xref: /netbsd-src/sys/arch/powerpc/booke/dev/pq3etsec.c (revision b757af438b42b93f8c6571f026d8b8ef3eaf5fc9)
1 /*	$NetBSD: pq3etsec.c,v 1.10 2012/02/21 02:08:55 matt Exp $	*/
2 /*-
3  * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to The NetBSD Foundation
7  * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8  * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9  *
10  * This material is based upon work supported by the Defense Advanced Research
11  * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12  * Contract No. N66001-09-C-2073.
13  * Approved for Public Release, Distribution Unlimited
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 #include "opt_inet.h"
38 
39 #include <sys/cdefs.h>
40 
41 __KERNEL_RCSID(0, "$NetBSD: pq3etsec.c,v 1.10 2012/02/21 02:08:55 matt Exp $");
42 
43 #include <sys/param.h>
44 #include <sys/cpu.h>
45 #include <sys/device.h>
46 #include <sys/mbuf.h>
47 #include <sys/ioctl.h>
48 #include <sys/intr.h>
49 #include <sys/bus.h>
50 #include <sys/kernel.h>
51 #include <sys/kmem.h>
52 #include <sys/proc.h>
53 #include <sys/atomic.h>
54 #include <sys/callout.h>
55 
56 #include <net/if.h>
57 #include <net/if_dl.h>
58 #include <net/if_ether.h>
59 #include <net/if_media.h>
60 
61 #include <dev/mii/miivar.h>
62 
63 #include "ioconf.h"
64 
65 #include <net/bpf.h>
66 
67 #ifdef INET
68 #include <netinet/in.h>
69 #include <netinet/in_systm.h>
70 #include <netinet/ip.h>
71 #include <netinet/in_offload.h>
72 #endif /* INET */
73 #ifdef INET6
74 #include <netinet6/in6.h>
75 #include <netinet/ip6.h>
76 #endif
77 #include <netinet6/in6_offload.h>
78 
79 
80 #include <powerpc/spr.h>
81 #include <powerpc/booke/spr.h>
82 
83 #include <powerpc/booke/cpuvar.h>
84 #include <powerpc/booke/e500var.h>
85 #include <powerpc/booke/e500reg.h>
86 #include <powerpc/booke/etsecreg.h>
87 
88 #define	M_HASFCB		M_LINK2	/* tx packet has FCB prepended */
89 
90 #define	ETSEC_MAXTXMBUFS	30
91 #define	ETSEC_NTXSEGS		30
92 #define	ETSEC_MAXRXMBUFS	511
93 #define	ETSEC_MINRXMBUFS	32
94 #define	ETSEC_NRXSEGS		1
95 
96 #define	IFCAP_RCTRL_IPCSEN	IFCAP_CSUM_IPv4_Rx
97 #define	IFCAP_RCTRL_TUCSEN	(IFCAP_CSUM_TCPv4_Rx\
98 				 |IFCAP_CSUM_UDPv4_Rx\
99 				 |IFCAP_CSUM_TCPv6_Rx\
100 				 |IFCAP_CSUM_UDPv6_Rx)
101 
102 #define	IFCAP_TCTRL_IPCSEN	IFCAP_CSUM_IPv4_Tx
103 #define	IFCAP_TCTRL_TUCSEN	(IFCAP_CSUM_TCPv4_Tx\
104 				 |IFCAP_CSUM_UDPv4_Tx\
105 				 |IFCAP_CSUM_TCPv6_Tx\
106 				 |IFCAP_CSUM_UDPv6_Tx)
107 
108 #define	IFCAP_ETSEC		(IFCAP_RCTRL_IPCSEN|IFCAP_RCTRL_TUCSEN\
109 				 |IFCAP_TCTRL_IPCSEN|IFCAP_TCTRL_TUCSEN)
110 
111 #define	M_CSUM_IP	(M_CSUM_CIP|M_CSUM_CTU)
112 #define	M_CSUM_IP6	(M_CSUM_TCPv6|M_CSUM_UDPv6)
113 #define	M_CSUM_TUP	(M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TCPv6|M_CSUM_UDPv6)
114 #define	M_CSUM_UDP	(M_CSUM_UDPv4|M_CSUM_UDPv6)
115 #define	M_CSUM_IP4	(M_CSUM_IPv4|M_CSUM_UDPv4|M_CSUM_TCPv4)
116 #define	M_CSUM_CIP	(M_CSUM_IPv4)
117 #define	M_CSUM_CTU	(M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TCPv6|M_CSUM_UDPv6)
118 
119 struct pq3etsec_txqueue {
120 	bus_dmamap_t txq_descmap;
121 	volatile struct txbd *txq_consumer;
122 	volatile struct txbd *txq_producer;
123 	volatile struct txbd *txq_first;
124 	volatile struct txbd *txq_last;
125 	struct ifqueue txq_mbufs;
126 	struct mbuf *txq_next;
127 #ifdef ETSEC_DEBUG
128 	struct mbuf *txq_lmbufs[512];
129 #endif
130 	uint32_t txq_qmask;
131 	uint32_t txq_free;
132 	uint32_t txq_threshold;
133 	uint32_t txq_lastintr;
134 	bus_size_t txq_reg_tbase;
135 	bus_dma_segment_t txq_descmap_seg;
136 };
137 
138 struct pq3etsec_rxqueue {
139 	bus_dmamap_t rxq_descmap;
140 	volatile struct rxbd *rxq_consumer;
141 	volatile struct rxbd *rxq_producer;
142 	volatile struct rxbd *rxq_first;
143 	volatile struct rxbd *rxq_last;
144 	struct mbuf *rxq_mhead;
145 	struct mbuf **rxq_mtail;
146 	struct mbuf *rxq_mconsumer;
147 #ifdef ETSEC_DEBUG
148 	struct mbuf *rxq_mbufs[512];
149 #endif
150 	uint32_t rxq_qmask;
151 	uint32_t rxq_inuse;
152 	uint32_t rxq_threshold;
153 	bus_size_t rxq_reg_rbase;
154 	bus_size_t rxq_reg_rbptr;
155 	bus_dma_segment_t rxq_descmap_seg;
156 };
157 
158 struct pq3etsec_mapcache {
159 	u_int dmc_nmaps;
160 	u_int dmc_maxseg;
161 	u_int dmc_maxmaps;
162 	u_int dmc_maxmapsize;
163 	bus_dmamap_t dmc_maps[0];
164 };
165 
166 struct pq3etsec_softc {
167 	device_t sc_dev;
168 	struct ethercom sc_ec;
169 #define sc_if		sc_ec.ec_if
170 	struct mii_data sc_mii;
171 	bus_space_tag_t sc_bst;
172 	bus_space_handle_t sc_bsh;
173 	bus_dma_tag_t sc_dmat;
174 	int sc_phy_addr;
175 	prop_dictionary_t sc_intrmap;
176 	uint32_t sc_intrmask;
177 
178 	uint32_t sc_soft_flags;
179 #define	SOFT_RESET		0x0001
180 #define	SOFT_RXINTR		0x0010
181 #define	SOFT_RXBSY		0x0020
182 #define	SOFT_TXINTR		0x0100
183 #define	SOFT_TXERROR		0x0200
184 
185 	struct pq3etsec_txqueue sc_txq;
186 	struct pq3etsec_rxqueue sc_rxq;
187 	uint32_t sc_txerrors;
188 	uint32_t sc_rxerrors;
189 
190 	size_t sc_rx_adjlen;
191 
192 	/*
193 	 * Copies of various ETSEC registers.
194 	 */
195 	uint32_t sc_imask;
196 	uint32_t sc_maccfg1;
197 	uint32_t sc_maccfg2;
198 	uint32_t sc_maxfrm;
199 	uint32_t sc_ecntrl;
200 	uint32_t sc_dmactrl;
201 	uint32_t sc_macstnaddr1;
202 	uint32_t sc_macstnaddr2;
203 	uint32_t sc_tctrl;
204 	uint32_t sc_rctrl;
205 	uint32_t sc_gaddr[16];
206 	uint64_t sc_macaddrs[15];
207 
208 	void *sc_tx_ih;
209 	void *sc_rx_ih;
210 	void *sc_error_ih;
211 	void *sc_soft_ih;
212 
213 	kmutex_t *sc_lock;
214 
215 	struct evcnt sc_ev_tx_stall;
216 	struct evcnt sc_ev_tx_intr;
217 	struct evcnt sc_ev_rx_stall;
218 	struct evcnt sc_ev_rx_intr;
219 	struct evcnt sc_ev_error_intr;
220 	struct evcnt sc_ev_soft_intr;
221 	struct evcnt sc_ev_tx_pause;
222 	struct evcnt sc_ev_rx_pause;
223 	struct evcnt sc_ev_mii_ticks;
224 
225 	struct callout sc_mii_callout;
226 	uint64_t sc_mii_last_tick;
227 
228 	struct ifqueue sc_rx_bufcache;
229 	struct pq3etsec_mapcache *sc_rx_mapcache;
230 	struct pq3etsec_mapcache *sc_tx_mapcache;
231 };
232 
233 static int pq3etsec_match(device_t, cfdata_t, void *);
234 static void pq3etsec_attach(device_t, device_t, void *);
235 
236 static void pq3etsec_ifstart(struct ifnet *);
237 static void pq3etsec_ifwatchdog(struct ifnet *);
238 static int pq3etsec_ifinit(struct ifnet *);
239 static void pq3etsec_ifstop(struct ifnet *, int);
240 static int pq3etsec_ifioctl(struct ifnet *, u_long, void *);
241 
242 static int pq3etsec_mapcache_create(struct pq3etsec_softc *,
243     struct pq3etsec_mapcache **, size_t, size_t, size_t);
244 static void pq3etsec_mapcache_destroy(struct pq3etsec_softc *,
245     struct pq3etsec_mapcache *);
246 static bus_dmamap_t pq3etsec_mapcache_get(struct pq3etsec_softc *,
247     struct pq3etsec_mapcache *);
248 static void pq3etsec_mapcache_put(struct pq3etsec_softc *,
249     struct pq3etsec_mapcache *, bus_dmamap_t);
250 
251 static int pq3etsec_txq_attach(struct pq3etsec_softc *,
252     struct pq3etsec_txqueue *, u_int);
253 static void pq3etsec_txq_purge(struct pq3etsec_softc *,
254     struct pq3etsec_txqueue *);
255 static void pq3etsec_txq_reset(struct pq3etsec_softc *,
256     struct pq3etsec_txqueue *);
257 static bool pq3etsec_txq_consume(struct pq3etsec_softc *,
258     struct pq3etsec_txqueue *);
259 static bool pq3etsec_txq_produce(struct pq3etsec_softc *,
260     struct pq3etsec_txqueue *, struct mbuf *m);
261 static bool pq3etsec_txq_active_p(struct pq3etsec_softc *,
262     struct pq3etsec_txqueue *);
263 
264 static int pq3etsec_rxq_attach(struct pq3etsec_softc *,
265     struct pq3etsec_rxqueue *, u_int);
266 static bool pq3etsec_rxq_produce(struct pq3etsec_softc *,
267     struct pq3etsec_rxqueue *);
268 static void pq3etsec_rxq_purge(struct pq3etsec_softc *,
269     struct pq3etsec_rxqueue *, bool);
270 static void pq3etsec_rxq_reset(struct pq3etsec_softc *,
271     struct pq3etsec_rxqueue *);
272 
273 static void pq3etsec_mc_setup(struct pq3etsec_softc *);
274 
275 static void pq3etsec_mii_tick(void *);
276 static int pq3etsec_rx_intr(void *);
277 static int pq3etsec_tx_intr(void *);
278 static int pq3etsec_error_intr(void *);
279 static void pq3etsec_soft_intr(void *);
280 
281 CFATTACH_DECL_NEW(pq3etsec, sizeof(struct pq3etsec_softc),
282     pq3etsec_match, pq3etsec_attach, NULL, NULL);
283 
284 static int
285 pq3etsec_match(device_t parent, cfdata_t cf, void *aux)
286 {
287 
288 	if (!e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
289 		return 0;
290 
291 	return 1;
292 }
293 
294 static inline uint32_t
295 etsec_read(struct pq3etsec_softc *sc, bus_size_t off)
296 {
297 	return bus_space_read_4(sc->sc_bst, sc->sc_bsh, off);
298 }
299 
300 static inline void
301 etsec_write(struct pq3etsec_softc *sc, bus_size_t off, uint32_t data)
302 {
303 	bus_space_write_4(sc->sc_bst, sc->sc_bsh, off, data);
304 }
305 
306 static int
307 pq3etsec_mii_readreg(device_t self, int phy, int reg)
308 {
309 	struct pq3etsec_softc * const sc = device_private(self);
310 	uint32_t miimcom = etsec_read(sc, MIIMCOM);
311 
312 //	int s = splnet();
313 
314 	etsec_write(sc, MIIMADD,
315 	    __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
316 
317 	etsec_write(sc, IEVENT, IEVENT_MMRD);
318 	etsec_write(sc, MIIMCOM, 0);	/* clear any past bits */
319 	etsec_write(sc, MIIMCOM, MIIMCOM_READ);
320 #if 0
321 	sc->sc_imask |= IEVENT_MMRD;
322 	etsec_write(sc, IMASK, sc->sc_imask);
323 #endif
324 
325 	while (etsec_read(sc, MIIMIND) != 0) {
326 			delay(1);
327 	}
328 	int data = etsec_read(sc, MIIMSTAT);
329 
330 	if (miimcom == MIIMCOM_SCAN)
331 		etsec_write(sc, MIIMCOM, miimcom);
332 
333 #if 0
334 	aprint_normal_dev(sc->sc_dev, "%s: phy %d reg %d: %#x\n",
335 	    __func__, phy, reg, data);
336 #endif
337 	etsec_write(sc, IEVENT, IEVENT_MMRD);
338 //	splx(s);
339 	return data;
340 }
341 
342 static void
343 pq3etsec_mii_writereg(device_t self, int phy, int reg, int data)
344 {
345 	struct pq3etsec_softc * const sc = device_private(self);
346 	uint32_t miimcom = etsec_read(sc, MIIMCOM);
347 
348 #if 0
349 	aprint_normal_dev(sc->sc_dev, "%s: phy %d reg %d: %#x\n",
350 	    __func__, phy, reg, data);
351 #endif
352 
353 //	int s = splnet();
354 	etsec_write(sc, IEVENT, IEVENT_MMWR);
355 	etsec_write(sc, MIIMADD,
356 	    __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
357 	etsec_write(sc, MIIMCOM, 0);	/* clear any past bits */
358 	etsec_write(sc, MIIMCON, data);
359 
360 #if 0
361 	sc->sc_imask |= IEVENT_MMWR;
362 	etsec_write(sc, IMASK, sc->sc_imask);
363 #endif
364 
365 	int timo = 1000;	/* 1ms */
366 	while ((etsec_read(sc, MIIMIND) & MIIMIND_BUSY) && --timo > 0) {
367 			delay(1);
368 	}
369 
370 	if (miimcom == MIIMCOM_SCAN)
371 		etsec_write(sc, MIIMCOM, miimcom);
372 	etsec_write(sc, IEVENT, IEVENT_MMWR);
373 //	splx(s);
374 }
375 
376 static void
377 pq3etsec_mii_statchg(device_t self)
378 {
379 	struct pq3etsec_softc * const sc = device_private(self);
380 	struct mii_data * const mii = &sc->sc_mii;
381 
382 	uint32_t maccfg1 = sc->sc_maccfg1;
383 	uint32_t maccfg2 = sc->sc_maccfg2;
384 	uint32_t ecntrl = sc->sc_ecntrl;
385 
386 	maccfg1 &= ~(MACCFG1_TX_FLOW|MACCFG1_RX_FLOW);
387 	maccfg2 &= ~(MACCFG2_IFMODE|MACCFG2_FD);
388 
389 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
390 		maccfg2 |= MACCFG2_FD;
391 	}
392 
393 	/*
394 	 * Now deal with the flow control bits.
395 	 */
396 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO
397 	    && (mii->mii_media_active & IFM_ETH_FMASK)) {
398 		if (mii->mii_media_active & IFM_ETH_RXPAUSE)
399 			maccfg1 |= MACCFG1_RX_FLOW;
400 		if (mii->mii_media_active & IFM_ETH_TXPAUSE)
401 			maccfg1 |= MACCFG1_TX_FLOW;
402 	}
403 
404 	/*
405 	 * Now deal with the speed.
406 	 */
407 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
408 		maccfg2 |= MACCFG2_IFMODE_GMII;
409 	} else {
410 		maccfg2 |= MACCFG2_IFMODE_MII;
411 		ecntrl &= ~ECNTRL_R100M;
412 		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_10_T) {
413 			ecntrl |= ECNTRL_R100M;
414 		}
415 	}
416 
417 	/*
418 	 * If things are different, re-init things.
419 	 */
420 	if (maccfg1 != sc->sc_maccfg1
421 	    || maccfg2 != sc->sc_maccfg2
422 	    || ecntrl != sc->sc_ecntrl) {
423 		if (sc->sc_if.if_flags & IFF_RUNNING)
424 			atomic_or_uint(&sc->sc_soft_flags, SOFT_RESET);
425 		sc->sc_maccfg1 = maccfg1;
426 		sc->sc_maccfg2 = maccfg2;
427 		sc->sc_ecntrl = ecntrl;
428 	}
429 }
430 
431 #if 0
432 static void
433 pq3etsec_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
434 {
435 	struct pq3etsec_softc * const sc = ifp->if_softc;
436 
437 	mii_pollstat(&sc->sc_mii);
438 	ether_mediastatus(ifp, ifmr);
439         ifmr->ifm_status = sc->sc_mii.mii_media_status;
440         ifmr->ifm_active = sc->sc_mii.mii_media_active;
441 }
442 
443 static int
444 pq3etsec_mediachange(struct ifnet *ifp)
445 {
446 	struct pq3etsec_softc * const sc = ifp->if_softc;
447 
448 	if ((ifp->if_flags & IFF_UP) == 0)
449 		return 0;
450 
451 	int rv = mii_mediachg(&sc->sc_mii);
452 	return (rv == ENXIO) ? 0 : rv;
453 }
454 #endif
455 
456 static void
457 pq3etsec_attach(device_t parent, device_t self, void *aux)
458 {
459 	struct cpunode_softc * const psc = device_private(parent);
460 	struct pq3etsec_softc * const sc = device_private(self);
461 	struct cpunode_attach_args * const cna = aux;
462 	struct cpunode_locators * const cnl = &cna->cna_locs;
463 	cfdata_t cf = device_cfdata(self);
464 	int error;
465 
466 	psc->sc_children |= cna->cna_childmask;
467 	sc->sc_dev = self;
468 	sc->sc_bst = cna->cna_memt;
469 	sc->sc_dmat = &booke_bus_dma_tag;
470 
471 	/*
472 	 * If we have a common MDIO bus, if all off instance 1.
473 	 */
474 	device_t miiself = (cf->cf_flags & 0x100) ? tsec_cd.cd_devs[0] : self;
475 
476 	/*
477 	 * See if the phy is in the config file...
478 	 */
479 	if (cf->cf_flags & 0x3f) {
480 		sc->sc_phy_addr = (cf->cf_flags & 0x3f) - 1;
481 	} else {
482 		unsigned char prop_name[20];
483 		snprintf(prop_name, sizeof(prop_name), "tsec%u-phy-addr",
484 		    cnl->cnl_instance);
485 		sc->sc_phy_addr = board_info_get_number(prop_name);
486 	}
487 	if (sc->sc_phy_addr != MII_PHY_ANY)
488 		aprint_normal(" phy %d", sc->sc_phy_addr);
489 
490 	error = bus_space_map(sc->sc_bst, cnl->cnl_addr, cnl->cnl_size, 0,
491 	    &sc->sc_bsh);
492 	if (error) {
493 		aprint_error(": error mapping registers: %d\n", error);
494 		return;
495 	}
496 
497 	/*
498 	 * Assume firmware has aready set the mac address and fetch it
499 	 * before we reinit it.
500 	 */
501 	sc->sc_macstnaddr2 = etsec_read(sc, MACSTNADDR2);
502 	sc->sc_macstnaddr1 = etsec_read(sc, MACSTNADDR1);
503 	sc->sc_rctrl = RCTRL_DEFAULT;
504 	sc->sc_maccfg2 = MACCFG2_DEFAULT;
505 
506 	if (sc->sc_macstnaddr1 == 0 && sc->sc_macstnaddr2 == 0) {
507 		size_t len;
508 		const uint8_t *mac_addr =
509 		    board_info_get_data("tsec-mac-addr-base", &len);
510 		KASSERT(len == ETHER_ADDR_LEN);
511 		sc->sc_macstnaddr2 =
512 		    (mac_addr[1] << 24)
513 		    | (mac_addr[0] << 16);
514 		sc->sc_macstnaddr1 =
515 		    ((mac_addr[5] + cnl->cnl_instance - 1) << 24)
516 		    | (mac_addr[4] << 16)
517 		    | (mac_addr[3] << 8)
518 		    | (mac_addr[2] << 0);
519 #if 0
520 		aprint_error(": mac-address unknown\n");
521 		return;
522 #endif
523 	}
524 
525 	char enaddr[ETHER_ADDR_LEN] = {
526 	    [0] = sc->sc_macstnaddr2 >> 16,
527 	    [1] = sc->sc_macstnaddr2 >> 24,
528 	    [2] = sc->sc_macstnaddr1 >>  0,
529 	    [3] = sc->sc_macstnaddr1 >>  8,
530 	    [4] = sc->sc_macstnaddr1 >> 16,
531 	    [5] = sc->sc_macstnaddr1 >> 24,
532 	};
533 
534 	error = pq3etsec_rxq_attach(sc, &sc->sc_rxq, 0);
535 	if (error) {
536 		aprint_error(": failed to init rxq: %d\n", error);
537 		return;
538 	}
539 
540 	error = pq3etsec_txq_attach(sc, &sc->sc_txq, 0);
541 	if (error) {
542 		aprint_error(": failed to init txq: %d\n", error);
543 		return;
544 	}
545 
546 	error = pq3etsec_mapcache_create(sc, &sc->sc_rx_mapcache,
547 	    ETSEC_MAXRXMBUFS, MCLBYTES, ETSEC_NRXSEGS);
548 	if (error) {
549 		aprint_error(": failed to allocate rx dmamaps: %d\n", error);
550 		return;
551 	}
552 
553 	error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
554 	    ETSEC_MAXTXMBUFS, MCLBYTES, ETSEC_NTXSEGS);
555 	if (error) {
556 		aprint_error(": failed to allocate tx dmamaps: %d\n", error);
557 		return;
558 	}
559 
560 	sc->sc_tx_ih = intr_establish(cnl->cnl_intrs[0], IPL_VM, IST_ONCHIP,
561 	    pq3etsec_tx_intr, sc);
562 	if (sc->sc_tx_ih == NULL) {
563 		aprint_error(": failed to establish tx interrupt: %d\n",
564 		    cnl->cnl_intrs[0]);
565 		return;
566 	}
567 
568 	sc->sc_rx_ih = intr_establish(cnl->cnl_intrs[1], IPL_VM, IST_ONCHIP,
569 	    pq3etsec_rx_intr, sc);
570 	if (sc->sc_rx_ih == NULL) {
571 		aprint_error(": failed to establish rx interrupt: %d\n",
572 		    cnl->cnl_intrs[1]);
573 		return;
574 	}
575 
576 	sc->sc_error_ih = intr_establish(cnl->cnl_intrs[2], IPL_VM, IST_ONCHIP,
577 	    pq3etsec_error_intr, sc);
578 	if (sc->sc_error_ih == NULL) {
579 		aprint_error(": failed to establish error interrupt: %d\n",
580 		    cnl->cnl_intrs[2]);
581 		return;
582 	}
583 
584 	sc->sc_soft_ih = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
585 	    pq3etsec_soft_intr, sc);
586 	if (sc->sc_soft_ih == NULL) {
587 		aprint_error(": failed to establish soft interrupt\n");
588 		return;
589 	}
590 
591 	aprint_normal("\n");
592 
593 	etsec_write(sc, ATTR, ATTR_DEFAULT);
594 	etsec_write(sc, ATTRELI, ATTRELI_DEFAULT);
595 
596 	sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
597 
598 	callout_init(&sc->sc_mii_callout, CALLOUT_MPSAFE);
599 	callout_setfunc(&sc->sc_mii_callout, pq3etsec_mii_tick, sc);
600 
601 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
602 	   ether_sprintf(enaddr));
603 
604 	const char * const xname = device_xname(sc->sc_dev);
605 	struct ethercom * const ec = &sc->sc_ec;
606 	struct ifnet * const ifp = &ec->ec_if;
607 
608 	ec->ec_mii = &sc->sc_mii;
609 
610 	sc->sc_mii.mii_ifp = ifp;
611 	sc->sc_mii.mii_readreg = pq3etsec_mii_readreg;
612 	sc->sc_mii.mii_writereg = pq3etsec_mii_writereg;
613 	sc->sc_mii.mii_statchg = pq3etsec_mii_statchg;
614 
615 	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
616 	    ether_mediastatus);
617 
618 	if (sc->sc_phy_addr < 32) {
619 		mii_attach(miiself, &sc->sc_mii, 0xffffffff,
620 		    sc->sc_phy_addr, MII_OFFSET_ANY, MIIF_DOPAUSE);
621 
622 		if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
623 			ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
624 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
625 		} else {
626 			callout_schedule(&sc->sc_mii_callout, hz);
627 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
628 		}
629 	} else {
630 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
631 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_1000_T|IFM_FDX);
632 	}
633 
634 	ec->ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING
635 	    | ETHERCAP_JUMBO_MTU;
636 
637 	strlcpy(ifp->if_xname, xname, IFNAMSIZ);
638 	ifp->if_softc = sc;
639 	ifp->if_capabilities = IFCAP_ETSEC;
640 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
641 	ifp->if_ioctl = pq3etsec_ifioctl;
642 	ifp->if_start = pq3etsec_ifstart;
643 	ifp->if_watchdog = pq3etsec_ifwatchdog;
644 	ifp->if_init = pq3etsec_ifinit;
645 	ifp->if_stop = pq3etsec_ifstop;
646 	IFQ_SET_READY(&ifp->if_snd);
647 
648 	pq3etsec_ifstop(ifp, true);
649 
650 	/*
651 	 * Attach the interface.
652 	 */
653 	if_attach(ifp);
654 	ether_ifattach(ifp, enaddr);
655 
656 	evcnt_attach_dynamic(&sc->sc_ev_rx_stall, EVCNT_TYPE_MISC,
657 	    NULL, xname, "rx stall");
658 	evcnt_attach_dynamic(&sc->sc_ev_tx_stall, EVCNT_TYPE_MISC,
659 	    NULL, xname, "tx stall");
660 	evcnt_attach_dynamic(&sc->sc_ev_tx_intr, EVCNT_TYPE_INTR,
661 	    NULL, xname, "tx intr");
662 	evcnt_attach_dynamic(&sc->sc_ev_rx_intr, EVCNT_TYPE_INTR,
663 	    NULL, xname, "rx intr");
664 	evcnt_attach_dynamic(&sc->sc_ev_error_intr, EVCNT_TYPE_INTR,
665 	    NULL, xname, "error intr");
666 	evcnt_attach_dynamic(&sc->sc_ev_soft_intr, EVCNT_TYPE_INTR,
667 	    NULL, xname, "soft intr");
668 	evcnt_attach_dynamic(&sc->sc_ev_tx_pause, EVCNT_TYPE_MISC,
669 	    NULL, xname, "tx pause");
670 	evcnt_attach_dynamic(&sc->sc_ev_rx_pause, EVCNT_TYPE_MISC,
671 	    NULL, xname, "rx pause");
672 	evcnt_attach_dynamic(&sc->sc_ev_mii_ticks, EVCNT_TYPE_MISC,
673 	    NULL, xname, "mii ticks");
674 }
675 
676 static uint64_t
677 pq3etsec_macaddr_create(const uint8_t *lladdr)
678 {
679 	uint64_t macaddr = 0;
680 
681 	lladdr += ETHER_ADDR_LEN;
682 	for (u_int i = ETHER_ADDR_LEN; i-- > 0; ) {
683 		macaddr = (macaddr << 8) | *--lladdr;
684 	}
685 	return macaddr << 16;
686 }
687 
688 static int
689 pq3etsec_ifinit(struct ifnet *ifp)
690 {
691 	struct pq3etsec_softc * const sc = ifp->if_softc;
692 	int error = 0;
693 
694 	KASSERT(!cpu_softintr_p());
695 
696 	sc->sc_maxfrm = max(ifp->if_mtu + 32, MCLBYTES);
697 	if (ifp->if_mtu > ETHERMTU_JUMBO)
698 		return error;
699 
700 	KASSERT(ifp->if_flags & IFF_UP);
701 
702 	/*
703 	 * Stop the interface (steps 1 to 4 in the Soft Reset and
704 	 * Reconfigurating Procedure.
705 	 */
706 	pq3etsec_ifstop(ifp, 0);
707 
708 	/*
709 	 * If our frame size has changed (or it's our first time through)
710 	 * destroy the existing transmit mapcache.
711 	 */
712 	if (sc->sc_tx_mapcache != NULL
713 	    && sc->sc_maxfrm != sc->sc_tx_mapcache->dmc_maxmapsize) {
714 		pq3etsec_mapcache_destroy(sc, sc->sc_tx_mapcache);
715 		sc->sc_tx_mapcache = NULL;
716 	}
717 
718 	if (sc->sc_tx_mapcache == NULL) {
719 		error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
720 		    ETSEC_MAXTXMBUFS, sc->sc_maxfrm, ETSEC_NTXSEGS);
721 		if (error)
722 			return error;
723 	}
724 
725 	sc->sc_ev_mii_ticks.ev_count++;
726 	mii_tick(&sc->sc_mii);
727 
728 	if (ifp->if_flags & IFF_PROMISC) {
729 		sc->sc_rctrl |= RCTRL_PROM;
730 	} else {
731 		sc->sc_rctrl &= ~RCTRL_PROM;
732 	}
733 
734 	uint32_t rctrl_prsdep = 0;
735 	sc->sc_rctrl &= ~(RCTRL_IPCSEN|RCTRL_TUCSEN|RCTRL_VLEX|RCTRL_PRSDEP);
736 	if (VLAN_ATTACHED(&sc->sc_ec)) {
737 		sc->sc_rctrl |= RCTRL_VLEX;
738 		rctrl_prsdep = RCTRL_PRSDEP_L2;
739 	}
740 	if (ifp->if_capenable & IFCAP_RCTRL_IPCSEN) {
741 		sc->sc_rctrl |= RCTRL_IPCSEN;
742 		rctrl_prsdep = RCTRL_PRSDEP_L3;
743 	}
744 	if (ifp->if_capenable & IFCAP_RCTRL_TUCSEN) {
745 		sc->sc_rctrl |= RCTRL_TUCSEN;
746 		rctrl_prsdep = RCTRL_PRSDEP_L4;
747 	}
748 	sc->sc_rctrl |= rctrl_prsdep;
749 #if 0
750 	if (sc->sc_rctrl & (RCTRL_IPCSEN|RCTRL_TUCSEN|RCTRL_VLEX|RCTRL_PRSDEP))
751 		aprint_normal_dev(sc->sc_dev,
752 		    "rctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlex=%"PRIuMAX" prsdep=%"PRIuMAX"\n",
753 		    sc->sc_rctrl,
754 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_IPCSEN),
755 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_TUCSEN),
756 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_VLEX),
757 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_PRSDEP));
758 #endif
759 
760 	sc->sc_tctrl &= ~(TCTRL_IPCSEN|TCTRL_TUCSEN|TCTRL_VLINS);
761 	if (VLAN_ATTACHED(&sc->sc_ec))		/* is this really true */
762 		sc->sc_tctrl |= TCTRL_VLINS;
763 	if (ifp->if_capenable & IFCAP_TCTRL_IPCSEN)
764 		sc->sc_tctrl |= TCTRL_IPCSEN;
765 	if (ifp->if_capenable & IFCAP_TCTRL_TUCSEN)
766 		sc->sc_tctrl |= TCTRL_TUCSEN;
767 #if 0
768 	if (sc->sc_tctrl & (TCTRL_IPCSEN|TCTRL_TUCSEN|TCTRL_VLINS))
769 		aprint_normal_dev(sc->sc_dev,
770 		    "tctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlins=%"PRIuMAX"\n",
771 		    sc->sc_tctrl,
772 		    __SHIFTOUT(sc->sc_tctrl, TCTRL_IPCSEN),
773 		    __SHIFTOUT(sc->sc_tctrl, TCTRL_TUCSEN),
774 		    __SHIFTOUT(sc->sc_tctrl, TCTRL_VLINS));
775 #endif
776 
777 	sc->sc_maccfg1 &= ~(MACCFG1_TX_EN|MACCFG1_RX_EN);
778 
779 	const uint64_t macstnaddr =
780 	    pq3etsec_macaddr_create(CLLADDR(ifp->if_sadl));
781 
782 	sc->sc_imask = IEVENT_DPE;
783 
784 	/* 5. Load TDBPH, TBASEH, TBASE0-TBASE7 with new Tx BD pointers */
785 	pq3etsec_rxq_reset(sc, &sc->sc_rxq);
786 	pq3etsec_rxq_produce(sc, &sc->sc_rxq);	/* fill with rx buffers */
787 
788 	/* 6. Load RDBPH, RBASEH, RBASE0-RBASE7 with new Rx BD pointers */
789 	pq3etsec_txq_reset(sc, &sc->sc_txq);
790 
791 	/* 7. Setup other MAC registers (MACCFG2, MAXFRM, etc.) */
792 	KASSERT(MACCFG2_PADCRC & sc->sc_maccfg2);
793 	etsec_write(sc, MAXFRM, sc->sc_maxfrm);
794 	etsec_write(sc, MACSTNADDR1, (uint32_t)(macstnaddr >> 32));
795 	etsec_write(sc, MACSTNADDR2, (uint32_t)(macstnaddr >>  0));
796 	etsec_write(sc, MACCFG1, sc->sc_maccfg1);
797 	etsec_write(sc, MACCFG2, sc->sc_maccfg2);
798 	etsec_write(sc, ECNTRL, sc->sc_ecntrl);
799 
800 	/* 8. Setup group address hash table (GADDR0-GADDR15) */
801 	pq3etsec_mc_setup(sc);
802 
803 	/* 9. Setup receive frame filer table (via RQFAR, RQFCR, and RQFPR) */
804 	etsec_write(sc, MRBLR, MCLBYTES);
805 
806 	/* 10. Setup WWR, WOP, TOD bits in DMACTRL register */
807 	sc->sc_dmactrl |= DMACTRL_DEFAULT;
808 	etsec_write(sc, DMACTRL, sc->sc_dmactrl);
809 
810 	/* 11. Enable transmit queues in TQUEUE, and ensure that the transmit scheduling mode is correctly set in TCTRL. */
811 	etsec_write(sc, TQUEUE, TQUEUE_EN0);
812 	sc->sc_imask |= IEVENT_TXF|IEVENT_TXE|IEVENT_TXC;
813 
814 	etsec_write(sc, TCTRL, sc->sc_tctrl);	/* for TOE stuff */
815 
816 	/* 12. Enable receive queues in RQUEUE, */
817 	etsec_write(sc, RQUEUE, RQUEUE_EN0|RQUEUE_EX0);
818 	sc->sc_imask |= IEVENT_RXF|IEVENT_BSY|IEVENT_RXC;
819 
820 	/*     and optionally set TOE functionality in RCTRL. */
821 	etsec_write(sc, RCTRL, sc->sc_rctrl);
822 	sc->sc_rx_adjlen = __SHIFTOUT(sc->sc_rctrl, RCTRL_PAL);
823 	if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF)
824 		sc->sc_rx_adjlen += sizeof(struct rxfcb);
825 
826 	/* 13. Clear THLT and TXF bits in TSTAT register by writing 1 to them */
827 	etsec_write(sc, TSTAT, TSTAT_THLT | TSTAT_TXF);
828 
829 	/* 14. Clear QHLT and RXF bits in RSTAT register by writing 1 to them.*/
830 	etsec_write(sc, RSTAT, RSTAT_QHLT | RSTAT_RXF);
831 
832 	/* 15. Clear GRS/GTS bits in DMACTRL (do not change other bits) */
833 	sc->sc_dmactrl &= ~(DMACTRL_GRS|DMACTRL_GTS);
834 	etsec_write(sc, DMACTRL, sc->sc_dmactrl);
835 
836 	/* 16. Enable Tx_EN/Rx_EN in MACCFG1 register */
837 	etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
838 	etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
839 
840 	sc->sc_soft_flags = 0;
841 
842 	etsec_write(sc, IMASK, sc->sc_imask);
843 
844 	ifp->if_flags |= IFF_RUNNING;
845 
846 	return error;
847 }
848 
849 static void
850 pq3etsec_ifstop(struct ifnet *ifp, int disable)
851 {
852 	struct pq3etsec_softc * const sc = ifp->if_softc;
853 
854 	KASSERT(!cpu_intr_p());
855 	const uint32_t imask_gsc_mask = IEVENT_GTSC|IEVENT_GRSC;
856 	/*
857 	 * Clear the GTSC and GRSC from the interrupt mask until
858 	 * we are ready for them.  Then clear them from IEVENT,
859 	 * request the graceful shutdown, and then enable the
860 	 * GTSC and GRSC bits in the mask.  This should cause the
861 	 * error interrupt to fire which will issue a wakeup to
862 	 * allow us to resume.
863 	 */
864 
865 	/*
866 	 * 1. Set GRS/GTS bits in DMACTRL register
867 	 */
868 	sc->sc_dmactrl |= DMACTRL_GRS|DMACTRL_GTS;
869 	etsec_write(sc, IMASK, sc->sc_imask & ~imask_gsc_mask);
870 	etsec_write(sc, IEVENT, imask_gsc_mask);
871 	etsec_write(sc, DMACTRL, sc->sc_dmactrl);
872 
873 	if (etsec_read(sc, MACCFG1) & (MACCFG1_TX_EN|MACCFG1_RX_EN)) {
874 		/*
875 		 * 2. Poll GRSC/GTSC bits in IEVENT register until both are set
876 		 */
877 		etsec_write(sc, IMASK, sc->sc_imask | imask_gsc_mask);
878 
879 		u_int timo = 1000;
880 		uint32_t ievent = etsec_read(sc, IEVENT);
881 		while ((ievent & imask_gsc_mask) != imask_gsc_mask) {
882 			if (--timo == 0) {
883 				aprint_error_dev(sc->sc_dev,
884 				    "WARNING: "
885 				    "request to stop failed (IEVENT=%#x)\n",
886 				    ievent);
887 				break;
888 			}
889 			delay(10);
890 			ievent = etsec_read(sc, IEVENT);
891 		}
892 	}
893 
894 	/*
895 	 * Now reset the controller.
896 	 *
897 	 * 3. Set SOFT_RESET bit in MACCFG1 register
898 	 * 4. Clear SOFT_RESET bit in MACCFG1 register
899 	 */
900 	etsec_write(sc, MACCFG1, MACCFG1_SOFT_RESET);
901 	etsec_write(sc, MACCFG1, 0);
902 	etsec_write(sc, IMASK, 0);
903 	etsec_write(sc, IEVENT, ~0);
904 	sc->sc_imask = 0;
905 	ifp->if_flags &= ~IFF_RUNNING;
906 
907 	uint32_t tbipa = etsec_read(sc, TBIPA);
908 	if (tbipa == sc->sc_phy_addr) {
909 		aprint_normal_dev(sc->sc_dev, "relocating TBI\n");
910 		etsec_write(sc, TBIPA, 0x1f);
911 	}
912 	uint32_t miimcfg = etsec_read(sc, MIIMCFG);
913 	etsec_write(sc, MIIMCFG, MIIMCFG_RESET);
914 	etsec_write(sc, MIIMCFG, miimcfg);
915 
916 	/*
917 	 * Let's consume any remaing transmitted packets.  And if we are
918 	 * disabling the interface, purge ourselves of any untransmitted
919 	 * packets.  But don't consume any received packets, just drop them.
920 	 * If we aren't disabling the interface, save the mbufs in the
921 	 * receive queue for reuse.
922 	 */
923 	pq3etsec_rxq_purge(sc, &sc->sc_rxq, disable);
924 	pq3etsec_txq_consume(sc, &sc->sc_txq);
925 	if (disable) {
926 		pq3etsec_txq_purge(sc, &sc->sc_txq);
927 		IF_PURGE(&ifp->if_snd);
928 	}
929 }
930 
931 static void
932 pq3etsec_ifwatchdog(struct ifnet *ifp)
933 {
934 }
935 
936 static void
937 pq3etsec_mc_setup(
938 	struct pq3etsec_softc *sc)
939 {
940 	struct ethercom * const ec = &sc->sc_ec;
941 	struct ifnet * const ifp = &sc->sc_if;
942 	struct ether_multi *enm;
943 	struct ether_multistep step;
944 	uint32_t *gaddr = sc->sc_gaddr + ((sc->sc_rctrl & RCTRL_GHTX) ? 0 : 8);
945 	const uint32_t crc_shift = 32 - ((sc->sc_rctrl & RCTRL_GHTX) ? 9 : 8);
946 
947 	memset(sc->sc_gaddr, 0, sizeof(sc->sc_gaddr));
948 	memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
949 
950 	ifp->if_flags &= ~IFF_ALLMULTI;
951 
952 	ETHER_FIRST_MULTI(step, ec, enm);
953 	for (u_int i = 0; enm != NULL; ) {
954 		const char *addr = enm->enm_addrlo;
955 		if (memcmp(addr, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
956 			ifp->if_flags |= IFF_ALLMULTI;
957 			memset(gaddr, 0xff, 32 << (crc_shift & 1));
958 			memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
959 			break;
960 		}
961 		if ((sc->sc_rctrl & RCTRL_EMEN)
962 		    && i < __arraycount(sc->sc_macaddrs)) {
963 			sc->sc_macaddrs[i++] = pq3etsec_macaddr_create(addr);
964 		} else {
965 			uint32_t crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
966 #if 0
967 			printf("%s: %s: crc=%#x: %#x: [%u,%u]=%#x\n", __func__,
968 			    ether_sprintf(addr), crc,
969 			    crc >> crc_shift,
970 			    crc >> (crc_shift + 5),
971 			    (crc >> crc_shift) & 31,
972 			    1 << (((crc >> crc_shift) & 31) ^ 31));
973 #endif
974 			/*
975 			 * The documentation doesn't completely follow PowerPC
976 			 * bit order.  The BE crc32 (H) for 01:00:5E:00:00:01
977 			 * is 0x7fa32d9b.  By empirical testing, the
978 			 * corresponding hash bit is word 3, bit 31 (ppc bit
979 			 * order).  Since 3 << 31 | 31 is 0x7f, we deduce
980 			 * H[0:2] selects the register while H[3:7] selects
981 			 * the bit (ppc bit order).
982 			 */
983 			crc >>= crc_shift;
984 			gaddr[crc / 32] |= 1 << ((crc & 31) ^ 31);
985 		}
986 		ETHER_NEXT_MULTI(step, enm);
987 	}
988 	for (u_int i = 0; i < 8; i++) {
989 		etsec_write(sc, IGADDR(i), sc->sc_gaddr[i]);
990 		etsec_write(sc, GADDR(i), sc->sc_gaddr[i+8]);
991 #if 0
992 		if (sc->sc_gaddr[i] || sc->sc_gaddr[i+8])
993 		printf("%s: IGADDR%u(%#x)=%#x GADDR%u(%#x)=%#x\n", __func__,
994 		    i, IGADDR(i), etsec_read(sc, IGADDR(i)),
995 		    i, GADDR(i), etsec_read(sc, GADDR(i)));
996 #endif
997 	}
998 	for (u_int i = 0; i < __arraycount(sc->sc_macaddrs); i++) {
999 		uint64_t macaddr = sc->sc_macaddrs[i];
1000 		etsec_write(sc, MACnADDR1(i), (uint32_t)(macaddr >> 32));
1001 		etsec_write(sc, MACnADDR2(i), (uint32_t)(macaddr >>  0));
1002 #if 0
1003 		if (macaddr)
1004 		printf("%s: MAC%02uADDR2(%08x)=%#x MAC%02uADDR2(%#x)=%08x\n", __func__,
1005 		    i+1, MACnADDR1(i), etsec_read(sc, MACnADDR1(i)),
1006 		    i+1, MACnADDR2(i), etsec_read(sc, MACnADDR2(i)));
1007 #endif
1008 	}
1009 }
1010 
1011 static int
1012 pq3etsec_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
1013 {
1014 	struct pq3etsec_softc *sc  = ifp->if_softc;
1015 	struct ifreq * const ifr = data;
1016 	const int s = splnet();
1017 	int error;
1018 
1019 	switch (cmd) {
1020 	case SIOCSIFMEDIA:
1021 	case SIOCGIFMEDIA:
1022 		/* Flow control requires full-duplex mode. */
1023 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1024 		    (ifr->ifr_media & IFM_FDX) == 0)
1025 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1026 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1027 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1028 				/* We can do both TXPAUSE and RXPAUSE. */
1029 				ifr->ifr_media |=
1030 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1031 			}
1032 		}
1033 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1034 		break;
1035 
1036 	default:
1037 		error = ether_ioctl(ifp, cmd, data);
1038 		if (error != ENETRESET)
1039 			break;
1040 
1041 		if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
1042 			error = 0;
1043 			if (ifp->if_flags & IFF_RUNNING)
1044 				pq3etsec_mc_setup(sc);
1045 			break;
1046 		}
1047 		error = pq3etsec_ifinit(ifp);
1048 		break;
1049 	}
1050 
1051 	splx(s);
1052 	return error;
1053 }
1054 
1055 static void
1056 pq3etsec_rxq_desc_presync(
1057 	struct pq3etsec_softc *sc,
1058 	struct pq3etsec_rxqueue *rxq,
1059 	volatile struct rxbd *rxbd,
1060 	size_t count)
1061 {
1062 	bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1063 	    (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1064 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1065 }
1066 
1067 static void
1068 pq3etsec_rxq_desc_postsync(
1069 	struct pq3etsec_softc *sc,
1070 	struct pq3etsec_rxqueue *rxq,
1071 	volatile struct rxbd *rxbd,
1072 	size_t count)
1073 {
1074 	bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1075 	    (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1076 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1077 }
1078 
1079 static void
1080 pq3etsec_txq_desc_presync(
1081 	struct pq3etsec_softc *sc,
1082 	struct pq3etsec_txqueue *txq,
1083 	volatile struct txbd *txbd,
1084 	size_t count)
1085 {
1086 	bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1087 	    (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1088 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1089 }
1090 
1091 static void
1092 pq3etsec_txq_desc_postsync(
1093 	struct pq3etsec_softc *sc,
1094 	struct pq3etsec_txqueue *txq,
1095 	volatile struct txbd *txbd,
1096 	size_t count)
1097 {
1098 	bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1099 	    (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1100 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1101 }
1102 
1103 static bus_dmamap_t
1104 pq3etsec_mapcache_get(
1105 	struct pq3etsec_softc *sc,
1106 	struct pq3etsec_mapcache *dmc)
1107 {
1108 	KASSERT(dmc->dmc_nmaps > 0);
1109 	KASSERT(dmc->dmc_maps[dmc->dmc_nmaps-1] != NULL);
1110 	return dmc->dmc_maps[--dmc->dmc_nmaps];
1111 }
1112 
1113 static void
1114 pq3etsec_mapcache_put(
1115 	struct pq3etsec_softc *sc,
1116 	struct pq3etsec_mapcache *dmc,
1117 	bus_dmamap_t map)
1118 {
1119 	KASSERT(map != NULL);
1120 	KASSERT(dmc->dmc_nmaps < dmc->dmc_maxmaps);
1121 	dmc->dmc_maps[dmc->dmc_nmaps++] = map;
1122 }
1123 
1124 static void
1125 pq3etsec_mapcache_destroy(
1126 	struct pq3etsec_softc *sc,
1127 	struct pq3etsec_mapcache *dmc)
1128 {
1129 	const size_t dmc_size =
1130 	    offsetof(struct pq3etsec_mapcache, dmc_maps[dmc->dmc_maxmaps]);
1131 
1132 	for (u_int i = 0; i < dmc->dmc_maxmaps; i++) {
1133 		bus_dmamap_destroy(sc->sc_dmat, dmc->dmc_maps[i]);
1134 	}
1135 	kmem_free(dmc, dmc_size);
1136 }
1137 
1138 static int
1139 pq3etsec_mapcache_create(
1140 	struct pq3etsec_softc *sc,
1141 	struct pq3etsec_mapcache **dmc_p,
1142 	size_t maxmaps,
1143 	size_t maxmapsize,
1144 	size_t maxseg)
1145 {
1146 	const size_t dmc_size =
1147 	    offsetof(struct pq3etsec_mapcache, dmc_maps[maxmaps]);
1148 	struct pq3etsec_mapcache * const dmc = kmem_zalloc(dmc_size, KM_SLEEP);
1149 
1150 	dmc->dmc_maxmaps = maxmaps;
1151 	dmc->dmc_nmaps = maxmaps;
1152 	dmc->dmc_maxmapsize = maxmapsize;
1153 	dmc->dmc_maxseg = maxseg;
1154 
1155 	for (u_int i = 0; i < maxmaps; i++) {
1156 		int error = bus_dmamap_create(sc->sc_dmat, dmc->dmc_maxmapsize,
1157 		     dmc->dmc_maxseg, dmc->dmc_maxmapsize, 0,
1158 		     BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW, &dmc->dmc_maps[i]);
1159 		if (error) {
1160 			aprint_error_dev(sc->sc_dev,
1161 			    "failed to creat dma map cache "
1162 			    "entry %u of %zu: %d\n",
1163 			    i, maxmaps, error);
1164 			while (i-- > 0) {
1165 				bus_dmamap_destroy(sc->sc_dmat,
1166 				    dmc->dmc_maps[i]);
1167 			}
1168 			kmem_free(dmc, dmc_size);
1169 			return error;
1170 		}
1171 		KASSERT(dmc->dmc_maps[i] != NULL);
1172 	}
1173 
1174 	*dmc_p = dmc;
1175 
1176 	return 0;
1177 }
1178 
1179 #if 0
1180 static void
1181 pq3etsec_dmamem_free(
1182 	bus_dma_tag_t dmat,
1183 	size_t map_size,
1184 	bus_dma_segment_t *seg,
1185 	bus_dmamap_t map,
1186 	void *kvap)
1187 {
1188 	bus_dmamap_destroy(dmat, map);
1189 	bus_dmamem_unmap(dmat, kvap, map_size);
1190 	bus_dmamem_free(dmat, seg, 1);
1191 }
1192 #endif
1193 
1194 static int
1195 pq3etsec_dmamem_alloc(
1196 	bus_dma_tag_t dmat,
1197 	size_t map_size,
1198 	bus_dma_segment_t *seg,
1199 	bus_dmamap_t *map,
1200 	void **kvap)
1201 {
1202 	int error;
1203 	int nseg;
1204 
1205 	*kvap = NULL;
1206 	*map = NULL;
1207 
1208 	error = bus_dmamem_alloc(dmat, map_size, PAGE_SIZE, 0,
1209 	   seg, 1, &nseg, 0);
1210 	if (error)
1211 		return error;
1212 
1213 	KASSERT(nseg == 1);
1214 
1215 	error = bus_dmamem_map(dmat, seg, nseg, map_size, (void **)kvap,
1216 	    BUS_DMA_COHERENT);
1217 	if (error == 0) {
1218 		error = bus_dmamap_create(dmat, map_size, 1, map_size, 0, 0,
1219 		    map);
1220 		if (error == 0) {
1221 			error = bus_dmamap_load(dmat, *map, *kvap, map_size,
1222 			    NULL, 0);
1223 			if (error == 0)
1224 				return 0;
1225 			bus_dmamap_destroy(dmat, *map);
1226 			*map = NULL;
1227 		}
1228 		bus_dmamem_unmap(dmat, *kvap, map_size);
1229 		*kvap = NULL;
1230 	}
1231 	bus_dmamem_free(dmat, seg, nseg);
1232 	return 0;
1233 }
1234 
1235 static struct mbuf *
1236 pq3etsec_rx_buf_alloc(
1237 	struct pq3etsec_softc *sc)
1238 {
1239 	struct mbuf *m = m_gethdr(M_DONTWAIT, MT_DATA);
1240 	if (m == NULL) {
1241 		printf("%s:%d: %s\n", __func__, __LINE__, "m_gethdr");
1242 		return NULL;
1243 	}
1244 	MCLGET(m, M_DONTWAIT);
1245 	if ((m->m_flags & M_EXT) == 0) {
1246 		printf("%s:%d: %s\n", __func__, __LINE__, "MCLGET");
1247 		m_freem(m);
1248 		return NULL;
1249 	}
1250 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1251 
1252 	bus_dmamap_t map = pq3etsec_mapcache_get(sc, sc->sc_rx_mapcache);
1253 	if (map == NULL) {
1254 		printf("%s:%d: %s\n", __func__, __LINE__, "map get");
1255 		m_freem(m);
1256 		return NULL;
1257 	}
1258 	M_SETCTX(m, map);
1259 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1260 	int error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1261 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1262 	if (error) {
1263 		aprint_error_dev(sc->sc_dev, "fail to load rx dmamap: %d\n",
1264 		    error);
1265 		M_SETCTX(m, NULL);
1266 		m_freem(m);
1267 		pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1268 		return NULL;
1269 	}
1270 	KASSERT(map->dm_mapsize == MCLBYTES);
1271 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1272 	    BUS_DMASYNC_PREREAD);
1273 
1274 	return m;
1275 }
1276 
1277 static void
1278 pq3etsec_rx_map_unload(
1279 	struct pq3etsec_softc *sc,
1280 	struct mbuf *m)
1281 {
1282 	KASSERT(m);
1283 	for (; m != NULL; m = m->m_next) {
1284 		bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1285 		KASSERT(map);
1286 		KASSERT(map->dm_mapsize == MCLBYTES);
1287 		bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_len,
1288 		    BUS_DMASYNC_POSTREAD);
1289 		bus_dmamap_unload(sc->sc_dmat, map);
1290 		pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1291 		M_SETCTX(m, NULL);
1292 	}
1293 }
1294 
1295 static bool
1296 pq3etsec_rxq_produce(
1297 	struct pq3etsec_softc *sc,
1298 	struct pq3etsec_rxqueue *rxq)
1299 {
1300 	volatile struct rxbd *producer = rxq->rxq_producer;
1301 #if 0
1302 	size_t inuse = rxq->rxq_inuse;
1303 #endif
1304 	while (rxq->rxq_inuse < rxq->rxq_threshold) {
1305 		struct mbuf *m;
1306 		IF_DEQUEUE(&sc->sc_rx_bufcache, m);
1307 		if (m == NULL) {
1308 			m = pq3etsec_rx_buf_alloc(sc);
1309 			if (m == NULL) {
1310 				printf("%s: pq3etsec_rx_buf_alloc failed\n", __func__);
1311 				break;
1312 			}
1313 		}
1314 		bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1315 		KASSERT(map);
1316 
1317 #ifdef ETSEC_DEBUG
1318 		KASSERT(rxq->rxq_mbufs[producer-rxq->rxq_first] == NULL);
1319 		rxq->rxq_mbufs[producer-rxq->rxq_first] = m;
1320 #endif
1321 
1322 		/* rxbd_len is write-only by the ETSEC */
1323 		producer->rxbd_bufptr = map->dm_segs[0].ds_addr;
1324 		membar_producer();
1325 		producer->rxbd_flags |= RXBD_E;
1326 		if (__predict_false(rxq->rxq_mhead == NULL)) {
1327 			KASSERT(producer == rxq->rxq_consumer);
1328 			rxq->rxq_mconsumer = m;
1329 		}
1330 		*rxq->rxq_mtail = m;
1331 		rxq->rxq_mtail = &m->m_next;
1332 		m->m_len = MCLBYTES;
1333 		m->m_next = NULL;
1334 		rxq->rxq_inuse++;
1335 		if (++producer == rxq->rxq_last) {
1336 			membar_producer();
1337 			pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1338 			    rxq->rxq_last - rxq->rxq_producer);
1339 			producer = rxq->rxq_producer = rxq->rxq_first;
1340 		}
1341 	}
1342 	if (producer != rxq->rxq_producer) {
1343 		membar_producer();
1344 		pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1345 		    producer - rxq->rxq_producer);
1346 		rxq->rxq_producer = producer;
1347 	}
1348 	uint32_t qhlt = etsec_read(sc, RSTAT) & RSTAT_QHLT;
1349 	if (qhlt) {
1350 		KASSERT(qhlt & rxq->rxq_qmask);
1351 		sc->sc_ev_rx_stall.ev_count++;
1352 		etsec_write(sc, RSTAT, RSTAT_QHLT & rxq->rxq_qmask);
1353 	}
1354 #if 0
1355 	aprint_normal_dev(sc->sc_dev,
1356 	    "%s: buffers inuse went from %zu to %zu\n",
1357 	    __func__, inuse, rxq->rxq_inuse);
1358 #endif
1359 	return true;
1360 }
1361 
1362 static bool
1363 pq3etsec_rx_offload(
1364 	struct pq3etsec_softc *sc,
1365 	struct mbuf *m,
1366 	const struct rxfcb *fcb)
1367 {
1368 	if (fcb->rxfcb_flags & RXFCB_VLN) {
1369 		VLAN_INPUT_TAG(&sc->sc_if, m, fcb->rxfcb_vlctl,
1370 		    m_freem(m); return false);
1371 	}
1372 	if ((fcb->rxfcb_flags & RXFCB_IP) == 0
1373 	    || (fcb->rxfcb_flags & (RXFCB_CIP|RXFCB_CTU)) == 0)
1374 		return true;
1375 	int csum_flags = 0;
1376 	if ((fcb->rxfcb_flags & (RXFCB_IP6|RXFCB_CIP)) == RXFCB_CIP) {
1377 		csum_flags |= M_CSUM_IPv4;
1378 		if (fcb->rxfcb_flags & RXFCB_EIP)
1379 			csum_flags |= M_CSUM_IPv4_BAD;
1380 	}
1381 	if ((fcb->rxfcb_flags & RXFCB_CTU) == RXFCB_CTU) {
1382 		int ipv_flags;
1383 		if (fcb->rxfcb_flags & RXFCB_IP6)
1384 			ipv_flags = M_CSUM_TCPv6|M_CSUM_UDPv6;
1385 		else
1386 			ipv_flags = M_CSUM_TCPv4|M_CSUM_UDPv4;
1387 		if (fcb->rxfcb_pro == IPPROTO_TCP) {
1388 			csum_flags |= (M_CSUM_TCPv4|M_CSUM_TCPv6) & ipv_flags;
1389 		} else {
1390 			csum_flags |= (M_CSUM_UDPv4|M_CSUM_UDPv6) & ipv_flags;
1391 		}
1392 		if (fcb->rxfcb_flags & RXFCB_ETU)
1393 			csum_flags |= M_CSUM_TCP_UDP_BAD;
1394 	}
1395 
1396 	m->m_pkthdr.csum_flags = csum_flags;
1397 	return true;
1398 }
1399 
1400 static void
1401 pq3etsec_rx_input(
1402 	struct pq3etsec_softc *sc,
1403 	struct mbuf *m,
1404 	uint16_t rxbd_flags)
1405 {
1406 	struct ifnet * const ifp = &sc->sc_if;
1407 
1408 	pq3etsec_rx_map_unload(sc, m);
1409 
1410 	if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF) {
1411 		struct rxfcb fcb = *mtod(m, struct rxfcb *);
1412 		if (!pq3etsec_rx_offload(sc, m, &fcb))
1413 			return;
1414 	}
1415 	m_adj(m, sc->sc_rx_adjlen);
1416 
1417 	if (rxbd_flags & RXBD_M)
1418 		m->m_flags |= M_PROMISC;
1419 	if (rxbd_flags & RXBD_BC)
1420 		m->m_flags |= M_BCAST;
1421 	if (rxbd_flags & RXBD_MC)
1422 		m->m_flags |= M_MCAST;
1423 	m->m_flags |= M_HASFCS;
1424 	m->m_pkthdr.rcvif = &sc->sc_if;
1425 
1426 	ifp->if_ipackets++;
1427 	ifp->if_ibytes += m->m_pkthdr.len;
1428 
1429 	/*
1430 	 * Let's give it to the network subsystm to deal with.
1431 	 */
1432 	int s = splnet();
1433 	bpf_mtap(ifp, m);
1434 	(*ifp->if_input)(ifp, m);
1435 	splx(s);
1436 }
1437 
1438 static void
1439 pq3etsec_rxq_consume(
1440 	struct pq3etsec_softc *sc,
1441 	struct pq3etsec_rxqueue *rxq)
1442 {
1443 	struct ifnet * const ifp = &sc->sc_if;
1444 	volatile struct rxbd *consumer = rxq->rxq_consumer;
1445 	size_t rxconsumed = 0;
1446 
1447 	etsec_write(sc, RSTAT, RSTAT_RXF & rxq->rxq_qmask);
1448 
1449 	for (;;) {
1450 		if (consumer == rxq->rxq_producer) {
1451 			rxq->rxq_consumer = consumer;
1452 			rxq->rxq_inuse -= rxconsumed;
1453 			KASSERT(rxq->rxq_inuse == 0);
1454 			return;
1455 		}
1456 		pq3etsec_rxq_desc_postsync(sc, rxq, consumer, 1);
1457 		const uint16_t rxbd_flags = consumer->rxbd_flags;
1458 		if (rxbd_flags & RXBD_E) {
1459 			rxq->rxq_consumer = consumer;
1460 			rxq->rxq_inuse -= rxconsumed;
1461 			return;
1462 		}
1463 		KASSERT(rxq->rxq_mconsumer != NULL);
1464 #ifdef ETSEC_DEBUG
1465 		KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1466 #endif
1467 #if 0
1468 		printf("%s: rxdb[%u]: flags=%#x len=%#x: %08x %08x %08x %08x\n",
1469 		    __func__,
1470 		    consumer - rxq->rxq_first, rxbd_flags, consumer->rxbd_len,
1471 		    mtod(rxq->rxq_mconsumer, int *)[0],
1472 		    mtod(rxq->rxq_mconsumer, int *)[1],
1473 		    mtod(rxq->rxq_mconsumer, int *)[2],
1474 		    mtod(rxq->rxq_mconsumer, int *)[3]);
1475 #endif
1476 		/*
1477 		 * We own this packet again.  Clear all flags except wrap.
1478 		 */
1479 		rxconsumed++;
1480 		consumer->rxbd_flags = rxbd_flags & (RXBD_W|RXBD_I);
1481 
1482 		/*
1483 		 * If this descriptor has the LAST bit set and no errors,
1484 		 * it's a valid input packet.
1485 		 */
1486 		if ((rxbd_flags & (RXBD_L|RXBD_ERRORS)) == RXBD_L) {
1487 			size_t rxbd_len = consumer->rxbd_len;
1488 			struct mbuf *m = rxq->rxq_mhead;
1489 			struct mbuf *m_last = rxq->rxq_mconsumer;
1490 			if ((rxq->rxq_mhead = m_last->m_next) == NULL)
1491 				rxq->rxq_mtail = &rxq->rxq_mhead;
1492 			rxq->rxq_mconsumer = rxq->rxq_mhead;
1493 			m_last->m_next = NULL;
1494 			m_last->m_len = rxbd_len & (MCLBYTES - 1);
1495 			m->m_pkthdr.len = rxbd_len;
1496 			pq3etsec_rx_input(sc, m, rxbd_flags);
1497 		} else if (rxbd_flags & RXBD_L) {
1498 			KASSERT(rxbd_flags & RXBD_ERRORS);
1499 			struct mbuf *m;
1500 			/*
1501 			 * We encountered an error, take the mbufs and add
1502 			 * then to the rx bufcache so we can reuse them.
1503 			 */
1504 			ifp->if_ierrors++;
1505 			for (m = rxq->rxq_mhead;
1506 			     m != rxq->rxq_mconsumer;
1507 			     m = m->m_next) {
1508 				IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1509 			}
1510 			m = rxq->rxq_mconsumer;
1511 			if ((rxq->rxq_mhead = m->m_next) == NULL)
1512 				rxq->rxq_mtail = &rxq->rxq_mhead;
1513 			rxq->rxq_mconsumer = m->m_next;
1514 			IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1515 		} else {
1516 			rxq->rxq_mconsumer = rxq->rxq_mconsumer->m_next;
1517 		}
1518 #ifdef ETSEC_DEBUG
1519 		rxq->rxq_mbufs[consumer - rxq->rxq_first] = NULL;
1520 #endif
1521 
1522 		/*
1523 		 * Wrap at the last entry!
1524 		 */
1525 		if (rxbd_flags & RXBD_W) {
1526 			KASSERT(consumer + 1 == rxq->rxq_last);
1527 			consumer = rxq->rxq_first;
1528 		} else {
1529 			consumer++;
1530 		}
1531 #ifdef ETSEC_DEBUG
1532 		KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1533 #endif
1534 	}
1535 }
1536 
1537 static void
1538 pq3etsec_rxq_purge(
1539 	struct pq3etsec_softc *sc,
1540 	struct pq3etsec_rxqueue *rxq,
1541 	bool discard)
1542 {
1543 	struct mbuf *m;
1544 
1545 	if ((m = rxq->rxq_mhead) != NULL) {
1546 #ifdef ETSEC_DEBUG
1547 		memset(rxq->rxq_mbufs, 0, sizeof(rxq->rxq_mbufs));
1548 #endif
1549 
1550 		if (discard) {
1551 			pq3etsec_rx_map_unload(sc, m);
1552 			m_freem(m);
1553 		} else {
1554 			while (m != NULL) {
1555 				struct mbuf *m0 = m->m_next;
1556 				m->m_next = NULL;
1557 				IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1558 				m = m0;
1559 			}
1560 		}
1561 
1562 	}
1563 
1564 	rxq->rxq_mconsumer = NULL;
1565 	rxq->rxq_mhead = NULL;
1566 	rxq->rxq_mtail = &rxq->rxq_mhead;
1567 	rxq->rxq_inuse = 0;
1568 }
1569 
1570 static void
1571 pq3etsec_rxq_reset(
1572 	struct pq3etsec_softc *sc,
1573 	struct pq3etsec_rxqueue *rxq)
1574 {
1575 	/*
1576 	 * sync all the descriptors
1577 	 */
1578 	pq3etsec_rxq_desc_postsync(sc, rxq, rxq->rxq_first,
1579 	    rxq->rxq_last - rxq->rxq_first);
1580 
1581 	/*
1582 	 * Make sure we own all descriptors in the ring.
1583 	 */
1584 	volatile struct rxbd *rxbd;
1585 	for (rxbd = rxq->rxq_first; rxbd < rxq->rxq_last - 1; rxbd++) {
1586 		rxbd->rxbd_flags = RXBD_I;
1587 	}
1588 
1589 	/*
1590 	 * Last descriptor has the wrap flag.
1591 	 */
1592 	rxbd->rxbd_flags = RXBD_W|RXBD_I;
1593 
1594 	/*
1595 	 * Reset the producer consumer indexes.
1596 	 */
1597 	rxq->rxq_consumer = rxq->rxq_first;
1598 	rxq->rxq_producer = rxq->rxq_first;
1599 	rxq->rxq_inuse = 0;
1600 	if (rxq->rxq_threshold < ETSEC_MINRXMBUFS)
1601 		rxq->rxq_threshold = ETSEC_MINRXMBUFS;
1602 
1603 	sc->sc_imask |= IEVENT_RXF|IEVENT_BSY;
1604 
1605 	/*
1606 	 * Restart the transmit at the first descriptor
1607 	 */
1608 	etsec_write(sc, rxq->rxq_reg_rbase, rxq->rxq_descmap->dm_segs->ds_addr);
1609 }
1610 
1611 static int
1612 pq3etsec_rxq_attach(
1613 	struct pq3etsec_softc *sc,
1614 	struct pq3etsec_rxqueue *rxq,
1615 	u_int qno)
1616 {
1617 	size_t map_size = PAGE_SIZE;
1618 	size_t desc_count = map_size / sizeof(struct rxbd);
1619 	int error;
1620 	void *descs;
1621 
1622 	error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1623 	   &rxq->rxq_descmap_seg, &rxq->rxq_descmap, &descs);
1624 	if (error)
1625 		return error;
1626 
1627 	memset(descs, 0, map_size);
1628 	rxq->rxq_first = descs;
1629 	rxq->rxq_last = rxq->rxq_first + desc_count;
1630 	rxq->rxq_consumer = descs;
1631 	rxq->rxq_producer = descs;
1632 
1633 	pq3etsec_rxq_purge(sc, rxq, true);
1634 	pq3etsec_rxq_reset(sc, rxq);
1635 
1636 	rxq->rxq_reg_rbase = RBASEn(qno);
1637 	rxq->rxq_qmask = RSTAT_QHLTn(qno) | RSTAT_RXFn(qno);
1638 
1639 	return 0;
1640 }
1641 
1642 static bool
1643 pq3etsec_txq_active_p(
1644 	struct pq3etsec_softc * const sc,
1645 	struct pq3etsec_txqueue *txq)
1646 {
1647 	return !IF_IS_EMPTY(&txq->txq_mbufs);
1648 }
1649 
1650 static bool
1651 pq3etsec_txq_fillable_p(
1652 	struct pq3etsec_softc * const sc,
1653 	struct pq3etsec_txqueue *txq)
1654 {
1655 	return txq->txq_free >= txq->txq_threshold;
1656 }
1657 
1658 static int
1659 pq3etsec_txq_attach(
1660 	struct pq3etsec_softc *sc,
1661 	struct pq3etsec_txqueue *txq,
1662 	u_int qno)
1663 {
1664 	size_t map_size = PAGE_SIZE;
1665 	size_t desc_count = map_size / sizeof(struct txbd);
1666 	int error;
1667 	void *descs;
1668 
1669 	error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1670 	   &txq->txq_descmap_seg, &txq->txq_descmap, &descs);
1671 	if (error)
1672 		return error;
1673 
1674 	memset(descs, 0, map_size);
1675 	txq->txq_first = descs;
1676 	txq->txq_last = txq->txq_first + desc_count;
1677 	txq->txq_consumer = descs;
1678 	txq->txq_producer = descs;
1679 
1680 	IFQ_SET_MAXLEN(&txq->txq_mbufs, ETSEC_MAXTXMBUFS);
1681 
1682 	txq->txq_reg_tbase = TBASEn(qno);
1683 	txq->txq_qmask = TSTAT_THLTn(qno) | TSTAT_TXFn(qno);
1684 
1685 	pq3etsec_txq_reset(sc, txq);
1686 
1687 	return 0;
1688 }
1689 
1690 static int
1691 pq3etsec_txq_map_load(
1692 	struct pq3etsec_softc *sc,
1693 	struct pq3etsec_txqueue *txq,
1694 	struct mbuf *m)
1695 {
1696 	bus_dmamap_t map;
1697 	int error;
1698 
1699 	map = M_GETCTX(m, bus_dmamap_t);
1700 	if (map != NULL)
1701 		return 0;
1702 
1703 	map = pq3etsec_mapcache_get(sc, sc->sc_tx_mapcache);
1704 	if (map == NULL)
1705 		return ENOMEM;
1706 
1707 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1708 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1709 	if (error)
1710 		return error;
1711 
1712 	bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_pkthdr.len,
1713 	    BUS_DMASYNC_PREWRITE);
1714 	M_SETCTX(m, map);
1715 	return 0;
1716 }
1717 
1718 static void
1719 pq3etsec_txq_map_unload(
1720 	struct pq3etsec_softc *sc,
1721 	struct pq3etsec_txqueue *txq,
1722 	struct mbuf *m)
1723 {
1724 	KASSERT(m);
1725 	bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1726 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1727 	    BUS_DMASYNC_POSTWRITE);
1728 	bus_dmamap_unload(sc->sc_dmat, map);
1729 	pq3etsec_mapcache_put(sc, sc->sc_tx_mapcache, map);
1730 }
1731 
1732 static bool
1733 pq3etsec_txq_produce(
1734 	struct pq3etsec_softc *sc,
1735 	struct pq3etsec_txqueue *txq,
1736 	struct mbuf *m)
1737 {
1738 	bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1739 
1740 	if (map->dm_nsegs > txq->txq_free)
1741 		return false;
1742 
1743 	/*
1744 	 * TCP Offload flag must be set in the first descriptor.
1745 	 */
1746 	volatile struct txbd *producer = txq->txq_producer;
1747 	uint16_t last_flags = TXBD_L;
1748 	uint16_t first_flags = TXBD_R
1749 	    | ((m->m_flags & M_HASFCB) ? TXBD_TOE : 0);
1750 
1751 	/*
1752 	 * If we've produced enough descriptors without consuming any
1753 	 * we need to ask for an interrupt to reclaim some.
1754 	 */
1755 	txq->txq_lastintr += map->dm_nsegs;
1756 	if (txq->txq_lastintr >= txq->txq_threshold
1757 	    || txq->txq_mbufs.ifq_len + 1 == txq->txq_mbufs.ifq_maxlen) {
1758 		txq->txq_lastintr = 0;
1759 		last_flags |= TXBD_I;
1760 	}
1761 
1762 #ifdef ETSEC_DEBUG
1763 	KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1764 #endif
1765 	KASSERT(producer != txq->txq_last);
1766 	producer->txbd_bufptr = map->dm_segs[0].ds_addr;
1767 	producer->txbd_len = map->dm_segs[0].ds_len;
1768 
1769 	if (map->dm_nsegs > 1) {
1770 		volatile struct txbd *start = producer + 1;
1771 		size_t count = map->dm_nsegs - 1;
1772 		for (u_int i = 1; i < map->dm_nsegs; i++) {
1773 			if (__predict_false(++producer == txq->txq_last)) {
1774 				producer = txq->txq_first;
1775 				if (start < txq->txq_last) {
1776 					pq3etsec_txq_desc_presync(sc, txq,
1777 					    start, txq->txq_last - start);
1778 					count -= txq->txq_last - start;
1779 				}
1780 				start = txq->txq_first;
1781 			}
1782 #ifdef ETSEC_DEBUG
1783 			KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1784 #endif
1785 			producer->txbd_bufptr = map->dm_segs[i].ds_addr;
1786 			producer->txbd_len = map->dm_segs[i].ds_len;
1787 			producer->txbd_flags = TXBD_R
1788 			    | (producer->txbd_flags & TXBD_W)
1789 			    | (i == map->dm_nsegs - 1 ? last_flags : 0);
1790 #if 0
1791 			printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__, producer - txq->txq_first,
1792 			    producer->txbd_flags, producer->txbd_len, producer->txbd_bufptr);
1793 #endif
1794 		}
1795 		pq3etsec_txq_desc_presync(sc, txq, start, count);
1796 	} else {
1797 		first_flags |= last_flags;
1798 	}
1799 
1800 	membar_producer();
1801 	txq->txq_producer->txbd_flags =
1802 	    first_flags | (txq->txq_producer->txbd_flags & TXBD_W);
1803 #if 0
1804 	printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__,
1805 	    txq->txq_producer - txq->txq_first, txq->txq_producer->txbd_flags,
1806 	    txq->txq_producer->txbd_len, txq->txq_producer->txbd_bufptr);
1807 #endif
1808 	pq3etsec_txq_desc_presync(sc, txq, txq->txq_producer, 1);
1809 
1810 	/*
1811 	 * Reduce free count by the number of segments we consumed.
1812 	 */
1813 	txq->txq_free -= map->dm_nsegs;
1814 	KASSERT(map->dm_nsegs == 1 || txq->txq_producer != producer);
1815 	KASSERT(map->dm_nsegs == 1 || (txq->txq_producer->txbd_flags & TXBD_L) == 0);
1816 	KASSERT(producer->txbd_flags & TXBD_L);
1817 #ifdef ETSEC_DEBUG
1818 	txq->txq_lmbufs[producer - txq->txq_first] = m;
1819 #endif
1820 
1821 #if 0
1822 	printf("%s: mbuf %p: produced a %u byte packet in %u segments (%u..%u)\n",
1823 	    __func__, m, m->m_pkthdr.len, map->dm_nsegs,
1824 	    txq->txq_producer - txq->txq_first, producer - txq->txq_first);
1825 #endif
1826 
1827 	if (++producer == txq->txq_last)
1828 		txq->txq_producer = txq->txq_first;
1829 	else
1830 		txq->txq_producer = producer;
1831 	IF_ENQUEUE(&txq->txq_mbufs, m);
1832 
1833 	/*
1834 	 * Restart the transmitter.
1835 	 */
1836 	etsec_write(sc, TSTAT, txq->txq_qmask & TSTAT_THLT);	/* W1C */
1837 
1838 	return true;
1839 }
1840 
1841 static void
1842 pq3etsec_tx_offload(
1843 	struct pq3etsec_softc *sc,
1844 	struct pq3etsec_txqueue *txq,
1845 	struct mbuf **mp)
1846 {
1847 	struct mbuf *m = *mp;
1848 	u_int csum_flags = m->m_pkthdr.csum_flags;
1849 	struct m_tag *vtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m);
1850 
1851 	KASSERT(m->m_flags & M_PKTHDR);
1852 
1853 	/*
1854 	 * Let see if we are doing any offload first.
1855 	 */
1856 	if (csum_flags == 0 && vtag == 0) {
1857 		m->m_flags &= ~M_HASFCB;
1858 		return;
1859 	}
1860 
1861 	uint16_t flags = 0;
1862 	if (csum_flags & M_CSUM_IP) {
1863 		flags |= TXFCB_IP
1864 		    | ((csum_flags & M_CSUM_IP6) ? TXFCB_IP6 : 0)
1865 		    | ((csum_flags & M_CSUM_TUP) ? TXFCB_TUP : 0)
1866 		    | ((csum_flags & M_CSUM_UDP) ? TXFCB_UDP : 0)
1867 		    | ((csum_flags & M_CSUM_CIP) ? TXFCB_CIP : 0)
1868 		    | ((csum_flags & M_CSUM_CTU) ? TXFCB_CTU : 0);
1869 	}
1870 	if (vtag) {
1871 		flags |= TXFCB_VLN;
1872 	}
1873 	if (flags == 0) {
1874 		m->m_flags &= ~M_HASFCB;
1875 		return;
1876 	}
1877 
1878 	struct txfcb fcb;
1879 	fcb.txfcb_flags = flags;
1880 	if (csum_flags & M_CSUM_IPv4)
1881 		fcb.txfcb_l4os = M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
1882 	else
1883 		fcb.txfcb_l4os = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
1884 	fcb.txfcb_l3os = ETHER_HDR_LEN;
1885 	fcb.txfcb_phcs = 0;
1886 	fcb.txfcb_vlctl = vtag ? VLAN_TAG_VALUE(vtag) & 0xffff : 0;
1887 
1888 #if 0
1889 	printf("%s: csum_flags=%#x: txfcb flags=%#x lsos=%u l4os=%u phcs=%u vlctl=%#x\n",
1890 	    __func__, csum_flags, fcb.txfcb_flags, fcb.txfcb_l3os, fcb.txfcb_l4os,
1891 	    fcb.txfcb_phcs, fcb.txfcb_vlctl);
1892 #endif
1893 
1894 	if (M_LEADINGSPACE(m) >= sizeof(fcb)) {
1895 		m->m_data -= sizeof(fcb);
1896 		m->m_len += sizeof(fcb);
1897 	} else if (!(m->m_flags & M_EXT) && MHLEN - m->m_len >= sizeof(fcb)) {
1898 		memmove(m->m_pktdat + sizeof(fcb), m->m_data, m->m_len);
1899 		m->m_data = m->m_pktdat;
1900 		m->m_len += sizeof(fcb);
1901 	} else {
1902 		struct mbuf *mn;
1903 		MGET(mn, M_DONTWAIT, m->m_type);
1904 		if (mn == NULL) {
1905 			if (csum_flags & M_CSUM_IP4) {
1906 #ifdef INET
1907 				ip_undefer_csum(m, ETHER_HDR_LEN,
1908 				    csum_flags & M_CSUM_IP4);
1909 #else
1910 				panic("%s: impossible M_CSUM flags %#x",
1911 				    device_xname(sc->sc_dev), csum_flags);
1912 #endif
1913 			} else if (csum_flags & M_CSUM_IP6) {
1914 #ifdef INET6
1915 				ip6_undefer_csum(m, ETHER_HDR_LEN,
1916 				    csum_flags & M_CSUM_IP6);
1917 #else
1918 				panic("%s: impossible M_CSUM flags %#x",
1919 				    device_xname(sc->sc_dev), csum_flags);
1920 #endif
1921 			} else if (vtag) {
1922 			}
1923 
1924 			m->m_flags &= ~M_HASFCB;
1925 			return;
1926 		}
1927 
1928 		M_MOVE_PKTHDR(mn, m);
1929 		mn->m_next = m;
1930 		m = mn;
1931 		MH_ALIGN(m, sizeof(fcb));
1932 		m->m_len = sizeof(fcb);
1933 		*mp = m;
1934 	}
1935 	m->m_pkthdr.len += sizeof(fcb);
1936 	m->m_flags |= M_HASFCB;
1937 	*mtod(m, struct txfcb *) = fcb;
1938 	return;
1939 }
1940 
1941 static bool
1942 pq3etsec_txq_enqueue(
1943 	struct pq3etsec_softc *sc,
1944 	struct pq3etsec_txqueue *txq)
1945 {
1946 	for (;;) {
1947 		if (IF_QFULL(&txq->txq_mbufs))
1948 			return false;
1949 		struct mbuf *m = txq->txq_next;
1950 		if (m == NULL) {
1951 			int s = splnet();
1952 			IF_DEQUEUE(&sc->sc_if.if_snd, m);
1953 			splx(s);
1954 			if (m == NULL)
1955 				return true;
1956 			M_SETCTX(m, NULL);
1957 			pq3etsec_tx_offload(sc, txq, &m);
1958 		} else {
1959 			txq->txq_next = NULL;
1960 		}
1961 		int error = pq3etsec_txq_map_load(sc, txq, m);
1962 		if (error) {
1963 			aprint_error_dev(sc->sc_dev,
1964 			    "discarded packet due to "
1965 			    "dmamap load failure: %d\n", error);
1966 			m_freem(m);
1967 			continue;
1968 		}
1969 		KASSERT(txq->txq_next == NULL);
1970 		if (!pq3etsec_txq_produce(sc, txq, m)) {
1971 			txq->txq_next = m;
1972 			return false;
1973 		}
1974 		KASSERT(txq->txq_next == NULL);
1975 	}
1976 }
1977 
1978 static bool
1979 pq3etsec_txq_consume(
1980 	struct pq3etsec_softc *sc,
1981 	struct pq3etsec_txqueue *txq)
1982 {
1983 	struct ifnet * const ifp = &sc->sc_if;
1984 	volatile struct txbd *consumer = txq->txq_consumer;
1985 	size_t txfree = 0;
1986 
1987 #if 0
1988 	printf("%s: entry: free=%zu\n", __func__, txq->txq_free);
1989 #endif
1990 	etsec_write(sc, TSTAT, TSTAT_TXF & txq->txq_qmask);
1991 
1992 	for (;;) {
1993 		if (consumer == txq->txq_producer) {
1994 			txq->txq_consumer = consumer;
1995 			txq->txq_free += txfree;
1996 			txq->txq_lastintr -= min(txq->txq_lastintr, txfree);
1997 #if 0
1998 			printf("%s: empty: freed %zu descriptors going form %zu to %zu\n",
1999 			    __func__, txfree, txq->txq_free - txfree, txq->txq_free);
2000 #endif
2001 			KASSERT(txq->txq_lastintr == 0);
2002 			KASSERT(txq->txq_free == txq->txq_last - txq->txq_first - 1);
2003 			return true;
2004 		}
2005 		pq3etsec_txq_desc_postsync(sc, txq, consumer, 1);
2006 		const uint16_t txbd_flags = consumer->txbd_flags;
2007 		if (txbd_flags & TXBD_R) {
2008 			txq->txq_consumer = consumer;
2009 			txq->txq_free += txfree;
2010 			txq->txq_lastintr -= min(txq->txq_lastintr, txfree);
2011 #if 0
2012 			printf("%s: freed %zu descriptors\n",
2013 			    __func__, txfree);
2014 #endif
2015 			return pq3etsec_txq_fillable_p(sc, txq);
2016 		}
2017 
2018 		/*
2019 		 * If this is the last descriptor in the chain, get the
2020 		 * mbuf, free its dmamap, and free the mbuf chain itself.
2021 		 */
2022 		if (txbd_flags & TXBD_L) {
2023 			struct mbuf *m;
2024 
2025 			IF_DEQUEUE(&txq->txq_mbufs, m);
2026 #ifdef ETSEC_DEBUG
2027 			KASSERTMSG(
2028 			    m == txq->txq_lmbufs[consumer-txq->txq_first],
2029 			    "%s: %p [%u]: flags %#x m (%p) != %p (%p)",
2030 			    __func__, consumer, consumer - txq->txq_first,
2031 			    txbd_flags, m,
2032 			    &txq->txq_lmbufs[consumer-txq->txq_first],
2033 			    txq->txq_lmbufs[consumer-txq->txq_first]);
2034 #endif
2035 			KASSERT(m);
2036 			pq3etsec_txq_map_unload(sc, txq, m);
2037 #if 0
2038 			printf("%s: mbuf %p: consumed a %u byte packet\n",
2039 			    __func__, m, m->m_pkthdr.len);
2040 #endif
2041 			if (m->m_flags & M_HASFCB)
2042 				m_adj(m, sizeof(struct txfcb));
2043 			ifp->if_opackets++;
2044 			ifp->if_obytes += m->m_pkthdr.len;
2045 			if (m->m_flags & M_MCAST)
2046 				ifp->if_omcasts++;
2047 			if (txbd_flags & TXBD_ERRORS)
2048 				ifp->if_oerrors++;
2049 			m_freem(m);
2050 #ifdef ETSEC_DEBUG
2051 			txq->txq_lmbufs[consumer - txq->txq_first] = NULL;
2052 #endif
2053 		} else {
2054 #ifdef ETSEC_DEBUG
2055 			KASSERT(txq->txq_lmbufs[consumer-txq->txq_first] == NULL);
2056 #endif
2057 		}
2058 
2059 		/*
2060 		 * We own this packet again.  Clear all flags except wrap.
2061 		 */
2062 		txfree++;
2063 		//consumer->txbd_flags = txbd_flags & TXBD_W;
2064 
2065 		/*
2066 		 * Wrap at the last entry!
2067 		 */
2068 		if (txbd_flags & TXBD_W) {
2069 			KASSERT(consumer + 1 == txq->txq_last);
2070 			consumer = txq->txq_first;
2071 		} else {
2072 			consumer++;
2073 			KASSERT(consumer < txq->txq_last);
2074 		}
2075 	}
2076 }
2077 
2078 static void
2079 pq3etsec_txq_purge(
2080 	struct pq3etsec_softc *sc,
2081 	struct pq3etsec_txqueue *txq)
2082 {
2083 	struct mbuf *m;
2084 	KASSERT((etsec_read(sc, MACCFG1) & MACCFG1_TX_EN) == 0);
2085 
2086 	for (;;) {
2087 		IF_DEQUEUE(&txq->txq_mbufs, m);
2088 		if (m == NULL)
2089 			break;
2090 		pq3etsec_txq_map_unload(sc, txq, m);
2091 		m_freem(m);
2092 	}
2093 	if ((m = txq->txq_next) != NULL) {
2094 		txq->txq_next = NULL;
2095 		pq3etsec_txq_map_unload(sc, txq, m);
2096 		m_freem(m);
2097 	}
2098 #ifdef ETSEC_DEBUG
2099 	memset(txq->txq_lmbufs, 0, sizeof(txq->txq_lmbufs));
2100 #endif
2101 }
2102 
2103 static void
2104 pq3etsec_txq_reset(
2105 	struct pq3etsec_softc *sc,
2106 	struct pq3etsec_txqueue *txq)
2107 {
2108 	/*
2109 	 * sync all the descriptors
2110 	 */
2111 	pq3etsec_txq_desc_postsync(sc, txq, txq->txq_first,
2112 	    txq->txq_last - txq->txq_first);
2113 
2114 	/*
2115 	 * Make sure we own all descriptors in the ring.
2116 	 */
2117 	volatile struct txbd *txbd;
2118 	for (txbd = txq->txq_first; txbd < txq->txq_last - 1; txbd++) {
2119 		txbd->txbd_flags = 0;
2120 	}
2121 
2122 	/*
2123 	 * Last descriptor has the wrap flag.
2124 	 */
2125 	txbd->txbd_flags = TXBD_W;
2126 
2127 	/*
2128 	 * Reset the producer consumer indexes.
2129 	 */
2130 	txq->txq_consumer = txq->txq_first;
2131 	txq->txq_producer = txq->txq_first;
2132 	txq->txq_free = txq->txq_last - txq->txq_first - 1;
2133 	txq->txq_threshold = txq->txq_free / 2;
2134 	txq->txq_lastintr = 0;
2135 
2136 	/*
2137 	 * What do we want to get interrupted on?
2138 	 */
2139 	sc->sc_imask |= IEVENT_TXF|IEVENT_TXE;
2140 
2141 	/*
2142 	 * Restart the transmit at the first descriptor
2143 	 */
2144 	etsec_write(sc, txq->txq_reg_tbase, txq->txq_descmap->dm_segs->ds_addr);
2145 }
2146 
2147 static void
2148 pq3etsec_ifstart(struct ifnet *ifp)
2149 {
2150 	struct pq3etsec_softc * const sc = ifp->if_softc;
2151 
2152 	atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2153 	softint_schedule(sc->sc_soft_ih);
2154 }
2155 
2156 static void
2157 pq3etsec_tx_error(
2158 	struct pq3etsec_softc * const sc)
2159 {
2160 	struct pq3etsec_txqueue * const txq = &sc->sc_txq;
2161 
2162 	pq3etsec_txq_consume(sc, txq);
2163 
2164 	if (pq3etsec_txq_fillable_p(sc, txq))
2165 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
2166 	if (sc->sc_txerrors & (IEVENT_LC|IEVENT_CRL|IEVENT_XFUN|IEVENT_BABT)) {
2167 	} else if (sc->sc_txerrors & IEVENT_EBERR) {
2168 	}
2169 
2170 	if (pq3etsec_txq_active_p(sc, txq))
2171 		etsec_write(sc, TSTAT, TSTAT_THLT & txq->txq_qmask);
2172 	if (!pq3etsec_txq_enqueue(sc, txq)) {
2173 		sc->sc_ev_tx_stall.ev_count++;
2174 		sc->sc_if.if_flags |= IFF_OACTIVE;
2175 	}
2176 
2177 	sc->sc_txerrors = 0;
2178 }
2179 
2180 int
2181 pq3etsec_tx_intr(void *arg)
2182 {
2183 	struct pq3etsec_softc * const sc = arg;
2184 
2185 	sc->sc_ev_tx_intr.ev_count++;
2186 
2187 	uint32_t ievent = etsec_read(sc, IEVENT);
2188 	ievent &= IEVENT_TXF|IEVENT_TXB;
2189 	etsec_write(sc, IEVENT, ievent);	/* write 1 to clear */
2190 
2191 #if 0
2192 	aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2193 	    __func__, ievent, etsec_read(sc, IMASK));
2194 #endif
2195 
2196 	if (ievent == 0)
2197 		return 0;
2198 
2199 	sc->sc_imask &= ~(IEVENT_TXF|IEVENT_TXB);
2200 	atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2201 	etsec_write(sc, IMASK, sc->sc_imask);
2202 	softint_schedule(sc->sc_soft_ih);
2203 	return 1;
2204 }
2205 
2206 int
2207 pq3etsec_rx_intr(void *arg)
2208 {
2209 	struct pq3etsec_softc * const sc = arg;
2210 
2211 	sc->sc_ev_rx_intr.ev_count++;
2212 
2213 	uint32_t ievent = etsec_read(sc, IEVENT);
2214 	ievent &= IEVENT_RXF|IEVENT_RXB;
2215 	etsec_write(sc, IEVENT, ievent);	/* write 1 to clear */
2216 	if (ievent == 0)
2217 		return 0;
2218 
2219 #if 0
2220 	aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x\n", __func__, ievent);
2221 #endif
2222 
2223 	sc->sc_imask &= ~(IEVENT_RXF|IEVENT_RXB);
2224 	atomic_or_uint(&sc->sc_soft_flags, SOFT_RXINTR);
2225 	etsec_write(sc, IMASK, sc->sc_imask);
2226 	softint_schedule(sc->sc_soft_ih);
2227 	return 1;
2228 }
2229 
2230 int
2231 pq3etsec_error_intr(void *arg)
2232 {
2233 	struct pq3etsec_softc * const sc = arg;
2234 
2235 	sc->sc_ev_error_intr.ev_count++;
2236 
2237 	for (int rv = 0, soft_flags = 0;; rv = 1) {
2238 		uint32_t ievent = etsec_read(sc, IEVENT);
2239 		ievent &= ~(IEVENT_RXF|IEVENT_RXB|IEVENT_TXF|IEVENT_TXB);
2240 		etsec_write(sc, IEVENT, ievent);	/* write 1 to clear */
2241 		if (ievent == 0) {
2242 			if (soft_flags) {
2243 				atomic_or_uint(&sc->sc_soft_flags, soft_flags);
2244 				softint_schedule(sc->sc_soft_ih);
2245 			}
2246 			return rv;
2247 		}
2248 #if 0
2249 		aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2250 		    __func__, ievent, etsec_read(sc, IMASK));
2251 #endif
2252 
2253 		if (ievent & (IEVENT_GRSC|IEVENT_GTSC)) {
2254 			sc->sc_imask &= ~(IEVENT_GRSC|IEVENT_GTSC);
2255 			etsec_write(sc, IMASK, sc->sc_imask);
2256 			wakeup(sc);
2257 		}
2258 		if (ievent & (IEVENT_MMRD|IEVENT_MMWR)) {
2259 			sc->sc_imask &= ~(IEVENT_MMRD|IEVENT_MMWR);
2260 			etsec_write(sc, IMASK, sc->sc_imask);
2261 			wakeup(&sc->sc_mii);
2262 		}
2263 		if (ievent & IEVENT_BSY) {
2264 			soft_flags |= SOFT_RXBSY;
2265 			sc->sc_imask &= ~IEVENT_BSY;
2266 			etsec_write(sc, IMASK, sc->sc_imask);
2267 		}
2268 		if (ievent & IEVENT_TXE) {
2269 			soft_flags |= SOFT_TXERROR;
2270 			sc->sc_imask &= ~IEVENT_TXE;
2271 			sc->sc_txerrors |= ievent;
2272 		}
2273 		if (ievent & IEVENT_TXC) {
2274 			sc->sc_ev_tx_pause.ev_count++;
2275 		}
2276 		if (ievent & IEVENT_RXC) {
2277 			sc->sc_ev_rx_pause.ev_count++;
2278 		}
2279 		if (ievent & IEVENT_DPE) {
2280 			soft_flags |= SOFT_RESET;
2281 			sc->sc_imask &= ~IEVENT_DPE;
2282 			etsec_write(sc, IMASK, sc->sc_imask);
2283 		}
2284 	}
2285 }
2286 
2287 void
2288 pq3etsec_soft_intr(void *arg)
2289 {
2290 	struct pq3etsec_softc * const sc = arg;
2291 	struct ifnet * const ifp = &sc->sc_if;
2292 
2293 	mutex_enter(sc->sc_lock);
2294 
2295 	u_int soft_flags = atomic_swap_uint(&sc->sc_soft_flags, 0);
2296 
2297 	sc->sc_ev_soft_intr.ev_count++;
2298 
2299 	if (soft_flags & SOFT_RESET) {
2300 		int s = splnet();
2301 		pq3etsec_ifinit(ifp);
2302 		splx(s);
2303 		soft_flags = 0;
2304 	}
2305 
2306 	if (soft_flags & SOFT_RXBSY) {
2307 		struct pq3etsec_rxqueue * const rxq = &sc->sc_rxq;
2308 		size_t threshold = 5 * rxq->rxq_threshold / 4;
2309 		if (threshold >= rxq->rxq_last - rxq->rxq_first) {
2310 			threshold = rxq->rxq_last - rxq->rxq_first - 1;
2311 		} else {
2312 			sc->sc_imask |= IEVENT_BSY;
2313 		}
2314 		aprint_normal_dev(sc->sc_dev,
2315 		    "increasing receive buffers from %zu to %zu\n",
2316 		    rxq->rxq_threshold, threshold);
2317 		rxq->rxq_threshold = threshold;
2318 	}
2319 
2320 	if ((soft_flags & SOFT_TXINTR)
2321 	    || pq3etsec_txq_active_p(sc, &sc->sc_txq)) {
2322 		/*
2323 		 * Let's do what we came here for.  Consume transmitted
2324 		 * packets off the the transmit ring.
2325 		 */
2326 		if (!pq3etsec_txq_consume(sc, &sc->sc_txq)
2327 		    || !pq3etsec_txq_enqueue(sc, &sc->sc_txq)) {
2328 			sc->sc_ev_tx_stall.ev_count++;
2329 			ifp->if_flags |= IFF_OACTIVE;
2330 		} else {
2331 			ifp->if_flags &= ~IFF_OACTIVE;
2332 		}
2333 		sc->sc_imask |= IEVENT_TXF;
2334 	}
2335 
2336 	if (soft_flags & (SOFT_RXINTR|SOFT_RXBSY)) {
2337 		/*
2338 		 * Let's consume
2339 		 */
2340 		pq3etsec_rxq_consume(sc, &sc->sc_rxq);
2341 		sc->sc_imask |= IEVENT_RXF;
2342 	}
2343 
2344 	if (soft_flags & SOFT_TXERROR) {
2345 		pq3etsec_tx_error(sc);
2346 		sc->sc_imask |= IEVENT_TXE;
2347 	}
2348 
2349 	if (ifp->if_flags & IFF_RUNNING) {
2350 		pq3etsec_rxq_produce(sc, &sc->sc_rxq);
2351 		etsec_write(sc, IMASK, sc->sc_imask);
2352 	} else {
2353 		KASSERT((soft_flags & SOFT_RXBSY) == 0);
2354 	}
2355 
2356 	mutex_exit(sc->sc_lock);
2357 }
2358 
2359 static void
2360 pq3etsec_mii_tick(void *arg)
2361 {
2362 	struct pq3etsec_softc * const sc = arg;
2363 	mutex_enter(sc->sc_lock);
2364 	callout_ack(&sc->sc_mii_callout);
2365 	sc->sc_ev_mii_ticks.ev_count++;
2366 #ifdef DEBUG
2367 	uint64_t now = mftb();
2368 	if (now - sc->sc_mii_last_tick < cpu_timebase - 5000) {
2369 		aprint_debug_dev(sc->sc_dev, "%s: diff=%"PRIu64"\n",
2370 		    __func__, now - sc->sc_mii_last_tick);
2371 		callout_stop(&sc->sc_mii_callout);
2372 	}
2373 #endif
2374 	mii_tick(&sc->sc_mii);
2375 	int s = splnet();
2376 	if (sc->sc_soft_flags & SOFT_RESET)
2377 		softint_schedule(sc->sc_soft_ih);
2378 	splx(s);
2379 	callout_schedule(&sc->sc_mii_callout, hz);
2380 #ifdef DEBUG
2381 	sc->sc_mii_last_tick = now;
2382 #endif
2383 	mutex_exit(sc->sc_lock);
2384 }
2385