xref: /netbsd-src/sys/arch/powerpc/booke/dev/pq3etsec.c (revision c2f76ff004a2cb67efe5b12d97bd3ef7fe89e18d)
1 /*	$NetBSD: pq3etsec.c,v 1.2 2011/01/18 01:02:53 matt Exp $	*/
2 /*-
3  * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to The NetBSD Foundation
7  * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8  * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9  *
10  * This material is based upon work supported by the Defense Advanced Research
11  * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12  * Contract No. N66001-09-C-2073.
13  * Approved for Public Release, Distribution Unlimited
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 #include "opt_inet.h"
38 
39 #include <sys/cdefs.h>
40 
41 #include <sys/param.h>
42 #include <sys/cpu.h>
43 #include <sys/device.h>
44 #include <sys/mbuf.h>
45 #include <sys/ioctl.h>
46 #include <sys/intr.h>
47 #include <sys/bus.h>
48 #include <sys/kernel.h>
49 #include <sys/kmem.h>
50 #include <sys/proc.h>
51 #include <sys/atomic.h>
52 #include <sys/callout.h>
53 
54 #include <net/if.h>
55 #include <net/if_dl.h>
56 #include <net/if_ether.h>
57 #include <net/if_media.h>
58 
59 #include <dev/mii/miivar.h>
60 
61 #include "ioconf.h"
62 
63 #include <net/bpf.h>
64 
65 #ifdef INET
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/ip.h>
69 #include <netinet/in_offload.h>
70 #endif /* INET */
71 #ifdef INET6
72 #include <netinet6/in6.h>
73 #include <netinet/ip6.h>
74 #endif
75 #include <netinet6/in6_offload.h>
76 
77 
78 #include <powerpc/spr.h>
79 #include <powerpc/booke/spr.h>
80 
81 #include <powerpc/booke/cpuvar.h>
82 #include <powerpc/booke/e500var.h>
83 #include <powerpc/booke/e500reg.h>
84 #include <powerpc/booke/etsecreg.h>
85 
86 #define	M_HASFCB		M_LINK2	/* tx packet has FCB prepended */
87 
88 #define	ETSEC_MAXTXMBUFS	30
89 #define	ETSEC_NTXSEGS		30
90 #define	ETSEC_MAXRXMBUFS	511
91 #define	ETSEC_MINRXMBUFS	32
92 #define	ETSEC_NRXSEGS		1
93 
94 #define	IFCAP_RCTRL_IPCSEN	IFCAP_CSUM_IPv4_Rx
95 #define	IFCAP_RCTRL_TUCSEN	(IFCAP_CSUM_TCPv4_Rx\
96 				 |IFCAP_CSUM_UDPv4_Rx\
97 				 |IFCAP_CSUM_TCPv6_Rx\
98 				 |IFCAP_CSUM_UDPv6_Rx)
99 
100 #define	IFCAP_TCTRL_IPCSEN	IFCAP_CSUM_IPv4_Tx
101 #define	IFCAP_TCTRL_TUCSEN	(IFCAP_CSUM_TCPv4_Tx\
102 				 |IFCAP_CSUM_UDPv4_Tx\
103 				 |IFCAP_CSUM_TCPv6_Tx\
104 				 |IFCAP_CSUM_UDPv6_Tx)
105 
106 #define	IFCAP_ETSEC		(IFCAP_RCTRL_IPCSEN|IFCAP_RCTRL_TUCSEN\
107 				 |IFCAP_TCTRL_IPCSEN|IFCAP_TCTRL_TUCSEN)
108 
109 #define	M_CSUM_IP	(M_CSUM_CIP|M_CSUM_CTU)
110 #define	M_CSUM_IP6	(M_CSUM_TCPv6|M_CSUM_UDPv6)
111 #define	M_CSUM_TUP	(M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TCPv6|M_CSUM_UDPv6)
112 #define	M_CSUM_UDP	(M_CSUM_UDPv4|M_CSUM_UDPv6)
113 #define	M_CSUM_IP4	(M_CSUM_IPv4|M_CSUM_UDPv4|M_CSUM_TCPv4)
114 #define	M_CSUM_CIP	(M_CSUM_IPv4)
115 #define	M_CSUM_CTU	(M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TCPv6|M_CSUM_UDPv6)
116 
117 struct pq3etsec_txqueue {
118 	bus_dmamap_t txq_descmap;
119 	volatile struct txbd *txq_consumer;
120 	volatile struct txbd *txq_producer;
121 	volatile struct txbd *txq_first;
122 	volatile struct txbd *txq_last;
123 	struct ifqueue txq_mbufs;
124 	struct mbuf *txq_next;
125 #ifdef ETSEC_DEBUG
126 	struct mbuf *txq_lmbufs[512];
127 #endif
128 	uint32_t txq_qmask;
129 	uint32_t txq_free;
130 	uint32_t txq_threshold;
131 	uint32_t txq_lastintr;
132 	bus_size_t txq_reg_tbase;
133 	bus_dma_segment_t txq_descmap_seg;
134 };
135 
136 struct pq3etsec_rxqueue {
137 	bus_dmamap_t rxq_descmap;
138 	volatile struct rxbd *rxq_consumer;
139 	volatile struct rxbd *rxq_producer;
140 	volatile struct rxbd *rxq_first;
141 	volatile struct rxbd *rxq_last;
142 	struct mbuf *rxq_mhead;
143 	struct mbuf **rxq_mtail;
144 	struct mbuf *rxq_mconsumer;
145 #ifdef ETSEC_DEBUG
146 	struct mbuf *rxq_mbufs[512];
147 #endif
148 	uint32_t rxq_qmask;
149 	uint32_t rxq_inuse;
150 	uint32_t rxq_threshold;
151 	bus_size_t rxq_reg_rbase;
152 	bus_size_t rxq_reg_rbptr;
153 	bus_dma_segment_t rxq_descmap_seg;
154 };
155 
156 struct pq3etsec_mapcache {
157 	u_int dmc_nmaps;
158 	u_int dmc_maxseg;
159 	u_int dmc_maxmaps;
160 	u_int dmc_maxmapsize;
161 	bus_dmamap_t dmc_maps[0];
162 };
163 
164 struct pq3etsec_softc {
165 	device_t sc_dev;
166 	struct ethercom sc_ec;
167 #define sc_if		sc_ec.ec_if
168 	struct mii_data sc_mii;
169 	bus_space_tag_t sc_bst;
170 	bus_space_handle_t sc_bsh;
171 	bus_dma_tag_t sc_dmat;
172 	int sc_phy_addr;
173 	prop_dictionary_t sc_intrmap;
174 	uint32_t sc_intrmask;
175 
176 	uint32_t sc_soft_flags;
177 #define	SOFT_RESET		0x0001
178 #define	SOFT_RXINTR		0x0010
179 #define	SOFT_RXBSY		0x0020
180 #define	SOFT_TXINTR		0x0100
181 #define	SOFT_TXERROR		0x0200
182 
183 	struct pq3etsec_txqueue sc_txq;
184 	struct pq3etsec_rxqueue sc_rxq;
185 	uint32_t sc_txerrors;
186 	uint32_t sc_rxerrors;
187 
188 	size_t sc_rx_adjlen;
189 
190 	/*
191 	 * Copies of various ETSEC registers.
192 	 */
193 	uint32_t sc_imask;
194 	uint32_t sc_maccfg1;
195 	uint32_t sc_maccfg2;
196 	uint32_t sc_maxfrm;
197 	uint32_t sc_ecntrl;
198 	uint32_t sc_dmactrl;
199 	uint32_t sc_macstnaddr1;
200 	uint32_t sc_macstnaddr2;
201 	uint32_t sc_tctrl;
202 	uint32_t sc_rctrl;
203 	uint32_t sc_gaddr[16];
204 	uint64_t sc_macaddrs[15];
205 
206 	void *sc_tx_ih;
207 	void *sc_rx_ih;
208 	void *sc_error_ih;
209 	void *sc_soft_ih;
210 
211 	kmutex_t *sc_lock;
212 
213 	struct evcnt sc_ev_tx_stall;
214 	struct evcnt sc_ev_tx_intr;
215 	struct evcnt sc_ev_rx_stall;
216 	struct evcnt sc_ev_rx_intr;
217 	struct evcnt sc_ev_error_intr;
218 	struct evcnt sc_ev_soft_intr;
219 	struct evcnt sc_ev_tx_pause;
220 	struct evcnt sc_ev_rx_pause;
221 	struct evcnt sc_ev_mii_ticks;
222 
223 	struct callout sc_mii_callout;
224 	uint64_t sc_mii_last_tick;
225 
226 	struct ifqueue sc_rx_bufcache;
227 	struct pq3etsec_mapcache *sc_rx_mapcache;
228 	struct pq3etsec_mapcache *sc_tx_mapcache;
229 };
230 
231 static int pq3etsec_match(device_t, cfdata_t, void *);
232 static void pq3etsec_attach(device_t, device_t, void *);
233 
234 static void pq3etsec_ifstart(struct ifnet *);
235 static void pq3etsec_ifwatchdog(struct ifnet *);
236 static int pq3etsec_ifinit(struct ifnet *);
237 static void pq3etsec_ifstop(struct ifnet *, int);
238 static int pq3etsec_ifioctl(struct ifnet *, u_long, void *);
239 
240 static int pq3etsec_mapcache_create(struct pq3etsec_softc *,
241     struct pq3etsec_mapcache **, size_t, size_t, size_t, size_t);
242 static void pq3etsec_mapcache_destroy(struct pq3etsec_softc *,
243     struct pq3etsec_mapcache *);
244 static bus_dmamap_t pq3etsec_mapcache_get(struct pq3etsec_softc *,
245     struct pq3etsec_mapcache *);
246 static void pq3etsec_mapcache_put(struct pq3etsec_softc *,
247     struct pq3etsec_mapcache *, bus_dmamap_t);
248 
249 static int pq3etsec_txq_attach(struct pq3etsec_softc *,
250     struct pq3etsec_txqueue *, u_int);
251 static void pq3etsec_txq_purge(struct pq3etsec_softc *,
252     struct pq3etsec_txqueue *);
253 static void pq3etsec_txq_reset(struct pq3etsec_softc *,
254     struct pq3etsec_txqueue *);
255 static bool pq3etsec_txq_consume(struct pq3etsec_softc *,
256     struct pq3etsec_txqueue *);
257 static bool pq3etsec_txq_produce(struct pq3etsec_softc *,
258     struct pq3etsec_txqueue *, struct mbuf *m);
259 static bool pq3etsec_txq_active_p(struct pq3etsec_softc *,
260     struct pq3etsec_txqueue *);
261 
262 static int pq3etsec_rxq_attach(struct pq3etsec_softc *,
263     struct pq3etsec_rxqueue *, u_int);
264 static bool pq3etsec_rxq_produce(struct pq3etsec_softc *,
265     struct pq3etsec_rxqueue *);
266 static void pq3etsec_rxq_purge(struct pq3etsec_softc *,
267     struct pq3etsec_rxqueue *, bool);
268 static void pq3etsec_rxq_reset(struct pq3etsec_softc *,
269     struct pq3etsec_rxqueue *);
270 
271 static void pq3etsec_mc_setup(struct pq3etsec_softc *);
272 
273 static void pq3etsec_mii_tick(void *);
274 static int pq3etsec_rx_intr(void *);
275 static int pq3etsec_tx_intr(void *);
276 static int pq3etsec_error_intr(void *);
277 static void pq3etsec_soft_intr(void *);
278 
279 CFATTACH_DECL_NEW(pq3etsec, sizeof(struct pq3etsec_softc),
280     pq3etsec_match, pq3etsec_attach, NULL, NULL);
281 
282 static int
283 pq3etsec_match(device_t parent, cfdata_t cf, void *aux)
284 {
285 
286 	if (!e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
287 		return 0;
288 
289 	return 1;
290 }
291 
292 static inline uint32_t
293 etsec_read(struct pq3etsec_softc *sc, bus_size_t off)
294 {
295 	return bus_space_read_4(sc->sc_bst, sc->sc_bsh, off);
296 }
297 
298 static inline void
299 etsec_write(struct pq3etsec_softc *sc, bus_size_t off, uint32_t data)
300 {
301 	bus_space_write_4(sc->sc_bst, sc->sc_bsh, off, data);
302 }
303 
304 static int
305 pq3etsec_mii_readreg(device_t self, int phy, int reg)
306 {
307 	struct pq3etsec_softc * const sc = device_private(self);
308 	uint32_t miimcom = etsec_read(sc, MIIMCOM);
309 
310 //	int s = splnet();
311 
312 	etsec_write(sc, MIIMADD,
313 	    __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
314 
315 	etsec_write(sc, IEVENT, IEVENT_MMRD);
316 	etsec_write(sc, MIIMCOM, 0);	/* clear any past bits */
317 	etsec_write(sc, MIIMCOM, MIIMCOM_READ);
318 #if 0
319 	sc->sc_imask |= IEVENT_MMRD;
320 	etsec_write(sc, IMASK, sc->sc_imask);
321 #endif
322 
323 	while (etsec_read(sc, MIIMIND) != 0) {
324 			delay(1);
325 	}
326 	int data = etsec_read(sc, MIIMSTAT);
327 
328 	if (miimcom == MIIMCOM_SCAN)
329 		etsec_write(sc, MIIMCOM, miimcom);
330 
331 #if 0
332 	aprint_normal_dev(sc->sc_dev, "%s: phy %d reg %d: %#x\n",
333 	    __func__, phy, reg, data);
334 #endif
335 	etsec_write(sc, IEVENT, IEVENT_MMRD);
336 //	splx(s);
337 	return data;
338 }
339 
340 static void
341 pq3etsec_mii_writereg(device_t self, int phy, int reg, int data)
342 {
343 	struct pq3etsec_softc * const sc = device_private(self);
344 	uint32_t miimcom = etsec_read(sc, MIIMCOM);
345 
346 #if 0
347 	aprint_normal_dev(sc->sc_dev, "%s: phy %d reg %d: %#x\n",
348 	    __func__, phy, reg, data);
349 #endif
350 
351 //	int s = splnet();
352 	etsec_write(sc, IEVENT, IEVENT_MMWR);
353 	etsec_write(sc, MIIMADD,
354 	    __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
355 	etsec_write(sc, MIIMCOM, 0);	/* clear any past bits */
356 	etsec_write(sc, MIIMCON, data);
357 
358 #if 0
359 	sc->sc_imask |= IEVENT_MMWR;
360 	etsec_write(sc, IMASK, sc->sc_imask);
361 #endif
362 
363 	int timo = 1000;	/* 1ms */
364 	while ((etsec_read(sc, MIIMIND) & MIIMIND_BUSY) && --timo > 0) {
365 			delay(1);
366 	}
367 
368 	if (miimcom == MIIMCOM_SCAN)
369 		etsec_write(sc, MIIMCOM, miimcom);
370 	etsec_write(sc, IEVENT, IEVENT_MMWR);
371 //	splx(s);
372 }
373 
374 static void
375 pq3etsec_mii_statchg(device_t self)
376 {
377 	struct pq3etsec_softc * const sc = device_private(self);
378 	struct mii_data * const mii = &sc->sc_mii;
379 
380 	uint32_t maccfg1 = sc->sc_maccfg1;
381 	uint32_t maccfg2 = sc->sc_maccfg2;
382 	uint32_t ecntrl = sc->sc_ecntrl;
383 
384 	maccfg1 &= ~(MACCFG1_TX_FLOW|MACCFG1_RX_FLOW);
385 	maccfg2 &= ~(MACCFG2_IFMODE|MACCFG2_FD);
386 
387 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
388 		maccfg2 |= MACCFG2_FD;
389 	}
390 
391 	/*
392 	 * Now deal with the flow control bits.
393 	 */
394 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO
395 	    && (mii->mii_media_active & IFM_ETH_FMASK)) {
396 		if (mii->mii_media_active & IFM_ETH_RXPAUSE)
397 			maccfg1 |= MACCFG1_RX_FLOW;
398 		if (mii->mii_media_active & IFM_ETH_TXPAUSE)
399 			maccfg1 |= MACCFG1_TX_FLOW;
400 	}
401 
402 	/*
403 	 * Now deal with the speed.
404 	 */
405 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
406 		maccfg2 |= MACCFG2_IFMODE_GMII;
407 	} else {
408 		maccfg2 |= MACCFG2_IFMODE_MII;
409 		ecntrl &= ~ECNTRL_R100M;
410 		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_10_T) {
411 			ecntrl |= ECNTRL_R100M;
412 		}
413 	}
414 
415 	/*
416 	 * If things are different, re-init things.
417 	 */
418 	if (maccfg1 != sc->sc_maccfg1
419 	    || maccfg2 != sc->sc_maccfg2
420 	    || ecntrl != sc->sc_ecntrl) {
421 		if (sc->sc_if.if_flags & IFF_RUNNING)
422 			atomic_or_uint(&sc->sc_soft_flags, SOFT_RESET);
423 		sc->sc_maccfg1 = maccfg1;
424 		sc->sc_maccfg2 = maccfg2;
425 		sc->sc_ecntrl = ecntrl;
426 	}
427 }
428 
429 #if 0
430 static void
431 pq3etsec_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
432 {
433 	struct pq3etsec_softc * const sc = ifp->if_softc;
434 
435 	mii_pollstat(&sc->sc_mii);
436 	ether_mediastatus(ifp, ifmr);
437         ifmr->ifm_status = sc->sc_mii.mii_media_status;
438         ifmr->ifm_active = sc->sc_mii.mii_media_active;
439 }
440 
441 static int
442 pq3etsec_mediachange(struct ifnet *ifp)
443 {
444 	struct pq3etsec_softc * const sc = ifp->if_softc;
445 
446 	if ((ifp->if_flags & IFF_UP) == 0)
447 		return 0;
448 
449 	int rv = mii_mediachg(&sc->sc_mii);
450 	return (rv == ENXIO) ? 0 : rv;
451 }
452 #endif
453 
454 static void
455 pq3etsec_attach(device_t parent, device_t self, void *aux)
456 {
457 	struct cpunode_softc * const psc = device_private(parent);
458 	struct pq3etsec_softc * const sc = device_private(self);
459 	struct cpunode_attach_args * const cna = aux;
460 	struct cpunode_locators * const cnl = &cna->cna_locs;
461 	int error;
462 
463 	psc->sc_children |= cna->cna_childmask;
464 	sc->sc_dev = self;
465 	sc->sc_bst = cna->cna_memt;
466 	sc->sc_dmat = &booke_bus_dma_tag;
467 
468 	/*
469 	 * If we have a common MDIO bus, if all off instance 1.
470 	 */
471 	device_t miiself = (self->dv_cfdata->cf_flags & 0x100)
472 	    ? tsec_cd.cd_devs[0]
473 	    : self;
474 
475 	/*
476 	 * See if the phy is in the config file...
477 	 */
478 	if (self->dv_cfdata->cf_flags & 0x3f) {
479 		sc->sc_phy_addr = (self->dv_cfdata->cf_flags & 0x3f) - 1;
480 	} else {
481 		unsigned char prop_name[20];
482 		snprintf(prop_name, sizeof(prop_name), "tsec%u-phy-addr",
483 		    cnl->cnl_instance);
484 		sc->sc_phy_addr = board_info_get_number(prop_name);
485 	}
486 	aprint_normal(" phy %d", sc->sc_phy_addr);
487 
488 	error = bus_space_map(sc->sc_bst, cnl->cnl_addr, cnl->cnl_size, 0,
489 	    &sc->sc_bsh);
490 	if (error) {
491 		aprint_error(": error mapping registers: %d\n", error);
492 		return;
493 	}
494 
495 	/*
496 	 * Assume firmware has aready set the mac address and fetch it
497 	 * before we reinit it.
498 	 */
499 	sc->sc_macstnaddr2 = etsec_read(sc, MACSTNADDR2);
500 	sc->sc_macstnaddr1 = etsec_read(sc, MACSTNADDR1);
501 	sc->sc_rctrl = RCTRL_DEFAULT;
502 	sc->sc_maccfg2 = MACCFG2_DEFAULT;
503 
504 	if (sc->sc_macstnaddr1 == 0 && sc->sc_macstnaddr2 == 0) {
505 		size_t len;
506 		const uint8_t *mac_addr =
507 		    board_info_get_data("tsec-mac-addr-base", &len);
508 		KASSERT(len == ETHER_ADDR_LEN);
509 		sc->sc_macstnaddr2 =
510 		    (mac_addr[1] << 24)
511 		    | (mac_addr[0] << 16);
512 		sc->sc_macstnaddr1 =
513 		    ((mac_addr[5] + cnl->cnl_instance - 1) << 24)
514 		    | (mac_addr[4] << 16)
515 		    | (mac_addr[3] << 8)
516 		    | (mac_addr[2] << 0);
517 #if 0
518 		aprint_error(": mac-address unknown\n");
519 		return;
520 #endif
521 	}
522 
523 	char enaddr[ETHER_ADDR_LEN] = {
524 	    [0] = sc->sc_macstnaddr2 >> 16,
525 	    [1] = sc->sc_macstnaddr2 >> 24,
526 	    [2] = sc->sc_macstnaddr1 >>  0,
527 	    [3] = sc->sc_macstnaddr1 >>  8,
528 	    [4] = sc->sc_macstnaddr1 >> 16,
529 	    [5] = sc->sc_macstnaddr1 >> 24,
530 	};
531 
532 	error = pq3etsec_rxq_attach(sc, &sc->sc_rxq, 0);
533 	if (error) {
534 		aprint_error(": failed to init rxq: %d\n", error);
535 		return;
536 	}
537 
538 	error = pq3etsec_txq_attach(sc, &sc->sc_txq, 0);
539 	if (error) {
540 		aprint_error(": failed to init txq: %d\n", error);
541 		return;
542 	}
543 
544 	error = pq3etsec_mapcache_create(sc, &sc->sc_rx_mapcache,
545 	    ETSEC_MAXRXMBUFS, ETSEC_MINRXMBUFS, MCLBYTES, ETSEC_NRXSEGS);
546 	if (error) {
547 		aprint_error(": failed to allocate rx dmamaps: %d\n", error);
548 		return;
549 	}
550 
551 	error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
552 	    ETSEC_MAXTXMBUFS, ETSEC_MAXTXMBUFS, MCLBYTES, ETSEC_NTXSEGS);
553 	if (error) {
554 		aprint_error(": failed to allocate tx dmamaps: %d\n", error);
555 		return;
556 	}
557 
558 	sc->sc_tx_ih = intr_establish(cnl->cnl_intrs[0], IPL_VM, IST_ONCHIP,
559 	    pq3etsec_tx_intr, sc);
560 	if (sc->sc_tx_ih == NULL) {
561 		aprint_error(": failed to establish tx interrupt: %d\n",
562 		    cnl->cnl_intrs[0]);
563 		return;
564 	}
565 
566 	sc->sc_rx_ih = intr_establish(cnl->cnl_intrs[1], IPL_VM, IST_ONCHIP,
567 	    pq3etsec_rx_intr, sc);
568 	if (sc->sc_rx_ih == NULL) {
569 		aprint_error(": failed to establish rx interrupt: %d\n",
570 		    cnl->cnl_intrs[1]);
571 		return;
572 	}
573 
574 	sc->sc_error_ih = intr_establish(cnl->cnl_intrs[2], IPL_VM, IST_ONCHIP,
575 	    pq3etsec_error_intr, sc);
576 	if (sc->sc_error_ih == NULL) {
577 		aprint_error(": failed to establish error interrupt: %d\n",
578 		    cnl->cnl_intrs[2]);
579 		return;
580 	}
581 
582 	sc->sc_soft_ih = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
583 	    pq3etsec_soft_intr, sc);
584 	if (sc->sc_soft_ih == NULL) {
585 		aprint_error(": failed to establish soft interrupt\n");
586 		return;
587 	}
588 
589 	aprint_normal("\n");
590 
591 	sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
592 
593 	callout_init(&sc->sc_mii_callout, CALLOUT_MPSAFE);
594 	callout_setfunc(&sc->sc_mii_callout, pq3etsec_mii_tick, sc);
595 
596 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
597 	   ether_sprintf(enaddr));
598 
599 	const char * const xname = device_xname(sc->sc_dev);
600 	struct ethercom * const ec = &sc->sc_ec;
601 	struct ifnet * const ifp = &ec->ec_if;
602 
603 	ec->ec_mii = &sc->sc_mii;
604 
605 	sc->sc_mii.mii_ifp = ifp;
606 	sc->sc_mii.mii_readreg = pq3etsec_mii_readreg;
607 	sc->sc_mii.mii_writereg = pq3etsec_mii_writereg;
608 	sc->sc_mii.mii_statchg = pq3etsec_mii_statchg;
609 
610 	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
611 	    ether_mediastatus);
612 
613 	mii_attach(miiself, &sc->sc_mii, 0xffffffff,
614 	    sc->sc_phy_addr, MII_OFFSET_ANY, MIIF_DOPAUSE);
615 
616 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
617 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
618 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
619 	} else {
620 		callout_schedule(&sc->sc_mii_callout, hz);
621 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
622 	}
623 
624 	ec->ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING
625 	    | ETHERCAP_JUMBO_MTU;
626 
627 	strlcpy(ifp->if_xname, xname, IFNAMSIZ);
628 	ifp->if_softc = sc;
629 	ifp->if_capabilities = IFCAP_ETSEC;
630 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
631 	ifp->if_ioctl = pq3etsec_ifioctl;
632 	ifp->if_start = pq3etsec_ifstart;
633 	ifp->if_watchdog = pq3etsec_ifwatchdog;
634 	ifp->if_init = pq3etsec_ifinit;
635 	ifp->if_stop = pq3etsec_ifstop;
636 	IFQ_SET_READY(&ifp->if_snd);
637 
638 	pq3etsec_ifstop(ifp, true);
639 
640 	/*
641 	 * Attach the interface.
642 	 */
643 	if_attach(ifp);
644 	ether_ifattach(ifp, enaddr);
645 
646 	evcnt_attach_dynamic(&sc->sc_ev_rx_stall, EVCNT_TYPE_MISC,
647 	    NULL, xname, "rx stall");
648 	evcnt_attach_dynamic(&sc->sc_ev_tx_stall, EVCNT_TYPE_MISC,
649 	    NULL, xname, "tx stall");
650 	evcnt_attach_dynamic(&sc->sc_ev_tx_intr, EVCNT_TYPE_INTR,
651 	    NULL, xname, "tx intr");
652 	evcnt_attach_dynamic(&sc->sc_ev_rx_intr, EVCNT_TYPE_INTR,
653 	    NULL, xname, "rx intr");
654 	evcnt_attach_dynamic(&sc->sc_ev_error_intr, EVCNT_TYPE_INTR,
655 	    NULL, xname, "error intr");
656 	evcnt_attach_dynamic(&sc->sc_ev_soft_intr, EVCNT_TYPE_INTR,
657 	    NULL, xname, "soft intr");
658 	evcnt_attach_dynamic(&sc->sc_ev_tx_pause, EVCNT_TYPE_MISC,
659 	    NULL, xname, "tx pause");
660 	evcnt_attach_dynamic(&sc->sc_ev_rx_pause, EVCNT_TYPE_MISC,
661 	    NULL, xname, "rx pause");
662 	evcnt_attach_dynamic(&sc->sc_ev_mii_ticks, EVCNT_TYPE_MISC,
663 	    NULL, xname, "mii ticks");
664 }
665 
666 static uint64_t
667 pq3etsec_macaddr_create(const uint8_t *lladdr)
668 {
669 	uint64_t macaddr = 0;
670 
671 	lladdr += ETHER_ADDR_LEN;
672 	for (u_int i = ETHER_ADDR_LEN; i-- > 0; ) {
673 		macaddr = (macaddr << 8) | *--lladdr;
674 	}
675 	return macaddr << 16;
676 }
677 
678 static int
679 pq3etsec_ifinit(struct ifnet *ifp)
680 {
681 	struct pq3etsec_softc * const sc = ifp->if_softc;
682 	int error = 0;
683 
684 	sc->sc_maxfrm = max(ifp->if_mtu + 32, MCLBYTES);
685 	if (ifp->if_mtu > ETHERMTU_JUMBO)
686 		return error;
687 
688 	KASSERT(ifp->if_flags & IFF_UP);
689 
690 	/*
691 	 * Stop the interface (steps 1 to 4 in the Soft Reset and
692 	 * Reconfigurating Procedure.
693 	 */
694 	pq3etsec_ifstop(ifp, 0);
695 
696 	/*
697 	 * If our frame size has changed (or it's our first time through)
698 	 * destroy the existing transmit mapcache.
699 	 */
700 	if (sc->sc_tx_mapcache != NULL
701 	    && sc->sc_maxfrm != sc->sc_tx_mapcache->dmc_maxmapsize) {
702 		pq3etsec_mapcache_destroy(sc, sc->sc_tx_mapcache);
703 		sc->sc_tx_mapcache = NULL;
704 	}
705 
706 	if (sc->sc_tx_mapcache == NULL) {
707 		error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
708 		    ETSEC_MAXTXMBUFS, ETSEC_MAXTXMBUFS, sc->sc_maxfrm,
709 		    ETSEC_NTXSEGS);
710 		if (error)
711 			return error;
712 	}
713 
714 	sc->sc_ev_mii_ticks.ev_count++;
715 	mii_tick(&sc->sc_mii);
716 
717 	if (ifp->if_flags & IFF_PROMISC) {
718 		sc->sc_rctrl |= RCTRL_PROM;
719 	} else {
720 		sc->sc_rctrl &= ~RCTRL_PROM;
721 	}
722 
723 	uint32_t rctrl_prsdep = 0;
724 	sc->sc_rctrl &= ~(RCTRL_IPCSEN|RCTRL_TUCSEN|RCTRL_VLEX|RCTRL_PRSDEP);
725 	if (VLAN_ATTACHED(&sc->sc_ec)) {
726 		sc->sc_rctrl |= RCTRL_VLEX;
727 		rctrl_prsdep = RCTRL_PRSDEP_L2;
728 	}
729 	if (ifp->if_capenable & IFCAP_RCTRL_IPCSEN) {
730 		sc->sc_rctrl |= RCTRL_IPCSEN;
731 		rctrl_prsdep = RCTRL_PRSDEP_L3;
732 	}
733 	if (ifp->if_capenable & IFCAP_RCTRL_TUCSEN) {
734 		sc->sc_rctrl |= RCTRL_TUCSEN;
735 		rctrl_prsdep = RCTRL_PRSDEP_L4;
736 	}
737 	sc->sc_rctrl |= rctrl_prsdep;
738 #if 0
739 	if (sc->sc_rctrl & (RCTRL_IPCSEN|RCTRL_TUCSEN|RCTRL_VLEX|RCTRL_PRSDEP))
740 		aprint_normal_dev(sc->sc_dev,
741 		    "rctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlex=%"PRIuMAX" prsdep=%"PRIuMAX"\n",
742 		    sc->sc_rctrl,
743 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_IPCSEN),
744 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_TUCSEN),
745 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_VLEX),
746 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_PRSDEP));
747 #endif
748 
749 	sc->sc_tctrl &= ~(TCTRL_IPCSEN|TCTRL_TUCSEN|TCTRL_VLINS);
750 	if (VLAN_ATTACHED(&sc->sc_ec))		/* is this really true */
751 		sc->sc_tctrl |= TCTRL_VLINS;
752 	if (ifp->if_capenable & IFCAP_TCTRL_IPCSEN)
753 		sc->sc_tctrl |= TCTRL_IPCSEN;
754 	if (ifp->if_capenable & IFCAP_TCTRL_TUCSEN)
755 		sc->sc_tctrl |= TCTRL_TUCSEN;
756 #if 0
757 	if (sc->sc_tctrl & (TCTRL_IPCSEN|TCTRL_TUCSEN|TCTRL_VLINS))
758 		aprint_normal_dev(sc->sc_dev,
759 		    "tctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlins=%"PRIuMAX"\n",
760 		    sc->sc_tctrl,
761 		    __SHIFTOUT(sc->sc_tctrl, TCTRL_IPCSEN),
762 		    __SHIFTOUT(sc->sc_tctrl, TCTRL_TUCSEN),
763 		    __SHIFTOUT(sc->sc_tctrl, TCTRL_VLINS));
764 #endif
765 
766 	sc->sc_maccfg1 &= ~(MACCFG1_TX_EN|MACCFG1_RX_EN);
767 
768 	const uint64_t macstnaddr =
769 	    pq3etsec_macaddr_create(CLLADDR(ifp->if_sadl));
770 
771 	sc->sc_imask = IEVENT_DPE;
772 
773 	/* 5. Load TDBPH, TBASEH, TBASE0-TBASE7 with new Tx BD pointers */
774 	pq3etsec_rxq_reset(sc, &sc->sc_rxq);
775 	pq3etsec_rxq_produce(sc, &sc->sc_rxq);	/* fill with rx buffers */
776 
777 	/* 6. Load RDBPH, RBASEH, RBASE0-RBASE7 with new Rx BD pointers */
778 	pq3etsec_txq_reset(sc, &sc->sc_txq);
779 
780 	/* 7. Setup other MAC registers (MACCFG2, MAXFRM, etc.) */
781 	KASSERT(MACCFG2_PADCRC & sc->sc_maccfg2);
782 	etsec_write(sc, MAXFRM, sc->sc_maxfrm);
783 	etsec_write(sc, MACSTNADDR1, (uint32_t)(macstnaddr >> 32));
784 	etsec_write(sc, MACSTNADDR2, (uint32_t)(macstnaddr >>  0));
785 	etsec_write(sc, MACCFG1, sc->sc_maccfg1);
786 	etsec_write(sc, MACCFG2, sc->sc_maccfg2);
787 	etsec_write(sc, ECNTRL, sc->sc_ecntrl);
788 
789 	/* 8. Setup group address hash table (GADDR0-GADDR15) */
790 	pq3etsec_mc_setup(sc);
791 
792 	/* 9. Setup receive frame filer table (via RQFAR, RQFCR, and RQFPR) */
793 	etsec_write(sc, MRBLR, MCLBYTES);
794 
795 	/* 10. Setup WWR, WOP, TOD bits in DMACTRL register */
796 	sc->sc_dmactrl |= DMACTRL_DEFAULT;
797 	etsec_write(sc, DMACTRL, sc->sc_dmactrl);
798 
799 	/* 11. Enable transmit queues in TQUEUE, and ensure that the transmit scheduling mode is correctly set in TCTRL. */
800 	etsec_write(sc, TQUEUE, TQUEUE_EN0);
801 	sc->sc_imask |= IEVENT_TXF|IEVENT_TXE|IEVENT_TXC;
802 
803 	etsec_write(sc, TCTRL, sc->sc_tctrl);	/* for TOE stuff */
804 
805 	/* 12. Enable receive queues in RQUEUE, */
806 	etsec_write(sc, RQUEUE, RQUEUE_EN0|RQUEUE_EX0);
807 	sc->sc_imask |= IEVENT_RXF|IEVENT_BSY|IEVENT_RXC;
808 
809 	/*     and optionally set TOE functionality in RCTRL. */
810 	etsec_write(sc, RCTRL, sc->sc_rctrl);
811 	sc->sc_rx_adjlen = __SHIFTOUT(sc->sc_rctrl, RCTRL_PAL);
812 	if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF)
813 		sc->sc_rx_adjlen += sizeof(struct rxfcb);
814 
815 	/* 13. Clear THLT and TXF bits in TSTAT register by writing 1 to them */
816 	etsec_write(sc, TSTAT, TSTAT_THLT | TSTAT_TXF);
817 
818 	/* 14. Clear QHLT and RXF bits in RSTAT register by writing 1 to them.*/
819 	etsec_write(sc, RSTAT, RSTAT_QHLT | RSTAT_RXF);
820 
821 	/* 15. Clear GRS/GTS bits in DMACTRL (do not change other bits) */
822 	sc->sc_dmactrl &= ~(DMACTRL_GRS|DMACTRL_GTS);
823 	etsec_write(sc, DMACTRL, sc->sc_dmactrl);
824 
825 	/* 16. Enable Tx_EN/Rx_EN in MACCFG1 register */
826 	etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
827 	etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
828 
829 	sc->sc_soft_flags = 0;
830 
831 	etsec_write(sc, IMASK, sc->sc_imask);
832 
833 	ifp->if_flags |= IFF_RUNNING;
834 
835 	return error;
836 }
837 
838 static void
839 pq3etsec_ifstop(struct ifnet *ifp, int disable)
840 {
841 	struct pq3etsec_softc * const sc = ifp->if_softc;
842 
843 	KASSERT(!cpu_intr_p());
844 	const uint32_t imask_gsc_mask = IEVENT_GTSC|IEVENT_GRSC;
845 	/*
846 	 * Clear the GTSC and GRSC from the interrupt mask until
847 	 * we are ready for them.  Then clear them from IEVENT,
848 	 * request the graceful shutdown, and then enable the
849 	 * GTSC and GRSC bits in the mask.  This should cause the
850 	 * error interrupt to fire which will issue a wakeup to
851 	 * allow us to resume.
852 	 */
853 
854 	/*
855 	 * 1. Set GRS/GTS bits in DMACTRL register
856 	 */
857 	sc->sc_dmactrl |= DMACTRL_GRS|DMACTRL_GTS;
858 	etsec_write(sc, IMASK, sc->sc_imask & ~imask_gsc_mask);
859 	etsec_write(sc, IEVENT, imask_gsc_mask);
860 	etsec_write(sc, DMACTRL, sc->sc_dmactrl);
861 
862 	if (etsec_read(sc, MACCFG1) & (MACCFG1_TX_EN|MACCFG1_RX_EN)) {
863 		/*
864 		 * 2. Poll GRSC/GTSC bits in IEVENT register until both are set
865 		 */
866 		etsec_write(sc, IMASK, sc->sc_imask | imask_gsc_mask);
867 
868 		u_int timo = 1000;
869 		uint32_t ievent = etsec_read(sc, IEVENT);
870 		while ((ievent & imask_gsc_mask) != imask_gsc_mask) {
871 			if (--timo == 0) {
872 				aprint_error_dev(sc->sc_dev,
873 				    "WARNING: "
874 				    "request to stop failed (IEVENT=%#x)\n",
875 				    ievent);
876 				break;
877 			}
878 			delay(10);
879 			ievent = etsec_read(sc, IEVENT);
880 		}
881 	}
882 
883 	/*
884 	 * Now reset the controller.
885 	 *
886 	 * 3. Set SOFT_RESET bit in MACCFG1 register
887 	 * 4. Clear SOFT_RESET bit in MACCFG1 register
888 	 */
889 	etsec_write(sc, MACCFG1, MACCFG1_SOFT_RESET);
890 	etsec_write(sc, MACCFG1, 0);
891 	etsec_write(sc, IMASK, 0);
892 	etsec_write(sc, IEVENT, ~0);
893 	sc->sc_imask = 0;
894 	ifp->if_flags &= ~IFF_RUNNING;
895 
896 	uint32_t tbipa = etsec_read(sc, TBIPA);
897 	if (tbipa == sc->sc_phy_addr) {
898 		aprint_normal_dev(sc->sc_dev, "relocating TBI\n");
899 		etsec_write(sc, TBIPA, 0x1f);
900 	}
901 	uint32_t miimcfg = etsec_read(sc, MIIMCFG);
902 	etsec_write(sc, MIIMCFG, MIIMCFG_RESET);
903 	etsec_write(sc, MIIMCFG, miimcfg);
904 
905 	/*
906 	 * Let's consume any remaing transmitted packets.  And if we are
907 	 * disabling the interface, purge ourselves of any untransmitted
908 	 * packets.  But don't consume any received packets, just drop them.
909 	 * If we aren't disabling the interface, save the mbufs in the
910 	 * receive queue for reuse.
911 	 */
912 	pq3etsec_rxq_purge(sc, &sc->sc_rxq, disable);
913 	pq3etsec_txq_consume(sc, &sc->sc_txq);
914 	if (disable) {
915 		pq3etsec_txq_purge(sc, &sc->sc_txq);
916 		IF_PURGE(&ifp->if_snd);
917 	}
918 }
919 
920 static void
921 pq3etsec_ifwatchdog(struct ifnet *ifp)
922 {
923 }
924 
925 static void
926 pq3etsec_mc_setup(
927 	struct pq3etsec_softc *sc)
928 {
929 	struct ethercom * const ec = &sc->sc_ec;
930 	struct ifnet * const ifp = &sc->sc_if;
931 	struct ether_multi *enm;
932 	struct ether_multistep step;
933 	uint32_t *gaddr = sc->sc_gaddr + ((sc->sc_rctrl & RCTRL_GHTX) ? 0 : 8);
934 	const uint32_t crc_shift = 32 - ((sc->sc_rctrl & RCTRL_GHTX) ? 9 : 8);
935 
936 	memset(sc->sc_gaddr, 0, sizeof(sc->sc_gaddr));
937 	memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
938 
939 	ifp->if_flags &= ~IFF_ALLMULTI;
940 
941 	ETHER_FIRST_MULTI(step, ec, enm);
942 	for (u_int i = 0; enm != NULL; ) {
943 		const char *addr = enm->enm_addrlo;
944 		if (memcmp(addr, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
945 			ifp->if_flags |= IFF_ALLMULTI;
946 			memset(gaddr, 0xff, 32 << (crc_shift & 1));
947 			memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
948 			break;
949 		}
950 		if ((sc->sc_rctrl & RCTRL_EMEN)
951 		    && i < __arraycount(sc->sc_macaddrs)) {
952 			sc->sc_macaddrs[i++] = pq3etsec_macaddr_create(addr);
953 		} else {
954 			uint32_t crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
955 #if 0
956 			printf("%s: %s: crc=%#x: %#x: [%u,%u]=%#x\n", __func__,
957 			    ether_sprintf(addr), crc,
958 			    crc >> crc_shift,
959 			    crc >> (crc_shift + 5),
960 			    (crc >> crc_shift) & 31,
961 			    1 << (((crc >> crc_shift) & 31) ^ 31));
962 #endif
963 			/*
964 			 * The documentation doesn't completely follow PowerPC
965 			 * bit order.  The BE crc32 (H) for 01:00:5E:00:00:01
966 			 * is 0x7fa32d9b.  By empirical testing, the
967 			 * corresponding hash bit is word 3, bit 31 (ppc bit
968 			 * order).  Since 3 << 31 | 31 is 0x7f, we deduce
969 			 * H[0:2] selects the register while H[3:7] selects
970 			 * the bit (ppc bit order).
971 			 */
972 			crc >>= crc_shift;
973 			gaddr[crc / 32] |= 1 << ((crc & 31) ^ 31);
974 		}
975 		ETHER_NEXT_MULTI(step, enm);
976 	}
977 	for (u_int i = 0; i < 8; i++) {
978 		etsec_write(sc, IGADDR(i), sc->sc_gaddr[i]);
979 		etsec_write(sc, GADDR(i), sc->sc_gaddr[i+8]);
980 #if 0
981 		if (sc->sc_gaddr[i] || sc->sc_gaddr[i+8])
982 		printf("%s: IGADDR%u(%#x)=%#x GADDR%u(%#x)=%#x\n", __func__,
983 		    i, IGADDR(i), etsec_read(sc, IGADDR(i)),
984 		    i, GADDR(i), etsec_read(sc, GADDR(i)));
985 #endif
986 	}
987 	for (u_int i = 0; i < __arraycount(sc->sc_macaddrs); i++) {
988 		uint64_t macaddr = sc->sc_macaddrs[i];
989 		etsec_write(sc, MACnADDR1(i), (uint32_t)(macaddr >> 32));
990 		etsec_write(sc, MACnADDR2(i), (uint32_t)(macaddr >>  0));
991 #if 0
992 		if (macaddr)
993 		printf("%s: MAC%02uADDR2(%08x)=%#x MAC%02uADDR2(%#x)=%08x\n", __func__,
994 		    i+1, MACnADDR1(i), etsec_read(sc, MACnADDR1(i)),
995 		    i+1, MACnADDR2(i), etsec_read(sc, MACnADDR2(i)));
996 #endif
997 	}
998 }
999 
1000 static int
1001 pq3etsec_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
1002 {
1003 	struct pq3etsec_softc *sc  = ifp->if_softc;
1004 	struct ifreq * const ifr = data;
1005 	const int s = splnet();
1006 	int error;
1007 
1008 	switch (cmd) {
1009 	case SIOCSIFMEDIA:
1010 	case SIOCGIFMEDIA:
1011 		/* Flow control requires full-duplex mode. */
1012 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1013 		    (ifr->ifr_media & IFM_FDX) == 0)
1014 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1015 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1016 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1017 				/* We can do both TXPAUSE and RXPAUSE. */
1018 				ifr->ifr_media |=
1019 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1020 			}
1021 		}
1022 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1023 		break;
1024 
1025 	default:
1026 		error = ether_ioctl(ifp, cmd, data);
1027 		if (error != ENETRESET)
1028 			break;
1029 
1030 		if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
1031 			error = 0;
1032 			if (ifp->if_flags & IFF_RUNNING)
1033 				pq3etsec_mc_setup(sc);
1034 			break;
1035 		}
1036 		error = pq3etsec_ifinit(ifp);
1037 		break;
1038 	}
1039 
1040 	splx(s);
1041 	return error;
1042 }
1043 
1044 static void
1045 pq3etsec_rxq_desc_presync(
1046 	struct pq3etsec_softc *sc,
1047 	struct pq3etsec_rxqueue *rxq,
1048 	volatile struct rxbd *rxbd,
1049 	size_t count)
1050 {
1051 	bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1052 	    (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1053 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1054 }
1055 
1056 static void
1057 pq3etsec_rxq_desc_postsync(
1058 	struct pq3etsec_softc *sc,
1059 	struct pq3etsec_rxqueue *rxq,
1060 	volatile struct rxbd *rxbd,
1061 	size_t count)
1062 {
1063 	bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1064 	    (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1065 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1066 }
1067 
1068 static void
1069 pq3etsec_txq_desc_presync(
1070 	struct pq3etsec_softc *sc,
1071 	struct pq3etsec_txqueue *txq,
1072 	volatile struct txbd *txbd,
1073 	size_t count)
1074 {
1075 	bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1076 	    (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1077 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1078 }
1079 
1080 static void
1081 pq3etsec_txq_desc_postsync(
1082 	struct pq3etsec_softc *sc,
1083 	struct pq3etsec_txqueue *txq,
1084 	volatile struct txbd *txbd,
1085 	size_t count)
1086 {
1087 	bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1088 	    (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1089 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1090 }
1091 
1092 static bus_dmamap_t
1093 pq3etsec_mapcache_get(
1094 	struct pq3etsec_softc *sc,
1095 	struct pq3etsec_mapcache *dmc)
1096 {
1097 	if (dmc->dmc_nmaps == 0) {
1098 		bus_dmamap_t map;
1099 		int error = bus_dmamap_create(sc->sc_dmat, dmc->dmc_maxmapsize,
1100 			dmc->dmc_maxseg, dmc->dmc_maxmapsize, 0,
1101 			BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW, &map);
1102 		if (error) {
1103 			aprint_error_dev(sc->sc_dev,
1104 			    "failed to allocate a %zuB map: %d\n",
1105 			    dmc->dmc_maxmapsize, error);
1106 			return NULL;
1107 		}
1108 		return map;
1109 	}
1110 
1111 	KASSERT(dmc->dmc_maps[dmc->dmc_nmaps-1] != NULL);
1112 	return dmc->dmc_maps[--dmc->dmc_nmaps];
1113 }
1114 
1115 static void
1116 pq3etsec_mapcache_put(
1117 	struct pq3etsec_softc *sc,
1118 	struct pq3etsec_mapcache *dmc,
1119 	bus_dmamap_t map)
1120 {
1121 	KASSERT(map != NULL);
1122 	KASSERT(dmc->dmc_nmaps < dmc->dmc_maxmaps);
1123 	dmc->dmc_maps[dmc->dmc_nmaps++] = map;
1124 }
1125 
1126 static void
1127 pq3etsec_mapcache_destroy(
1128 	struct pq3etsec_softc *sc,
1129 	struct pq3etsec_mapcache *dmc)
1130 {
1131 	const size_t dmc_size =
1132 	    offsetof(struct pq3etsec_mapcache, dmc_maps[dmc->dmc_maxmaps]);
1133 
1134 	for (u_int i = 0; i < dmc->dmc_maxmaps; i++) {
1135 		bus_dmamap_destroy(sc->sc_dmat, dmc->dmc_maps[i]);
1136 	}
1137 	kmem_free(dmc, dmc_size);
1138 }
1139 
1140 static int
1141 pq3etsec_mapcache_create(
1142 	struct pq3etsec_softc *sc,
1143 	struct pq3etsec_mapcache **dmc_p,
1144 	size_t maxmaps,
1145 	size_t minmaps,
1146 	size_t maxmapsize,
1147 	size_t maxseg)
1148 {
1149 	const size_t dmc_size =
1150 	    offsetof(struct pq3etsec_mapcache, dmc_maps[maxmaps]);
1151 	struct pq3etsec_mapcache * const dmc = kmem_zalloc(dmc_size, KM_SLEEP);
1152 
1153 	dmc->dmc_maxmaps = maxmaps;
1154 	dmc->dmc_nmaps = minmaps;
1155 	dmc->dmc_maxmapsize = maxmapsize;
1156 	dmc->dmc_maxseg = maxseg;
1157 
1158 	for (u_int i = 0; i < minmaps; i++) {
1159 		int error = bus_dmamap_create(sc->sc_dmat, dmc->dmc_maxmapsize,
1160 		     dmc->dmc_maxseg, dmc->dmc_maxmapsize, 0,
1161 		     BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW, &dmc->dmc_maps[i]);
1162 		if (error) {
1163 			aprint_error_dev(sc->sc_dev,
1164 			    "failed to creat dma map cache "
1165 			    "entry %u of %zu (max %zu): %d\n",
1166 			    i, minmaps, maxmaps, error);
1167 			while (i-- > 0) {
1168 				bus_dmamap_destroy(sc->sc_dmat,
1169 				    dmc->dmc_maps[i]);
1170 			}
1171 			kmem_free(dmc, dmc_size);
1172 			return error;
1173 		}
1174 		KASSERT(dmc->dmc_maps[i] != NULL);
1175 	}
1176 
1177 	*dmc_p = dmc;
1178 
1179 	return 0;
1180 }
1181 
1182 #if 0
1183 static void
1184 pq3etsec_dmamem_free(
1185 	bus_dma_tag_t dmat,
1186 	size_t map_size,
1187 	bus_dma_segment_t *seg,
1188 	bus_dmamap_t map,
1189 	void *kvap)
1190 {
1191 	bus_dmamap_destroy(dmat, map);
1192 	bus_dmamem_unmap(dmat, kvap, map_size);
1193 	bus_dmamem_free(dmat, seg, 1);
1194 }
1195 #endif
1196 
1197 static int
1198 pq3etsec_dmamem_alloc(
1199 	bus_dma_tag_t dmat,
1200 	size_t map_size,
1201 	bus_dma_segment_t *seg,
1202 	bus_dmamap_t *map,
1203 	void **kvap)
1204 {
1205 	int error;
1206 	int nseg;
1207 
1208 	*kvap = NULL;
1209 	*map = NULL;
1210 
1211 	error = bus_dmamem_alloc(dmat, map_size, PAGE_SIZE, 0,
1212 	   seg, 1, &nseg, 0);
1213 	if (error)
1214 		return error;
1215 
1216 	KASSERT(nseg == 1);
1217 
1218 	error = bus_dmamem_map(dmat, seg, nseg, map_size, (void **)kvap,
1219 	    BUS_DMA_COHERENT);
1220 	if (error == 0) {
1221 		error = bus_dmamap_create(dmat, map_size, 1, map_size, 0, 0,
1222 		    map);
1223 		if (error == 0) {
1224 			error = bus_dmamap_load(dmat, *map, *kvap, map_size,
1225 			    NULL, 0);
1226 			if (error == 0)
1227 				return 0;
1228 			bus_dmamap_destroy(dmat, *map);
1229 			*map = NULL;
1230 		}
1231 		bus_dmamem_unmap(dmat, *kvap, map_size);
1232 		*kvap = NULL;
1233 	}
1234 	bus_dmamem_free(dmat, seg, nseg);
1235 	return 0;
1236 }
1237 
1238 static struct mbuf *
1239 pq3etsec_rx_buf_alloc(
1240 	struct pq3etsec_softc *sc)
1241 {
1242 	struct mbuf *m = m_gethdr(M_DONTWAIT, MT_DATA);
1243 	if (m == NULL) {
1244 		printf("%s:%d: %s\n", __func__, __LINE__, "m_gethdr");
1245 		return NULL;
1246 	}
1247 	MCLGET(m, M_DONTWAIT);
1248 	if ((m->m_flags & M_EXT) == 0) {
1249 		printf("%s:%d: %s\n", __func__, __LINE__, "MCLGET");
1250 		m_freem(m);
1251 		return NULL;
1252 	}
1253 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1254 
1255 	bus_dmamap_t map = pq3etsec_mapcache_get(sc, sc->sc_rx_mapcache);
1256 	if (map == NULL) {
1257 		printf("%s:%d: %s\n", __func__, __LINE__, "map get");
1258 		m_freem(m);
1259 		return NULL;
1260 	}
1261 	M_SETCTX(m, map);
1262 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1263 	int error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1264 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1265 	if (error) {
1266 		aprint_error_dev(sc->sc_dev, "fail to load rx dmamap: %d\n",
1267 		    error);
1268 		M_SETCTX(m, NULL);
1269 		m_freem(m);
1270 		pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1271 		return NULL;
1272 	}
1273 	KASSERT(map->dm_mapsize == MCLBYTES);
1274 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1275 	    BUS_DMASYNC_PREREAD);
1276 
1277 	return m;
1278 }
1279 
1280 static void
1281 pq3etsec_rx_map_unload(
1282 	struct pq3etsec_softc *sc,
1283 	struct mbuf *m)
1284 {
1285 	KASSERT(m);
1286 	for (; m != NULL; m = m->m_next) {
1287 		bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1288 		KASSERT(map);
1289 		KASSERT(map->dm_mapsize == MCLBYTES);
1290 		bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_len,
1291 		    BUS_DMASYNC_POSTREAD);
1292 		bus_dmamap_unload(sc->sc_dmat, map);
1293 		pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1294 		M_SETCTX(m, NULL);
1295 	}
1296 }
1297 
1298 static bool
1299 pq3etsec_rxq_produce(
1300 	struct pq3etsec_softc *sc,
1301 	struct pq3etsec_rxqueue *rxq)
1302 {
1303 	volatile struct rxbd *producer = rxq->rxq_producer;
1304 #if 0
1305 	size_t inuse = rxq->rxq_inuse;
1306 #endif
1307 	while (rxq->rxq_inuse < rxq->rxq_threshold) {
1308 		struct mbuf *m;
1309 		IF_DEQUEUE(&sc->sc_rx_bufcache, m);
1310 		if (m == NULL) {
1311 			m = pq3etsec_rx_buf_alloc(sc);
1312 			if (m == NULL) {
1313 				printf("%s: pq3etsec_rx_buf_alloc failed\n", __func__);
1314 				break;
1315 			}
1316 		}
1317 		bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1318 		KASSERT(map);
1319 
1320 #ifdef ETSEC_DEBUG
1321 		KASSERT(rxq->rxq_mbufs[producer-rxq->rxq_first] == NULL);
1322 		rxq->rxq_mbufs[producer-rxq->rxq_first] = m;
1323 #endif
1324 
1325 		/* rxbd_len is write-only by the ETSEC */
1326 		producer->rxbd_bufptr = map->dm_segs[0].ds_addr;
1327 		membar_producer();
1328 		producer->rxbd_flags |= RXBD_E;
1329 		if (__predict_false(rxq->rxq_mhead == NULL)) {
1330 			KASSERT(producer == rxq->rxq_consumer);
1331 			rxq->rxq_mconsumer = m;
1332 		}
1333 		*rxq->rxq_mtail = m;
1334 		rxq->rxq_mtail = &m->m_next;
1335 		m->m_len = MCLBYTES;
1336 		m->m_next = NULL;
1337 		rxq->rxq_inuse++;
1338 		if (++producer == rxq->rxq_last) {
1339 			membar_producer();
1340 			pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1341 			    rxq->rxq_last - rxq->rxq_producer);
1342 			producer = rxq->rxq_producer = rxq->rxq_first;
1343 		}
1344 	}
1345 	if (producer != rxq->rxq_producer) {
1346 		membar_producer();
1347 		pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1348 		    producer - rxq->rxq_producer);
1349 		rxq->rxq_producer = producer;
1350 	}
1351 	uint32_t qhlt = etsec_read(sc, RSTAT) & RSTAT_QHLT;
1352 	if (qhlt) {
1353 		KASSERT(qhlt & rxq->rxq_qmask);
1354 		sc->sc_ev_rx_stall.ev_count++;
1355 		etsec_write(sc, RSTAT, RSTAT_QHLT & rxq->rxq_qmask);
1356 	}
1357 #if 0
1358 	aprint_normal_dev(sc->sc_dev,
1359 	    "%s: buffers inuse went from %zu to %zu\n",
1360 	    __func__, inuse, rxq->rxq_inuse);
1361 #endif
1362 	return true;
1363 }
1364 
1365 static bool
1366 pq3etsec_rx_offload(
1367 	struct pq3etsec_softc *sc,
1368 	struct mbuf *m,
1369 	const struct rxfcb *fcb)
1370 {
1371 	if (fcb->rxfcb_flags & RXFCB_VLN) {
1372 		VLAN_INPUT_TAG(&sc->sc_if, m, fcb->rxfcb_vlctl,
1373 		    m_freem(m); return false);
1374 	}
1375 	if ((fcb->rxfcb_flags & RXFCB_IP) == 0
1376 	    || (fcb->rxfcb_flags & (RXFCB_CIP|RXFCB_CTU)) == 0)
1377 		return true;
1378 	int csum_flags = 0;
1379 	if ((fcb->rxfcb_flags & (RXFCB_IP6|RXFCB_CIP)) == RXFCB_CIP) {
1380 		csum_flags |= M_CSUM_IPv4;
1381 		if (fcb->rxfcb_flags & RXFCB_EIP)
1382 			csum_flags |= M_CSUM_IPv4_BAD;
1383 	}
1384 	if ((fcb->rxfcb_flags & RXFCB_CTU) == RXFCB_CTU) {
1385 		int ipv_flags;
1386 		if (fcb->rxfcb_flags & RXFCB_IP6)
1387 			ipv_flags = M_CSUM_TCPv6|M_CSUM_UDPv6;
1388 		else
1389 			ipv_flags = M_CSUM_TCPv4|M_CSUM_UDPv4;
1390 		if (fcb->rxfcb_pro == IPPROTO_TCP) {
1391 			csum_flags |= (M_CSUM_TCPv4|M_CSUM_TCPv6) & ipv_flags;
1392 		} else {
1393 			csum_flags |= (M_CSUM_UDPv4|M_CSUM_UDPv6) & ipv_flags;
1394 		}
1395 		if (fcb->rxfcb_flags & RXFCB_ETU)
1396 			csum_flags |= M_CSUM_TCP_UDP_BAD;
1397 	}
1398 
1399 	m->m_pkthdr.csum_flags = csum_flags;
1400 	return true;
1401 }
1402 
1403 static void
1404 pq3etsec_rx_input(
1405 	struct pq3etsec_softc *sc,
1406 	struct mbuf *m,
1407 	uint16_t rxbd_flags)
1408 {
1409 	struct ifnet * const ifp = &sc->sc_if;
1410 
1411 	pq3etsec_rx_map_unload(sc, m);
1412 
1413 	if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF) {
1414 		struct rxfcb fcb = *mtod(m, struct rxfcb *);
1415 		if (!pq3etsec_rx_offload(sc, m, &fcb))
1416 			return;
1417 	}
1418 	m_adj(m, sc->sc_rx_adjlen);
1419 
1420 	if (rxbd_flags & RXBD_M)
1421 		m->m_flags |= M_PROMISC;
1422 	if (rxbd_flags & RXBD_BC)
1423 		m->m_flags |= M_BCAST;
1424 	if (rxbd_flags & RXBD_MC)
1425 		m->m_flags |= M_MCAST;
1426 	m->m_flags |= M_HASFCS;
1427 	m->m_pkthdr.rcvif = &sc->sc_if;
1428 
1429 	ifp->if_ipackets++;
1430 	ifp->if_ibytes += m->m_pkthdr.len;
1431 
1432 	/*
1433 	 * Let's give it to the network subsystm to deal with.
1434 	 */
1435 	int s = splnet();
1436 	bpf_mtap(ifp, m);
1437 	(*ifp->if_input)(ifp, m);
1438 	splx(s);
1439 }
1440 
1441 static void
1442 pq3etsec_rxq_consume(
1443 	struct pq3etsec_softc *sc,
1444 	struct pq3etsec_rxqueue *rxq)
1445 {
1446 	struct ifnet * const ifp = &sc->sc_if;
1447 	volatile struct rxbd *consumer = rxq->rxq_consumer;
1448 	size_t rxconsumed = 0;
1449 
1450 	etsec_write(sc, RSTAT, RSTAT_RXF & rxq->rxq_qmask);
1451 
1452 	for (;;) {
1453 		if (consumer == rxq->rxq_producer) {
1454 			rxq->rxq_consumer = consumer;
1455 			rxq->rxq_inuse -= rxconsumed;
1456 			return;
1457 		}
1458 		pq3etsec_rxq_desc_postsync(sc, rxq, consumer, 1);
1459 		const uint16_t rxbd_flags = consumer->rxbd_flags;
1460 		if (rxbd_flags & RXBD_E) {
1461 			rxq->rxq_consumer = consumer;
1462 			rxq->rxq_inuse -= rxconsumed;
1463 			return;
1464 		}
1465 		KASSERT(rxq->rxq_mconsumer != NULL);
1466 #ifdef ETSEC_DEBUG
1467 		KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1468 #endif
1469 #if 0
1470 		printf("%s: rxdb[%u]: flags=%#x len=%#x: %08x %08x %08x %08x\n",
1471 		    __func__,
1472 		    consumer - rxq->rxq_first, rxbd_flags, consumer->rxbd_len,
1473 		    mtod(rxq->rxq_mconsumer, int *)[0],
1474 		    mtod(rxq->rxq_mconsumer, int *)[1],
1475 		    mtod(rxq->rxq_mconsumer, int *)[2],
1476 		    mtod(rxq->rxq_mconsumer, int *)[3]);
1477 #endif
1478 		/*
1479 		 * We own this packet again.  Clear all flags except wrap.
1480 		 */
1481 		rxconsumed++;
1482 		consumer->rxbd_flags = rxbd_flags & (RXBD_W|RXBD_I);
1483 
1484 		/*
1485 		 * If this descriptor has the LAST bit set and no errors,
1486 		 * it's a valid input packet.
1487 		 */
1488 		if ((rxbd_flags & (RXBD_L|RXBD_ERRORS)) == RXBD_L) {
1489 			size_t rxbd_len = consumer->rxbd_len;
1490 			struct mbuf *m = rxq->rxq_mhead;
1491 			struct mbuf *m_last = rxq->rxq_mconsumer;
1492 			if ((rxq->rxq_mhead = m_last->m_next) == NULL)
1493 				rxq->rxq_mtail = &rxq->rxq_mhead;
1494 			rxq->rxq_mconsumer = rxq->rxq_mhead;
1495 			m_last->m_next = NULL;
1496 			m_last->m_len = rxbd_len & (MCLBYTES - 1);
1497 			m->m_pkthdr.len = rxbd_len;
1498 			pq3etsec_rx_input(sc, m, rxbd_flags);
1499 		} else if (rxbd_flags & RXBD_L) {
1500 			KASSERT(rxbd_flags & RXBD_ERRORS);
1501 			struct mbuf *m;
1502 			/*
1503 			 * We encountered an error, take the mbufs and add
1504 			 * then to the rx bufcache so we can reuse them.
1505 			 */
1506 			ifp->if_ierrors++;
1507 			for (m = rxq->rxq_mhead;
1508 			     m != rxq->rxq_mconsumer;
1509 			     m = m->m_next) {
1510 				IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1511 			}
1512 			m = rxq->rxq_mconsumer;
1513 			if ((rxq->rxq_mhead = m->m_next) == NULL)
1514 				rxq->rxq_mtail = &rxq->rxq_mhead;
1515 			rxq->rxq_mconsumer = m->m_next;
1516 			IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1517 		} else {
1518 			rxq->rxq_mconsumer = rxq->rxq_mconsumer->m_next;
1519 		}
1520 #ifdef ETSEC_DEBUG
1521 		rxq->rxq_mbufs[consumer - rxq->rxq_first] = NULL;
1522 #endif
1523 
1524 		/*
1525 		 * Wrap at the last entry!
1526 		 */
1527 		if (rxbd_flags & RXBD_W) {
1528 			KASSERT(consumer + 1 == rxq->rxq_last);
1529 			consumer = rxq->rxq_first;
1530 		} else {
1531 			consumer++;
1532 		}
1533 #ifdef ETSEC_DEBUG
1534 		KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1535 #endif
1536 	}
1537 }
1538 
1539 static void
1540 pq3etsec_rxq_purge(
1541 	struct pq3etsec_softc *sc,
1542 	struct pq3etsec_rxqueue *rxq,
1543 	bool discard)
1544 {
1545 	struct mbuf *m;
1546 
1547 	if ((m = rxq->rxq_mhead) != NULL) {
1548 #ifdef ETSEC_DEBUG
1549 		memset(rxq->rxq_mbufs, 0, sizeof(rxq->rxq_mbufs));
1550 #endif
1551 
1552 		if (discard) {
1553 			pq3etsec_rx_map_unload(sc, m);
1554 			m_freem(m);
1555 		} else {
1556 			while (m != NULL) {
1557 				struct mbuf *m0 = m->m_next;
1558 				m->m_next = NULL;
1559 				IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1560 				m = m0;
1561 			}
1562 		}
1563 
1564 	}
1565 
1566 	rxq->rxq_mconsumer = NULL;
1567 	rxq->rxq_mhead = NULL;
1568 	rxq->rxq_mtail = &rxq->rxq_mhead;
1569 	rxq->rxq_inuse = 0;
1570 }
1571 
1572 static void
1573 pq3etsec_rxq_reset(
1574 	struct pq3etsec_softc *sc,
1575 	struct pq3etsec_rxqueue *rxq)
1576 {
1577 	/*
1578 	 * sync all the descriptors
1579 	 */
1580 	pq3etsec_rxq_desc_postsync(sc, rxq, rxq->rxq_first,
1581 	    rxq->rxq_last - rxq->rxq_first);
1582 
1583 	/*
1584 	 * Make sure we own all descriptors in the ring.
1585 	 */
1586 	volatile struct rxbd *rxbd;
1587 	for (rxbd = rxq->rxq_first; rxbd < rxq->rxq_last - 1; rxbd++) {
1588 		rxbd->rxbd_flags = RXBD_I;
1589 	}
1590 
1591 	/*
1592 	 * Last descriptor has the wrap flag.
1593 	 */
1594 	rxbd->rxbd_flags = RXBD_W|RXBD_I;
1595 
1596 	/*
1597 	 * Reset the producer consumer indexes.
1598 	 */
1599 	rxq->rxq_consumer = rxq->rxq_first;
1600 	rxq->rxq_producer = rxq->rxq_first;
1601 	rxq->rxq_inuse = 0;
1602 	if (rxq->rxq_threshold < ETSEC_MINRXMBUFS)
1603 		rxq->rxq_threshold = ETSEC_MINRXMBUFS;
1604 
1605 	sc->sc_imask |= IEVENT_RXF|IEVENT_BSY;
1606 
1607 	/*
1608 	 * Restart the transmit at the first descriptor
1609 	 */
1610 	etsec_write(sc, rxq->rxq_reg_rbase, rxq->rxq_descmap->dm_segs->ds_addr);
1611 }
1612 
1613 static int
1614 pq3etsec_rxq_attach(
1615 	struct pq3etsec_softc *sc,
1616 	struct pq3etsec_rxqueue *rxq,
1617 	u_int qno)
1618 {
1619 	size_t map_size = PAGE_SIZE;
1620 	size_t desc_count = map_size / sizeof(struct rxbd);
1621 	int error;
1622 	void *descs;
1623 
1624 	error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1625 	   &rxq->rxq_descmap_seg, &rxq->rxq_descmap, &descs);
1626 	if (error)
1627 		return error;
1628 
1629 	memset(descs, 0, map_size);
1630 	rxq->rxq_first = descs;
1631 	rxq->rxq_last = rxq->rxq_first + desc_count;
1632 	rxq->rxq_consumer = descs;
1633 	rxq->rxq_producer = descs;
1634 
1635 	pq3etsec_rxq_purge(sc, rxq, true);
1636 	pq3etsec_rxq_reset(sc, rxq);
1637 
1638 	rxq->rxq_reg_rbase = RBASEn(qno);
1639 	rxq->rxq_qmask = RSTAT_QHLTn(qno) | RSTAT_RXFn(qno);
1640 
1641 	return 0;
1642 }
1643 
1644 static bool
1645 pq3etsec_txq_active_p(
1646 	struct pq3etsec_softc * const sc,
1647 	struct pq3etsec_txqueue *txq)
1648 {
1649 	return !IF_IS_EMPTY(&txq->txq_mbufs);
1650 }
1651 
1652 static bool
1653 pq3etsec_txq_fillable_p(
1654 	struct pq3etsec_softc * const sc,
1655 	struct pq3etsec_txqueue *txq)
1656 {
1657 	return txq->txq_free >= txq->txq_threshold;
1658 }
1659 
1660 static int
1661 pq3etsec_txq_attach(
1662 	struct pq3etsec_softc *sc,
1663 	struct pq3etsec_txqueue *txq,
1664 	u_int qno)
1665 {
1666 	size_t map_size = PAGE_SIZE;
1667 	size_t desc_count = map_size / sizeof(struct txbd);
1668 	int error;
1669 	void *descs;
1670 
1671 	error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1672 	   &txq->txq_descmap_seg, &txq->txq_descmap, &descs);
1673 	if (error)
1674 		return error;
1675 
1676 	memset(descs, 0, map_size);
1677 	txq->txq_first = descs;
1678 	txq->txq_last = txq->txq_first + desc_count;
1679 	txq->txq_consumer = descs;
1680 	txq->txq_producer = descs;
1681 
1682 	IFQ_SET_MAXLEN(&txq->txq_mbufs, ETSEC_MAXTXMBUFS);
1683 
1684 	txq->txq_reg_tbase = TBASEn(qno);
1685 	txq->txq_qmask = TSTAT_THLTn(qno) | TSTAT_TXFn(qno);
1686 
1687 	pq3etsec_txq_reset(sc, txq);
1688 
1689 	return 0;
1690 }
1691 
1692 static int
1693 pq3etsec_txq_map_load(
1694 	struct pq3etsec_softc *sc,
1695 	struct pq3etsec_txqueue *txq,
1696 	struct mbuf *m)
1697 {
1698 	bus_dmamap_t map;
1699 	int error;
1700 
1701 	map = M_GETCTX(m, bus_dmamap_t);
1702 	if (map != NULL)
1703 		return 0;
1704 
1705 	map = pq3etsec_mapcache_get(sc, sc->sc_tx_mapcache);
1706 	if (map == NULL)
1707 		return ENOMEM;
1708 
1709 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1710 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1711 	if (error)
1712 		return error;
1713 
1714 	bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_pkthdr.len,
1715 	    BUS_DMASYNC_PREWRITE);
1716 	M_SETCTX(m, map);
1717 	return 0;
1718 }
1719 
1720 static void
1721 pq3etsec_txq_map_unload(
1722 	struct pq3etsec_softc *sc,
1723 	struct pq3etsec_txqueue *txq,
1724 	struct mbuf *m)
1725 {
1726 	KASSERT(m);
1727 	bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1728 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1729 	    BUS_DMASYNC_POSTWRITE);
1730 	bus_dmamap_unload(sc->sc_dmat, map);
1731 	pq3etsec_mapcache_put(sc, sc->sc_tx_mapcache, map);
1732 }
1733 
1734 static bool
1735 pq3etsec_txq_produce(
1736 	struct pq3etsec_softc *sc,
1737 	struct pq3etsec_txqueue *txq,
1738 	struct mbuf *m)
1739 {
1740 	bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1741 
1742 	if (map->dm_nsegs > txq->txq_free)
1743 		return false;
1744 
1745 	/*
1746 	 * TCP Offload flag must be set in the first descriptor.
1747 	 */
1748 	volatile struct txbd *producer = txq->txq_producer;
1749 	uint16_t last_flags = TXBD_L;
1750 	uint16_t first_flags = TXBD_R
1751 	    | ((m->m_flags & M_HASFCB) ? TXBD_TOE : 0);
1752 
1753 	/*
1754 	 * If we've produced enough descriptors without consuming any
1755 	 * we need to ask for an interrupt to reclaim some.
1756 	 */
1757 	txq->txq_lastintr += map->dm_nsegs;
1758 	if (txq->txq_lastintr >= txq->txq_threshold
1759 	    || txq->txq_mbufs.ifq_len + 1 == txq->txq_mbufs.ifq_maxlen) {
1760 		txq->txq_lastintr = 0;
1761 		last_flags |= TXBD_I;
1762 	}
1763 
1764 #ifdef ETSEC_DEBUG
1765 	KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1766 #endif
1767 	KASSERT(producer != txq->txq_last);
1768 	producer->txbd_bufptr = map->dm_segs[0].ds_addr;
1769 	producer->txbd_len = map->dm_segs[0].ds_len;
1770 
1771 	if (map->dm_nsegs > 1) {
1772 		volatile struct txbd *start = producer + 1;
1773 		size_t count = map->dm_nsegs - 1;
1774 		for (u_int i = 1; i < map->dm_nsegs; i++) {
1775 			if (__predict_false(++producer == txq->txq_last)) {
1776 				producer = txq->txq_first;
1777 				if (start < txq->txq_last) {
1778 					pq3etsec_txq_desc_presync(sc, txq,
1779 					    start, txq->txq_last - start);
1780 					count -= txq->txq_last - start;
1781 				}
1782 				start = txq->txq_first;
1783 			}
1784 #ifdef ETSEC_DEBUG
1785 			KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1786 #endif
1787 			producer->txbd_bufptr = map->dm_segs[i].ds_addr;
1788 			producer->txbd_len = map->dm_segs[i].ds_len;
1789 			producer->txbd_flags = TXBD_R
1790 			    | (producer->txbd_flags & TXBD_W)
1791 			    | (i == map->dm_nsegs - 1 ? last_flags : 0);
1792 #if 0
1793 			printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__, producer - txq->txq_first,
1794 			    producer->txbd_flags, producer->txbd_len, producer->txbd_bufptr);
1795 #endif
1796 		}
1797 		pq3etsec_txq_desc_presync(sc, txq, start, count);
1798 	} else {
1799 		first_flags |= last_flags;
1800 	}
1801 
1802 	membar_producer();
1803 	txq->txq_producer->txbd_flags =
1804 	    first_flags | (txq->txq_producer->txbd_flags & TXBD_W);
1805 #if 0
1806 	printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__,
1807 	    txq->txq_producer - txq->txq_first, txq->txq_producer->txbd_flags,
1808 	    txq->txq_producer->txbd_len, txq->txq_producer->txbd_bufptr);
1809 #endif
1810 	pq3etsec_txq_desc_presync(sc, txq, txq->txq_producer, 1);
1811 
1812 	/*
1813 	 * Reduce free count by the number of segments we consumed.
1814 	 */
1815 	txq->txq_free -= map->dm_nsegs;
1816 	KASSERT(map->dm_nsegs == 1 || txq->txq_producer != producer);
1817 	KASSERT(map->dm_nsegs == 1 || (txq->txq_producer->txbd_flags & TXBD_L) == 0);
1818 	KASSERT(producer->txbd_flags & TXBD_L);
1819 #ifdef ETSEC_DEBUG
1820 	txq->txq_lmbufs[producer - txq->txq_first] = m;
1821 #endif
1822 
1823 #if 0
1824 	printf("%s: mbuf %p: produced a %u byte packet in %u segments (%u..%u)\n",
1825 	    __func__, m, m->m_pkthdr.len, map->dm_nsegs,
1826 	    txq->txq_producer - txq->txq_first, producer - txq->txq_first);
1827 #endif
1828 
1829 	if (++producer == txq->txq_last)
1830 		txq->txq_producer = txq->txq_first;
1831 	else
1832 		txq->txq_producer = producer;
1833 	IF_ENQUEUE(&txq->txq_mbufs, m);
1834 
1835 	/*
1836 	 * Restart the transmitter.
1837 	 */
1838 	etsec_write(sc, TSTAT, txq->txq_qmask & TSTAT_THLT);	/* W1C */
1839 
1840 	return true;
1841 }
1842 
1843 static void
1844 pq3etsec_tx_offload(
1845 	struct pq3etsec_softc *sc,
1846 	struct pq3etsec_txqueue *txq,
1847 	struct mbuf **mp)
1848 {
1849 	struct mbuf *m = *mp;
1850 	u_int csum_flags = m->m_pkthdr.csum_flags;
1851 	struct m_tag *vtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m);
1852 
1853 	KASSERT(m->m_flags & M_PKTHDR);
1854 
1855 	/*
1856 	 * Let see if we are doing any offload first.
1857 	 */
1858 	if (csum_flags == 0 && vtag == 0) {
1859 		m->m_flags &= ~M_HASFCB;
1860 		return;
1861 	}
1862 
1863 	uint16_t flags = 0;
1864 	if (csum_flags & M_CSUM_IP) {
1865 		flags |= TXFCB_IP
1866 		    | ((csum_flags & M_CSUM_IP6) ? TXFCB_IP6 : 0)
1867 		    | ((csum_flags & M_CSUM_TUP) ? TXFCB_TUP : 0)
1868 		    | ((csum_flags & M_CSUM_UDP) ? TXFCB_UDP : 0)
1869 		    | ((csum_flags & M_CSUM_CIP) ? TXFCB_CIP : 0)
1870 		    | ((csum_flags & M_CSUM_CTU) ? TXFCB_CTU : 0);
1871 	}
1872 	if (vtag) {
1873 		flags |= TXFCB_VLN;
1874 	}
1875 	if (flags == 0) {
1876 		m->m_flags &= ~M_HASFCB;
1877 		return;
1878 	}
1879 
1880 	struct txfcb fcb;
1881 	fcb.txfcb_flags = flags;
1882 	if (csum_flags & M_CSUM_IPv4)
1883 		fcb.txfcb_l4os = M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
1884 	else
1885 		fcb.txfcb_l4os = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
1886 	fcb.txfcb_l3os = ETHER_HDR_LEN;
1887 	fcb.txfcb_phcs = 0;
1888 	fcb.txfcb_vlctl = vtag ? VLAN_TAG_VALUE(vtag) & 0xffff : 0;
1889 
1890 #if 0
1891 	printf("%s: csum_flags=%#x: txfcb flags=%#x lsos=%u l4os=%u phcs=%u vlctl=%#x\n",
1892 	    __func__, csum_flags, fcb.txfcb_flags, fcb.txfcb_l3os, fcb.txfcb_l4os,
1893 	    fcb.txfcb_phcs, fcb.txfcb_vlctl);
1894 #endif
1895 
1896 	if (M_LEADINGSPACE(m) >= sizeof(fcb)) {
1897 		m->m_data -= sizeof(fcb);
1898 		m->m_len += sizeof(fcb);
1899 	} else if (!(m->m_flags & M_EXT) && MHLEN - m->m_len >= sizeof(fcb)) {
1900 		memmove(m->m_pktdat + sizeof(fcb), m->m_data, m->m_len);
1901 		m->m_data = m->m_pktdat;
1902 		m->m_len += sizeof(fcb);
1903 	} else {
1904 		struct mbuf *mn;
1905 		MGET(mn, M_DONTWAIT, m->m_type);
1906 		if (mn == NULL) {
1907 			if (csum_flags & M_CSUM_IP4) {
1908 #ifdef INET
1909 				ip_undefer_csum(m, ETHER_HDR_LEN,
1910 				    csum_flags & M_CSUM_IP4);
1911 #else
1912 				panic("%s: impossible M_CSUM flags %#x",
1913 				    device_xname(sc->sc_dev), csum_flags);
1914 #endif
1915 			} else if (csum_flags & M_CSUM_IP6) {
1916 #ifdef INET6
1917 				ip6_undefer_csum(m, ETHER_HDR_LEN,
1918 				    csum_flags & M_CSUM_IP6);
1919 #else
1920 				panic("%s: impossible M_CSUM flags %#x",
1921 				    device_xname(sc->sc_dev), csum_flags);
1922 #endif
1923 			} else if (vtag) {
1924 			}
1925 
1926 			m->m_flags &= ~M_HASFCB;
1927 			return;
1928 		}
1929 
1930 		M_MOVE_PKTHDR(mn, m);
1931 		mn->m_next = m;
1932 		m = mn;
1933 		MH_ALIGN(m, sizeof(fcb));
1934 		m->m_len = sizeof(fcb);
1935 		*mp = m;
1936 	}
1937 	m->m_pkthdr.len += sizeof(fcb);
1938 	m->m_flags |= M_HASFCB;
1939 	*mtod(m, struct txfcb *) = fcb;
1940 	return;
1941 }
1942 
1943 static bool
1944 pq3etsec_txq_enqueue(
1945 	struct pq3etsec_softc *sc,
1946 	struct pq3etsec_txqueue *txq)
1947 {
1948 	for (;;) {
1949 		if (IF_QFULL(&txq->txq_mbufs))
1950 			return false;
1951 		struct mbuf *m = txq->txq_next;
1952 		if (m == NULL) {
1953 			int s = splnet();
1954 			IF_DEQUEUE(&sc->sc_if.if_snd, m);
1955 			splx(s);
1956 			if (m == NULL)
1957 				return true;
1958 			M_SETCTX(m, NULL);
1959 			pq3etsec_tx_offload(sc, txq, &m);
1960 		} else {
1961 			txq->txq_next = NULL;
1962 		}
1963 		int error = pq3etsec_txq_map_load(sc, txq, m);
1964 		if (error) {
1965 			aprint_error_dev(sc->sc_dev,
1966 			    "discarded packet due to "
1967 			    "dmamap load failure: %d\n", error);
1968 			m_freem(m);
1969 			continue;
1970 		}
1971 		KASSERT(txq->txq_next == NULL);
1972 		if (!pq3etsec_txq_produce(sc, txq, m)) {
1973 			txq->txq_next = m;
1974 			return false;
1975 		}
1976 		KASSERT(txq->txq_next == NULL);
1977 	}
1978 }
1979 
1980 static bool
1981 pq3etsec_txq_consume(
1982 	struct pq3etsec_softc *sc,
1983 	struct pq3etsec_txqueue *txq)
1984 {
1985 	struct ifnet * const ifp = &sc->sc_if;
1986 	volatile struct txbd *consumer = txq->txq_consumer;
1987 	size_t txfree = 0;
1988 
1989 #if 0
1990 	printf("%s: entry: free=%zu\n", __func__, txq->txq_free);
1991 #endif
1992 	etsec_write(sc, TSTAT, TSTAT_TXF & txq->txq_qmask);
1993 
1994 	for (;;) {
1995 		if (consumer == txq->txq_producer) {
1996 			txq->txq_consumer = consumer;
1997 			txq->txq_free += txfree;
1998 			txq->txq_lastintr -= min(txq->txq_lastintr, txfree);
1999 #if 0
2000 			printf("%s: empty: freed %zu descriptors going form %zu to %zu\n",
2001 			    __func__, txfree, txq->txq_free - txfree, txq->txq_free);
2002 #endif
2003 			KASSERT(txq->txq_lastintr == 0);
2004 			KASSERT(txq->txq_free == txq->txq_last - txq->txq_first - 1);
2005 			return true;
2006 		}
2007 		pq3etsec_txq_desc_postsync(sc, txq, consumer, 1);
2008 		const uint16_t txbd_flags = consumer->txbd_flags;
2009 		if (txbd_flags & TXBD_R) {
2010 			txq->txq_consumer = consumer;
2011 			txq->txq_free += txfree;
2012 			txq->txq_lastintr -= min(txq->txq_lastintr, txfree);
2013 #if 0
2014 			printf("%s: freed %zu descriptors\n",
2015 			    __func__, txfree);
2016 #endif
2017 			return pq3etsec_txq_fillable_p(sc, txq);
2018 		}
2019 
2020 		/*
2021 		 * If this is the last descriptor in the chain, get the
2022 		 * mbuf, free its dmamap, and free the mbuf chain itself.
2023 		 */
2024 		if (txbd_flags & TXBD_L) {
2025 			struct mbuf *m;
2026 
2027 			IF_DEQUEUE(&txq->txq_mbufs, m);
2028 #ifdef ETSEC_DEBUG
2029 			KASSERTMSG(m == txq->txq_lmbufs[consumer-txq->txq_first],
2030 			    ("%s: %p [%u]: flags %#x m (%p) != %p (%p)", __func__,
2031 			     consumer, consumer - txq->txq_first, txbd_flags,
2032 			     m, &txq->txq_lmbufs[consumer-txq->txq_first],
2033 			     txq->txq_lmbufs[consumer-txq->txq_first]));
2034 #endif
2035 			KASSERT(m);
2036 			pq3etsec_txq_map_unload(sc, txq, m);
2037 #if 0
2038 			printf("%s: mbuf %p: consumed a %u byte packet\n",
2039 			    __func__, m, m->m_pkthdr.len);
2040 #endif
2041 			if (m->m_flags & M_HASFCB)
2042 				m_adj(m, sizeof(struct txfcb));
2043 			ifp->if_opackets++;
2044 			ifp->if_obytes += m->m_pkthdr.len;
2045 			if (m->m_flags & M_MCAST)
2046 				ifp->if_omcasts++;
2047 			if (txbd_flags & TXBD_ERRORS)
2048 				ifp->if_oerrors++;
2049 			m_freem(m);
2050 #ifdef ETSEC_DEBUG
2051 			txq->txq_lmbufs[consumer - txq->txq_first] = NULL;
2052 #endif
2053 		} else {
2054 #ifdef ETSEC_DEBUG
2055 			KASSERT(txq->txq_lmbufs[consumer-txq->txq_first] == NULL);
2056 #endif
2057 		}
2058 
2059 		/*
2060 		 * We own this packet again.  Clear all flags except wrap.
2061 		 */
2062 		txfree++;
2063 		//consumer->txbd_flags = txbd_flags & TXBD_W;
2064 
2065 		/*
2066 		 * Wrap at the last entry!
2067 		 */
2068 		if (txbd_flags & TXBD_W) {
2069 			KASSERT(consumer + 1 == txq->txq_last);
2070 			consumer = txq->txq_first;
2071 		} else {
2072 			consumer++;
2073 			KASSERT(consumer < txq->txq_last);
2074 		}
2075 	}
2076 }
2077 
2078 static void
2079 pq3etsec_txq_purge(
2080 	struct pq3etsec_softc *sc,
2081 	struct pq3etsec_txqueue *txq)
2082 {
2083 	struct mbuf *m;
2084 	KASSERT((etsec_read(sc, MACCFG1) & MACCFG1_TX_EN) == 0);
2085 
2086 	for (;;) {
2087 		IF_DEQUEUE(&txq->txq_mbufs, m);
2088 		if (m == NULL)
2089 			break;
2090 		pq3etsec_txq_map_unload(sc, txq, m);
2091 		m_freem(m);
2092 	}
2093 	if ((m = txq->txq_next) != NULL) {
2094 		txq->txq_next = NULL;
2095 		pq3etsec_txq_map_unload(sc, txq, m);
2096 		m_freem(m);
2097 	}
2098 #ifdef ETSEC_DEBUG
2099 	memset(txq->txq_lmbufs, 0, sizeof(txq->txq_lmbufs));
2100 #endif
2101 }
2102 
2103 static void
2104 pq3etsec_txq_reset(
2105 	struct pq3etsec_softc *sc,
2106 	struct pq3etsec_txqueue *txq)
2107 {
2108 	/*
2109 	 * sync all the descriptors
2110 	 */
2111 	pq3etsec_txq_desc_postsync(sc, txq, txq->txq_first,
2112 	    txq->txq_last - txq->txq_first);
2113 
2114 	/*
2115 	 * Make sure we own all descriptors in the ring.
2116 	 */
2117 	volatile struct txbd *txbd;
2118 	for (txbd = txq->txq_first; txbd < txq->txq_last - 1; txbd++) {
2119 		txbd->txbd_flags = 0;
2120 	}
2121 
2122 	/*
2123 	 * Last descriptor has the wrap flag.
2124 	 */
2125 	txbd->txbd_flags = TXBD_W;
2126 
2127 	/*
2128 	 * Reset the producer consumer indexes.
2129 	 */
2130 	txq->txq_consumer = txq->txq_first;
2131 	txq->txq_producer = txq->txq_first;
2132 	txq->txq_free = txq->txq_last - txq->txq_first - 1;
2133 	txq->txq_threshold = txq->txq_free / 2;
2134 	txq->txq_lastintr = 0;
2135 
2136 	/*
2137 	 * What do we want to get interrupted on?
2138 	 */
2139 	sc->sc_imask |= IEVENT_TXF|IEVENT_TXE;
2140 
2141 	/*
2142 	 * Restart the transmit at the first descriptor
2143 	 */
2144 	etsec_write(sc, txq->txq_reg_tbase, txq->txq_descmap->dm_segs->ds_addr);
2145 }
2146 
2147 static void
2148 pq3etsec_ifstart(struct ifnet *ifp)
2149 {
2150 	struct pq3etsec_softc * const sc = ifp->if_softc;
2151 
2152 	atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2153 	softint_schedule(sc->sc_soft_ih);
2154 }
2155 
2156 static void
2157 pq3etsec_tx_error(
2158 	struct pq3etsec_softc * const sc)
2159 {
2160 	struct pq3etsec_txqueue * const txq = &sc->sc_txq;
2161 
2162 	pq3etsec_txq_consume(sc, txq);
2163 
2164 	if (pq3etsec_txq_fillable_p(sc, txq))
2165 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
2166 	if (sc->sc_txerrors & (IEVENT_LC|IEVENT_CRL|IEVENT_XFUN|IEVENT_BABT)) {
2167 	} else if (sc->sc_txerrors & IEVENT_EBERR) {
2168 	}
2169 
2170 	if (pq3etsec_txq_active_p(sc, txq))
2171 		etsec_write(sc, TSTAT, TSTAT_THLT & txq->txq_qmask);
2172 	if (!pq3etsec_txq_enqueue(sc, txq)) {
2173 		sc->sc_ev_tx_stall.ev_count++;
2174 		sc->sc_if.if_flags |= IFF_OACTIVE;
2175 	}
2176 
2177 	sc->sc_txerrors = 0;
2178 }
2179 
2180 int
2181 pq3etsec_tx_intr(void *arg)
2182 {
2183 	struct pq3etsec_softc * const sc = arg;
2184 
2185 	sc->sc_ev_tx_intr.ev_count++;
2186 
2187 	uint32_t ievent = etsec_read(sc, IEVENT);
2188 	ievent &= IEVENT_TXF|IEVENT_TXB;
2189 	etsec_write(sc, IEVENT, ievent);	/* write 1 to clear */
2190 
2191 #if 0
2192 	aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2193 	    __func__, ievent, etsec_read(sc, IMASK));
2194 #endif
2195 
2196 	if (ievent == 0)
2197 		return 0;
2198 
2199 	sc->sc_imask &= ~(IEVENT_TXF|IEVENT_TXB);
2200 	atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2201 	etsec_write(sc, IMASK, sc->sc_imask);
2202 	softint_schedule(sc->sc_soft_ih);
2203 	return 1;
2204 }
2205 
2206 int
2207 pq3etsec_rx_intr(void *arg)
2208 {
2209 	struct pq3etsec_softc * const sc = arg;
2210 
2211 	sc->sc_ev_rx_intr.ev_count++;
2212 
2213 	uint32_t ievent = etsec_read(sc, IEVENT);
2214 	ievent &= IEVENT_RXF|IEVENT_RXB;
2215 	etsec_write(sc, IEVENT, ievent);	/* write 1 to clear */
2216 	if (ievent == 0)
2217 		return 0;
2218 
2219 #if 0
2220 	aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x\n", __func__, ievent);
2221 #endif
2222 
2223 	sc->sc_imask &= ~(IEVENT_RXF|IEVENT_RXB);
2224 	atomic_or_uint(&sc->sc_soft_flags, SOFT_RXINTR);
2225 	etsec_write(sc, IMASK, sc->sc_imask);
2226 	softint_schedule(sc->sc_soft_ih);
2227 	return 1;
2228 }
2229 
2230 int
2231 pq3etsec_error_intr(void *arg)
2232 {
2233 	struct pq3etsec_softc * const sc = arg;
2234 
2235 	sc->sc_ev_error_intr.ev_count++;
2236 
2237 	for (int rv = 0, soft_flags = 0;; rv = 1) {
2238 		uint32_t ievent = etsec_read(sc, IEVENT);
2239 		ievent &= ~(IEVENT_RXF|IEVENT_RXB|IEVENT_TXF|IEVENT_TXB);
2240 		etsec_write(sc, IEVENT, ievent);	/* write 1 to clear */
2241 		if (ievent == 0) {
2242 			if (soft_flags) {
2243 				atomic_or_uint(&sc->sc_soft_flags, soft_flags);
2244 				softint_schedule(sc->sc_soft_ih);
2245 			}
2246 			return rv;
2247 		}
2248 #if 0
2249 		aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2250 		    __func__, ievent, etsec_read(sc, IMASK));
2251 #endif
2252 
2253 		if (ievent & (IEVENT_GRSC|IEVENT_GTSC)) {
2254 			sc->sc_imask &= ~(IEVENT_GRSC|IEVENT_GTSC);
2255 			etsec_write(sc, IMASK, sc->sc_imask);
2256 			wakeup(sc);
2257 		}
2258 		if (ievent & (IEVENT_MMRD|IEVENT_MMWR)) {
2259 			sc->sc_imask &= ~(IEVENT_MMRD|IEVENT_MMWR);
2260 			etsec_write(sc, IMASK, sc->sc_imask);
2261 			wakeup(&sc->sc_mii);
2262 		}
2263 		if (ievent & IEVENT_BSY) {
2264 			soft_flags |= SOFT_RXBSY;
2265 			sc->sc_imask &= ~IEVENT_BSY;
2266 			etsec_write(sc, IMASK, sc->sc_imask);
2267 		}
2268 		if (ievent & IEVENT_TXE) {
2269 			soft_flags |= SOFT_TXERROR;
2270 			sc->sc_imask &= ~IEVENT_TXE;
2271 			sc->sc_txerrors |= ievent;
2272 		}
2273 		if (ievent & IEVENT_TXC) {
2274 			sc->sc_ev_tx_pause.ev_count++;
2275 		}
2276 		if (ievent & IEVENT_RXC) {
2277 			sc->sc_ev_rx_pause.ev_count++;
2278 		}
2279 		if (ievent & IEVENT_DPE) {
2280 			soft_flags |= SOFT_RESET;
2281 			sc->sc_imask &= ~IEVENT_DPE;
2282 			etsec_write(sc, IMASK, sc->sc_imask);
2283 		}
2284 	}
2285 }
2286 
2287 void
2288 pq3etsec_soft_intr(void *arg)
2289 {
2290 	struct pq3etsec_softc * const sc = arg;
2291 	struct ifnet * const ifp = &sc->sc_if;
2292 
2293 	mutex_enter(sc->sc_lock);
2294 
2295 	u_int soft_flags = atomic_swap_uint(&sc->sc_soft_flags, 0);
2296 
2297 	sc->sc_ev_soft_intr.ev_count++;
2298 
2299 	if (soft_flags & SOFT_RESET) {
2300 		int s = splnet();
2301 		pq3etsec_ifinit(ifp);
2302 		splx(s);
2303 		soft_flags = 0;
2304 	}
2305 
2306 	if (soft_flags & SOFT_RXBSY) {
2307 		struct pq3etsec_rxqueue * const rxq = &sc->sc_rxq;
2308 		size_t threshold = 5 * rxq->rxq_threshold / 4;
2309 		if (threshold >= rxq->rxq_last - rxq->rxq_first) {
2310 			threshold = rxq->rxq_last - rxq->rxq_first - 1;
2311 		} else {
2312 			sc->sc_imask |= IEVENT_BSY;
2313 		}
2314 		aprint_normal_dev(sc->sc_dev,
2315 		    "increasing receive buffers from %zu to %zu\n",
2316 		    rxq->rxq_threshold, threshold);
2317 		rxq->rxq_threshold = threshold;
2318 	}
2319 
2320 	if ((soft_flags & SOFT_TXINTR)
2321 	    || pq3etsec_txq_active_p(sc, &sc->sc_txq)) {
2322 		/*
2323 		 * Let's do what we came here for.  Consume transmitted
2324 		 * packets off the the transmit ring.
2325 		 */
2326 		if (!pq3etsec_txq_consume(sc, &sc->sc_txq)
2327 		    || !pq3etsec_txq_enqueue(sc, &sc->sc_txq)) {
2328 			sc->sc_ev_tx_stall.ev_count++;
2329 			ifp->if_flags |= IFF_OACTIVE;
2330 		} else {
2331 			ifp->if_flags &= ~IFF_OACTIVE;
2332 		}
2333 		sc->sc_imask |= IEVENT_TXF;
2334 	}
2335 
2336 	if (soft_flags & (SOFT_RXINTR|SOFT_RXBSY)) {
2337 		/*
2338 		 * Let's consume
2339 		 */
2340 		pq3etsec_rxq_consume(sc, &sc->sc_rxq);
2341 		sc->sc_imask |= IEVENT_RXF;
2342 	}
2343 
2344 	if (soft_flags & SOFT_TXERROR) {
2345 		pq3etsec_tx_error(sc);
2346 		sc->sc_imask |= IEVENT_TXE;
2347 	}
2348 
2349 	if (ifp->if_flags & IFF_RUNNING) {
2350 		pq3etsec_rxq_produce(sc, &sc->sc_rxq);
2351 		etsec_write(sc, IMASK, sc->sc_imask);
2352 	} else {
2353 		KASSERT((soft_flags & SOFT_RXBSY) == 0);
2354 	}
2355 
2356 	mutex_exit(sc->sc_lock);
2357 }
2358 
2359 static void
2360 pq3etsec_mii_tick(void *arg)
2361 {
2362 	struct pq3etsec_softc * const sc = arg;
2363 	mutex_enter(sc->sc_lock);
2364 	callout_ack(&sc->sc_mii_callout);
2365 	sc->sc_ev_mii_ticks.ev_count++;
2366 #ifdef DEBUG
2367 	uint64_t now = mftb();
2368 	if (now - sc->sc_mii_last_tick < cpu_timebase - 5000) {
2369 		aprint_debug_dev(sc->sc_dev, "%s: diff=%"PRIu64"\n",
2370 		    __func__, now - sc->sc_mii_last_tick);
2371 		callout_stop(&sc->sc_mii_callout);
2372 	}
2373 #endif
2374 	mii_tick(&sc->sc_mii);
2375 	int s = splnet();
2376 	if (sc->sc_soft_flags & SOFT_RESET)
2377 		softint_schedule(sc->sc_soft_ih);
2378 	splx(s);
2379 	callout_schedule(&sc->sc_mii_callout, hz);
2380 	sc->sc_mii_last_tick = now;
2381 	mutex_exit(sc->sc_lock);
2382 }
2383