727     struct pq3etsec_softc *sc)
2728 {
2729 	const struct sysctlnode *cnode, *rnode;
2730 
2731 	if (sysctl_createv(clog, 0, NULL, &rnode,
2732 	    CTLFLAG_PERMANENT,
2733 	    CTLTYPE_NODE, device_xname(sc->sc_dev),
2734 	    SYSCTL_DESCR("TSEC interface"),
2735 	    NULL, 0, NULL, 0,
2736 	    CTL_HW, CTL_CREATE, CTL_EOL) != 0)
2737 		goto bad;
2738 
2739 	if (sysctl_createv(clog, 0, &rnode, &rnode,
2740 	    CTLFLAG_PERMANENT,
2741 	    CTLTYPE_NODE, "int_coal",
2742 	    SYSCTL_DESCR("Interrupts coalescing"),
2743 	    NULL, 0, NULL, 0,
2744 	    CTL_CREATE, CTL_EOL) != 0)
2745 		goto bad;
2746 
2747 	if (sysctl_createv(clog, 0, &rnode, &cnode,
2748 	    CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2749 	    CTLTYPE_INT, "rx_time",
2750 	    SYSCTL_DESCR("RX time threshold (0-65535)"),
2751 	    pq3etsec_sysctl_ic_rx_time_helper, 0, (void *)sc, 0,
2752 	    CTL_CREATE, CTL_EOL) != 0)
2753 		goto bad;
2754 
2755 	if (sysctl_createv(clog, 0, &rnode, &cnode,
2756 	    CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2757 	    CTLTYPE_INT, "rx_count",
2758 	    SYSCTL_DESCR("RX frame count threshold (0-255)"),
2759 	    pq3etsec_sysctl_ic_rx_count_helper, 0, (void *)sc, 0,
2760 	    CTL_CREATE, CTL_EOL) != 0)
2761 		goto bad;
2762 
2763 	if (sysctl_createv(clog, 0, &rnode, &cnode,
2764 	    CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2765 	    CTLTYPE_INT, "tx_time",
2766 	    SYSCTL_DESCR("TX time threshold (0-65535)"),
2767 	    pq3etsec_sysctl_ic_tx_time_helper, 0, (void *)sc, 0,
2768 	    CTL_CREATE, CTL_EOL) != 0)
2769 		goto bad;
2770 
2771 	if (sysctl_createv(clog, 0, &rnode, &cnode,
2772 	    CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2773 	    CTLTYPE_INT, "tx_count",
2774 	    SYSCTL_DESCR("TX frame count threshold (0-255)"),
2775 	    pq3etsec_sysctl_ic_tx_count_helper, 0, (void *)sc, 0,
2776 	    CTL_CREATE, CTL_EOL) != 0)
2777 		goto bad;
2778 
2779 	return;
2780 
2781  bad:
2782 	aprint_error_dev(sc->sc_dev, "could not attach sysctl nodes\n");
2783 }
2784