xref: /netbsd-src/sys/arch/powerpc/booke/dev/pq3etsec.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: pq3etsec.c,v 1.35 2018/07/11 05:25:45 maxv Exp $	*/
2 /*-
3  * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to The NetBSD Foundation
7  * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8  * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9  *
10  * This material is based upon work supported by the Defense Advanced Research
11  * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12  * Contract No. N66001-09-C-2073.
13  * Approved for Public Release, Distribution Unlimited
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 #include "opt_inet.h"
38 #include "opt_mpc85xx.h"
39 #include "opt_multiprocessor.h"
40 #include "opt_net_mpsafe.h"
41 
42 #include <sys/cdefs.h>
43 
44 __KERNEL_RCSID(0, "$NetBSD: pq3etsec.c,v 1.35 2018/07/11 05:25:45 maxv Exp $");
45 
46 #include <sys/param.h>
47 #include <sys/cpu.h>
48 #include <sys/device.h>
49 #include <sys/mbuf.h>
50 #include <sys/ioctl.h>
51 #include <sys/intr.h>
52 #include <sys/bus.h>
53 #include <sys/kernel.h>
54 #include <sys/kmem.h>
55 #include <sys/proc.h>
56 #include <sys/atomic.h>
57 #include <sys/callout.h>
58 #include <sys/sysctl.h>
59 
60 #include <net/if.h>
61 #include <net/if_dl.h>
62 #include <net/if_ether.h>
63 #include <net/if_media.h>
64 
65 #include <dev/mii/miivar.h>
66 
67 #include <net/bpf.h>
68 
69 #ifdef INET
70 #include <netinet/in.h>
71 #include <netinet/in_systm.h>
72 #include <netinet/ip.h>
73 #include <netinet/in_offload.h>
74 #endif /* INET */
75 #ifdef INET6
76 #include <netinet6/in6.h>
77 #include <netinet/ip6.h>
78 #endif
79 #include <netinet6/in6_offload.h>
80 
81 #include <powerpc/spr.h>
82 #include <powerpc/booke/spr.h>
83 
84 #include <powerpc/booke/cpuvar.h>
85 #include <powerpc/booke/e500var.h>
86 #include <powerpc/booke/e500reg.h>
87 #include <powerpc/booke/etsecreg.h>
88 
89 #define	M_HASFCB		M_LINK2	/* tx packet has FCB prepended */
90 
91 #define	ETSEC_MAXTXMBUFS	30
92 #define	ETSEC_NTXSEGS		30
93 #define	ETSEC_MAXRXMBUFS	511
94 #define	ETSEC_MINRXMBUFS	32
95 #define	ETSEC_NRXSEGS		1
96 
97 #define	IFCAP_RCTRL_IPCSEN	IFCAP_CSUM_IPv4_Rx
98 #define	IFCAP_RCTRL_TUCSEN	(IFCAP_CSUM_TCPv4_Rx\
99 				 |IFCAP_CSUM_UDPv4_Rx\
100 				 |IFCAP_CSUM_TCPv6_Rx\
101 				 |IFCAP_CSUM_UDPv6_Rx)
102 
103 #define	IFCAP_TCTRL_IPCSEN	IFCAP_CSUM_IPv4_Tx
104 #define	IFCAP_TCTRL_TUCSEN	(IFCAP_CSUM_TCPv4_Tx\
105 				 |IFCAP_CSUM_UDPv4_Tx\
106 				 |IFCAP_CSUM_TCPv6_Tx\
107 				 |IFCAP_CSUM_UDPv6_Tx)
108 
109 #define	IFCAP_ETSEC		(IFCAP_RCTRL_IPCSEN|IFCAP_RCTRL_TUCSEN\
110 				 |IFCAP_TCTRL_IPCSEN|IFCAP_TCTRL_TUCSEN)
111 
112 #define	M_CSUM_IP	(M_CSUM_CIP|M_CSUM_CTU)
113 #define	M_CSUM_IP6	(M_CSUM_TCPv6|M_CSUM_UDPv6)
114 #define	M_CSUM_TUP	(M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TCPv6|M_CSUM_UDPv6)
115 #define	M_CSUM_UDP	(M_CSUM_UDPv4|M_CSUM_UDPv6)
116 #define	M_CSUM_IP4	(M_CSUM_IPv4|M_CSUM_UDPv4|M_CSUM_TCPv4)
117 #define	M_CSUM_CIP	(M_CSUM_IPv4)
118 #define	M_CSUM_CTU	(M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TCPv6|M_CSUM_UDPv6)
119 
120 struct pq3etsec_txqueue {
121 	bus_dmamap_t txq_descmap;
122 	volatile struct txbd *txq_consumer;
123 	volatile struct txbd *txq_producer;
124 	volatile struct txbd *txq_first;
125 	volatile struct txbd *txq_last;
126 	struct ifqueue txq_mbufs;
127 	struct mbuf *txq_next;
128 #ifdef ETSEC_DEBUG
129 	struct mbuf *txq_lmbufs[512];
130 #endif
131 	uint32_t txq_qmask;
132 	uint32_t txq_free;
133 	uint32_t txq_threshold;
134 	uint32_t txq_lastintr;
135 	bus_size_t txq_reg_tbase;
136 	bus_dma_segment_t txq_descmap_seg;
137 };
138 
139 struct pq3etsec_rxqueue {
140 	bus_dmamap_t rxq_descmap;
141 	volatile struct rxbd *rxq_consumer;
142 	volatile struct rxbd *rxq_producer;
143 	volatile struct rxbd *rxq_first;
144 	volatile struct rxbd *rxq_last;
145 	struct mbuf *rxq_mhead;
146 	struct mbuf **rxq_mtail;
147 	struct mbuf *rxq_mconsumer;
148 #ifdef ETSEC_DEBUG
149 	struct mbuf *rxq_mbufs[512];
150 #endif
151 	uint32_t rxq_qmask;
152 	uint32_t rxq_inuse;
153 	uint32_t rxq_threshold;
154 	bus_size_t rxq_reg_rbase;
155 	bus_size_t rxq_reg_rbptr;
156 	bus_dma_segment_t rxq_descmap_seg;
157 };
158 
159 struct pq3etsec_mapcache {
160 	u_int dmc_nmaps;
161 	u_int dmc_maxseg;
162 	u_int dmc_maxmaps;
163 	u_int dmc_maxmapsize;
164 	bus_dmamap_t dmc_maps[0];
165 };
166 
167 struct pq3etsec_softc {
168 	device_t sc_dev;
169 	device_t sc_mdio_dev;
170 	struct ethercom sc_ec;
171 #define sc_if		sc_ec.ec_if
172 	struct mii_data sc_mii;
173 	bus_space_tag_t sc_bst;
174 	bus_space_handle_t sc_bsh;
175 	bus_space_handle_t sc_mdio_bsh;
176 	bus_dma_tag_t sc_dmat;
177 	int sc_phy_addr;
178 	prop_dictionary_t sc_intrmap;
179 	uint32_t sc_intrmask;
180 
181 	uint32_t sc_soft_flags;
182 #define	SOFT_RESET		0x0001
183 #define	SOFT_RXINTR		0x0010
184 #define	SOFT_RXBSY		0x0020
185 #define	SOFT_TXINTR		0x0100
186 #define	SOFT_TXERROR		0x0200
187 
188 	struct pq3etsec_txqueue sc_txq;
189 	struct pq3etsec_rxqueue sc_rxq;
190 	uint32_t sc_txerrors;
191 	uint32_t sc_rxerrors;
192 
193 	size_t sc_rx_adjlen;
194 
195 	/*
196 	 * Copies of various ETSEC registers.
197 	 */
198 	uint32_t sc_imask;
199 	uint32_t sc_maccfg1;
200 	uint32_t sc_maccfg2;
201 	uint32_t sc_maxfrm;
202 	uint32_t sc_ecntrl;
203 	uint32_t sc_dmactrl;
204 	uint32_t sc_macstnaddr1;
205 	uint32_t sc_macstnaddr2;
206 	uint32_t sc_tctrl;
207 	uint32_t sc_rctrl;
208 	uint32_t sc_gaddr[16];
209 	uint64_t sc_macaddrs[15];
210 
211 	void *sc_tx_ih;
212 	void *sc_rx_ih;
213 	void *sc_error_ih;
214 	void *sc_soft_ih;
215 
216 	kmutex_t *sc_lock;
217 	kmutex_t *sc_hwlock;
218 
219 	struct evcnt sc_ev_tx_stall;
220 	struct evcnt sc_ev_tx_intr;
221 	struct evcnt sc_ev_rx_stall;
222 	struct evcnt sc_ev_rx_intr;
223 	struct evcnt sc_ev_error_intr;
224 	struct evcnt sc_ev_soft_intr;
225 	struct evcnt sc_ev_tx_pause;
226 	struct evcnt sc_ev_rx_pause;
227 	struct evcnt sc_ev_mii_ticks;
228 
229 	struct callout sc_mii_callout;
230 	uint64_t sc_mii_last_tick;
231 
232 	struct ifqueue sc_rx_bufcache;
233 	struct pq3etsec_mapcache *sc_rx_mapcache;
234 	struct pq3etsec_mapcache *sc_tx_mapcache;
235 
236 	/* Interrupt Coalescing parameters */
237 	int sc_ic_rx_time;
238 	int sc_ic_rx_count;
239 	int sc_ic_tx_time;
240 	int sc_ic_tx_count;
241 };
242 
243 #define	ETSEC_IC_RX_ENABLED(sc)						\
244 	((sc)->sc_ic_rx_time != 0 && (sc)->sc_ic_rx_count != 0)
245 #define	ETSEC_IC_TX_ENABLED(sc)						\
246 	((sc)->sc_ic_tx_time != 0 && (sc)->sc_ic_tx_count != 0)
247 
248 struct pq3mdio_softc {
249 	device_t mdio_dev;
250 
251 	kmutex_t *mdio_lock;
252 
253 	bus_space_tag_t mdio_bst;
254 	bus_space_handle_t mdio_bsh;
255 };
256 
257 static int pq3etsec_match(device_t, cfdata_t, void *);
258 static void pq3etsec_attach(device_t, device_t, void *);
259 
260 static int pq3mdio_match(device_t, cfdata_t, void *);
261 static void pq3mdio_attach(device_t, device_t, void *);
262 
263 static void pq3etsec_ifstart(struct ifnet *);
264 static void pq3etsec_ifwatchdog(struct ifnet *);
265 static int pq3etsec_ifinit(struct ifnet *);
266 static void pq3etsec_ifstop(struct ifnet *, int);
267 static int pq3etsec_ifioctl(struct ifnet *, u_long, void *);
268 
269 static int pq3etsec_mapcache_create(struct pq3etsec_softc *,
270     struct pq3etsec_mapcache **, size_t, size_t, size_t);
271 static void pq3etsec_mapcache_destroy(struct pq3etsec_softc *,
272     struct pq3etsec_mapcache *);
273 static bus_dmamap_t pq3etsec_mapcache_get(struct pq3etsec_softc *,
274     struct pq3etsec_mapcache *);
275 static void pq3etsec_mapcache_put(struct pq3etsec_softc *,
276     struct pq3etsec_mapcache *, bus_dmamap_t);
277 
278 static int pq3etsec_txq_attach(struct pq3etsec_softc *,
279     struct pq3etsec_txqueue *, u_int);
280 static void pq3etsec_txq_purge(struct pq3etsec_softc *,
281     struct pq3etsec_txqueue *);
282 static void pq3etsec_txq_reset(struct pq3etsec_softc *,
283     struct pq3etsec_txqueue *);
284 static bool pq3etsec_txq_consume(struct pq3etsec_softc *,
285     struct pq3etsec_txqueue *);
286 static bool pq3etsec_txq_produce(struct pq3etsec_softc *,
287     struct pq3etsec_txqueue *, struct mbuf *m);
288 static bool pq3etsec_txq_active_p(struct pq3etsec_softc *,
289     struct pq3etsec_txqueue *);
290 
291 static int pq3etsec_rxq_attach(struct pq3etsec_softc *,
292     struct pq3etsec_rxqueue *, u_int);
293 static bool pq3etsec_rxq_produce(struct pq3etsec_softc *,
294     struct pq3etsec_rxqueue *);
295 static void pq3etsec_rxq_purge(struct pq3etsec_softc *,
296     struct pq3etsec_rxqueue *, bool);
297 static void pq3etsec_rxq_reset(struct pq3etsec_softc *,
298     struct pq3etsec_rxqueue *);
299 
300 static void pq3etsec_mc_setup(struct pq3etsec_softc *);
301 
302 static void pq3etsec_mii_tick(void *);
303 static int pq3etsec_rx_intr(void *);
304 static int pq3etsec_tx_intr(void *);
305 static int pq3etsec_error_intr(void *);
306 static void pq3etsec_soft_intr(void *);
307 
308 static void pq3etsec_set_ic_rx(struct pq3etsec_softc *);
309 static void pq3etsec_set_ic_tx(struct pq3etsec_softc *);
310 
311 static void pq3etsec_sysctl_setup(struct sysctllog **, struct pq3etsec_softc *);
312 
313 CFATTACH_DECL_NEW(pq3etsec, sizeof(struct pq3etsec_softc),
314     pq3etsec_match, pq3etsec_attach, NULL, NULL);
315 
316 CFATTACH_DECL_NEW(pq3mdio_tsec, sizeof(struct pq3mdio_softc),
317     pq3mdio_match, pq3mdio_attach, NULL, NULL);
318 
319 CFATTACH_DECL_NEW(pq3mdio_cpunode, sizeof(struct pq3mdio_softc),
320     pq3mdio_match, pq3mdio_attach, NULL, NULL);
321 
322 static inline uint32_t
323 etsec_mdio_read(struct pq3mdio_softc *mdio, bus_size_t off)
324 {
325 	return bus_space_read_4(mdio->mdio_bst, mdio->mdio_bsh, off);
326 }
327 
328 static inline void
329 etsec_mdio_write(struct pq3mdio_softc *mdio, bus_size_t off, uint32_t data)
330 {
331 	bus_space_write_4(mdio->mdio_bst, mdio->mdio_bsh, off, data);
332 }
333 
334 static inline uint32_t
335 etsec_read(struct pq3etsec_softc *sc, bus_size_t off)
336 {
337 	return bus_space_read_4(sc->sc_bst, sc->sc_bsh, off);
338 }
339 
340 static int
341 pq3mdio_find(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
342 {
343 	return strcmp(cf->cf_name, "mdio") == 0;
344 }
345 
346 static int
347 pq3mdio_match(device_t parent, cfdata_t cf, void *aux)
348 {
349 	const uint16_t svr = (mfspr(SPR_SVR) & ~0x80000) >> 16;
350 	const bool p1025_p = (svr == (SVR_P1025v1 >> 16)
351 	    || svr == (SVR_P1016v1 >> 16));
352 
353 	if (device_is_a(parent, "cpunode")) {
354 		if (!p1025_p
355 		    || !e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
356 			return 0;
357 
358 		return 1;
359 	}
360 
361 	if (device_is_a(parent, "tsec")) {
362 		if (p1025_p
363 		    || !e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
364 			return 0;
365 
366 		return 1;
367 	}
368 
369 	return 0;
370 }
371 
372 static void
373 pq3mdio_attach(device_t parent, device_t self, void *aux)
374 {
375 	struct pq3mdio_softc * const mdio = device_private(self);
376 	struct cpunode_attach_args * const cna = aux;
377 	struct cpunode_locators * const cnl = &cna->cna_locs;
378 
379 	mdio->mdio_dev = self;
380 	mdio->mdio_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
381 
382 	if (device_is_a(parent, "cpunode")) {
383 		struct cpunode_softc * const psc = device_private(parent);
384 		psc->sc_children |= cna->cna_childmask;
385 
386 		mdio->mdio_bst = cna->cna_memt;
387 		if (bus_space_map(mdio->mdio_bst, cnl->cnl_addr,
388 				cnl->cnl_size, 0, &mdio->mdio_bsh) != 0) {
389 			aprint_error(": error mapping registers @ %#x\n",
390 			    cnl->cnl_addr);
391 			return;
392 		}
393 	} else {
394 		struct pq3etsec_softc * const sc = device_private(parent);
395 
396 		KASSERT(device_is_a(parent, "tsec"));
397 		KASSERTMSG(cnl->cnl_addr == ETSEC1_BASE
398 		    || cnl->cnl_addr == ETSEC2_BASE
399 		    || cnl->cnl_addr == ETSEC3_BASE
400 		    || cnl->cnl_addr == ETSEC4_BASE,
401 		    "unknown tsec addr %x", cnl->cnl_addr);
402 
403 		mdio->mdio_bst = sc->sc_bst;
404 		mdio->mdio_bsh = sc->sc_bsh;
405 	}
406 
407 	aprint_normal("\n");
408 }
409 
410 static int
411 pq3mdio_mii_readreg(device_t self, int phy, int reg)
412 {
413 	struct pq3mdio_softc * const mdio = device_private(self);
414 	uint32_t miimcom = etsec_mdio_read(mdio, MIIMCOM);
415 
416 	mutex_enter(mdio->mdio_lock);
417 
418 	etsec_mdio_write(mdio, MIIMADD,
419 	    __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
420 
421 	etsec_mdio_write(mdio, MIIMCOM, 0);	/* clear any past bits */
422 	etsec_mdio_write(mdio, MIIMCOM, MIIMCOM_READ);
423 
424 	while (etsec_mdio_read(mdio, MIIMIND) != 0) {
425 			delay(1);
426 	}
427 	int data = etsec_mdio_read(mdio, MIIMSTAT);
428 
429 	if (miimcom == MIIMCOM_SCAN)
430 		etsec_mdio_write(mdio, MIIMCOM, miimcom);
431 
432 #if 0
433 	aprint_normal_dev(mdio->mdio_dev, "%s: phy %d reg %d: %#x\n",
434 	    __func__, phy, reg, data);
435 #endif
436 	mutex_exit(mdio->mdio_lock);
437 	return data;
438 }
439 
440 static void
441 pq3mdio_mii_writereg(device_t self, int phy, int reg, int data)
442 {
443 	struct pq3mdio_softc * const mdio = device_private(self);
444 	uint32_t miimcom = etsec_mdio_read(mdio, MIIMCOM);
445 
446 #if 0
447 	aprint_normal_dev(mdio->mdio_dev, "%s: phy %d reg %d: %#x\n",
448 	    __func__, phy, reg, data);
449 #endif
450 
451 	mutex_enter(mdio->mdio_lock);
452 
453 	etsec_mdio_write(mdio, MIIMADD,
454 	    __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
455 	etsec_mdio_write(mdio, MIIMCOM, 0);	/* clear any past bits */
456 	etsec_mdio_write(mdio, MIIMCON, data);
457 
458 	int timo = 1000;	/* 1ms */
459 	while ((etsec_mdio_read(mdio, MIIMIND) & MIIMIND_BUSY) && --timo > 0) {
460 			delay(1);
461 	}
462 
463 	if (miimcom == MIIMCOM_SCAN)
464 		etsec_mdio_write(mdio, MIIMCOM, miimcom);
465 
466 	mutex_exit(mdio->mdio_lock);
467 }
468 
469 static inline void
470 etsec_write(struct pq3etsec_softc *sc, bus_size_t off, uint32_t data)
471 {
472 	bus_space_write_4(sc->sc_bst, sc->sc_bsh, off, data);
473 }
474 
475 static void
476 pq3etsec_mii_statchg(struct ifnet *ifp)
477 {
478 	struct pq3etsec_softc * const sc = ifp->if_softc;
479 	struct mii_data * const mii = &sc->sc_mii;
480 
481 	uint32_t maccfg1 = sc->sc_maccfg1;
482 	uint32_t maccfg2 = sc->sc_maccfg2;
483 	uint32_t ecntrl = sc->sc_ecntrl;
484 
485 	maccfg1 &= ~(MACCFG1_TX_FLOW|MACCFG1_RX_FLOW);
486 	maccfg2 &= ~(MACCFG2_IFMODE|MACCFG2_FD);
487 
488 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
489 		maccfg2 |= MACCFG2_FD;
490 	}
491 
492 	/*
493 	 * Now deal with the flow control bits.
494 	 */
495 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO
496 	    && (mii->mii_media_active & IFM_ETH_FMASK)) {
497 		if (mii->mii_media_active & IFM_ETH_RXPAUSE)
498 			maccfg1 |= MACCFG1_RX_FLOW;
499 		if (mii->mii_media_active & IFM_ETH_TXPAUSE)
500 			maccfg1 |= MACCFG1_TX_FLOW;
501 	}
502 
503 	/*
504 	 * Now deal with the speed.
505 	 */
506 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
507 		maccfg2 |= MACCFG2_IFMODE_GMII;
508 	} else {
509 		maccfg2 |= MACCFG2_IFMODE_MII;
510 		ecntrl &= ~ECNTRL_R100M;
511 		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_10_T) {
512 			ecntrl |= ECNTRL_R100M;
513 		}
514 	}
515 
516 	/*
517 	 * If things are different, re-init things.
518 	 */
519 	if (maccfg1 != sc->sc_maccfg1
520 	    || maccfg2 != sc->sc_maccfg2
521 	    || ecntrl != sc->sc_ecntrl) {
522 		if (sc->sc_if.if_flags & IFF_RUNNING)
523 			atomic_or_uint(&sc->sc_soft_flags, SOFT_RESET);
524 		sc->sc_maccfg1 = maccfg1;
525 		sc->sc_maccfg2 = maccfg2;
526 		sc->sc_ecntrl = ecntrl;
527 	}
528 }
529 
530 #if 0
531 static void
532 pq3etsec_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
533 {
534 	struct pq3etsec_softc * const sc = ifp->if_softc;
535 
536 	mii_pollstat(&sc->sc_mii);
537 	ether_mediastatus(ifp, ifmr);
538         ifmr->ifm_status = sc->sc_mii.mii_media_status;
539         ifmr->ifm_active = sc->sc_mii.mii_media_active;
540 }
541 
542 static int
543 pq3etsec_mediachange(struct ifnet *ifp)
544 {
545 	struct pq3etsec_softc * const sc = ifp->if_softc;
546 
547 	if ((ifp->if_flags & IFF_UP) == 0)
548 		return 0;
549 
550 	int rv = mii_mediachg(&sc->sc_mii);
551 	return (rv == ENXIO) ? 0 : rv;
552 }
553 #endif
554 
555 static int
556 pq3etsec_match(device_t parent, cfdata_t cf, void *aux)
557 {
558 
559 	if (!e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
560 		return 0;
561 
562 	return 1;
563 }
564 
565 static void
566 pq3etsec_attach(device_t parent, device_t self, void *aux)
567 {
568 	struct cpunode_softc * const psc = device_private(parent);
569 	struct pq3etsec_softc * const sc = device_private(self);
570 	struct cpunode_attach_args * const cna = aux;
571 	struct cpunode_locators * const cnl = &cna->cna_locs;
572 	cfdata_t cf = device_cfdata(self);
573 	int error;
574 
575 	psc->sc_children |= cna->cna_childmask;
576 	sc->sc_dev = self;
577 	sc->sc_bst = cna->cna_memt;
578 	sc->sc_dmat = &booke_bus_dma_tag;
579 
580 	/*
581 	 * Pull out the mdio bus and phy we are supposed to use.
582 	 */
583 	const int mdio = cf->cf_loc[CPUNODECF_MDIO];
584 	const int phy = cf->cf_loc[CPUNODECF_PHY];
585 	if (mdio != CPUNODECF_MDIO_DEFAULT)
586 		aprint_normal(" mdio %d", mdio);
587 
588 	/*
589 	 * See if the phy is in the config file...
590 	 */
591 	if (phy != CPUNODECF_PHY_DEFAULT) {
592 		sc->sc_phy_addr = phy;
593 	} else {
594 		unsigned char prop_name[20];
595 		snprintf(prop_name, sizeof(prop_name), "tsec%u-phy-addr",
596 		    cnl->cnl_instance);
597 		sc->sc_phy_addr = board_info_get_number(prop_name);
598 	}
599 	if (sc->sc_phy_addr != MII_PHY_ANY)
600 		aprint_normal(" phy %d", sc->sc_phy_addr);
601 
602 	error = bus_space_map(sc->sc_bst, cnl->cnl_addr, cnl->cnl_size, 0,
603 	    &sc->sc_bsh);
604 	if (error) {
605 		aprint_error(": error mapping registers: %d\n", error);
606 		return;
607 	}
608 
609 	/*
610 	 * Assume firmware has aready set the mac address and fetch it
611 	 * before we reinit it.
612 	 */
613 	sc->sc_macstnaddr2 = etsec_read(sc, MACSTNADDR2);
614 	sc->sc_macstnaddr1 = etsec_read(sc, MACSTNADDR1);
615 	sc->sc_rctrl = RCTRL_DEFAULT;
616 	sc->sc_ecntrl = etsec_read(sc, ECNTRL);
617 	sc->sc_maccfg1 = etsec_read(sc, MACCFG1);
618 	sc->sc_maccfg2 = etsec_read(sc, MACCFG2) | MACCFG2_DEFAULT;
619 
620 	if (sc->sc_macstnaddr1 == 0 && sc->sc_macstnaddr2 == 0) {
621 		size_t len;
622 		const uint8_t *mac_addr =
623 		    board_info_get_data("tsec-mac-addr-base", &len);
624 		KASSERT(len == ETHER_ADDR_LEN);
625 		sc->sc_macstnaddr2 =
626 		    (mac_addr[1] << 24)
627 		    | (mac_addr[0] << 16);
628 		sc->sc_macstnaddr1 =
629 		    ((mac_addr[5] + cnl->cnl_instance - 1) << 24)
630 		    | (mac_addr[4] << 16)
631 		    | (mac_addr[3] << 8)
632 		    | (mac_addr[2] << 0);
633 #if 0
634 		aprint_error(": mac-address unknown\n");
635 		return;
636 #endif
637 	}
638 
639 	sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
640 	sc->sc_hwlock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_VM);
641 
642 	callout_init(&sc->sc_mii_callout, CALLOUT_MPSAFE);
643 	callout_setfunc(&sc->sc_mii_callout, pq3etsec_mii_tick, sc);
644 
645 	/* Disable interrupts */
646 	etsec_write(sc, IMASK, 0);
647 
648 	error = pq3etsec_rxq_attach(sc, &sc->sc_rxq, 0);
649 	if (error) {
650 		aprint_error(": failed to init rxq: %d\n", error);
651 		goto fail_1;
652 	}
653 
654 	error = pq3etsec_txq_attach(sc, &sc->sc_txq, 0);
655 	if (error) {
656 		aprint_error(": failed to init txq: %d\n", error);
657 		goto fail_2;
658 	}
659 
660 	error = pq3etsec_mapcache_create(sc, &sc->sc_rx_mapcache,
661 	    ETSEC_MAXRXMBUFS, MCLBYTES, ETSEC_NRXSEGS);
662 	if (error) {
663 		aprint_error(": failed to allocate rx dmamaps: %d\n", error);
664 		goto fail_3;
665 	}
666 
667 	error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
668 	    ETSEC_MAXTXMBUFS, MCLBYTES, ETSEC_NTXSEGS);
669 	if (error) {
670 		aprint_error(": failed to allocate tx dmamaps: %d\n", error);
671 		goto fail_4;
672 	}
673 
674 	sc->sc_tx_ih = intr_establish(cnl->cnl_intrs[0], IPL_VM, IST_ONCHIP,
675 	    pq3etsec_tx_intr, sc);
676 	if (sc->sc_tx_ih == NULL) {
677 		aprint_error(": failed to establish tx interrupt: %d\n",
678 		    cnl->cnl_intrs[0]);
679 		goto fail_5;
680 	}
681 
682 	sc->sc_rx_ih = intr_establish(cnl->cnl_intrs[1], IPL_VM, IST_ONCHIP,
683 	    pq3etsec_rx_intr, sc);
684 	if (sc->sc_rx_ih == NULL) {
685 		aprint_error(": failed to establish rx interrupt: %d\n",
686 		    cnl->cnl_intrs[1]);
687 		goto fail_6;
688 	}
689 
690 	sc->sc_error_ih = intr_establish(cnl->cnl_intrs[2], IPL_VM, IST_ONCHIP,
691 	    pq3etsec_error_intr, sc);
692 	if (sc->sc_error_ih == NULL) {
693 		aprint_error(": failed to establish error interrupt: %d\n",
694 		    cnl->cnl_intrs[2]);
695 		goto fail_7;
696 	}
697 
698 	int softint_flags = SOFTINT_NET;
699 #if !defined(MULTIPROCESSOR) || defined(NET_MPSAFE)
700 	softint_flags |= SOFTINT_MPSAFE;
701 #endif	/* !MULTIPROCESSOR || NET_MPSAFE */
702 	sc->sc_soft_ih = softint_establish(softint_flags,
703 	    pq3etsec_soft_intr, sc);
704 	if (sc->sc_soft_ih == NULL) {
705 		aprint_error(": failed to establish soft interrupt\n");
706 		goto fail_8;
707 	}
708 
709 	/*
710 	 * If there was no MDIO
711 	 */
712 	if (mdio == CPUNODECF_MDIO_DEFAULT) {
713 		aprint_normal("\n");
714 		cfdata_t mdio_cf = config_search_ia(pq3mdio_find, self, NULL, cna);
715 		if (mdio_cf != NULL) {
716 			sc->sc_mdio_dev = config_attach(self, mdio_cf, cna, NULL);
717 		}
718 	} else {
719 		sc->sc_mdio_dev = device_find_by_driver_unit("mdio", mdio);
720 		if (sc->sc_mdio_dev == NULL) {
721 			aprint_error(": failed to locate mdio device\n");
722 			goto fail_9;
723 		}
724 		aprint_normal("\n");
725 	}
726 
727 	etsec_write(sc, ATTR, ATTR_DEFAULT);
728 	etsec_write(sc, ATTRELI, ATTRELI_DEFAULT);
729 
730 	/* Enable interrupt coalesing */
731 	sc->sc_ic_rx_time = 768;
732 	sc->sc_ic_rx_count = 16;
733 	sc->sc_ic_tx_time = 768;
734 	sc->sc_ic_tx_count = 16;
735 	pq3etsec_set_ic_rx(sc);
736 	pq3etsec_set_ic_tx(sc);
737 
738 	char enaddr[ETHER_ADDR_LEN] = {
739 	    [0] = sc->sc_macstnaddr2 >> 16,
740 	    [1] = sc->sc_macstnaddr2 >> 24,
741 	    [2] = sc->sc_macstnaddr1 >>  0,
742 	    [3] = sc->sc_macstnaddr1 >>  8,
743 	    [4] = sc->sc_macstnaddr1 >> 16,
744 	    [5] = sc->sc_macstnaddr1 >> 24,
745 	};
746 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
747 	   ether_sprintf(enaddr));
748 
749 	const char * const xname = device_xname(sc->sc_dev);
750 	struct ethercom * const ec = &sc->sc_ec;
751 	struct ifnet * const ifp = &ec->ec_if;
752 
753 	ec->ec_mii = &sc->sc_mii;
754 
755 	sc->sc_mii.mii_ifp = ifp;
756 	sc->sc_mii.mii_readreg = pq3mdio_mii_readreg;
757 	sc->sc_mii.mii_writereg = pq3mdio_mii_writereg;
758 	sc->sc_mii.mii_statchg = pq3etsec_mii_statchg;
759 
760 	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
761 	    ether_mediastatus);
762 
763 	if (sc->sc_mdio_dev != NULL && sc->sc_phy_addr < 32) {
764 		mii_attach(sc->sc_mdio_dev, &sc->sc_mii, 0xffffffff,
765 		    sc->sc_phy_addr, MII_OFFSET_ANY, MIIF_DOPAUSE);
766 
767 		if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
768 			ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
769 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
770 		} else {
771 			callout_schedule(&sc->sc_mii_callout, hz);
772 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
773 		}
774 	} else {
775 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
776 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_1000_T|IFM_FDX);
777 	}
778 
779 	ec->ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING
780 	    | ETHERCAP_JUMBO_MTU;
781 
782 	strlcpy(ifp->if_xname, xname, IFNAMSIZ);
783 	ifp->if_softc = sc;
784 	ifp->if_capabilities = IFCAP_ETSEC;
785 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
786 	ifp->if_ioctl = pq3etsec_ifioctl;
787 	ifp->if_start = pq3etsec_ifstart;
788 	ifp->if_watchdog = pq3etsec_ifwatchdog;
789 	ifp->if_init = pq3etsec_ifinit;
790 	ifp->if_stop = pq3etsec_ifstop;
791 	IFQ_SET_READY(&ifp->if_snd);
792 
793 	/*
794 	 * Attach the interface.
795 	 */
796 	error = if_initialize(ifp);
797 	if (error != 0) {
798 		aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
799 		    error);
800 		goto fail_10;
801 	}
802 	pq3etsec_sysctl_setup(NULL, sc);
803 	ether_ifattach(ifp, enaddr);
804 	if_register(ifp);
805 
806 	pq3etsec_ifstop(ifp, true);
807 
808 	evcnt_attach_dynamic(&sc->sc_ev_rx_stall, EVCNT_TYPE_MISC,
809 	    NULL, xname, "rx stall");
810 	evcnt_attach_dynamic(&sc->sc_ev_tx_stall, EVCNT_TYPE_MISC,
811 	    NULL, xname, "tx stall");
812 	evcnt_attach_dynamic(&sc->sc_ev_tx_intr, EVCNT_TYPE_INTR,
813 	    NULL, xname, "tx intr");
814 	evcnt_attach_dynamic(&sc->sc_ev_rx_intr, EVCNT_TYPE_INTR,
815 	    NULL, xname, "rx intr");
816 	evcnt_attach_dynamic(&sc->sc_ev_error_intr, EVCNT_TYPE_INTR,
817 	    NULL, xname, "error intr");
818 	evcnt_attach_dynamic(&sc->sc_ev_soft_intr, EVCNT_TYPE_INTR,
819 	    NULL, xname, "soft intr");
820 	evcnt_attach_dynamic(&sc->sc_ev_tx_pause, EVCNT_TYPE_MISC,
821 	    NULL, xname, "tx pause");
822 	evcnt_attach_dynamic(&sc->sc_ev_rx_pause, EVCNT_TYPE_MISC,
823 	    NULL, xname, "rx pause");
824 	evcnt_attach_dynamic(&sc->sc_ev_mii_ticks, EVCNT_TYPE_MISC,
825 	    NULL, xname, "mii ticks");
826 	return;
827 
828 fail_10:
829 	ifmedia_removeall(&sc->sc_mii.mii_media);
830 	mii_detach(&sc->sc_mii, sc->sc_phy_addr, MII_OFFSET_ANY);
831 fail_9:
832 	softint_disestablish(sc->sc_soft_ih);
833 fail_8:
834 	intr_disestablish(sc->sc_error_ih);
835 fail_7:
836 	intr_disestablish(sc->sc_rx_ih);
837 fail_6:
838 	intr_disestablish(sc->sc_tx_ih);
839 fail_5:
840 	pq3etsec_mapcache_destroy(sc, sc->sc_tx_mapcache);
841 fail_4:
842 	pq3etsec_mapcache_destroy(sc, sc->sc_rx_mapcache);
843 fail_3:
844 #if 0 /* notyet */
845 	pq3etsec_txq_detach(sc);
846 #endif
847 fail_2:
848 #if 0 /* notyet */
849 	pq3etsec_rxq_detach(sc);
850 #endif
851 fail_1:
852 	callout_destroy(&sc->sc_mii_callout);
853 	mutex_obj_free(sc->sc_lock);
854 	mutex_obj_free(sc->sc_hwlock);
855 	bus_space_unmap(sc->sc_bst, sc->sc_bsh, cnl->cnl_size);
856 }
857 
858 static uint64_t
859 pq3etsec_macaddr_create(const uint8_t *lladdr)
860 {
861 	uint64_t macaddr = 0;
862 
863 	lladdr += ETHER_ADDR_LEN;
864 	for (u_int i = ETHER_ADDR_LEN; i-- > 0; ) {
865 		macaddr = (macaddr << 8) | *--lladdr;
866 	}
867 	return macaddr << 16;
868 }
869 
870 static int
871 pq3etsec_ifinit(struct ifnet *ifp)
872 {
873 	struct pq3etsec_softc * const sc = ifp->if_softc;
874 	int error = 0;
875 
876 	sc->sc_maxfrm = max(ifp->if_mtu + 32, MCLBYTES);
877 	if (ifp->if_mtu > ETHERMTU_JUMBO)
878 		return error;
879 
880 	KASSERT(ifp->if_flags & IFF_UP);
881 
882 	/*
883 	 * Stop the interface (steps 1 to 4 in the Soft Reset and
884 	 * Reconfigurating Procedure.
885 	 */
886 	pq3etsec_ifstop(ifp, 0);
887 
888 	/*
889 	 * If our frame size has changed (or it's our first time through)
890 	 * destroy the existing transmit mapcache.
891 	 */
892 	if (sc->sc_tx_mapcache != NULL
893 	    && sc->sc_maxfrm != sc->sc_tx_mapcache->dmc_maxmapsize) {
894 		pq3etsec_mapcache_destroy(sc, sc->sc_tx_mapcache);
895 		sc->sc_tx_mapcache = NULL;
896 	}
897 
898 	if (sc->sc_tx_mapcache == NULL) {
899 		error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
900 		    ETSEC_MAXTXMBUFS, sc->sc_maxfrm, ETSEC_NTXSEGS);
901 		if (error)
902 			return error;
903 	}
904 
905 	sc->sc_ev_mii_ticks.ev_count++;
906 	mii_tick(&sc->sc_mii);
907 
908 	if (ifp->if_flags & IFF_PROMISC) {
909 		sc->sc_rctrl |= RCTRL_PROM;
910 	} else {
911 		sc->sc_rctrl &= ~RCTRL_PROM;
912 	}
913 
914 	uint32_t rctrl_prsdep = 0;
915 	sc->sc_rctrl &= ~(RCTRL_IPCSEN|RCTRL_TUCSEN|RCTRL_VLEX|RCTRL_PRSDEP);
916 	if (VLAN_ATTACHED(&sc->sc_ec)) {
917 		sc->sc_rctrl |= RCTRL_VLEX;
918 		rctrl_prsdep = RCTRL_PRSDEP_L2;
919 	}
920 	if (ifp->if_capenable & IFCAP_RCTRL_IPCSEN) {
921 		sc->sc_rctrl |= RCTRL_IPCSEN;
922 		rctrl_prsdep = RCTRL_PRSDEP_L3;
923 	}
924 	if (ifp->if_capenable & IFCAP_RCTRL_TUCSEN) {
925 		sc->sc_rctrl |= RCTRL_TUCSEN;
926 		rctrl_prsdep = RCTRL_PRSDEP_L4;
927 	}
928 	sc->sc_rctrl |= rctrl_prsdep;
929 #if 0
930 	if (sc->sc_rctrl & (RCTRL_IPCSEN|RCTRL_TUCSEN|RCTRL_VLEX|RCTRL_PRSDEP))
931 		aprint_normal_dev(sc->sc_dev,
932 		    "rctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlex=%"PRIuMAX" prsdep=%"PRIuMAX"\n",
933 		    sc->sc_rctrl,
934 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_IPCSEN),
935 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_TUCSEN),
936 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_VLEX),
937 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_PRSDEP));
938 #endif
939 
940 	sc->sc_tctrl &= ~(TCTRL_IPCSEN|TCTRL_TUCSEN|TCTRL_VLINS);
941 	if (VLAN_ATTACHED(&sc->sc_ec))		/* is this really true */
942 		sc->sc_tctrl |= TCTRL_VLINS;
943 	if (ifp->if_capenable & IFCAP_TCTRL_IPCSEN)
944 		sc->sc_tctrl |= TCTRL_IPCSEN;
945 	if (ifp->if_capenable & IFCAP_TCTRL_TUCSEN)
946 		sc->sc_tctrl |= TCTRL_TUCSEN;
947 #if 0
948 	if (sc->sc_tctrl & (TCTRL_IPCSEN|TCTRL_TUCSEN|TCTRL_VLINS))
949 		aprint_normal_dev(sc->sc_dev,
950 		    "tctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlins=%"PRIuMAX"\n",
951 		    sc->sc_tctrl,
952 		    __SHIFTOUT(sc->sc_tctrl, TCTRL_IPCSEN),
953 		    __SHIFTOUT(sc->sc_tctrl, TCTRL_TUCSEN),
954 		    __SHIFTOUT(sc->sc_tctrl, TCTRL_VLINS));
955 #endif
956 
957 	sc->sc_maccfg1 &= ~(MACCFG1_TX_EN|MACCFG1_RX_EN);
958 
959 	const uint64_t macstnaddr =
960 	    pq3etsec_macaddr_create(CLLADDR(ifp->if_sadl));
961 
962 	sc->sc_imask = IEVENT_DPE;
963 
964 	/* 5. Load TDBPH, TBASEH, TBASE0-TBASE7 with new Tx BD pointers */
965 	pq3etsec_rxq_reset(sc, &sc->sc_rxq);
966 	pq3etsec_rxq_produce(sc, &sc->sc_rxq);	/* fill with rx buffers */
967 
968 	/* 6. Load RDBPH, RBASEH, RBASE0-RBASE7 with new Rx BD pointers */
969 	pq3etsec_txq_reset(sc, &sc->sc_txq);
970 
971 	/* 7. Setup other MAC registers (MACCFG2, MAXFRM, etc.) */
972 	KASSERT(MACCFG2_PADCRC & sc->sc_maccfg2);
973 	etsec_write(sc, MAXFRM, sc->sc_maxfrm);
974 	etsec_write(sc, MACSTNADDR1, (uint32_t)(macstnaddr >> 32));
975 	etsec_write(sc, MACSTNADDR2, (uint32_t)(macstnaddr >>  0));
976 	etsec_write(sc, MACCFG1, sc->sc_maccfg1);
977 	etsec_write(sc, MACCFG2, sc->sc_maccfg2);
978 	etsec_write(sc, ECNTRL, sc->sc_ecntrl);
979 
980 	/* 8. Setup group address hash table (GADDR0-GADDR15) */
981 	pq3etsec_mc_setup(sc);
982 
983 	/* 9. Setup receive frame filer table (via RQFAR, RQFCR, and RQFPR) */
984 	etsec_write(sc, MRBLR, MCLBYTES);
985 
986 	/* 10. Setup WWR, WOP, TOD bits in DMACTRL register */
987 	sc->sc_dmactrl |= DMACTRL_DEFAULT;
988 	etsec_write(sc, DMACTRL, sc->sc_dmactrl);
989 
990 	/* 11. Enable transmit queues in TQUEUE, and ensure that the transmit scheduling mode is correctly set in TCTRL. */
991 	etsec_write(sc, TQUEUE, TQUEUE_EN0);
992 	sc->sc_imask |= IEVENT_TXF|IEVENT_TXE|IEVENT_TXC;
993 
994 	etsec_write(sc, TCTRL, sc->sc_tctrl);	/* for TOE stuff */
995 
996 	/* 12. Enable receive queues in RQUEUE, */
997 	etsec_write(sc, RQUEUE, RQUEUE_EN0|RQUEUE_EX0);
998 	sc->sc_imask |= IEVENT_RXF|IEVENT_BSY|IEVENT_RXC;
999 
1000 	/*     and optionally set TOE functionality in RCTRL. */
1001 	etsec_write(sc, RCTRL, sc->sc_rctrl);
1002 	sc->sc_rx_adjlen = __SHIFTOUT(sc->sc_rctrl, RCTRL_PAL);
1003 	if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF)
1004 		sc->sc_rx_adjlen += sizeof(struct rxfcb);
1005 
1006 	/* 13. Clear THLT and TXF bits in TSTAT register by writing 1 to them */
1007 	etsec_write(sc, TSTAT, TSTAT_THLT | TSTAT_TXF);
1008 
1009 	/* 14. Clear QHLT and RXF bits in RSTAT register by writing 1 to them.*/
1010 	etsec_write(sc, RSTAT, RSTAT_QHLT | RSTAT_RXF);
1011 
1012 	/* 15. Clear GRS/GTS bits in DMACTRL (do not change other bits) */
1013 	sc->sc_dmactrl &= ~(DMACTRL_GRS|DMACTRL_GTS);
1014 	etsec_write(sc, DMACTRL, sc->sc_dmactrl);
1015 
1016 	/* 16. Enable Tx_EN/Rx_EN in MACCFG1 register */
1017 	etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
1018 	etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
1019 
1020 	sc->sc_soft_flags = 0;
1021 
1022 	etsec_write(sc, IMASK, sc->sc_imask);
1023 
1024 	ifp->if_flags |= IFF_RUNNING;
1025 
1026 	return error;
1027 }
1028 
1029 static void
1030 pq3etsec_ifstop(struct ifnet *ifp, int disable)
1031 {
1032 	struct pq3etsec_softc * const sc = ifp->if_softc;
1033 
1034 	KASSERT(!cpu_intr_p());
1035 	const uint32_t imask_gsc_mask = IEVENT_GTSC|IEVENT_GRSC;
1036 	/*
1037 	 * Clear the GTSC and GRSC from the interrupt mask until
1038 	 * we are ready for them.  Then clear them from IEVENT,
1039 	 * request the graceful shutdown, and then enable the
1040 	 * GTSC and GRSC bits in the mask.  This should cause the
1041 	 * error interrupt to fire which will issue a wakeup to
1042 	 * allow us to resume.
1043 	 */
1044 
1045 	/*
1046 	 * 1. Set GRS/GTS bits in DMACTRL register
1047 	 */
1048 	sc->sc_dmactrl |= DMACTRL_GRS|DMACTRL_GTS;
1049 	etsec_write(sc, IMASK, sc->sc_imask & ~imask_gsc_mask);
1050 	etsec_write(sc, IEVENT, imask_gsc_mask);
1051 	etsec_write(sc, DMACTRL, sc->sc_dmactrl);
1052 
1053 	if (etsec_read(sc, MACCFG1) & (MACCFG1_TX_EN|MACCFG1_RX_EN)) {
1054 		/*
1055 		 * 2. Poll GRSC/GTSC bits in IEVENT register until both are set
1056 		 */
1057 		etsec_write(sc, IMASK, sc->sc_imask | imask_gsc_mask);
1058 
1059 		u_int timo = 1000;
1060 		uint32_t ievent = etsec_read(sc, IEVENT);
1061 		while ((ievent & imask_gsc_mask) != imask_gsc_mask) {
1062 			if (--timo == 0) {
1063 				aprint_error_dev(sc->sc_dev,
1064 				    "WARNING: "
1065 				    "request to stop failed (IEVENT=%#x)\n",
1066 				    ievent);
1067 				break;
1068 			}
1069 			delay(10);
1070 			ievent = etsec_read(sc, IEVENT);
1071 		}
1072 	}
1073 
1074 	/*
1075 	 * Now reset the controller.
1076 	 *
1077 	 * 3. Set SOFT_RESET bit in MACCFG1 register
1078 	 * 4. Clear SOFT_RESET bit in MACCFG1 register
1079 	 */
1080 	etsec_write(sc, MACCFG1, MACCFG1_SOFT_RESET);
1081 	etsec_write(sc, MACCFG1, 0);
1082 	etsec_write(sc, IMASK, 0);
1083 	etsec_write(sc, IEVENT, ~0);
1084 	sc->sc_imask = 0;
1085 	ifp->if_flags &= ~IFF_RUNNING;
1086 
1087 	uint32_t tbipa = etsec_read(sc, TBIPA);
1088 	if (tbipa == sc->sc_phy_addr) {
1089 		aprint_normal_dev(sc->sc_dev, "relocating TBI\n");
1090 		etsec_write(sc, TBIPA, 0x1f);
1091 	}
1092 	uint32_t miimcfg = etsec_read(sc, MIIMCFG);
1093 	etsec_write(sc, MIIMCFG, MIIMCFG_RESET);
1094 	etsec_write(sc, MIIMCFG, miimcfg);
1095 
1096 	/*
1097 	 * Let's consume any remaing transmitted packets.  And if we are
1098 	 * disabling the interface, purge ourselves of any untransmitted
1099 	 * packets.  But don't consume any received packets, just drop them.
1100 	 * If we aren't disabling the interface, save the mbufs in the
1101 	 * receive queue for reuse.
1102 	 */
1103 	pq3etsec_rxq_purge(sc, &sc->sc_rxq, disable);
1104 	pq3etsec_txq_consume(sc, &sc->sc_txq);
1105 	if (disable) {
1106 		pq3etsec_txq_purge(sc, &sc->sc_txq);
1107 		IFQ_PURGE(&ifp->if_snd);
1108 	}
1109 }
1110 
1111 static void
1112 pq3etsec_ifwatchdog(struct ifnet *ifp)
1113 {
1114 }
1115 
1116 static void
1117 pq3etsec_mc_setup(
1118 	struct pq3etsec_softc *sc)
1119 {
1120 	struct ethercom * const ec = &sc->sc_ec;
1121 	struct ifnet * const ifp = &sc->sc_if;
1122 	struct ether_multi *enm;
1123 	struct ether_multistep step;
1124 	uint32_t *gaddr = sc->sc_gaddr + ((sc->sc_rctrl & RCTRL_GHTX) ? 0 : 8);
1125 	const uint32_t crc_shift = 32 - ((sc->sc_rctrl & RCTRL_GHTX) ? 9 : 8);
1126 
1127 	memset(sc->sc_gaddr, 0, sizeof(sc->sc_gaddr));
1128 	memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
1129 
1130 	ifp->if_flags &= ~IFF_ALLMULTI;
1131 
1132 	ETHER_FIRST_MULTI(step, ec, enm);
1133 	for (u_int i = 0; enm != NULL; ) {
1134 		const char *addr = enm->enm_addrlo;
1135 		if (memcmp(addr, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
1136 			ifp->if_flags |= IFF_ALLMULTI;
1137 			memset(gaddr, 0xff, 32 << (crc_shift & 1));
1138 			memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
1139 			break;
1140 		}
1141 		if ((sc->sc_rctrl & RCTRL_EMEN)
1142 		    && i < __arraycount(sc->sc_macaddrs)) {
1143 			sc->sc_macaddrs[i++] = pq3etsec_macaddr_create(addr);
1144 		} else {
1145 			uint32_t crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
1146 #if 0
1147 			printf("%s: %s: crc=%#x: %#x: [%u,%u]=%#x\n", __func__,
1148 			    ether_sprintf(addr), crc,
1149 			    crc >> crc_shift,
1150 			    crc >> (crc_shift + 5),
1151 			    (crc >> crc_shift) & 31,
1152 			    1 << (((crc >> crc_shift) & 31) ^ 31));
1153 #endif
1154 			/*
1155 			 * The documentation doesn't completely follow PowerPC
1156 			 * bit order.  The BE crc32 (H) for 01:00:5E:00:00:01
1157 			 * is 0x7fa32d9b.  By empirical testing, the
1158 			 * corresponding hash bit is word 3, bit 31 (ppc bit
1159 			 * order).  Since 3 << 31 | 31 is 0x7f, we deduce
1160 			 * H[0:2] selects the register while H[3:7] selects
1161 			 * the bit (ppc bit order).
1162 			 */
1163 			crc >>= crc_shift;
1164 			gaddr[crc / 32] |= 1 << ((crc & 31) ^ 31);
1165 		}
1166 		ETHER_NEXT_MULTI(step, enm);
1167 	}
1168 	for (u_int i = 0; i < 8; i++) {
1169 		etsec_write(sc, IGADDR(i), sc->sc_gaddr[i]);
1170 		etsec_write(sc, GADDR(i), sc->sc_gaddr[i+8]);
1171 #if 0
1172 		if (sc->sc_gaddr[i] || sc->sc_gaddr[i+8])
1173 		printf("%s: IGADDR%u(%#x)=%#x GADDR%u(%#x)=%#x\n", __func__,
1174 		    i, IGADDR(i), etsec_read(sc, IGADDR(i)),
1175 		    i, GADDR(i), etsec_read(sc, GADDR(i)));
1176 #endif
1177 	}
1178 	for (u_int i = 0; i < __arraycount(sc->sc_macaddrs); i++) {
1179 		uint64_t macaddr = sc->sc_macaddrs[i];
1180 		etsec_write(sc, MACnADDR1(i), (uint32_t)(macaddr >> 32));
1181 		etsec_write(sc, MACnADDR2(i), (uint32_t)(macaddr >>  0));
1182 #if 0
1183 		if (macaddr)
1184 		printf("%s: MAC%02uADDR2(%08x)=%#x MAC%02uADDR2(%#x)=%08x\n", __func__,
1185 		    i+1, MACnADDR1(i), etsec_read(sc, MACnADDR1(i)),
1186 		    i+1, MACnADDR2(i), etsec_read(sc, MACnADDR2(i)));
1187 #endif
1188 	}
1189 }
1190 
1191 static int
1192 pq3etsec_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
1193 {
1194 	struct pq3etsec_softc *sc  = ifp->if_softc;
1195 	struct ifreq * const ifr = data;
1196 	const int s = splnet();
1197 	int error;
1198 
1199 	switch (cmd) {
1200 	case SIOCSIFMEDIA:
1201 	case SIOCGIFMEDIA:
1202 		/* Flow control requires full-duplex mode. */
1203 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1204 		    (ifr->ifr_media & IFM_FDX) == 0)
1205 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1206 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1207 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1208 				/* We can do both TXPAUSE and RXPAUSE. */
1209 				ifr->ifr_media |=
1210 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1211 			}
1212 		}
1213 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1214 		break;
1215 
1216 	default:
1217 		error = ether_ioctl(ifp, cmd, data);
1218 		if (error != ENETRESET)
1219 			break;
1220 
1221 		if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
1222 			error = 0;
1223 			if (ifp->if_flags & IFF_RUNNING)
1224 				pq3etsec_mc_setup(sc);
1225 			break;
1226 		}
1227 		error = pq3etsec_ifinit(ifp);
1228 		break;
1229 	}
1230 
1231 	splx(s);
1232 	return error;
1233 }
1234 
1235 static void
1236 pq3etsec_rxq_desc_presync(
1237 	struct pq3etsec_softc *sc,
1238 	struct pq3etsec_rxqueue *rxq,
1239 	volatile struct rxbd *rxbd,
1240 	size_t count)
1241 {
1242 	bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1243 	    (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1244 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1245 }
1246 
1247 static void
1248 pq3etsec_rxq_desc_postsync(
1249 	struct pq3etsec_softc *sc,
1250 	struct pq3etsec_rxqueue *rxq,
1251 	volatile struct rxbd *rxbd,
1252 	size_t count)
1253 {
1254 	bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1255 	    (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1256 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1257 }
1258 
1259 static void
1260 pq3etsec_txq_desc_presync(
1261 	struct pq3etsec_softc *sc,
1262 	struct pq3etsec_txqueue *txq,
1263 	volatile struct txbd *txbd,
1264 	size_t count)
1265 {
1266 	bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1267 	    (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1268 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1269 }
1270 
1271 static void
1272 pq3etsec_txq_desc_postsync(
1273 	struct pq3etsec_softc *sc,
1274 	struct pq3etsec_txqueue *txq,
1275 	volatile struct txbd *txbd,
1276 	size_t count)
1277 {
1278 	bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1279 	    (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1280 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1281 }
1282 
1283 static bus_dmamap_t
1284 pq3etsec_mapcache_get(
1285 	struct pq3etsec_softc *sc,
1286 	struct pq3etsec_mapcache *dmc)
1287 {
1288 	KASSERT(dmc->dmc_nmaps > 0);
1289 	KASSERT(dmc->dmc_maps[dmc->dmc_nmaps-1] != NULL);
1290 	return dmc->dmc_maps[--dmc->dmc_nmaps];
1291 }
1292 
1293 static void
1294 pq3etsec_mapcache_put(
1295 	struct pq3etsec_softc *sc,
1296 	struct pq3etsec_mapcache *dmc,
1297 	bus_dmamap_t map)
1298 {
1299 	KASSERT(map != NULL);
1300 	KASSERT(dmc->dmc_nmaps < dmc->dmc_maxmaps);
1301 	dmc->dmc_maps[dmc->dmc_nmaps++] = map;
1302 }
1303 
1304 static void
1305 pq3etsec_mapcache_destroy(
1306 	struct pq3etsec_softc *sc,
1307 	struct pq3etsec_mapcache *dmc)
1308 {
1309 	const size_t dmc_size =
1310 	    offsetof(struct pq3etsec_mapcache, dmc_maps[dmc->dmc_maxmaps]);
1311 
1312 	for (u_int i = 0; i < dmc->dmc_maxmaps; i++) {
1313 		bus_dmamap_destroy(sc->sc_dmat, dmc->dmc_maps[i]);
1314 	}
1315 	kmem_intr_free(dmc, dmc_size);
1316 }
1317 
1318 static int
1319 pq3etsec_mapcache_create(
1320 	struct pq3etsec_softc *sc,
1321 	struct pq3etsec_mapcache **dmc_p,
1322 	size_t maxmaps,
1323 	size_t maxmapsize,
1324 	size_t maxseg)
1325 {
1326 	const size_t dmc_size =
1327 	    offsetof(struct pq3etsec_mapcache, dmc_maps[maxmaps]);
1328 	struct pq3etsec_mapcache * const dmc =
1329 		kmem_intr_zalloc(dmc_size, KM_NOSLEEP);
1330 
1331 	dmc->dmc_maxmaps = maxmaps;
1332 	dmc->dmc_nmaps = maxmaps;
1333 	dmc->dmc_maxmapsize = maxmapsize;
1334 	dmc->dmc_maxseg = maxseg;
1335 
1336 	for (u_int i = 0; i < maxmaps; i++) {
1337 		int error = bus_dmamap_create(sc->sc_dmat, dmc->dmc_maxmapsize,
1338 		     dmc->dmc_maxseg, dmc->dmc_maxmapsize, 0,
1339 		     BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW, &dmc->dmc_maps[i]);
1340 		if (error) {
1341 			aprint_error_dev(sc->sc_dev,
1342 			    "failed to creat dma map cache "
1343 			    "entry %u of %zu: %d\n",
1344 			    i, maxmaps, error);
1345 			while (i-- > 0) {
1346 				bus_dmamap_destroy(sc->sc_dmat,
1347 				    dmc->dmc_maps[i]);
1348 			}
1349 			kmem_intr_free(dmc, dmc_size);
1350 			return error;
1351 		}
1352 		KASSERT(dmc->dmc_maps[i] != NULL);
1353 	}
1354 
1355 	*dmc_p = dmc;
1356 
1357 	return 0;
1358 }
1359 
1360 #if 0
1361 static void
1362 pq3etsec_dmamem_free(
1363 	bus_dma_tag_t dmat,
1364 	size_t map_size,
1365 	bus_dma_segment_t *seg,
1366 	bus_dmamap_t map,
1367 	void *kvap)
1368 {
1369 	bus_dmamap_destroy(dmat, map);
1370 	bus_dmamem_unmap(dmat, kvap, map_size);
1371 	bus_dmamem_free(dmat, seg, 1);
1372 }
1373 #endif
1374 
1375 static int
1376 pq3etsec_dmamem_alloc(
1377 	bus_dma_tag_t dmat,
1378 	size_t map_size,
1379 	bus_dma_segment_t *seg,
1380 	bus_dmamap_t *map,
1381 	void **kvap)
1382 {
1383 	int error;
1384 	int nseg;
1385 
1386 	*kvap = NULL;
1387 	*map = NULL;
1388 
1389 	error = bus_dmamem_alloc(dmat, map_size, PAGE_SIZE, 0,
1390 	   seg, 1, &nseg, 0);
1391 	if (error)
1392 		return error;
1393 
1394 	KASSERT(nseg == 1);
1395 
1396 	error = bus_dmamem_map(dmat, seg, nseg, map_size, (void **)kvap,
1397 	    BUS_DMA_COHERENT);
1398 	if (error == 0) {
1399 		error = bus_dmamap_create(dmat, map_size, 1, map_size, 0, 0,
1400 		    map);
1401 		if (error == 0) {
1402 			error = bus_dmamap_load(dmat, *map, *kvap, map_size,
1403 			    NULL, 0);
1404 			if (error == 0)
1405 				return 0;
1406 			bus_dmamap_destroy(dmat, *map);
1407 			*map = NULL;
1408 		}
1409 		bus_dmamem_unmap(dmat, *kvap, map_size);
1410 		*kvap = NULL;
1411 	}
1412 	bus_dmamem_free(dmat, seg, nseg);
1413 	return 0;
1414 }
1415 
1416 static struct mbuf *
1417 pq3etsec_rx_buf_alloc(
1418 	struct pq3etsec_softc *sc)
1419 {
1420 	struct mbuf *m = m_gethdr(M_DONTWAIT, MT_DATA);
1421 	if (m == NULL) {
1422 		printf("%s:%d: %s\n", __func__, __LINE__, "m_gethdr");
1423 		return NULL;
1424 	}
1425 	MCLGET(m, M_DONTWAIT);
1426 	if ((m->m_flags & M_EXT) == 0) {
1427 		printf("%s:%d: %s\n", __func__, __LINE__, "MCLGET");
1428 		m_freem(m);
1429 		return NULL;
1430 	}
1431 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1432 
1433 	bus_dmamap_t map = pq3etsec_mapcache_get(sc, sc->sc_rx_mapcache);
1434 	if (map == NULL) {
1435 		printf("%s:%d: %s\n", __func__, __LINE__, "map get");
1436 		m_freem(m);
1437 		return NULL;
1438 	}
1439 	M_SETCTX(m, map);
1440 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1441 	int error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1442 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1443 	if (error) {
1444 		aprint_error_dev(sc->sc_dev, "fail to load rx dmamap: %d\n",
1445 		    error);
1446 		M_SETCTX(m, NULL);
1447 		m_freem(m);
1448 		pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1449 		return NULL;
1450 	}
1451 	KASSERT(map->dm_mapsize == MCLBYTES);
1452 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1453 	    BUS_DMASYNC_PREREAD);
1454 
1455 	return m;
1456 }
1457 
1458 static void
1459 pq3etsec_rx_map_unload(
1460 	struct pq3etsec_softc *sc,
1461 	struct mbuf *m)
1462 {
1463 	KASSERT(m);
1464 	for (; m != NULL; m = m->m_next) {
1465 		bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1466 		KASSERT(map);
1467 		KASSERT(map->dm_mapsize == MCLBYTES);
1468 		bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_len,
1469 		    BUS_DMASYNC_POSTREAD);
1470 		bus_dmamap_unload(sc->sc_dmat, map);
1471 		pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1472 		M_SETCTX(m, NULL);
1473 	}
1474 }
1475 
1476 static bool
1477 pq3etsec_rxq_produce(
1478 	struct pq3etsec_softc *sc,
1479 	struct pq3etsec_rxqueue *rxq)
1480 {
1481 	volatile struct rxbd *producer = rxq->rxq_producer;
1482 #if 0
1483 	size_t inuse = rxq->rxq_inuse;
1484 #endif
1485 	while (rxq->rxq_inuse < rxq->rxq_threshold) {
1486 		struct mbuf *m;
1487 		IF_DEQUEUE(&sc->sc_rx_bufcache, m);
1488 		if (m == NULL) {
1489 			m = pq3etsec_rx_buf_alloc(sc);
1490 			if (m == NULL) {
1491 				printf("%s: pq3etsec_rx_buf_alloc failed\n", __func__);
1492 				break;
1493 			}
1494 		}
1495 		bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1496 		KASSERT(map);
1497 
1498 #ifdef ETSEC_DEBUG
1499 		KASSERT(rxq->rxq_mbufs[producer-rxq->rxq_first] == NULL);
1500 		rxq->rxq_mbufs[producer-rxq->rxq_first] = m;
1501 #endif
1502 
1503 		/* rxbd_len is write-only by the ETSEC */
1504 		producer->rxbd_bufptr = map->dm_segs[0].ds_addr;
1505 		membar_producer();
1506 		producer->rxbd_flags |= RXBD_E;
1507 		if (__predict_false(rxq->rxq_mhead == NULL)) {
1508 			KASSERT(producer == rxq->rxq_consumer);
1509 			rxq->rxq_mconsumer = m;
1510 		}
1511 		*rxq->rxq_mtail = m;
1512 		rxq->rxq_mtail = &m->m_next;
1513 		m->m_len = MCLBYTES;
1514 		m->m_next = NULL;
1515 		rxq->rxq_inuse++;
1516 		if (++producer == rxq->rxq_last) {
1517 			membar_producer();
1518 			pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1519 			    rxq->rxq_last - rxq->rxq_producer);
1520 			producer = rxq->rxq_producer = rxq->rxq_first;
1521 		}
1522 	}
1523 	if (producer != rxq->rxq_producer) {
1524 		membar_producer();
1525 		pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1526 		    producer - rxq->rxq_producer);
1527 		rxq->rxq_producer = producer;
1528 	}
1529 	uint32_t qhlt = etsec_read(sc, RSTAT) & RSTAT_QHLT;
1530 	if (qhlt) {
1531 		KASSERT(qhlt & rxq->rxq_qmask);
1532 		sc->sc_ev_rx_stall.ev_count++;
1533 		etsec_write(sc, RSTAT, RSTAT_QHLT & rxq->rxq_qmask);
1534 	}
1535 #if 0
1536 	aprint_normal_dev(sc->sc_dev,
1537 	    "%s: buffers inuse went from %zu to %zu\n",
1538 	    __func__, inuse, rxq->rxq_inuse);
1539 #endif
1540 	return true;
1541 }
1542 
1543 static bool
1544 pq3etsec_rx_offload(
1545 	struct pq3etsec_softc *sc,
1546 	struct mbuf *m,
1547 	const struct rxfcb *fcb)
1548 {
1549 	if (fcb->rxfcb_flags & RXFCB_VLN) {
1550 		vlan_set_tag(m, fcb->rxfcb_vlctl);
1551 	}
1552 	if ((fcb->rxfcb_flags & RXFCB_IP) == 0
1553 	    || (fcb->rxfcb_flags & (RXFCB_CIP|RXFCB_CTU)) == 0)
1554 		return true;
1555 	int csum_flags = 0;
1556 	if ((fcb->rxfcb_flags & (RXFCB_IP6|RXFCB_CIP)) == RXFCB_CIP) {
1557 		csum_flags |= M_CSUM_IPv4;
1558 		if (fcb->rxfcb_flags & RXFCB_EIP)
1559 			csum_flags |= M_CSUM_IPv4_BAD;
1560 	}
1561 	if ((fcb->rxfcb_flags & RXFCB_CTU) == RXFCB_CTU) {
1562 		int ipv_flags;
1563 		if (fcb->rxfcb_flags & RXFCB_IP6)
1564 			ipv_flags = M_CSUM_TCPv6|M_CSUM_UDPv6;
1565 		else
1566 			ipv_flags = M_CSUM_TCPv4|M_CSUM_UDPv4;
1567 		if (fcb->rxfcb_pro == IPPROTO_TCP) {
1568 			csum_flags |= (M_CSUM_TCPv4|M_CSUM_TCPv6) & ipv_flags;
1569 		} else {
1570 			csum_flags |= (M_CSUM_UDPv4|M_CSUM_UDPv6) & ipv_flags;
1571 		}
1572 		if (fcb->rxfcb_flags & RXFCB_ETU)
1573 			csum_flags |= M_CSUM_TCP_UDP_BAD;
1574 	}
1575 
1576 	m->m_pkthdr.csum_flags = csum_flags;
1577 	return true;
1578 }
1579 
1580 static void
1581 pq3etsec_rx_input(
1582 	struct pq3etsec_softc *sc,
1583 	struct mbuf *m,
1584 	uint16_t rxbd_flags)
1585 {
1586 	struct ifnet * const ifp = &sc->sc_if;
1587 
1588 	pq3etsec_rx_map_unload(sc, m);
1589 
1590 	if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF) {
1591 		struct rxfcb fcb = *mtod(m, struct rxfcb *);
1592 		if (!pq3etsec_rx_offload(sc, m, &fcb))
1593 			return;
1594 	}
1595 	m_adj(m, sc->sc_rx_adjlen);
1596 
1597 	if (rxbd_flags & RXBD_M)
1598 		m->m_flags |= M_PROMISC;
1599 	if (rxbd_flags & RXBD_BC)
1600 		m->m_flags |= M_BCAST;
1601 	if (rxbd_flags & RXBD_MC)
1602 		m->m_flags |= M_MCAST;
1603 	m->m_flags |= M_HASFCS;
1604 	m_set_rcvif(m, &sc->sc_if);
1605 
1606 	ifp->if_ibytes += m->m_pkthdr.len;
1607 
1608 	/*
1609 	 * Let's give it to the network subsystm to deal with.
1610 	 */
1611 	int s = splnet();
1612 	if_input(ifp, m);
1613 	splx(s);
1614 }
1615 
1616 static void
1617 pq3etsec_rxq_consume(
1618 	struct pq3etsec_softc *sc,
1619 	struct pq3etsec_rxqueue *rxq)
1620 {
1621 	struct ifnet * const ifp = &sc->sc_if;
1622 	volatile struct rxbd *consumer = rxq->rxq_consumer;
1623 	size_t rxconsumed = 0;
1624 
1625 	etsec_write(sc, RSTAT, RSTAT_RXF & rxq->rxq_qmask);
1626 
1627 	for (;;) {
1628 		if (consumer == rxq->rxq_producer) {
1629 			rxq->rxq_consumer = consumer;
1630 			rxq->rxq_inuse -= rxconsumed;
1631 			KASSERT(rxq->rxq_inuse == 0);
1632 			return;
1633 		}
1634 		pq3etsec_rxq_desc_postsync(sc, rxq, consumer, 1);
1635 		const uint16_t rxbd_flags = consumer->rxbd_flags;
1636 		if (rxbd_flags & RXBD_E) {
1637 			rxq->rxq_consumer = consumer;
1638 			rxq->rxq_inuse -= rxconsumed;
1639 			return;
1640 		}
1641 		KASSERT(rxq->rxq_mconsumer != NULL);
1642 #ifdef ETSEC_DEBUG
1643 		KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1644 #endif
1645 #if 0
1646 		printf("%s: rxdb[%u]: flags=%#x len=%#x: %08x %08x %08x %08x\n",
1647 		    __func__,
1648 		    consumer - rxq->rxq_first, rxbd_flags, consumer->rxbd_len,
1649 		    mtod(rxq->rxq_mconsumer, int *)[0],
1650 		    mtod(rxq->rxq_mconsumer, int *)[1],
1651 		    mtod(rxq->rxq_mconsumer, int *)[2],
1652 		    mtod(rxq->rxq_mconsumer, int *)[3]);
1653 #endif
1654 		/*
1655 		 * We own this packet again.  Clear all flags except wrap.
1656 		 */
1657 		rxconsumed++;
1658 		consumer->rxbd_flags = rxbd_flags & (RXBD_W|RXBD_I);
1659 
1660 		/*
1661 		 * If this descriptor has the LAST bit set and no errors,
1662 		 * it's a valid input packet.
1663 		 */
1664 		if ((rxbd_flags & (RXBD_L|RXBD_ERRORS)) == RXBD_L) {
1665 			size_t rxbd_len = consumer->rxbd_len;
1666 			struct mbuf *m = rxq->rxq_mhead;
1667 			struct mbuf *m_last = rxq->rxq_mconsumer;
1668 			if ((rxq->rxq_mhead = m_last->m_next) == NULL)
1669 				rxq->rxq_mtail = &rxq->rxq_mhead;
1670 			rxq->rxq_mconsumer = rxq->rxq_mhead;
1671 			m_last->m_next = NULL;
1672 			m_last->m_len = rxbd_len & (MCLBYTES - 1);
1673 			m->m_pkthdr.len = rxbd_len;
1674 			pq3etsec_rx_input(sc, m, rxbd_flags);
1675 		} else if (rxbd_flags & RXBD_L) {
1676 			KASSERT(rxbd_flags & RXBD_ERRORS);
1677 			struct mbuf *m;
1678 			/*
1679 			 * We encountered an error, take the mbufs and add
1680 			 * then to the rx bufcache so we can reuse them.
1681 			 */
1682 			ifp->if_ierrors++;
1683 			for (m = rxq->rxq_mhead;
1684 			     m != rxq->rxq_mconsumer;
1685 			     m = m->m_next) {
1686 				IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1687 			}
1688 			m = rxq->rxq_mconsumer;
1689 			if ((rxq->rxq_mhead = m->m_next) == NULL)
1690 				rxq->rxq_mtail = &rxq->rxq_mhead;
1691 			rxq->rxq_mconsumer = m->m_next;
1692 			IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1693 		} else {
1694 			rxq->rxq_mconsumer = rxq->rxq_mconsumer->m_next;
1695 		}
1696 #ifdef ETSEC_DEBUG
1697 		rxq->rxq_mbufs[consumer - rxq->rxq_first] = NULL;
1698 #endif
1699 
1700 		/*
1701 		 * Wrap at the last entry!
1702 		 */
1703 		if (rxbd_flags & RXBD_W) {
1704 			KASSERT(consumer + 1 == rxq->rxq_last);
1705 			consumer = rxq->rxq_first;
1706 		} else {
1707 			consumer++;
1708 		}
1709 #ifdef ETSEC_DEBUG
1710 		KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1711 #endif
1712 	}
1713 }
1714 
1715 static void
1716 pq3etsec_rxq_purge(
1717 	struct pq3etsec_softc *sc,
1718 	struct pq3etsec_rxqueue *rxq,
1719 	bool discard)
1720 {
1721 	struct mbuf *m;
1722 
1723 	if ((m = rxq->rxq_mhead) != NULL) {
1724 #ifdef ETSEC_DEBUG
1725 		memset(rxq->rxq_mbufs, 0, sizeof(rxq->rxq_mbufs));
1726 #endif
1727 
1728 		if (discard) {
1729 			pq3etsec_rx_map_unload(sc, m);
1730 			m_freem(m);
1731 		} else {
1732 			while (m != NULL) {
1733 				struct mbuf *m0 = m->m_next;
1734 				m->m_next = NULL;
1735 				IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1736 				m = m0;
1737 			}
1738 		}
1739 
1740 	}
1741 
1742 	rxq->rxq_mconsumer = NULL;
1743 	rxq->rxq_mhead = NULL;
1744 	rxq->rxq_mtail = &rxq->rxq_mhead;
1745 	rxq->rxq_inuse = 0;
1746 }
1747 
1748 static void
1749 pq3etsec_rxq_reset(
1750 	struct pq3etsec_softc *sc,
1751 	struct pq3etsec_rxqueue *rxq)
1752 {
1753 	/*
1754 	 * sync all the descriptors
1755 	 */
1756 	pq3etsec_rxq_desc_postsync(sc, rxq, rxq->rxq_first,
1757 	    rxq->rxq_last - rxq->rxq_first);
1758 
1759 	/*
1760 	 * Make sure we own all descriptors in the ring.
1761 	 */
1762 	volatile struct rxbd *rxbd;
1763 	for (rxbd = rxq->rxq_first; rxbd < rxq->rxq_last - 1; rxbd++) {
1764 		rxbd->rxbd_flags = RXBD_I;
1765 	}
1766 
1767 	/*
1768 	 * Last descriptor has the wrap flag.
1769 	 */
1770 	rxbd->rxbd_flags = RXBD_W|RXBD_I;
1771 
1772 	/*
1773 	 * Reset the producer consumer indexes.
1774 	 */
1775 	rxq->rxq_consumer = rxq->rxq_first;
1776 	rxq->rxq_producer = rxq->rxq_first;
1777 	rxq->rxq_inuse = 0;
1778 	if (rxq->rxq_threshold < ETSEC_MINRXMBUFS)
1779 		rxq->rxq_threshold = ETSEC_MINRXMBUFS;
1780 
1781 	sc->sc_imask |= IEVENT_RXF|IEVENT_BSY;
1782 
1783 	/*
1784 	 * Restart the transmit at the first descriptor
1785 	 */
1786 	etsec_write(sc, rxq->rxq_reg_rbase, rxq->rxq_descmap->dm_segs->ds_addr);
1787 }
1788 
1789 static int
1790 pq3etsec_rxq_attach(
1791 	struct pq3etsec_softc *sc,
1792 	struct pq3etsec_rxqueue *rxq,
1793 	u_int qno)
1794 {
1795 	size_t map_size = PAGE_SIZE;
1796 	size_t desc_count = map_size / sizeof(struct rxbd);
1797 	int error;
1798 	void *descs;
1799 
1800 	error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1801 	   &rxq->rxq_descmap_seg, &rxq->rxq_descmap, &descs);
1802 	if (error)
1803 		return error;
1804 
1805 	memset(descs, 0, map_size);
1806 	rxq->rxq_first = descs;
1807 	rxq->rxq_last = rxq->rxq_first + desc_count;
1808 	rxq->rxq_consumer = descs;
1809 	rxq->rxq_producer = descs;
1810 
1811 	pq3etsec_rxq_purge(sc, rxq, true);
1812 	pq3etsec_rxq_reset(sc, rxq);
1813 
1814 	rxq->rxq_reg_rbase = RBASEn(qno);
1815 	rxq->rxq_qmask = RSTAT_QHLTn(qno) | RSTAT_RXFn(qno);
1816 
1817 	return 0;
1818 }
1819 
1820 static bool
1821 pq3etsec_txq_active_p(
1822 	struct pq3etsec_softc * const sc,
1823 	struct pq3etsec_txqueue *txq)
1824 {
1825 	return !IF_IS_EMPTY(&txq->txq_mbufs);
1826 }
1827 
1828 static bool
1829 pq3etsec_txq_fillable_p(
1830 	struct pq3etsec_softc * const sc,
1831 	struct pq3etsec_txqueue *txq)
1832 {
1833 	return txq->txq_free >= txq->txq_threshold;
1834 }
1835 
1836 static int
1837 pq3etsec_txq_attach(
1838 	struct pq3etsec_softc *sc,
1839 	struct pq3etsec_txqueue *txq,
1840 	u_int qno)
1841 {
1842 	size_t map_size = PAGE_SIZE;
1843 	size_t desc_count = map_size / sizeof(struct txbd);
1844 	int error;
1845 	void *descs;
1846 
1847 	error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1848 	   &txq->txq_descmap_seg, &txq->txq_descmap, &descs);
1849 	if (error)
1850 		return error;
1851 
1852 	memset(descs, 0, map_size);
1853 	txq->txq_first = descs;
1854 	txq->txq_last = txq->txq_first + desc_count;
1855 	txq->txq_consumer = descs;
1856 	txq->txq_producer = descs;
1857 
1858 	IFQ_SET_MAXLEN(&txq->txq_mbufs, ETSEC_MAXTXMBUFS);
1859 
1860 	txq->txq_reg_tbase = TBASEn(qno);
1861 	txq->txq_qmask = TSTAT_THLTn(qno) | TSTAT_TXFn(qno);
1862 
1863 	pq3etsec_txq_reset(sc, txq);
1864 
1865 	return 0;
1866 }
1867 
1868 static int
1869 pq3etsec_txq_map_load(
1870 	struct pq3etsec_softc *sc,
1871 	struct pq3etsec_txqueue *txq,
1872 	struct mbuf *m)
1873 {
1874 	bus_dmamap_t map;
1875 	int error;
1876 
1877 	map = M_GETCTX(m, bus_dmamap_t);
1878 	if (map != NULL)
1879 		return 0;
1880 
1881 	map = pq3etsec_mapcache_get(sc, sc->sc_tx_mapcache);
1882 	if (map == NULL)
1883 		return ENOMEM;
1884 
1885 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1886 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1887 	if (error)
1888 		return error;
1889 
1890 	bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_pkthdr.len,
1891 	    BUS_DMASYNC_PREWRITE);
1892 	M_SETCTX(m, map);
1893 	return 0;
1894 }
1895 
1896 static void
1897 pq3etsec_txq_map_unload(
1898 	struct pq3etsec_softc *sc,
1899 	struct pq3etsec_txqueue *txq,
1900 	struct mbuf *m)
1901 {
1902 	KASSERT(m);
1903 	bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1904 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1905 	    BUS_DMASYNC_POSTWRITE);
1906 	bus_dmamap_unload(sc->sc_dmat, map);
1907 	pq3etsec_mapcache_put(sc, sc->sc_tx_mapcache, map);
1908 }
1909 
1910 static bool
1911 pq3etsec_txq_produce(
1912 	struct pq3etsec_softc *sc,
1913 	struct pq3etsec_txqueue *txq,
1914 	struct mbuf *m)
1915 {
1916 	bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1917 
1918 	if (map->dm_nsegs > txq->txq_free)
1919 		return false;
1920 
1921 	/*
1922 	 * TCP Offload flag must be set in the first descriptor.
1923 	 */
1924 	volatile struct txbd *producer = txq->txq_producer;
1925 	uint16_t last_flags = TXBD_L;
1926 	uint16_t first_flags = TXBD_R
1927 	    | ((m->m_flags & M_HASFCB) ? TXBD_TOE : 0);
1928 
1929 	/*
1930 	 * If we've produced enough descriptors without consuming any
1931 	 * we need to ask for an interrupt to reclaim some.
1932 	 */
1933 	txq->txq_lastintr += map->dm_nsegs;
1934 	if (ETSEC_IC_TX_ENABLED(sc)
1935 	    || txq->txq_lastintr >= txq->txq_threshold
1936 	    || txq->txq_mbufs.ifq_len + 1 == txq->txq_mbufs.ifq_maxlen) {
1937 		txq->txq_lastintr = 0;
1938 		last_flags |= TXBD_I;
1939 	}
1940 
1941 #ifdef ETSEC_DEBUG
1942 	KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1943 #endif
1944 	KASSERT(producer != txq->txq_last);
1945 	producer->txbd_bufptr = map->dm_segs[0].ds_addr;
1946 	producer->txbd_len = map->dm_segs[0].ds_len;
1947 
1948 	if (map->dm_nsegs > 1) {
1949 		volatile struct txbd *start = producer + 1;
1950 		size_t count = map->dm_nsegs - 1;
1951 		for (u_int i = 1; i < map->dm_nsegs; i++) {
1952 			if (__predict_false(++producer == txq->txq_last)) {
1953 				producer = txq->txq_first;
1954 				if (start < txq->txq_last) {
1955 					pq3etsec_txq_desc_presync(sc, txq,
1956 					    start, txq->txq_last - start);
1957 					count -= txq->txq_last - start;
1958 				}
1959 				start = txq->txq_first;
1960 			}
1961 #ifdef ETSEC_DEBUG
1962 			KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1963 #endif
1964 			producer->txbd_bufptr = map->dm_segs[i].ds_addr;
1965 			producer->txbd_len = map->dm_segs[i].ds_len;
1966 			producer->txbd_flags = TXBD_R
1967 			    | (producer->txbd_flags & TXBD_W)
1968 			    | (i == map->dm_nsegs - 1 ? last_flags : 0);
1969 #if 0
1970 			printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__, producer - txq->txq_first,
1971 			    producer->txbd_flags, producer->txbd_len, producer->txbd_bufptr);
1972 #endif
1973 		}
1974 		pq3etsec_txq_desc_presync(sc, txq, start, count);
1975 	} else {
1976 		first_flags |= last_flags;
1977 	}
1978 
1979 	membar_producer();
1980 	txq->txq_producer->txbd_flags =
1981 	    first_flags | (txq->txq_producer->txbd_flags & TXBD_W);
1982 #if 0
1983 	printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__,
1984 	    txq->txq_producer - txq->txq_first, txq->txq_producer->txbd_flags,
1985 	    txq->txq_producer->txbd_len, txq->txq_producer->txbd_bufptr);
1986 #endif
1987 	pq3etsec_txq_desc_presync(sc, txq, txq->txq_producer, 1);
1988 
1989 	/*
1990 	 * Reduce free count by the number of segments we consumed.
1991 	 */
1992 	txq->txq_free -= map->dm_nsegs;
1993 	KASSERT(map->dm_nsegs == 1 || txq->txq_producer != producer);
1994 	KASSERT(map->dm_nsegs == 1 || (txq->txq_producer->txbd_flags & TXBD_L) == 0);
1995 	KASSERT(producer->txbd_flags & TXBD_L);
1996 #ifdef ETSEC_DEBUG
1997 	txq->txq_lmbufs[producer - txq->txq_first] = m;
1998 #endif
1999 
2000 #if 0
2001 	printf("%s: mbuf %p: produced a %u byte packet in %u segments (%u..%u)\n",
2002 	    __func__, m, m->m_pkthdr.len, map->dm_nsegs,
2003 	    txq->txq_producer - txq->txq_first, producer - txq->txq_first);
2004 #endif
2005 
2006 	if (++producer == txq->txq_last)
2007 		txq->txq_producer = txq->txq_first;
2008 	else
2009 		txq->txq_producer = producer;
2010 	IF_ENQUEUE(&txq->txq_mbufs, m);
2011 
2012 	/*
2013 	 * Restart the transmitter.
2014 	 */
2015 	etsec_write(sc, TSTAT, txq->txq_qmask & TSTAT_THLT);	/* W1C */
2016 
2017 	return true;
2018 }
2019 
2020 static void
2021 pq3etsec_tx_offload(
2022 	struct pq3etsec_softc *sc,
2023 	struct pq3etsec_txqueue *txq,
2024 	struct mbuf **mp)
2025 {
2026 	struct mbuf *m = *mp;
2027 	u_int csum_flags = m->m_pkthdr.csum_flags;
2028 	bool have_vtag;
2029 	uint16_t vtag;
2030 
2031 	KASSERT(m->m_flags & M_PKTHDR);
2032 
2033 	have_vtag = vlan_has_tag(m);
2034 	vtag = (have_vtag) ? vlan_get_tag(m) : 0;
2035 
2036 	/*
2037 	 * Let see if we are doing any offload first.
2038 	 */
2039 	if (csum_flags == 0 && !have_vtag) {
2040 		m->m_flags &= ~M_HASFCB;
2041 		return;
2042 	}
2043 
2044 	uint16_t flags = 0;
2045 	if (csum_flags & M_CSUM_IP) {
2046 		flags |= TXFCB_IP
2047 		    | ((csum_flags & M_CSUM_IP6) ? TXFCB_IP6 : 0)
2048 		    | ((csum_flags & M_CSUM_TUP) ? TXFCB_TUP : 0)
2049 		    | ((csum_flags & M_CSUM_UDP) ? TXFCB_UDP : 0)
2050 		    | ((csum_flags & M_CSUM_CIP) ? TXFCB_CIP : 0)
2051 		    | ((csum_flags & M_CSUM_CTU) ? TXFCB_CTU : 0);
2052 	}
2053 	if (have_vtag) {
2054 		flags |= TXFCB_VLN;
2055 	}
2056 	if (flags == 0) {
2057 		m->m_flags &= ~M_HASFCB;
2058 		return;
2059 	}
2060 
2061 	struct txfcb fcb;
2062 	fcb.txfcb_flags = flags;
2063 	if (csum_flags & M_CSUM_IPv4)
2064 		fcb.txfcb_l4os = M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
2065 	else
2066 		fcb.txfcb_l4os = M_CSUM_DATA_IPv6_IPHL(m->m_pkthdr.csum_data);
2067 	fcb.txfcb_l3os = ETHER_HDR_LEN;
2068 	fcb.txfcb_phcs = 0;
2069 	fcb.txfcb_vlctl = vtag;
2070 
2071 #if 0
2072 	printf("%s: csum_flags=%#x: txfcb flags=%#x lsos=%u l4os=%u phcs=%u vlctl=%#x\n",
2073 	    __func__, csum_flags, fcb.txfcb_flags, fcb.txfcb_l3os, fcb.txfcb_l4os,
2074 	    fcb.txfcb_phcs, fcb.txfcb_vlctl);
2075 #endif
2076 
2077 	if (M_LEADINGSPACE(m) >= sizeof(fcb)) {
2078 		m->m_data -= sizeof(fcb);
2079 		m->m_len += sizeof(fcb);
2080 	} else if (!(m->m_flags & M_EXT) && MHLEN - m->m_len >= sizeof(fcb)) {
2081 		memmove(m->m_pktdat + sizeof(fcb), m->m_data, m->m_len);
2082 		m->m_data = m->m_pktdat;
2083 		m->m_len += sizeof(fcb);
2084 	} else {
2085 		struct mbuf *mn;
2086 		MGET(mn, M_DONTWAIT, m->m_type);
2087 		if (mn == NULL) {
2088 			if (csum_flags & M_CSUM_IP4) {
2089 #ifdef INET
2090 				in_undefer_cksum(m, ETHER_HDR_LEN,
2091 				    csum_flags & M_CSUM_IP4);
2092 #else
2093 				panic("%s: impossible M_CSUM flags %#x",
2094 				    device_xname(sc->sc_dev), csum_flags);
2095 #endif
2096 			} else if (csum_flags & M_CSUM_IP6) {
2097 #ifdef INET6
2098 				ip6_undefer_csum(m, ETHER_HDR_LEN,
2099 				    csum_flags & M_CSUM_IP6);
2100 #else
2101 				panic("%s: impossible M_CSUM flags %#x",
2102 				    device_xname(sc->sc_dev), csum_flags);
2103 #endif
2104 			}
2105 
2106 			m->m_flags &= ~M_HASFCB;
2107 			return;
2108 		}
2109 
2110 		M_MOVE_PKTHDR(mn, m);
2111 		mn->m_next = m;
2112 		m = mn;
2113 		MH_ALIGN(m, sizeof(fcb));
2114 		m->m_len = sizeof(fcb);
2115 		*mp = m;
2116 	}
2117 	m->m_pkthdr.len += sizeof(fcb);
2118 	m->m_flags |= M_HASFCB;
2119 	*mtod(m, struct txfcb *) = fcb;
2120 	return;
2121 }
2122 
2123 static bool
2124 pq3etsec_txq_enqueue(
2125 	struct pq3etsec_softc *sc,
2126 	struct pq3etsec_txqueue *txq)
2127 {
2128 	for (;;) {
2129 		if (IF_QFULL(&txq->txq_mbufs))
2130 			return false;
2131 		struct mbuf *m = txq->txq_next;
2132 		if (m == NULL) {
2133 			int s = splnet();
2134 			IFQ_DEQUEUE(&sc->sc_if.if_snd, m);
2135 			splx(s);
2136 			if (m == NULL)
2137 				return true;
2138 			M_SETCTX(m, NULL);
2139 			pq3etsec_tx_offload(sc, txq, &m);
2140 		} else {
2141 			txq->txq_next = NULL;
2142 		}
2143 		int error = pq3etsec_txq_map_load(sc, txq, m);
2144 		if (error) {
2145 			aprint_error_dev(sc->sc_dev,
2146 			    "discarded packet due to "
2147 			    "dmamap load failure: %d\n", error);
2148 			m_freem(m);
2149 			continue;
2150 		}
2151 		KASSERT(txq->txq_next == NULL);
2152 		if (!pq3etsec_txq_produce(sc, txq, m)) {
2153 			txq->txq_next = m;
2154 			return false;
2155 		}
2156 		KASSERT(txq->txq_next == NULL);
2157 	}
2158 }
2159 
2160 static bool
2161 pq3etsec_txq_consume(
2162 	struct pq3etsec_softc *sc,
2163 	struct pq3etsec_txqueue *txq)
2164 {
2165 	struct ifnet * const ifp = &sc->sc_if;
2166 	volatile struct txbd *consumer = txq->txq_consumer;
2167 	size_t txfree = 0;
2168 
2169 #if 0
2170 	printf("%s: entry: free=%zu\n", __func__, txq->txq_free);
2171 #endif
2172 	etsec_write(sc, TSTAT, TSTAT_TXF & txq->txq_qmask);
2173 
2174 	for (;;) {
2175 		if (consumer == txq->txq_producer) {
2176 			txq->txq_consumer = consumer;
2177 			txq->txq_free += txfree;
2178 			txq->txq_lastintr -= min(txq->txq_lastintr, txfree);
2179 #if 0
2180 			printf("%s: empty: freed %zu descriptors going form %zu to %zu\n",
2181 			    __func__, txfree, txq->txq_free - txfree, txq->txq_free);
2182 #endif
2183 			KASSERT(txq->txq_lastintr == 0);
2184 			KASSERT(txq->txq_free == txq->txq_last - txq->txq_first - 1);
2185 			return true;
2186 		}
2187 		pq3etsec_txq_desc_postsync(sc, txq, consumer, 1);
2188 		const uint16_t txbd_flags = consumer->txbd_flags;
2189 		if (txbd_flags & TXBD_R) {
2190 			txq->txq_consumer = consumer;
2191 			txq->txq_free += txfree;
2192 			txq->txq_lastintr -= min(txq->txq_lastintr, txfree);
2193 #if 0
2194 			printf("%s: freed %zu descriptors\n",
2195 			    __func__, txfree);
2196 #endif
2197 			return pq3etsec_txq_fillable_p(sc, txq);
2198 		}
2199 
2200 		/*
2201 		 * If this is the last descriptor in the chain, get the
2202 		 * mbuf, free its dmamap, and free the mbuf chain itself.
2203 		 */
2204 		if (txbd_flags & TXBD_L) {
2205 			struct mbuf *m;
2206 
2207 			IF_DEQUEUE(&txq->txq_mbufs, m);
2208 #ifdef ETSEC_DEBUG
2209 			KASSERTMSG(
2210 			    m == txq->txq_lmbufs[consumer-txq->txq_first],
2211 			    "%s: %p [%u]: flags %#x m (%p) != %p (%p)",
2212 			    __func__, consumer, consumer - txq->txq_first,
2213 			    txbd_flags, m,
2214 			    &txq->txq_lmbufs[consumer-txq->txq_first],
2215 			    txq->txq_lmbufs[consumer-txq->txq_first]);
2216 #endif
2217 			KASSERT(m);
2218 			pq3etsec_txq_map_unload(sc, txq, m);
2219 #if 0
2220 			printf("%s: mbuf %p: consumed a %u byte packet\n",
2221 			    __func__, m, m->m_pkthdr.len);
2222 #endif
2223 			if (m->m_flags & M_HASFCB)
2224 				m_adj(m, sizeof(struct txfcb));
2225 			bpf_mtap(ifp, m, BPF_D_OUT);
2226 			ifp->if_opackets++;
2227 			ifp->if_obytes += m->m_pkthdr.len;
2228 			if (m->m_flags & M_MCAST)
2229 				ifp->if_omcasts++;
2230 			if (txbd_flags & TXBD_ERRORS)
2231 				ifp->if_oerrors++;
2232 			m_freem(m);
2233 #ifdef ETSEC_DEBUG
2234 			txq->txq_lmbufs[consumer - txq->txq_first] = NULL;
2235 #endif
2236 		} else {
2237 #ifdef ETSEC_DEBUG
2238 			KASSERT(txq->txq_lmbufs[consumer-txq->txq_first] == NULL);
2239 #endif
2240 		}
2241 
2242 		/*
2243 		 * We own this packet again.  Clear all flags except wrap.
2244 		 */
2245 		txfree++;
2246 		//consumer->txbd_flags = txbd_flags & TXBD_W;
2247 
2248 		/*
2249 		 * Wrap at the last entry!
2250 		 */
2251 		if (txbd_flags & TXBD_W) {
2252 			KASSERT(consumer + 1 == txq->txq_last);
2253 			consumer = txq->txq_first;
2254 		} else {
2255 			consumer++;
2256 			KASSERT(consumer < txq->txq_last);
2257 		}
2258 	}
2259 }
2260 
2261 static void
2262 pq3etsec_txq_purge(
2263 	struct pq3etsec_softc *sc,
2264 	struct pq3etsec_txqueue *txq)
2265 {
2266 	struct mbuf *m;
2267 	KASSERT((etsec_read(sc, MACCFG1) & MACCFG1_TX_EN) == 0);
2268 
2269 	for (;;) {
2270 		IF_DEQUEUE(&txq->txq_mbufs, m);
2271 		if (m == NULL)
2272 			break;
2273 		pq3etsec_txq_map_unload(sc, txq, m);
2274 		m_freem(m);
2275 	}
2276 	if ((m = txq->txq_next) != NULL) {
2277 		txq->txq_next = NULL;
2278 		pq3etsec_txq_map_unload(sc, txq, m);
2279 		m_freem(m);
2280 	}
2281 #ifdef ETSEC_DEBUG
2282 	memset(txq->txq_lmbufs, 0, sizeof(txq->txq_lmbufs));
2283 #endif
2284 }
2285 
2286 static void
2287 pq3etsec_txq_reset(
2288 	struct pq3etsec_softc *sc,
2289 	struct pq3etsec_txqueue *txq)
2290 {
2291 	/*
2292 	 * sync all the descriptors
2293 	 */
2294 	pq3etsec_txq_desc_postsync(sc, txq, txq->txq_first,
2295 	    txq->txq_last - txq->txq_first);
2296 
2297 	/*
2298 	 * Make sure we own all descriptors in the ring.
2299 	 */
2300 	volatile struct txbd *txbd;
2301 	for (txbd = txq->txq_first; txbd < txq->txq_last - 1; txbd++) {
2302 		txbd->txbd_flags = 0;
2303 	}
2304 
2305 	/*
2306 	 * Last descriptor has the wrap flag.
2307 	 */
2308 	txbd->txbd_flags = TXBD_W;
2309 
2310 	/*
2311 	 * Reset the producer consumer indexes.
2312 	 */
2313 	txq->txq_consumer = txq->txq_first;
2314 	txq->txq_producer = txq->txq_first;
2315 	txq->txq_free = txq->txq_last - txq->txq_first - 1;
2316 	txq->txq_threshold = txq->txq_free / 2;
2317 	txq->txq_lastintr = 0;
2318 
2319 	/*
2320 	 * What do we want to get interrupted on?
2321 	 */
2322 	sc->sc_imask |= IEVENT_TXF|IEVENT_TXE;
2323 
2324 	/*
2325 	 * Restart the transmit at the first descriptor
2326 	 */
2327 	etsec_write(sc, txq->txq_reg_tbase, txq->txq_descmap->dm_segs->ds_addr);
2328 }
2329 
2330 static void
2331 pq3etsec_ifstart(struct ifnet *ifp)
2332 {
2333 	struct pq3etsec_softc * const sc = ifp->if_softc;
2334 
2335 	if (__predict_false((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)) {
2336 		return;
2337 	}
2338 
2339 	atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2340 	softint_schedule(sc->sc_soft_ih);
2341 }
2342 
2343 static void
2344 pq3etsec_tx_error(
2345 	struct pq3etsec_softc * const sc)
2346 {
2347 	struct pq3etsec_txqueue * const txq = &sc->sc_txq;
2348 
2349 	pq3etsec_txq_consume(sc, txq);
2350 
2351 	if (pq3etsec_txq_fillable_p(sc, txq))
2352 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
2353 	if (sc->sc_txerrors & (IEVENT_LC|IEVENT_CRL|IEVENT_XFUN|IEVENT_BABT)) {
2354 	} else if (sc->sc_txerrors & IEVENT_EBERR) {
2355 	}
2356 
2357 	if (pq3etsec_txq_active_p(sc, txq))
2358 		etsec_write(sc, TSTAT, TSTAT_THLT & txq->txq_qmask);
2359 	if (!pq3etsec_txq_enqueue(sc, txq)) {
2360 		sc->sc_ev_tx_stall.ev_count++;
2361 		sc->sc_if.if_flags |= IFF_OACTIVE;
2362 	}
2363 
2364 	sc->sc_txerrors = 0;
2365 }
2366 
2367 int
2368 pq3etsec_tx_intr(void *arg)
2369 {
2370 	struct pq3etsec_softc * const sc = arg;
2371 
2372 	mutex_enter(sc->sc_hwlock);
2373 
2374 	sc->sc_ev_tx_intr.ev_count++;
2375 
2376 	uint32_t ievent = etsec_read(sc, IEVENT);
2377 	ievent &= IEVENT_TXF|IEVENT_TXB;
2378 	etsec_write(sc, IEVENT, ievent);	/* write 1 to clear */
2379 
2380 #if 0
2381 	aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2382 	    __func__, ievent, etsec_read(sc, IMASK));
2383 #endif
2384 
2385 	if (ievent == 0) {
2386 		mutex_exit(sc->sc_hwlock);
2387 		return 0;
2388 	}
2389 
2390 	sc->sc_imask &= ~(IEVENT_TXF|IEVENT_TXB);
2391 	atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2392 	etsec_write(sc, IMASK, sc->sc_imask);
2393 	softint_schedule(sc->sc_soft_ih);
2394 
2395 	mutex_exit(sc->sc_hwlock);
2396 
2397 	return 1;
2398 }
2399 
2400 int
2401 pq3etsec_rx_intr(void *arg)
2402 {
2403 	struct pq3etsec_softc * const sc = arg;
2404 
2405 	mutex_enter(sc->sc_hwlock);
2406 
2407 	sc->sc_ev_rx_intr.ev_count++;
2408 
2409 	uint32_t ievent = etsec_read(sc, IEVENT);
2410 	ievent &= IEVENT_RXF|IEVENT_RXB;
2411 	etsec_write(sc, IEVENT, ievent);	/* write 1 to clear */
2412 	if (ievent == 0) {
2413 		mutex_exit(sc->sc_hwlock);
2414 		return 0;
2415 	}
2416 
2417 #if 0
2418 	aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x\n", __func__, ievent);
2419 #endif
2420 
2421 	sc->sc_imask &= ~(IEVENT_RXF|IEVENT_RXB);
2422 	atomic_or_uint(&sc->sc_soft_flags, SOFT_RXINTR);
2423 	etsec_write(sc, IMASK, sc->sc_imask);
2424 	softint_schedule(sc->sc_soft_ih);
2425 
2426 	mutex_exit(sc->sc_hwlock);
2427 
2428 	return 1;
2429 }
2430 
2431 int
2432 pq3etsec_error_intr(void *arg)
2433 {
2434 	struct pq3etsec_softc * const sc = arg;
2435 
2436 	mutex_enter(sc->sc_hwlock);
2437 
2438 	sc->sc_ev_error_intr.ev_count++;
2439 
2440 	for (int rv = 0, soft_flags = 0;; rv = 1) {
2441 		uint32_t ievent = etsec_read(sc, IEVENT);
2442 		ievent &= ~(IEVENT_RXF|IEVENT_RXB|IEVENT_TXF|IEVENT_TXB);
2443 		etsec_write(sc, IEVENT, ievent);	/* write 1 to clear */
2444 		if (ievent == 0) {
2445 			if (soft_flags) {
2446 				atomic_or_uint(&sc->sc_soft_flags, soft_flags);
2447 				softint_schedule(sc->sc_soft_ih);
2448 			}
2449 			mutex_exit(sc->sc_hwlock);
2450 			return rv;
2451 		}
2452 #if 0
2453 		aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2454 		    __func__, ievent, etsec_read(sc, IMASK));
2455 #endif
2456 
2457 		if (ievent & (IEVENT_GRSC|IEVENT_GTSC)) {
2458 			sc->sc_imask &= ~(IEVENT_GRSC|IEVENT_GTSC);
2459 			etsec_write(sc, IMASK, sc->sc_imask);
2460 			wakeup(sc);
2461 		}
2462 		if (ievent & (IEVENT_MMRD|IEVENT_MMWR)) {
2463 			sc->sc_imask &= ~(IEVENT_MMRD|IEVENT_MMWR);
2464 			etsec_write(sc, IMASK, sc->sc_imask);
2465 			wakeup(&sc->sc_mii);
2466 		}
2467 		if (ievent & IEVENT_BSY) {
2468 			soft_flags |= SOFT_RXBSY;
2469 			sc->sc_imask &= ~IEVENT_BSY;
2470 			etsec_write(sc, IMASK, sc->sc_imask);
2471 		}
2472 		if (ievent & IEVENT_TXE) {
2473 			soft_flags |= SOFT_TXERROR;
2474 			sc->sc_imask &= ~IEVENT_TXE;
2475 			sc->sc_txerrors |= ievent;
2476 		}
2477 		if (ievent & IEVENT_TXC) {
2478 			sc->sc_ev_tx_pause.ev_count++;
2479 		}
2480 		if (ievent & IEVENT_RXC) {
2481 			sc->sc_ev_rx_pause.ev_count++;
2482 		}
2483 		if (ievent & IEVENT_DPE) {
2484 			soft_flags |= SOFT_RESET;
2485 			sc->sc_imask &= ~IEVENT_DPE;
2486 			etsec_write(sc, IMASK, sc->sc_imask);
2487 		}
2488 	}
2489 }
2490 
2491 void
2492 pq3etsec_soft_intr(void *arg)
2493 {
2494 	struct pq3etsec_softc * const sc = arg;
2495 	struct ifnet * const ifp = &sc->sc_if;
2496 	uint32_t imask = 0;
2497 
2498 	mutex_enter(sc->sc_lock);
2499 
2500 	u_int soft_flags = atomic_swap_uint(&sc->sc_soft_flags, 0);
2501 
2502 	sc->sc_ev_soft_intr.ev_count++;
2503 
2504 	if (soft_flags & SOFT_RESET) {
2505 		int s = splnet();
2506 		pq3etsec_ifinit(ifp);
2507 		splx(s);
2508 		soft_flags = 0;
2509 	}
2510 
2511 	if (soft_flags & SOFT_RXBSY) {
2512 		struct pq3etsec_rxqueue * const rxq = &sc->sc_rxq;
2513 		size_t threshold = 5 * rxq->rxq_threshold / 4;
2514 		if (threshold >= rxq->rxq_last - rxq->rxq_first) {
2515 			threshold = rxq->rxq_last - rxq->rxq_first - 1;
2516 		} else {
2517 			imask |= IEVENT_BSY;
2518 		}
2519 		aprint_normal_dev(sc->sc_dev,
2520 		    "increasing receive buffers from %zu to %zu\n",
2521 		    rxq->rxq_threshold, threshold);
2522 		rxq->rxq_threshold = threshold;
2523 	}
2524 
2525 	if ((soft_flags & SOFT_TXINTR)
2526 	    || pq3etsec_txq_active_p(sc, &sc->sc_txq)) {
2527 		/*
2528 		 * Let's do what we came here for.  Consume transmitted
2529 		 * packets off the the transmit ring.
2530 		 */
2531 		if (!pq3etsec_txq_consume(sc, &sc->sc_txq)
2532 		    || !pq3etsec_txq_enqueue(sc, &sc->sc_txq)) {
2533 			sc->sc_ev_tx_stall.ev_count++;
2534 			ifp->if_flags |= IFF_OACTIVE;
2535 		} else {
2536 			ifp->if_flags &= ~IFF_OACTIVE;
2537 		}
2538 		imask |= IEVENT_TXF;
2539 	}
2540 
2541 	if (soft_flags & (SOFT_RXINTR|SOFT_RXBSY)) {
2542 		/*
2543 		 * Let's consume
2544 		 */
2545 		pq3etsec_rxq_consume(sc, &sc->sc_rxq);
2546 		imask |= IEVENT_RXF;
2547 	}
2548 
2549 	if (soft_flags & SOFT_TXERROR) {
2550 		pq3etsec_tx_error(sc);
2551 		imask |= IEVENT_TXE;
2552 	}
2553 
2554 	if (ifp->if_flags & IFF_RUNNING) {
2555 		pq3etsec_rxq_produce(sc, &sc->sc_rxq);
2556 		mutex_spin_enter(sc->sc_hwlock);
2557 		sc->sc_imask |= imask;
2558 		etsec_write(sc, IMASK, sc->sc_imask);
2559 		mutex_spin_exit(sc->sc_hwlock);
2560 	} else {
2561 		KASSERT((soft_flags & SOFT_RXBSY) == 0);
2562 	}
2563 
2564 	mutex_exit(sc->sc_lock);
2565 }
2566 
2567 static void
2568 pq3etsec_mii_tick(void *arg)
2569 {
2570 	struct pq3etsec_softc * const sc = arg;
2571 	mutex_enter(sc->sc_lock);
2572 	callout_ack(&sc->sc_mii_callout);
2573 	sc->sc_ev_mii_ticks.ev_count++;
2574 #ifdef DEBUG
2575 	uint64_t now = mftb();
2576 	if (now - sc->sc_mii_last_tick < cpu_timebase - 5000) {
2577 		aprint_debug_dev(sc->sc_dev, "%s: diff=%"PRIu64"\n",
2578 		    __func__, now - sc->sc_mii_last_tick);
2579 		callout_stop(&sc->sc_mii_callout);
2580 	}
2581 #endif
2582 	mii_tick(&sc->sc_mii);
2583 	int s = splnet();
2584 	if (sc->sc_soft_flags & SOFT_RESET)
2585 		softint_schedule(sc->sc_soft_ih);
2586 	splx(s);
2587 	callout_schedule(&sc->sc_mii_callout, hz);
2588 #ifdef DEBUG
2589 	sc->sc_mii_last_tick = now;
2590 #endif
2591 	mutex_exit(sc->sc_lock);
2592 }
2593 
2594 static void
2595 pq3etsec_set_ic_rx(struct pq3etsec_softc *sc)
2596 {
2597 	uint32_t reg;
2598 
2599 	if (ETSEC_IC_RX_ENABLED(sc)) {
2600 		reg = RXIC_ICEN;
2601 		reg |= RXIC_ICFT_SET(sc->sc_ic_rx_count);
2602 		reg |= RXIC_ICTT_SET(sc->sc_ic_rx_time);
2603 	} else {
2604 		/* Disable RX interrupt coalescing */
2605 		reg = 0;
2606 	}
2607 
2608 	etsec_write(sc, RXIC, reg);
2609 }
2610 
2611 static void
2612 pq3etsec_set_ic_tx(struct pq3etsec_softc *sc)
2613 {
2614 	uint32_t reg;
2615 
2616 	if (ETSEC_IC_TX_ENABLED(sc)) {
2617 		reg = TXIC_ICEN;
2618 		reg |= TXIC_ICFT_SET(sc->sc_ic_tx_count);
2619 		reg |= TXIC_ICTT_SET(sc->sc_ic_tx_time);
2620 	} else {
2621 		/* Disable TX interrupt coalescing */
2622 		reg = 0;
2623 	}
2624 
2625 	etsec_write(sc, TXIC, reg);
2626 }
2627 
2628 /*
2629  * sysctl
2630  */
2631 static int
2632 pq3etsec_sysctl_ic_time_helper(SYSCTLFN_ARGS, int *valuep)
2633 {
2634 	struct sysctlnode node = *rnode;
2635 	struct pq3etsec_softc *sc = rnode->sysctl_data;
2636 	int value = *valuep;
2637 	int error;
2638 
2639 	node.sysctl_data = &value;
2640 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2641 	if (error != 0 || newp == NULL)
2642 		return error;
2643 
2644 	if (value < 0 || value > 65535)
2645 		return EINVAL;
2646 
2647 	mutex_enter(sc->sc_lock);
2648 	*valuep = value;
2649 	if (valuep == &sc->sc_ic_rx_time)
2650 		pq3etsec_set_ic_rx(sc);
2651 	else
2652 		pq3etsec_set_ic_tx(sc);
2653 	mutex_exit(sc->sc_lock);
2654 
2655 	return 0;
2656 }
2657 
2658 static int
2659 pq3etsec_sysctl_ic_count_helper(SYSCTLFN_ARGS, int *valuep)
2660 {
2661 	struct sysctlnode node = *rnode;
2662 	struct pq3etsec_softc *sc = rnode->sysctl_data;
2663 	int value = *valuep;
2664 	int error;
2665 
2666 	node.sysctl_data = &value;
2667 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2668 	if (error != 0 || newp == NULL)
2669 		return error;
2670 
2671 	if (value < 0 || value > 255)
2672 		return EINVAL;
2673 
2674 	mutex_enter(sc->sc_lock);
2675 	*valuep = value;
2676 	if (valuep == &sc->sc_ic_rx_count)
2677 		pq3etsec_set_ic_rx(sc);
2678 	else
2679 		pq3etsec_set_ic_tx(sc);
2680 	mutex_exit(sc->sc_lock);
2681 
2682 	return 0;
2683 }
2684 
2685 static int
2686 pq3etsec_sysctl_ic_rx_time_helper(SYSCTLFN_ARGS)
2687 {
2688 	struct pq3etsec_softc *sc = rnode->sysctl_data;
2689 
2690 	return pq3etsec_sysctl_ic_time_helper(SYSCTLFN_CALL(rnode),
2691 	    &sc->sc_ic_rx_time);
2692 }
2693 
2694 static int
2695 pq3etsec_sysctl_ic_rx_count_helper(SYSCTLFN_ARGS)
2696 {
2697 	struct pq3etsec_softc *sc = rnode->sysctl_data;
2698 
2699 	return pq3etsec_sysctl_ic_count_helper(SYSCTLFN_CALL(rnode),
2700 	    &sc->sc_ic_rx_count);
2701 }
2702 
2703 static int
2704 pq3etsec_sysctl_ic_tx_time_helper(SYSCTLFN_ARGS)
2705 {
2706 	struct pq3etsec_softc *sc = rnode->sysctl_data;
2707 
2708 	return pq3etsec_sysctl_ic_time_helper(SYSCTLFN_CALL(rnode),
2709 	    &sc->sc_ic_tx_time);
2710 }
2711 
2712 static int
2713 pq3etsec_sysctl_ic_tx_count_helper(SYSCTLFN_ARGS)
2714 {
2715 	struct pq3etsec_softc *sc = rnode->sysctl_data;
2716 
2717 	return pq3etsec_sysctl_ic_count_helper(SYSCTLFN_CALL(rnode),
2718 	    &sc->sc_ic_tx_count);
2719 }
2720 
2721 static void pq3etsec_sysctl_setup(struct sysctllog **clog,
2722     struct pq3etsec_softc *sc)
2723 {
2724 	const struct sysctlnode *cnode, *rnode;
2725 
2726 	if (sysctl_createv(clog, 0, NULL, &rnode,
2727 	    CTLFLAG_PERMANENT,
2728 	    CTLTYPE_NODE, device_xname(sc->sc_dev),
2729 	    SYSCTL_DESCR("TSEC interface"),
2730 	    NULL, 0, NULL, 0,
2731 	    CTL_HW, CTL_CREATE, CTL_EOL) != 0)
2732 		goto bad;
2733 
2734 	if (sysctl_createv(clog, 0, &rnode, &rnode,
2735 	    CTLFLAG_PERMANENT,
2736 	    CTLTYPE_NODE, "int_coal",
2737 	    SYSCTL_DESCR("Interrupts coalescing"),
2738 	    NULL, 0, NULL, 0,
2739 	    CTL_CREATE, CTL_EOL) != 0)
2740 		goto bad;
2741 
2742 	if (sysctl_createv(clog, 0, &rnode, &cnode,
2743 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2744 	    CTLTYPE_INT, "rx_time",
2745 	    SYSCTL_DESCR("RX time threshold (0-65535)"),
2746 	    pq3etsec_sysctl_ic_rx_time_helper, 0, (void *)sc, 0,
2747 	    CTL_CREATE, CTL_EOL) != 0)
2748 		goto bad;
2749 
2750 	if (sysctl_createv(clog, 0, &rnode, &cnode,
2751 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2752 	    CTLTYPE_INT, "rx_count",
2753 	    SYSCTL_DESCR("RX frame count threshold (0-255)"),
2754 	    pq3etsec_sysctl_ic_rx_count_helper, 0, (void *)sc, 0,
2755 	    CTL_CREATE, CTL_EOL) != 0)
2756 		goto bad;
2757 
2758 	if (sysctl_createv(clog, 0, &rnode, &cnode,
2759 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2760 	    CTLTYPE_INT, "tx_time",
2761 	    SYSCTL_DESCR("TX time threshold (0-65535)"),
2762 	    pq3etsec_sysctl_ic_tx_time_helper, 0, (void *)sc, 0,
2763 	    CTL_CREATE, CTL_EOL) != 0)
2764 		goto bad;
2765 
2766 	if (sysctl_createv(clog, 0, &rnode, &cnode,
2767 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2768 	    CTLTYPE_INT, "tx_count",
2769 	    SYSCTL_DESCR("TX frame count threshold (0-255)"),
2770 	    pq3etsec_sysctl_ic_tx_count_helper, 0, (void *)sc, 0,
2771 	    CTL_CREATE, CTL_EOL) != 0)
2772 		goto bad;
2773 
2774 	return;
2775 
2776  bad:
2777 	aprint_error_dev(sc->sc_dev, "could not attach sysctl nodes\n");
2778 }
2779