xref: /netbsd-src/sys/arch/powerpc/booke/dev/pq3etsec.c (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 /*	$NetBSD: pq3etsec.c,v 1.54 2021/04/24 23:36:46 thorpej Exp $	*/
2 /*-
3  * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to The NetBSD Foundation
7  * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8  * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9  *
10  * This material is based upon work supported by the Defense Advanced Research
11  * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12  * Contract No. N66001-09-C-2073.
13  * Approved for Public Release, Distribution Unlimited
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: pq3etsec.c,v 1.54 2021/04/24 23:36:46 thorpej Exp $");
39 
40 #ifdef _KERNEL_OPT
41 #include "opt_inet.h"
42 #include "opt_mpc85xx.h"
43 #include "opt_multiprocessor.h"
44 #include "opt_net_mpsafe.h"
45 #endif
46 
47 #include <sys/param.h>
48 #include <sys/cpu.h>
49 #include <sys/device.h>
50 #include <sys/mbuf.h>
51 #include <sys/ioctl.h>
52 #include <sys/intr.h>
53 #include <sys/bus.h>
54 #include <sys/kernel.h>
55 #include <sys/kmem.h>
56 #include <sys/proc.h>
57 #include <sys/atomic.h>
58 #include <sys/callout.h>
59 #include <sys/sysctl.h>
60 
61 #include <sys/rndsource.h>
62 
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_ether.h>
66 #include <net/if_media.h>
67 #include <net/bpf.h>
68 
69 #include <dev/mii/miivar.h>
70 
71 #ifdef INET
72 #include <netinet/in.h>
73 #include <netinet/in_systm.h>
74 #include <netinet/ip.h>
75 #include <netinet/in_offload.h>
76 #endif /* INET */
77 #ifdef INET6
78 #include <netinet6/in6.h>
79 #include <netinet/ip6.h>
80 #endif
81 #include <netinet6/in6_offload.h>
82 
83 #include <powerpc/spr.h>
84 #include <powerpc/booke/spr.h>
85 #include <powerpc/booke/cpuvar.h>
86 #include <powerpc/booke/e500var.h>
87 #include <powerpc/booke/e500reg.h>
88 #include <powerpc/booke/etsecreg.h>
89 
90 #define	M_HASFCB		M_LINK2	/* tx packet has FCB prepended */
91 
92 #define	ETSEC_MAXTXMBUFS	30
93 #define	ETSEC_NTXSEGS		30
94 #define	ETSEC_MAXRXMBUFS	511
95 #define	ETSEC_MINRXMBUFS	32
96 #define	ETSEC_NRXSEGS		1
97 
98 #define	IFCAP_RCTRL_IPCSEN	IFCAP_CSUM_IPv4_Rx
99 #define	IFCAP_RCTRL_TUCSEN	(IFCAP_CSUM_TCPv4_Rx	\
100 				 | IFCAP_CSUM_UDPv4_Rx	\
101 				 | IFCAP_CSUM_TCPv6_Rx	\
102 				 | IFCAP_CSUM_UDPv6_Rx)
103 
104 #define	IFCAP_TCTRL_IPCSEN	IFCAP_CSUM_IPv4_Tx
105 #define	IFCAP_TCTRL_TUCSEN	(IFCAP_CSUM_TCPv4_Tx	\
106 				 | IFCAP_CSUM_UDPv4_Tx	\
107 				 | IFCAP_CSUM_TCPv6_Tx	\
108 				 | IFCAP_CSUM_UDPv6_Tx)
109 
110 #define	IFCAP_ETSEC		(IFCAP_RCTRL_IPCSEN | IFCAP_RCTRL_TUCSEN      \
111 				 | IFCAP_TCTRL_IPCSEN | IFCAP_TCTRL_TUCSEN)
112 
113 #define	M_CSUM_IP   (M_CSUM_CIP | M_CSUM_CTU)
114 #define	M_CSUM_IP6  (M_CSUM_TCPv6 | M_CSUM_UDPv6)
115 #define	M_CSUM_TUP  (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)
116 #define	M_CSUM_UDP  (M_CSUM_UDPv4 | M_CSUM_UDPv6)
117 #define	M_CSUM_IP4  (M_CSUM_IPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv4)
118 #define	M_CSUM_CIP  (M_CSUM_IPv4)
119 #define	M_CSUM_CTU  (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)
120 
121 struct pq3etsec_txqueue {
122 	bus_dmamap_t txq_descmap;
123 	volatile struct txbd *txq_consumer;
124 	volatile struct txbd *txq_producer;
125 	volatile struct txbd *txq_first;
126 	volatile struct txbd *txq_last;
127 	struct ifqueue txq_mbufs;
128 	struct mbuf *txq_next;
129 #ifdef ETSEC_DEBUG
130 	struct mbuf *txq_lmbufs[512];
131 #endif
132 	uint32_t txq_qmask;
133 	uint32_t txq_free;
134 	uint32_t txq_threshold;
135 	uint32_t txq_lastintr;
136 	bus_size_t txq_reg_tbase;
137 	bus_dma_segment_t txq_descmap_seg;
138 };
139 
140 struct pq3etsec_rxqueue {
141 	bus_dmamap_t rxq_descmap;
142 	volatile struct rxbd *rxq_consumer;
143 	volatile struct rxbd *rxq_producer;
144 	volatile struct rxbd *rxq_first;
145 	volatile struct rxbd *rxq_last;
146 	struct mbuf *rxq_mhead;
147 	struct mbuf **rxq_mtail;
148 	struct mbuf *rxq_mconsumer;
149 #ifdef ETSEC_DEBUG
150 	struct mbuf *rxq_mbufs[512];
151 #endif
152 	uint32_t rxq_qmask;
153 	uint32_t rxq_inuse;
154 	uint32_t rxq_threshold;
155 	bus_size_t rxq_reg_rbase;
156 	bus_size_t rxq_reg_rbptr;
157 	bus_dma_segment_t rxq_descmap_seg;
158 };
159 
160 struct pq3etsec_mapcache {
161 	u_int dmc_nmaps;
162 	u_int dmc_maxseg;
163 	u_int dmc_maxmaps;
164 	u_int dmc_maxmapsize;
165 	bus_dmamap_t dmc_maps[0];
166 };
167 
168 struct pq3etsec_softc {
169 	device_t sc_dev;
170 	device_t sc_mdio_dev;
171 	struct ethercom sc_ec;
172 #define sc_if		sc_ec.ec_if
173 	struct mii_data sc_mii;
174 	bus_space_tag_t sc_bst;
175 	bus_space_handle_t sc_bsh;
176 	bus_space_handle_t sc_mdio_bsh;
177 	bus_dma_tag_t sc_dmat;
178 	int sc_phy_addr;
179 	prop_dictionary_t sc_intrmap;
180 	uint32_t sc_intrmask;
181 
182 	uint32_t sc_soft_flags;
183 #define	SOFT_RESET		0x0001
184 #define	SOFT_RXINTR		0x0010
185 #define	SOFT_RXBSY		0x0020
186 #define	SOFT_TXINTR		0x0100
187 #define	SOFT_TXERROR		0x0200
188 
189 	struct pq3etsec_txqueue sc_txq;
190 	struct pq3etsec_rxqueue sc_rxq;
191 	uint32_t sc_txerrors;
192 	uint32_t sc_rxerrors;
193 
194 	size_t sc_rx_adjlen;
195 
196 	/*
197 	 * Copies of various ETSEC registers.
198 	 */
199 	uint32_t sc_imask;
200 	uint32_t sc_maccfg1;
201 	uint32_t sc_maccfg2;
202 	uint32_t sc_maxfrm;
203 	uint32_t sc_ecntrl;
204 	uint32_t sc_dmactrl;
205 	uint32_t sc_macstnaddr1;
206 	uint32_t sc_macstnaddr2;
207 	uint32_t sc_tctrl;
208 	uint32_t sc_rctrl;
209 	uint32_t sc_gaddr[16];
210 	uint64_t sc_macaddrs[15];
211 
212 	void *sc_tx_ih;
213 	void *sc_rx_ih;
214 	void *sc_error_ih;
215 	void *sc_soft_ih;
216 
217 	kmutex_t *sc_lock;
218 	kmutex_t *sc_hwlock;
219 
220 	struct evcnt sc_ev_tx_stall;
221 	struct evcnt sc_ev_tx_intr;
222 	struct evcnt sc_ev_rx_stall;
223 	struct evcnt sc_ev_rx_intr;
224 	struct evcnt sc_ev_error_intr;
225 	struct evcnt sc_ev_soft_intr;
226 	struct evcnt sc_ev_tx_pause;
227 	struct evcnt sc_ev_rx_pause;
228 	struct evcnt sc_ev_mii_ticks;
229 
230 	struct callout sc_mii_callout;
231 	uint64_t sc_mii_last_tick;
232 
233 	struct ifqueue sc_rx_bufcache;
234 	struct pq3etsec_mapcache *sc_rx_mapcache;
235 	struct pq3etsec_mapcache *sc_tx_mapcache;
236 
237 	/* Interrupt Coalescing parameters */
238 	int sc_ic_rx_time;
239 	int sc_ic_rx_count;
240 	int sc_ic_tx_time;
241 	int sc_ic_tx_count;
242 
243 	krndsource_t rnd_source;
244 };
245 
246 #define	ETSEC_IC_RX_ENABLED(sc)						\
247 	((sc)->sc_ic_rx_time != 0 && (sc)->sc_ic_rx_count != 0)
248 #define	ETSEC_IC_TX_ENABLED(sc)						\
249 	((sc)->sc_ic_tx_time != 0 && (sc)->sc_ic_tx_count != 0)
250 
251 struct pq3mdio_softc {
252 	device_t mdio_dev;
253 
254 	kmutex_t *mdio_lock;
255 
256 	bus_space_tag_t mdio_bst;
257 	bus_space_handle_t mdio_bsh;
258 };
259 
260 static int pq3etsec_match(device_t, cfdata_t, void *);
261 static void pq3etsec_attach(device_t, device_t, void *);
262 
263 static int pq3mdio_match(device_t, cfdata_t, void *);
264 static void pq3mdio_attach(device_t, device_t, void *);
265 
266 static void pq3etsec_ifstart(struct ifnet *);
267 static void pq3etsec_ifwatchdog(struct ifnet *);
268 static int pq3etsec_ifinit(struct ifnet *);
269 static void pq3etsec_ifstop(struct ifnet *, int);
270 static int pq3etsec_ifioctl(struct ifnet *, u_long, void *);
271 
272 static int pq3etsec_mapcache_create(struct pq3etsec_softc *,
273     struct pq3etsec_mapcache **, size_t, size_t, size_t);
274 static void pq3etsec_mapcache_destroy(struct pq3etsec_softc *,
275     struct pq3etsec_mapcache *);
276 static bus_dmamap_t pq3etsec_mapcache_get(struct pq3etsec_softc *,
277     struct pq3etsec_mapcache *);
278 static void pq3etsec_mapcache_put(struct pq3etsec_softc *,
279     struct pq3etsec_mapcache *, bus_dmamap_t);
280 
281 static int pq3etsec_txq_attach(struct pq3etsec_softc *,
282     struct pq3etsec_txqueue *, u_int);
283 static void pq3etsec_txq_purge(struct pq3etsec_softc *,
284     struct pq3etsec_txqueue *);
285 static void pq3etsec_txq_reset(struct pq3etsec_softc *,
286     struct pq3etsec_txqueue *);
287 static bool pq3etsec_txq_consume(struct pq3etsec_softc *,
288     struct pq3etsec_txqueue *);
289 static bool pq3etsec_txq_produce(struct pq3etsec_softc *,
290     struct pq3etsec_txqueue *, struct mbuf *m);
291 static bool pq3etsec_txq_active_p(struct pq3etsec_softc *,
292     struct pq3etsec_txqueue *);
293 
294 static int pq3etsec_rxq_attach(struct pq3etsec_softc *,
295     struct pq3etsec_rxqueue *, u_int);
296 static bool pq3etsec_rxq_produce(struct pq3etsec_softc *,
297     struct pq3etsec_rxqueue *);
298 static void pq3etsec_rxq_purge(struct pq3etsec_softc *,
299     struct pq3etsec_rxqueue *, bool);
300 static void pq3etsec_rxq_reset(struct pq3etsec_softc *,
301     struct pq3etsec_rxqueue *);
302 
303 static void pq3etsec_mc_setup(struct pq3etsec_softc *);
304 
305 static void pq3etsec_mii_tick(void *);
306 static int pq3etsec_rx_intr(void *);
307 static int pq3etsec_tx_intr(void *);
308 static int pq3etsec_error_intr(void *);
309 static void pq3etsec_soft_intr(void *);
310 
311 static void pq3etsec_set_ic_rx(struct pq3etsec_softc *);
312 static void pq3etsec_set_ic_tx(struct pq3etsec_softc *);
313 
314 static void pq3etsec_sysctl_setup(struct sysctllog **, struct pq3etsec_softc *);
315 
316 CFATTACH_DECL_NEW(pq3etsec, sizeof(struct pq3etsec_softc),
317     pq3etsec_match, pq3etsec_attach, NULL, NULL);
318 
319 CFATTACH_DECL_NEW(pq3mdio_tsec, sizeof(struct pq3mdio_softc),
320     pq3mdio_match, pq3mdio_attach, NULL, NULL);
321 
322 CFATTACH_DECL_NEW(pq3mdio_cpunode, sizeof(struct pq3mdio_softc),
323     pq3mdio_match, pq3mdio_attach, NULL, NULL);
324 
325 static inline uint32_t
326 etsec_mdio_read(struct pq3mdio_softc *mdio, bus_size_t off)
327 {
328 	return bus_space_read_4(mdio->mdio_bst, mdio->mdio_bsh, off);
329 }
330 
331 static inline void
332 etsec_mdio_write(struct pq3mdio_softc *mdio, bus_size_t off, uint32_t data)
333 {
334 	bus_space_write_4(mdio->mdio_bst, mdio->mdio_bsh, off, data);
335 }
336 
337 static inline uint32_t
338 etsec_read(struct pq3etsec_softc *sc, bus_size_t off)
339 {
340 	return bus_space_read_4(sc->sc_bst, sc->sc_bsh, off);
341 }
342 
343 static int
344 pq3mdio_find(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
345 {
346 	return strcmp(cf->cf_name, "mdio") == 0;
347 }
348 
349 static int
350 pq3mdio_match(device_t parent, cfdata_t cf, void *aux)
351 {
352 	const uint16_t svr = (mfspr(SPR_SVR) & ~0x80000) >> 16;
353 	const bool p1025_p = (svr == (SVR_P1025v1 >> 16)
354 	    || svr == (SVR_P1016v1 >> 16));
355 
356 	if (device_is_a(parent, "cpunode")) {
357 		if (!p1025_p
358 		    || !e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
359 			return 0;
360 
361 		return 1;
362 	}
363 
364 	if (device_is_a(parent, "tsec")) {
365 		if (p1025_p
366 		    || !e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
367 			return 0;
368 
369 		return 1;
370 	}
371 
372 	return 0;
373 }
374 
375 static void
376 pq3mdio_attach(device_t parent, device_t self, void *aux)
377 {
378 	struct pq3mdio_softc * const mdio = device_private(self);
379 	struct cpunode_attach_args * const cna = aux;
380 	struct cpunode_locators * const cnl = &cna->cna_locs;
381 
382 	mdio->mdio_dev = self;
383 	mdio->mdio_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
384 
385 	if (device_is_a(parent, "cpunode")) {
386 		struct cpunode_softc * const psc = device_private(parent);
387 		psc->sc_children |= cna->cna_childmask;
388 
389 		mdio->mdio_bst = cna->cna_memt;
390 		if (bus_space_map(mdio->mdio_bst, cnl->cnl_addr,
391 				cnl->cnl_size, 0, &mdio->mdio_bsh) != 0) {
392 			aprint_error(": error mapping registers @ %#x\n",
393 			    cnl->cnl_addr);
394 			return;
395 		}
396 	} else {
397 		struct pq3etsec_softc * const sc = device_private(parent);
398 
399 		KASSERT(device_is_a(parent, "tsec"));
400 		KASSERTMSG(cnl->cnl_addr == ETSEC1_BASE
401 		    || cnl->cnl_addr == ETSEC2_BASE
402 		    || cnl->cnl_addr == ETSEC3_BASE
403 		    || cnl->cnl_addr == ETSEC4_BASE,
404 		    "unknown tsec addr %x", cnl->cnl_addr);
405 
406 		mdio->mdio_bst = sc->sc_bst;
407 		mdio->mdio_bsh = sc->sc_bsh;
408 	}
409 
410 	aprint_normal("\n");
411 }
412 
413 static int
414 pq3mdio_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
415 {
416 	struct pq3mdio_softc * const mdio = device_private(self);
417 	uint32_t miimcom = etsec_mdio_read(mdio, MIIMCOM);
418 
419 	mutex_enter(mdio->mdio_lock);
420 
421 	etsec_mdio_write(mdio, MIIMADD,
422 	    __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
423 
424 	etsec_mdio_write(mdio, MIIMCOM, 0);	/* clear any past bits */
425 	etsec_mdio_write(mdio, MIIMCOM, MIIMCOM_READ);
426 
427 	while (etsec_mdio_read(mdio, MIIMIND) != 0) {
428 			delay(1);
429 	}
430 	*val = etsec_mdio_read(mdio, MIIMSTAT) &0xffff;
431 
432 	if (miimcom == MIIMCOM_SCAN)
433 		etsec_mdio_write(mdio, MIIMCOM, miimcom);
434 
435 #if 0
436 	aprint_normal_dev(mdio->mdio_dev, "%s: phy %d reg %d: %#x\n",
437 	    __func__, phy, reg, data);
438 #endif
439 	mutex_exit(mdio->mdio_lock);
440 	return 0;
441 }
442 
443 static int
444 pq3mdio_mii_writereg(device_t self, int phy, int reg, uint16_t data)
445 {
446 	struct pq3mdio_softc * const mdio = device_private(self);
447 	uint32_t miimcom = etsec_mdio_read(mdio, MIIMCOM);
448 
449 #if 0
450 	aprint_normal_dev(mdio->mdio_dev, "%s: phy %d reg %d: %#x\n",
451 	    __func__, phy, reg, data);
452 #endif
453 
454 	mutex_enter(mdio->mdio_lock);
455 
456 	etsec_mdio_write(mdio, MIIMADD,
457 	    __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
458 	etsec_mdio_write(mdio, MIIMCOM, 0);	/* clear any past bits */
459 	etsec_mdio_write(mdio, MIIMCON, data);
460 
461 	int timo = 1000;	/* 1ms */
462 	while ((etsec_mdio_read(mdio, MIIMIND) & MIIMIND_BUSY) && --timo > 0) {
463 			delay(1);
464 	}
465 
466 	if (miimcom == MIIMCOM_SCAN)
467 		etsec_mdio_write(mdio, MIIMCOM, miimcom);
468 
469 	mutex_exit(mdio->mdio_lock);
470 
471 	return 0;
472 }
473 
474 static inline void
475 etsec_write(struct pq3etsec_softc *sc, bus_size_t off, uint32_t data)
476 {
477 	bus_space_write_4(sc->sc_bst, sc->sc_bsh, off, data);
478 }
479 
480 static void
481 pq3etsec_mii_statchg(struct ifnet *ifp)
482 {
483 	struct pq3etsec_softc * const sc = ifp->if_softc;
484 	struct mii_data * const mii = &sc->sc_mii;
485 
486 	uint32_t maccfg1 = sc->sc_maccfg1;
487 	uint32_t maccfg2 = sc->sc_maccfg2;
488 	uint32_t ecntrl = sc->sc_ecntrl;
489 
490 	maccfg1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
491 	maccfg2 &= ~(MACCFG2_IFMODE | MACCFG2_FD);
492 
493 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
494 		maccfg2 |= MACCFG2_FD;
495 	}
496 
497 	/*
498 	 * Now deal with the flow control bits.
499 	 */
500 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO
501 	    && (mii->mii_media_active & IFM_ETH_FMASK)) {
502 		if (mii->mii_media_active & IFM_ETH_RXPAUSE)
503 			maccfg1 |= MACCFG1_RX_FLOW;
504 		if (mii->mii_media_active & IFM_ETH_TXPAUSE)
505 			maccfg1 |= MACCFG1_TX_FLOW;
506 	}
507 
508 	/*
509 	 * Now deal with the speed.
510 	 */
511 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
512 		maccfg2 |= MACCFG2_IFMODE_GMII;
513 	} else {
514 		maccfg2 |= MACCFG2_IFMODE_MII;
515 		ecntrl &= ~ECNTRL_R100M;
516 		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_10_T) {
517 			ecntrl |= ECNTRL_R100M;
518 		}
519 	}
520 
521 	/*
522 	 * If things are different, re-init things.
523 	 */
524 	if (maccfg1 != sc->sc_maccfg1
525 	    || maccfg2 != sc->sc_maccfg2
526 	    || ecntrl != sc->sc_ecntrl) {
527 		if (sc->sc_if.if_flags & IFF_RUNNING)
528 			atomic_or_uint(&sc->sc_soft_flags, SOFT_RESET);
529 		sc->sc_maccfg1 = maccfg1;
530 		sc->sc_maccfg2 = maccfg2;
531 		sc->sc_ecntrl = ecntrl;
532 	}
533 }
534 
535 #if 0
536 static void
537 pq3etsec_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
538 {
539 	struct pq3etsec_softc * const sc = ifp->if_softc;
540 
541 	mii_pollstat(&sc->sc_mii);
542 	ether_mediastatus(ifp, ifmr);
543 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
544 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
545 }
546 
547 static int
548 pq3etsec_mediachange(struct ifnet *ifp)
549 {
550 	struct pq3etsec_softc * const sc = ifp->if_softc;
551 
552 	if ((ifp->if_flags & IFF_UP) == 0)
553 		return 0;
554 
555 	int rv = mii_mediachg(&sc->sc_mii);
556 	return (rv == ENXIO) ? 0 : rv;
557 }
558 #endif
559 
560 static int
561 pq3etsec_match(device_t parent, cfdata_t cf, void *aux)
562 {
563 
564 	if (!e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
565 		return 0;
566 
567 	return 1;
568 }
569 
570 static void
571 pq3etsec_attach(device_t parent, device_t self, void *aux)
572 {
573 	struct cpunode_softc * const psc = device_private(parent);
574 	struct pq3etsec_softc * const sc = device_private(self);
575 	struct mii_data * const mii = &sc->sc_mii;
576 	struct cpunode_attach_args * const cna = aux;
577 	struct cpunode_locators * const cnl = &cna->cna_locs;
578 	cfdata_t cf = device_cfdata(self);
579 	int error;
580 
581 	psc->sc_children |= cna->cna_childmask;
582 	sc->sc_dev = self;
583 	sc->sc_bst = cna->cna_memt;
584 	sc->sc_dmat = &booke_bus_dma_tag;
585 
586 	/*
587 	 * Pull out the mdio bus and phy we are supposed to use.
588 	 */
589 	const int mdio = cf->cf_loc[CPUNODECF_MDIO];
590 	const int phy = cf->cf_loc[CPUNODECF_PHY];
591 	if (mdio != CPUNODECF_MDIO_DEFAULT)
592 		aprint_normal(" mdio %d", mdio);
593 
594 	/*
595 	 * See if the phy is in the config file...
596 	 */
597 	if (phy != CPUNODECF_PHY_DEFAULT) {
598 		sc->sc_phy_addr = phy;
599 	} else {
600 		unsigned char prop_name[20];
601 		snprintf(prop_name, sizeof(prop_name), "tsec%u-phy-addr",
602 		    cnl->cnl_instance);
603 		sc->sc_phy_addr = board_info_get_number(prop_name);
604 	}
605 	if (sc->sc_phy_addr != MII_PHY_ANY)
606 		aprint_normal(" phy %d", sc->sc_phy_addr);
607 
608 	error = bus_space_map(sc->sc_bst, cnl->cnl_addr, cnl->cnl_size, 0,
609 	    &sc->sc_bsh);
610 	if (error) {
611 		aprint_error(": error mapping registers: %d\n", error);
612 		return;
613 	}
614 
615 	/*
616 	 * Assume firmware has aready set the mac address and fetch it
617 	 * before we reinit it.
618 	 */
619 	sc->sc_macstnaddr2 = etsec_read(sc, MACSTNADDR2);
620 	sc->sc_macstnaddr1 = etsec_read(sc, MACSTNADDR1);
621 	sc->sc_rctrl = RCTRL_DEFAULT;
622 	sc->sc_ecntrl = etsec_read(sc, ECNTRL);
623 	sc->sc_maccfg1 = etsec_read(sc, MACCFG1);
624 	sc->sc_maccfg2 = etsec_read(sc, MACCFG2) | MACCFG2_DEFAULT;
625 
626 	if (sc->sc_macstnaddr1 == 0 && sc->sc_macstnaddr2 == 0) {
627 		size_t len;
628 		const uint8_t *mac_addr =
629 		    board_info_get_data("tsec-mac-addr-base", &len);
630 		KASSERT(len == ETHER_ADDR_LEN);
631 		sc->sc_macstnaddr2 =
632 		    (mac_addr[1] << 24)
633 		    | (mac_addr[0] << 16);
634 		sc->sc_macstnaddr1 =
635 		    ((mac_addr[5] + cnl->cnl_instance - 1) << 24)
636 		    | (mac_addr[4] << 16)
637 		    | (mac_addr[3] << 8)
638 		    | (mac_addr[2] << 0);
639 #if 0
640 		aprint_error(": mac-address unknown\n");
641 		return;
642 #endif
643 	}
644 
645 	sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
646 	sc->sc_hwlock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_VM);
647 
648 	callout_init(&sc->sc_mii_callout, CALLOUT_MPSAFE);
649 	callout_setfunc(&sc->sc_mii_callout, pq3etsec_mii_tick, sc);
650 
651 	/* Disable interrupts */
652 	etsec_write(sc, IMASK, 0);
653 
654 	error = pq3etsec_rxq_attach(sc, &sc->sc_rxq, 0);
655 	if (error) {
656 		aprint_error(": failed to init rxq: %d\n", error);
657 		goto fail_1;
658 	}
659 
660 	error = pq3etsec_txq_attach(sc, &sc->sc_txq, 0);
661 	if (error) {
662 		aprint_error(": failed to init txq: %d\n", error);
663 		goto fail_2;
664 	}
665 
666 	error = pq3etsec_mapcache_create(sc, &sc->sc_rx_mapcache,
667 	    ETSEC_MAXRXMBUFS, MCLBYTES, ETSEC_NRXSEGS);
668 	if (error) {
669 		aprint_error(": failed to allocate rx dmamaps: %d\n", error);
670 		goto fail_3;
671 	}
672 
673 	error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
674 	    ETSEC_MAXTXMBUFS, MCLBYTES, ETSEC_NTXSEGS);
675 	if (error) {
676 		aprint_error(": failed to allocate tx dmamaps: %d\n", error);
677 		goto fail_4;
678 	}
679 
680 	sc->sc_tx_ih = intr_establish(cnl->cnl_intrs[0], IPL_VM, IST_ONCHIP,
681 	    pq3etsec_tx_intr, sc);
682 	if (sc->sc_tx_ih == NULL) {
683 		aprint_error(": failed to establish tx interrupt: %d\n",
684 		    cnl->cnl_intrs[0]);
685 		goto fail_5;
686 	}
687 
688 	sc->sc_rx_ih = intr_establish(cnl->cnl_intrs[1], IPL_VM, IST_ONCHIP,
689 	    pq3etsec_rx_intr, sc);
690 	if (sc->sc_rx_ih == NULL) {
691 		aprint_error(": failed to establish rx interrupt: %d\n",
692 		    cnl->cnl_intrs[1]);
693 		goto fail_6;
694 	}
695 
696 	sc->sc_error_ih = intr_establish(cnl->cnl_intrs[2], IPL_VM, IST_ONCHIP,
697 	    pq3etsec_error_intr, sc);
698 	if (sc->sc_error_ih == NULL) {
699 		aprint_error(": failed to establish error interrupt: %d\n",
700 		    cnl->cnl_intrs[2]);
701 		goto fail_7;
702 	}
703 
704 	int softint_flags = SOFTINT_NET;
705 #if !defined(MULTIPROCESSOR) || defined(NET_MPSAFE)
706 	softint_flags |= SOFTINT_MPSAFE;
707 #endif	/* !MULTIPROCESSOR || NET_MPSAFE */
708 	sc->sc_soft_ih = softint_establish(softint_flags,
709 	    pq3etsec_soft_intr, sc);
710 	if (sc->sc_soft_ih == NULL) {
711 		aprint_error(": failed to establish soft interrupt\n");
712 		goto fail_8;
713 	}
714 
715 	/*
716 	 * If there was no MDIO
717 	 */
718 	if (mdio == CPUNODECF_MDIO_DEFAULT) {
719 		aprint_normal("\n");
720 		cfdata_t mdio_cf = config_search(self, cna,
721 						 CFARG_SUBMATCH, pq3mdio_find,
722 						 CFARG_EOL);
723 		if (mdio_cf != NULL) {
724 			sc->sc_mdio_dev =
725 			    config_attach(self, mdio_cf, cna, NULL, CFARG_EOL);
726 		}
727 	} else {
728 		sc->sc_mdio_dev = device_find_by_driver_unit("mdio", mdio);
729 		if (sc->sc_mdio_dev == NULL) {
730 			aprint_error(": failed to locate mdio device\n");
731 			goto fail_9;
732 		}
733 		aprint_normal("\n");
734 	}
735 
736 	etsec_write(sc, ATTR, ATTR_DEFAULT);
737 	etsec_write(sc, ATTRELI, ATTRELI_DEFAULT);
738 
739 	/* Enable interrupt coalesing */
740 	sc->sc_ic_rx_time = 768;
741 	sc->sc_ic_rx_count = 16;
742 	sc->sc_ic_tx_time = 768;
743 	sc->sc_ic_tx_count = 16;
744 	pq3etsec_set_ic_rx(sc);
745 	pq3etsec_set_ic_tx(sc);
746 
747 	char enaddr[ETHER_ADDR_LEN] = {
748 	    [0] = sc->sc_macstnaddr2 >> 16,
749 	    [1] = sc->sc_macstnaddr2 >> 24,
750 	    [2] = sc->sc_macstnaddr1 >>	 0,
751 	    [3] = sc->sc_macstnaddr1 >>	 8,
752 	    [4] = sc->sc_macstnaddr1 >> 16,
753 	    [5] = sc->sc_macstnaddr1 >> 24,
754 	};
755 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
756 	   ether_sprintf(enaddr));
757 
758 	const char * const xname = device_xname(sc->sc_dev);
759 	struct ethercom * const ec = &sc->sc_ec;
760 	struct ifnet * const ifp = &ec->ec_if;
761 
762 	ec->ec_mii = mii;
763 
764 	mii->mii_ifp = ifp;
765 	mii->mii_readreg = pq3mdio_mii_readreg;
766 	mii->mii_writereg = pq3mdio_mii_writereg;
767 	mii->mii_statchg = pq3etsec_mii_statchg;
768 
769 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
770 
771 	if (sc->sc_mdio_dev != NULL && sc->sc_phy_addr < 32) {
772 		mii_attach(sc->sc_mdio_dev, mii, 0xffffffff,
773 		    sc->sc_phy_addr, MII_OFFSET_ANY, MIIF_DOPAUSE);
774 
775 		if (LIST_FIRST(&mii->mii_phys) == NULL) {
776 			ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE,
777 			    0, NULL);
778 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
779 		} else {
780 			callout_schedule(&sc->sc_mii_callout, hz);
781 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
782 		}
783 	} else {
784 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_1000_T | IFM_FDX,
785 		    0, NULL);
786 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_1000_T | IFM_FDX);
787 	}
788 
789 	ec->ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING
790 	    | ETHERCAP_JUMBO_MTU;
791 	ec->ec_capenable = ETHERCAP_VLAN_HWTAGGING;
792 
793 	strlcpy(ifp->if_xname, xname, IFNAMSIZ);
794 	ifp->if_softc = sc;
795 	ifp->if_capabilities = IFCAP_ETSEC;
796 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
797 	ifp->if_ioctl = pq3etsec_ifioctl;
798 	ifp->if_start = pq3etsec_ifstart;
799 	ifp->if_watchdog = pq3etsec_ifwatchdog;
800 	ifp->if_init = pq3etsec_ifinit;
801 	ifp->if_stop = pq3etsec_ifstop;
802 	IFQ_SET_READY(&ifp->if_snd);
803 
804 	/*
805 	 * Attach the interface.
806 	 */
807 	error = if_initialize(ifp);
808 	if (error != 0) {
809 		aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
810 		    error);
811 		goto fail_10;
812 	}
813 	pq3etsec_sysctl_setup(NULL, sc);
814 	if_attach(ifp);
815 	if_deferred_start_init(ifp, NULL);
816 	ether_ifattach(ifp, enaddr);
817 
818 	rnd_attach_source(&sc->rnd_source, xname, RND_TYPE_NET,
819 	    RND_FLAG_DEFAULT);
820 
821 	pq3etsec_ifstop(ifp, true);
822 
823 	evcnt_attach_dynamic(&sc->sc_ev_rx_stall, EVCNT_TYPE_MISC,
824 	    NULL, xname, "rx stall");
825 	evcnt_attach_dynamic(&sc->sc_ev_tx_stall, EVCNT_TYPE_MISC,
826 	    NULL, xname, "tx stall");
827 	evcnt_attach_dynamic(&sc->sc_ev_tx_intr, EVCNT_TYPE_INTR,
828 	    NULL, xname, "tx intr");
829 	evcnt_attach_dynamic(&sc->sc_ev_rx_intr, EVCNT_TYPE_INTR,
830 	    NULL, xname, "rx intr");
831 	evcnt_attach_dynamic(&sc->sc_ev_error_intr, EVCNT_TYPE_INTR,
832 	    NULL, xname, "error intr");
833 	evcnt_attach_dynamic(&sc->sc_ev_soft_intr, EVCNT_TYPE_INTR,
834 	    NULL, xname, "soft intr");
835 	evcnt_attach_dynamic(&sc->sc_ev_tx_pause, EVCNT_TYPE_MISC,
836 	    NULL, xname, "tx pause");
837 	evcnt_attach_dynamic(&sc->sc_ev_rx_pause, EVCNT_TYPE_MISC,
838 	    NULL, xname, "rx pause");
839 	evcnt_attach_dynamic(&sc->sc_ev_mii_ticks, EVCNT_TYPE_MISC,
840 	    NULL, xname, "mii ticks");
841 	return;
842 
843 fail_10:
844 	ifmedia_removeall(&mii->mii_media);
845 	mii_detach(mii, sc->sc_phy_addr, MII_OFFSET_ANY);
846 fail_9:
847 	softint_disestablish(sc->sc_soft_ih);
848 fail_8:
849 	intr_disestablish(sc->sc_error_ih);
850 fail_7:
851 	intr_disestablish(sc->sc_rx_ih);
852 fail_6:
853 	intr_disestablish(sc->sc_tx_ih);
854 fail_5:
855 	pq3etsec_mapcache_destroy(sc, sc->sc_tx_mapcache);
856 fail_4:
857 	pq3etsec_mapcache_destroy(sc, sc->sc_rx_mapcache);
858 fail_3:
859 #if 0 /* notyet */
860 	pq3etsec_txq_detach(sc);
861 #endif
862 fail_2:
863 #if 0 /* notyet */
864 	pq3etsec_rxq_detach(sc);
865 #endif
866 fail_1:
867 	callout_destroy(&sc->sc_mii_callout);
868 	mutex_obj_free(sc->sc_lock);
869 	mutex_obj_free(sc->sc_hwlock);
870 	bus_space_unmap(sc->sc_bst, sc->sc_bsh, cnl->cnl_size);
871 }
872 
873 static uint64_t
874 pq3etsec_macaddr_create(const uint8_t *lladdr)
875 {
876 	uint64_t macaddr = 0;
877 
878 	lladdr += ETHER_ADDR_LEN;
879 	for (u_int i = ETHER_ADDR_LEN; i-- > 0; ) {
880 		macaddr = (macaddr << 8) | *--lladdr;
881 	}
882 	return macaddr << 16;
883 }
884 
885 static int
886 pq3etsec_ifinit(struct ifnet *ifp)
887 {
888 	struct pq3etsec_softc * const sc = ifp->if_softc;
889 	int error = 0;
890 
891 	sc->sc_maxfrm = uimax(ifp->if_mtu + 32, MCLBYTES);
892 	if (ifp->if_mtu > ETHERMTU_JUMBO)
893 		return error;
894 
895 	KASSERT(ifp->if_flags & IFF_UP);
896 
897 	/*
898 	 * Stop the interface (steps 1 to 4 in the Soft Reset and
899 	 * Reconfigurating Procedure.
900 	 */
901 	pq3etsec_ifstop(ifp, 0);
902 
903 	/*
904 	 * If our frame size has changed (or it's our first time through)
905 	 * destroy the existing transmit mapcache.
906 	 */
907 	if (sc->sc_tx_mapcache != NULL
908 	    && sc->sc_maxfrm != sc->sc_tx_mapcache->dmc_maxmapsize) {
909 		pq3etsec_mapcache_destroy(sc, sc->sc_tx_mapcache);
910 		sc->sc_tx_mapcache = NULL;
911 	}
912 
913 	if (sc->sc_tx_mapcache == NULL) {
914 		error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
915 		    ETSEC_MAXTXMBUFS, sc->sc_maxfrm, ETSEC_NTXSEGS);
916 		if (error)
917 			return error;
918 	}
919 
920 	sc->sc_ev_mii_ticks.ev_count++;
921 	mii_tick(&sc->sc_mii);
922 
923 	if (ifp->if_flags & IFF_PROMISC) {
924 		sc->sc_rctrl |= RCTRL_PROM;
925 	} else {
926 		sc->sc_rctrl &= ~RCTRL_PROM;
927 	}
928 
929 	uint32_t rctrl_prsdep = 0;
930 	sc->sc_rctrl &=
931 	    ~(RCTRL_IPCSEN | RCTRL_TUCSEN | RCTRL_VLEX | RCTRL_PRSDEP);
932 	if (VLAN_ATTACHED(&sc->sc_ec)) {
933 		sc->sc_rctrl |= RCTRL_VLEX;
934 		rctrl_prsdep = RCTRL_PRSDEP_L2;
935 	}
936 	if (ifp->if_capenable & IFCAP_RCTRL_IPCSEN) {
937 		sc->sc_rctrl |= RCTRL_IPCSEN;
938 		rctrl_prsdep = RCTRL_PRSDEP_L3;
939 	}
940 	if (ifp->if_capenable & IFCAP_RCTRL_TUCSEN) {
941 		sc->sc_rctrl |= RCTRL_TUCSEN;
942 		rctrl_prsdep = RCTRL_PRSDEP_L4;
943 	}
944 	sc->sc_rctrl |= rctrl_prsdep;
945 #if 0
946 	if (sc->sc_rctrl
947 	    & (RCTRL_IPCSEN | RCTRL_TUCSEN | RCTRL_VLEX | RCTRL_PRSDEP))
948 		aprint_normal_dev(sc->sc_dev,
949 		    "rctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlex=%"PRIuMAX" prsdep=%"PRIuMAX"\n",
950 		    sc->sc_rctrl,
951 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_IPCSEN),
952 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_TUCSEN),
953 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_VLEX),
954 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_PRSDEP));
955 #endif
956 
957 	sc->sc_tctrl &= ~(TCTRL_IPCSEN | TCTRL_TUCSEN | TCTRL_VLINS);
958 	if (VLAN_ATTACHED(&sc->sc_ec))		/* is this really true */
959 		sc->sc_tctrl |= TCTRL_VLINS;
960 	if (ifp->if_capenable & IFCAP_TCTRL_IPCSEN)
961 		sc->sc_tctrl |= TCTRL_IPCSEN;
962 	if (ifp->if_capenable & IFCAP_TCTRL_TUCSEN)
963 		sc->sc_tctrl |= TCTRL_TUCSEN;
964 #if 0
965 	if (sc->sc_tctrl & (TCTRL_IPCSEN | TCTRL_TUCSEN | TCTRL_VLINS))
966 		aprint_normal_dev(sc->sc_dev,
967 		    "tctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlins=%"PRIuMAX"\n",
968 		    sc->sc_tctrl,
969 		    __SHIFTOUT(sc->sc_tctrl, TCTRL_IPCSEN),
970 		    __SHIFTOUT(sc->sc_tctrl, TCTRL_TUCSEN),
971 		    __SHIFTOUT(sc->sc_tctrl, TCTRL_VLINS));
972 #endif
973 
974 	sc->sc_maccfg1 &= ~(MACCFG1_TX_EN | MACCFG1_RX_EN);
975 
976 	const uint64_t macstnaddr =
977 	    pq3etsec_macaddr_create(CLLADDR(ifp->if_sadl));
978 
979 	sc->sc_imask = IEVENT_DPE;
980 
981 	/* 5. Load TDBPH, TBASEH, TBASE0-TBASE7 with new Tx BD pointers */
982 	pq3etsec_rxq_reset(sc, &sc->sc_rxq);
983 	pq3etsec_rxq_produce(sc, &sc->sc_rxq);	/* fill with rx buffers */
984 
985 	/* 6. Load RDBPH, RBASEH, RBASE0-RBASE7 with new Rx BD pointers */
986 	pq3etsec_txq_reset(sc, &sc->sc_txq);
987 
988 	/* 7. Setup other MAC registers (MACCFG2, MAXFRM, etc.) */
989 	KASSERT(MACCFG2_PADCRC & sc->sc_maccfg2);
990 	etsec_write(sc, MAXFRM, sc->sc_maxfrm);
991 	etsec_write(sc, MACSTNADDR1, (uint32_t)(macstnaddr >> 32));
992 	etsec_write(sc, MACSTNADDR2, (uint32_t)(macstnaddr >>  0));
993 	etsec_write(sc, MACCFG1, sc->sc_maccfg1);
994 	etsec_write(sc, MACCFG2, sc->sc_maccfg2);
995 	etsec_write(sc, ECNTRL, sc->sc_ecntrl);
996 
997 	/* 8. Setup group address hash table (GADDR0-GADDR15) */
998 	pq3etsec_mc_setup(sc);
999 
1000 	/* 9. Setup receive frame filer table (via RQFAR, RQFCR, and RQFPR) */
1001 	etsec_write(sc, MRBLR, MCLBYTES);
1002 
1003 	/* 10. Setup WWR, WOP, TOD bits in DMACTRL register */
1004 	sc->sc_dmactrl |= DMACTRL_DEFAULT;
1005 	etsec_write(sc, DMACTRL, sc->sc_dmactrl);
1006 
1007 	/* 11. Enable transmit queues in TQUEUE, and ensure that the transmit scheduling mode is correctly set in TCTRL. */
1008 	etsec_write(sc, TQUEUE, TQUEUE_EN0);
1009 	sc->sc_imask |= IEVENT_TXF | IEVENT_TXE | IEVENT_TXC;
1010 
1011 	etsec_write(sc, TCTRL, sc->sc_tctrl);	/* for TOE stuff */
1012 
1013 	/* 12. Enable receive queues in RQUEUE, */
1014 	etsec_write(sc, RQUEUE, RQUEUE_EN0 | RQUEUE_EX0);
1015 	sc->sc_imask |= IEVENT_RXF | IEVENT_BSY | IEVENT_RXC;
1016 
1017 	/*     and optionally set TOE functionality in RCTRL. */
1018 	etsec_write(sc, RCTRL, sc->sc_rctrl);
1019 	sc->sc_rx_adjlen = __SHIFTOUT(sc->sc_rctrl, RCTRL_PAL);
1020 	if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF)
1021 		sc->sc_rx_adjlen += sizeof(struct rxfcb);
1022 
1023 	/* 13. Clear THLT and TXF bits in TSTAT register by writing 1 to them */
1024 	etsec_write(sc, TSTAT, TSTAT_THLT | TSTAT_TXF);
1025 
1026 	/* 14. Clear QHLT and RXF bits in RSTAT register by writing 1 to them.*/
1027 	etsec_write(sc, RSTAT, RSTAT_QHLT | RSTAT_RXF);
1028 
1029 	/* 15. Clear GRS/GTS bits in DMACTRL (do not change other bits) */
1030 	sc->sc_dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS);
1031 	etsec_write(sc, DMACTRL, sc->sc_dmactrl);
1032 
1033 	/* 16. Enable Tx_EN/Rx_EN in MACCFG1 register */
1034 	etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
1035 	etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
1036 
1037 	sc->sc_soft_flags = 0;
1038 
1039 	etsec_write(sc, IMASK, sc->sc_imask);
1040 
1041 	ifp->if_flags |= IFF_RUNNING;
1042 
1043 	return error;
1044 }
1045 
1046 static void
1047 pq3etsec_ifstop(struct ifnet *ifp, int disable)
1048 {
1049 	struct pq3etsec_softc * const sc = ifp->if_softc;
1050 
1051 	KASSERT(!cpu_intr_p());
1052 	const uint32_t imask_gsc_mask = IEVENT_GTSC | IEVENT_GRSC;
1053 	/*
1054 	 * Clear the GTSC and GRSC from the interrupt mask until
1055 	 * we are ready for them.  Then clear them from IEVENT,
1056 	 * request the graceful shutdown, and then enable the
1057 	 * GTSC and GRSC bits in the mask.  This should cause the
1058 	 * error interrupt to fire which will issue a wakeup to
1059 	 * allow us to resume.
1060 	 */
1061 
1062 	/*
1063 	 * 1. Set GRS/GTS bits in DMACTRL register
1064 	 */
1065 	sc->sc_dmactrl |= DMACTRL_GRS | DMACTRL_GTS;
1066 	etsec_write(sc, IMASK, sc->sc_imask & ~imask_gsc_mask);
1067 	etsec_write(sc, IEVENT, imask_gsc_mask);
1068 	etsec_write(sc, DMACTRL, sc->sc_dmactrl);
1069 
1070 	if (etsec_read(sc, MACCFG1) & (MACCFG1_TX_EN | MACCFG1_RX_EN)) {
1071 		/*
1072 		 * 2. Poll GRSC/GTSC bits in IEVENT register until both are set
1073 		 */
1074 		etsec_write(sc, IMASK, sc->sc_imask | imask_gsc_mask);
1075 
1076 		u_int timo = 1000;
1077 		uint32_t ievent = etsec_read(sc, IEVENT);
1078 		while ((ievent & imask_gsc_mask) != imask_gsc_mask) {
1079 			if (--timo == 0) {
1080 				aprint_error_dev(sc->sc_dev,
1081 				    "WARNING: "
1082 				    "request to stop failed (IEVENT=%#x)\n",
1083 				    ievent);
1084 				break;
1085 			}
1086 			delay(10);
1087 			ievent = etsec_read(sc, IEVENT);
1088 		}
1089 	}
1090 
1091 	/*
1092 	 * Now reset the controller.
1093 	 *
1094 	 * 3. Set SOFT_RESET bit in MACCFG1 register
1095 	 * 4. Clear SOFT_RESET bit in MACCFG1 register
1096 	 */
1097 	etsec_write(sc, MACCFG1, MACCFG1_SOFT_RESET);
1098 	etsec_write(sc, MACCFG1, 0);
1099 	etsec_write(sc, IMASK, 0);
1100 	etsec_write(sc, IEVENT, ~0);
1101 	sc->sc_imask = 0;
1102 	ifp->if_flags &= ~IFF_RUNNING;
1103 
1104 	uint32_t tbipa = etsec_read(sc, TBIPA);
1105 	if (tbipa == sc->sc_phy_addr) {
1106 		aprint_normal_dev(sc->sc_dev, "relocating TBI\n");
1107 		etsec_write(sc, TBIPA, 0x1f);
1108 	}
1109 	uint32_t miimcfg = etsec_read(sc, MIIMCFG);
1110 	etsec_write(sc, MIIMCFG, MIIMCFG_RESET);
1111 	etsec_write(sc, MIIMCFG, miimcfg);
1112 
1113 	/*
1114 	 * Let's consume any remaing transmitted packets.  And if we are
1115 	 * disabling the interface, purge ourselves of any untransmitted
1116 	 * packets.  But don't consume any received packets, just drop them.
1117 	 * If we aren't disabling the interface, save the mbufs in the
1118 	 * receive queue for reuse.
1119 	 */
1120 	pq3etsec_rxq_purge(sc, &sc->sc_rxq, disable);
1121 	pq3etsec_txq_consume(sc, &sc->sc_txq);
1122 	if (disable) {
1123 		pq3etsec_txq_purge(sc, &sc->sc_txq);
1124 		IFQ_PURGE(&ifp->if_snd);
1125 	}
1126 }
1127 
1128 static void
1129 pq3etsec_ifwatchdog(struct ifnet *ifp)
1130 {
1131 }
1132 
1133 static void
1134 pq3etsec_mc_setup(
1135 	struct pq3etsec_softc *sc)
1136 {
1137 	struct ethercom * const ec = &sc->sc_ec;
1138 	struct ifnet * const ifp = &sc->sc_if;
1139 	struct ether_multi *enm;
1140 	struct ether_multistep step;
1141 	uint32_t *gaddr = sc->sc_gaddr + ((sc->sc_rctrl & RCTRL_GHTX) ? 0 : 8);
1142 	const uint32_t crc_shift = 32 - ((sc->sc_rctrl & RCTRL_GHTX) ? 9 : 8);
1143 
1144 	memset(sc->sc_gaddr, 0, sizeof(sc->sc_gaddr));
1145 	memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
1146 
1147 	ifp->if_flags &= ~IFF_ALLMULTI;
1148 
1149 	ETHER_LOCK(ec);
1150 	ETHER_FIRST_MULTI(step, ec, enm);
1151 	for (u_int i = 0; enm != NULL; ) {
1152 		const char *addr = enm->enm_addrlo;
1153 		if (memcmp(addr, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
1154 			ifp->if_flags |= IFF_ALLMULTI;
1155 			memset(gaddr, 0xff, 32 << (crc_shift & 1));
1156 			memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
1157 			break;
1158 		}
1159 		if ((sc->sc_rctrl & RCTRL_EMEN)
1160 		    && i < __arraycount(sc->sc_macaddrs)) {
1161 			sc->sc_macaddrs[i++] = pq3etsec_macaddr_create(addr);
1162 		} else {
1163 			uint32_t crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
1164 #if 0
1165 			printf("%s: %s: crc=%#x: %#x: [%u,%u]=%#x\n", __func__,
1166 			    ether_sprintf(addr), crc,
1167 			    crc >> crc_shift,
1168 			    crc >> (crc_shift + 5),
1169 			    (crc >> crc_shift) & 31,
1170 			    1 << (((crc >> crc_shift) & 31) ^ 31));
1171 #endif
1172 			/*
1173 			 * The documentation doesn't completely follow PowerPC
1174 			 * bit order.  The BE crc32 (H) for 01:00:5E:00:00:01
1175 			 * is 0x7fa32d9b.  By empirical testing, the
1176 			 * corresponding hash bit is word 3, bit 31 (ppc bit
1177 			 * order).  Since 3 << 31 | 31 is 0x7f, we deduce
1178 			 * H[0:2] selects the register while H[3:7] selects
1179 			 * the bit (ppc bit order).
1180 			 */
1181 			crc >>= crc_shift;
1182 			gaddr[crc / 32] |= 1 << ((crc & 31) ^ 31);
1183 		}
1184 		ETHER_NEXT_MULTI(step, enm);
1185 	}
1186 	ETHER_UNLOCK(ec);
1187 	for (u_int i = 0; i < 8; i++) {
1188 		etsec_write(sc, IGADDR(i), sc->sc_gaddr[i]);
1189 		etsec_write(sc, GADDR(i), sc->sc_gaddr[i+8]);
1190 #if 0
1191 		if (sc->sc_gaddr[i] || sc->sc_gaddr[i+8])
1192 		printf("%s: IGADDR%u(%#x)=%#x GADDR%u(%#x)=%#x\n", __func__,
1193 		    i, IGADDR(i), etsec_read(sc, IGADDR(i)),
1194 		    i, GADDR(i), etsec_read(sc, GADDR(i)));
1195 #endif
1196 	}
1197 	for (u_int i = 0; i < __arraycount(sc->sc_macaddrs); i++) {
1198 		uint64_t macaddr = sc->sc_macaddrs[i];
1199 		etsec_write(sc, MACnADDR1(i), (uint32_t)(macaddr >> 32));
1200 		etsec_write(sc, MACnADDR2(i), (uint32_t)(macaddr >>  0));
1201 #if 0
1202 		if (macaddr)
1203 		printf("%s: MAC%02uADDR2(%08x)=%#x MAC%02uADDR2(%#x)=%08x\n", __func__,
1204 		    i+1, MACnADDR1(i), etsec_read(sc, MACnADDR1(i)),
1205 		    i+1, MACnADDR2(i), etsec_read(sc, MACnADDR2(i)));
1206 #endif
1207 	}
1208 }
1209 
1210 static int
1211 pq3etsec_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
1212 {
1213 	struct pq3etsec_softc *sc  = ifp->if_softc;
1214 	struct ifreq * const ifr = data;
1215 	const int s = splnet();
1216 	int error;
1217 
1218 	switch (cmd) {
1219 	case SIOCSIFMEDIA:
1220 		/* Flow control requires full-duplex mode. */
1221 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1222 		    (ifr->ifr_media & IFM_FDX) == 0)
1223 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1224 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1225 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1226 				/* We can do both TXPAUSE and RXPAUSE. */
1227 				ifr->ifr_media |=
1228 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1229 			}
1230 		}
1231 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1232 		break;
1233 
1234 	default:
1235 		error = ether_ioctl(ifp, cmd, data);
1236 		if (error != ENETRESET)
1237 			break;
1238 
1239 		if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
1240 			error = 0;
1241 			if (ifp->if_flags & IFF_RUNNING)
1242 				pq3etsec_mc_setup(sc);
1243 			break;
1244 		}
1245 		error = pq3etsec_ifinit(ifp);
1246 		break;
1247 	}
1248 
1249 	splx(s);
1250 	return error;
1251 }
1252 
1253 static void
1254 pq3etsec_rxq_desc_presync(
1255 	struct pq3etsec_softc *sc,
1256 	struct pq3etsec_rxqueue *rxq,
1257 	volatile struct rxbd *rxbd,
1258 	size_t count)
1259 {
1260 	bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1261 	    (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1262 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1263 }
1264 
1265 static void
1266 pq3etsec_rxq_desc_postsync(
1267 	struct pq3etsec_softc *sc,
1268 	struct pq3etsec_rxqueue *rxq,
1269 	volatile struct rxbd *rxbd,
1270 	size_t count)
1271 {
1272 	bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1273 	    (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1274 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1275 }
1276 
1277 static void
1278 pq3etsec_txq_desc_presync(
1279 	struct pq3etsec_softc *sc,
1280 	struct pq3etsec_txqueue *txq,
1281 	volatile struct txbd *txbd,
1282 	size_t count)
1283 {
1284 	bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1285 	    (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1286 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1287 }
1288 
1289 static void
1290 pq3etsec_txq_desc_postsync(
1291 	struct pq3etsec_softc *sc,
1292 	struct pq3etsec_txqueue *txq,
1293 	volatile struct txbd *txbd,
1294 	size_t count)
1295 {
1296 	bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1297 	    (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1298 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1299 }
1300 
1301 static bus_dmamap_t
1302 pq3etsec_mapcache_get(
1303 	struct pq3etsec_softc *sc,
1304 	struct pq3etsec_mapcache *dmc)
1305 {
1306 	KASSERT(dmc->dmc_nmaps > 0);
1307 	KASSERT(dmc->dmc_maps[dmc->dmc_nmaps-1] != NULL);
1308 	return dmc->dmc_maps[--dmc->dmc_nmaps];
1309 }
1310 
1311 static void
1312 pq3etsec_mapcache_put(
1313 	struct pq3etsec_softc *sc,
1314 	struct pq3etsec_mapcache *dmc,
1315 	bus_dmamap_t map)
1316 {
1317 	KASSERT(map != NULL);
1318 	KASSERT(dmc->dmc_nmaps < dmc->dmc_maxmaps);
1319 	dmc->dmc_maps[dmc->dmc_nmaps++] = map;
1320 }
1321 
1322 static void
1323 pq3etsec_mapcache_destroy(
1324 	struct pq3etsec_softc *sc,
1325 	struct pq3etsec_mapcache *dmc)
1326 {
1327 	const size_t dmc_size =
1328 	    offsetof(struct pq3etsec_mapcache, dmc_maps[dmc->dmc_maxmaps]);
1329 
1330 	for (u_int i = 0; i < dmc->dmc_maxmaps; i++) {
1331 		bus_dmamap_destroy(sc->sc_dmat, dmc->dmc_maps[i]);
1332 	}
1333 	kmem_intr_free(dmc, dmc_size);
1334 }
1335 
1336 static int
1337 pq3etsec_mapcache_create(
1338 	struct pq3etsec_softc *sc,
1339 	struct pq3etsec_mapcache **dmc_p,
1340 	size_t maxmaps,
1341 	size_t maxmapsize,
1342 	size_t maxseg)
1343 {
1344 	const size_t dmc_size =
1345 	    offsetof(struct pq3etsec_mapcache, dmc_maps[maxmaps]);
1346 	struct pq3etsec_mapcache * const dmc =
1347 		kmem_intr_zalloc(dmc_size, KM_NOSLEEP);
1348 
1349 	dmc->dmc_maxmaps = maxmaps;
1350 	dmc->dmc_nmaps = maxmaps;
1351 	dmc->dmc_maxmapsize = maxmapsize;
1352 	dmc->dmc_maxseg = maxseg;
1353 
1354 	for (u_int i = 0; i < maxmaps; i++) {
1355 		int error = bus_dmamap_create(sc->sc_dmat, dmc->dmc_maxmapsize,
1356 		     dmc->dmc_maxseg, dmc->dmc_maxmapsize, 0,
1357 		     BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dmc->dmc_maps[i]);
1358 		if (error) {
1359 			aprint_error_dev(sc->sc_dev,
1360 			    "failed to creat dma map cache "
1361 			    "entry %u of %zu: %d\n",
1362 			    i, maxmaps, error);
1363 			while (i-- > 0) {
1364 				bus_dmamap_destroy(sc->sc_dmat,
1365 				    dmc->dmc_maps[i]);
1366 			}
1367 			kmem_intr_free(dmc, dmc_size);
1368 			return error;
1369 		}
1370 		KASSERT(dmc->dmc_maps[i] != NULL);
1371 	}
1372 
1373 	*dmc_p = dmc;
1374 
1375 	return 0;
1376 }
1377 
1378 #if 0
1379 static void
1380 pq3etsec_dmamem_free(
1381 	bus_dma_tag_t dmat,
1382 	size_t map_size,
1383 	bus_dma_segment_t *seg,
1384 	bus_dmamap_t map,
1385 	void *kvap)
1386 {
1387 	bus_dmamap_destroy(dmat, map);
1388 	bus_dmamem_unmap(dmat, kvap, map_size);
1389 	bus_dmamem_free(dmat, seg, 1);
1390 }
1391 #endif
1392 
1393 static int
1394 pq3etsec_dmamem_alloc(
1395 	bus_dma_tag_t dmat,
1396 	size_t map_size,
1397 	bus_dma_segment_t *seg,
1398 	bus_dmamap_t *map,
1399 	void **kvap)
1400 {
1401 	int error;
1402 	int nseg;
1403 
1404 	*kvap = NULL;
1405 	*map = NULL;
1406 
1407 	error = bus_dmamem_alloc(dmat, map_size, PAGE_SIZE, 0,
1408 	   seg, 1, &nseg, 0);
1409 	if (error)
1410 		return error;
1411 
1412 	KASSERT(nseg == 1);
1413 
1414 	error = bus_dmamem_map(dmat, seg, nseg, map_size, (void **)kvap,
1415 	    BUS_DMA_COHERENT);
1416 	if (error == 0) {
1417 		error = bus_dmamap_create(dmat, map_size, 1, map_size, 0, 0,
1418 		    map);
1419 		if (error == 0) {
1420 			error = bus_dmamap_load(dmat, *map, *kvap, map_size,
1421 			    NULL, 0);
1422 			if (error == 0)
1423 				return 0;
1424 			bus_dmamap_destroy(dmat, *map);
1425 			*map = NULL;
1426 		}
1427 		bus_dmamem_unmap(dmat, *kvap, map_size);
1428 		*kvap = NULL;
1429 	}
1430 	bus_dmamem_free(dmat, seg, nseg);
1431 	return 0;
1432 }
1433 
1434 static struct mbuf *
1435 pq3etsec_rx_buf_alloc(
1436 	struct pq3etsec_softc *sc)
1437 {
1438 	struct mbuf *m = m_gethdr(M_DONTWAIT, MT_DATA);
1439 	if (m == NULL) {
1440 		printf("%s:%d: %s\n", __func__, __LINE__, "m_gethdr");
1441 		return NULL;
1442 	}
1443 	MCLGET(m, M_DONTWAIT);
1444 	if ((m->m_flags & M_EXT) == 0) {
1445 		printf("%s:%d: %s\n", __func__, __LINE__, "MCLGET");
1446 		m_freem(m);
1447 		return NULL;
1448 	}
1449 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1450 
1451 	bus_dmamap_t map = pq3etsec_mapcache_get(sc, sc->sc_rx_mapcache);
1452 	if (map == NULL) {
1453 		printf("%s:%d: %s\n", __func__, __LINE__, "map get");
1454 		m_freem(m);
1455 		return NULL;
1456 	}
1457 	M_SETCTX(m, map);
1458 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1459 	int error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1460 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
1461 	if (error) {
1462 		aprint_error_dev(sc->sc_dev, "fail to load rx dmamap: %d\n",
1463 		    error);
1464 		M_SETCTX(m, NULL);
1465 		m_freem(m);
1466 		pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1467 		return NULL;
1468 	}
1469 	KASSERT(map->dm_mapsize == MCLBYTES);
1470 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1471 	    BUS_DMASYNC_PREREAD);
1472 
1473 	return m;
1474 }
1475 
1476 static void
1477 pq3etsec_rx_map_unload(
1478 	struct pq3etsec_softc *sc,
1479 	struct mbuf *m)
1480 {
1481 	KASSERT(m);
1482 	for (; m != NULL; m = m->m_next) {
1483 		bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1484 		KASSERT(map);
1485 		KASSERT(map->dm_mapsize == MCLBYTES);
1486 		bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_len,
1487 		    BUS_DMASYNC_POSTREAD);
1488 		bus_dmamap_unload(sc->sc_dmat, map);
1489 		pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1490 		M_SETCTX(m, NULL);
1491 	}
1492 }
1493 
1494 static bool
1495 pq3etsec_rxq_produce(
1496 	struct pq3etsec_softc *sc,
1497 	struct pq3etsec_rxqueue *rxq)
1498 {
1499 	volatile struct rxbd *producer = rxq->rxq_producer;
1500 #if 0
1501 	size_t inuse = rxq->rxq_inuse;
1502 #endif
1503 	while (rxq->rxq_inuse < rxq->rxq_threshold) {
1504 		struct mbuf *m;
1505 		IF_DEQUEUE(&sc->sc_rx_bufcache, m);
1506 		if (m == NULL) {
1507 			m = pq3etsec_rx_buf_alloc(sc);
1508 			if (m == NULL) {
1509 				printf("%s: pq3etsec_rx_buf_alloc failed\n", __func__);
1510 				break;
1511 			}
1512 		}
1513 		bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1514 		KASSERT(map);
1515 
1516 #ifdef ETSEC_DEBUG
1517 		KASSERT(rxq->rxq_mbufs[producer-rxq->rxq_first] == NULL);
1518 		rxq->rxq_mbufs[producer-rxq->rxq_first] = m;
1519 #endif
1520 
1521 		/* rxbd_len is write-only by the ETSEC */
1522 		producer->rxbd_bufptr = map->dm_segs[0].ds_addr;
1523 		membar_producer();
1524 		producer->rxbd_flags |= RXBD_E;
1525 		if (__predict_false(rxq->rxq_mhead == NULL)) {
1526 			KASSERT(producer == rxq->rxq_consumer);
1527 			rxq->rxq_mconsumer = m;
1528 		}
1529 		*rxq->rxq_mtail = m;
1530 		rxq->rxq_mtail = &m->m_next;
1531 		m->m_len = MCLBYTES;
1532 		m->m_next = NULL;
1533 		rxq->rxq_inuse++;
1534 		if (++producer == rxq->rxq_last) {
1535 			membar_producer();
1536 			pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1537 			    rxq->rxq_last - rxq->rxq_producer);
1538 			producer = rxq->rxq_producer = rxq->rxq_first;
1539 		}
1540 	}
1541 	if (producer != rxq->rxq_producer) {
1542 		membar_producer();
1543 		pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1544 		    producer - rxq->rxq_producer);
1545 		rxq->rxq_producer = producer;
1546 	}
1547 	uint32_t qhlt = etsec_read(sc, RSTAT) & RSTAT_QHLT;
1548 	if (qhlt) {
1549 		KASSERT(qhlt & rxq->rxq_qmask);
1550 		sc->sc_ev_rx_stall.ev_count++;
1551 		etsec_write(sc, RSTAT, RSTAT_QHLT & rxq->rxq_qmask);
1552 	}
1553 #if 0
1554 	aprint_normal_dev(sc->sc_dev,
1555 	    "%s: buffers inuse went from %zu to %zu\n",
1556 	    __func__, inuse, rxq->rxq_inuse);
1557 #endif
1558 	return true;
1559 }
1560 
1561 static bool
1562 pq3etsec_rx_offload(
1563 	struct pq3etsec_softc *sc,
1564 	struct mbuf *m,
1565 	const struct rxfcb *fcb)
1566 {
1567 	if (fcb->rxfcb_flags & RXFCB_VLN) {
1568 		vlan_set_tag(m, fcb->rxfcb_vlctl);
1569 	}
1570 	if ((fcb->rxfcb_flags & RXFCB_IP) == 0
1571 	    || (fcb->rxfcb_flags & (RXFCB_CIP | RXFCB_CTU)) == 0)
1572 		return true;
1573 	int csum_flags = 0;
1574 	if ((fcb->rxfcb_flags & (RXFCB_IP6 | RXFCB_CIP)) == RXFCB_CIP) {
1575 		csum_flags |= M_CSUM_IPv4;
1576 		if (fcb->rxfcb_flags & RXFCB_EIP)
1577 			csum_flags |= M_CSUM_IPv4_BAD;
1578 	}
1579 	if ((fcb->rxfcb_flags & RXFCB_CTU) == RXFCB_CTU) {
1580 		int ipv_flags;
1581 		if (fcb->rxfcb_flags & RXFCB_IP6)
1582 			ipv_flags = M_CSUM_TCPv6 | M_CSUM_UDPv6;
1583 		else
1584 			ipv_flags = M_CSUM_TCPv4 | M_CSUM_UDPv4;
1585 		if (fcb->rxfcb_pro == IPPROTO_TCP) {
1586 			csum_flags |= (M_CSUM_TCPv4 |M_CSUM_TCPv6) & ipv_flags;
1587 		} else {
1588 			csum_flags |= (M_CSUM_UDPv4 |M_CSUM_UDPv6) & ipv_flags;
1589 		}
1590 		if (fcb->rxfcb_flags & RXFCB_ETU)
1591 			csum_flags |= M_CSUM_TCP_UDP_BAD;
1592 	}
1593 
1594 	m->m_pkthdr.csum_flags = csum_flags;
1595 	return true;
1596 }
1597 
1598 static void
1599 pq3etsec_rx_input(
1600 	struct pq3etsec_softc *sc,
1601 	struct mbuf *m,
1602 	uint16_t rxbd_flags)
1603 {
1604 	struct ifnet * const ifp = &sc->sc_if;
1605 
1606 	pq3etsec_rx_map_unload(sc, m);
1607 
1608 	if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF) {
1609 		struct rxfcb fcb = *mtod(m, struct rxfcb *);
1610 		if (!pq3etsec_rx_offload(sc, m, &fcb))
1611 			return;
1612 	}
1613 	m_adj(m, sc->sc_rx_adjlen);
1614 
1615 	if (rxbd_flags & RXBD_M)
1616 		m->m_flags |= M_PROMISC;
1617 	if (rxbd_flags & RXBD_BC)
1618 		m->m_flags |= M_BCAST;
1619 	if (rxbd_flags & RXBD_MC)
1620 		m->m_flags |= M_MCAST;
1621 	m->m_flags |= M_HASFCS;
1622 	m_set_rcvif(m, &sc->sc_if);
1623 
1624 	/*
1625 	 * Let's give it to the network subsystm to deal with.
1626 	 */
1627 	if_percpuq_enqueue(ifp->if_percpuq, m);
1628 }
1629 
1630 static void
1631 pq3etsec_rxq_consume(
1632 	struct pq3etsec_softc *sc,
1633 	struct pq3etsec_rxqueue *rxq)
1634 {
1635 	struct ifnet * const ifp = &sc->sc_if;
1636 	volatile struct rxbd *consumer = rxq->rxq_consumer;
1637 	size_t rxconsumed = 0;
1638 
1639 	etsec_write(sc, RSTAT, RSTAT_RXF & rxq->rxq_qmask);
1640 
1641 	for (;;) {
1642 		if (consumer == rxq->rxq_producer) {
1643 			rxq->rxq_consumer = consumer;
1644 			rxq->rxq_inuse -= rxconsumed;
1645 			KASSERT(rxq->rxq_inuse == 0);
1646 			break;
1647 		}
1648 		pq3etsec_rxq_desc_postsync(sc, rxq, consumer, 1);
1649 		const uint16_t rxbd_flags = consumer->rxbd_flags;
1650 		if (rxbd_flags & RXBD_E) {
1651 			rxq->rxq_consumer = consumer;
1652 			rxq->rxq_inuse -= rxconsumed;
1653 			break;
1654 		}
1655 		KASSERT(rxq->rxq_mconsumer != NULL);
1656 #ifdef ETSEC_DEBUG
1657 		KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1658 #endif
1659 #if 0
1660 		printf("%s: rxdb[%u]: flags=%#x len=%#x: %08x %08x %08x %08x\n",
1661 		    __func__,
1662 		    consumer - rxq->rxq_first, rxbd_flags, consumer->rxbd_len,
1663 		    mtod(rxq->rxq_mconsumer, int *)[0],
1664 		    mtod(rxq->rxq_mconsumer, int *)[1],
1665 		    mtod(rxq->rxq_mconsumer, int *)[2],
1666 		    mtod(rxq->rxq_mconsumer, int *)[3]);
1667 #endif
1668 		/*
1669 		 * We own this packet again.  Clear all flags except wrap.
1670 		 */
1671 		rxconsumed++;
1672 		consumer->rxbd_flags = rxbd_flags & (RXBD_W | RXBD_I);
1673 
1674 		/*
1675 		 * If this descriptor has the LAST bit set and no errors,
1676 		 * it's a valid input packet.
1677 		 */
1678 		if ((rxbd_flags & (RXBD_L | RXBD_ERRORS)) == RXBD_L) {
1679 			size_t rxbd_len = consumer->rxbd_len;
1680 			struct mbuf *m = rxq->rxq_mhead;
1681 			struct mbuf *m_last = rxq->rxq_mconsumer;
1682 			if ((rxq->rxq_mhead = m_last->m_next) == NULL)
1683 				rxq->rxq_mtail = &rxq->rxq_mhead;
1684 			rxq->rxq_mconsumer = rxq->rxq_mhead;
1685 			m_last->m_next = NULL;
1686 			m_last->m_len = rxbd_len & (MCLBYTES - 1);
1687 			m->m_pkthdr.len = rxbd_len;
1688 			pq3etsec_rx_input(sc, m, rxbd_flags);
1689 		} else if (rxbd_flags & RXBD_L) {
1690 			KASSERT(rxbd_flags & RXBD_ERRORS);
1691 			struct mbuf *m;
1692 			/*
1693 			 * We encountered an error, take the mbufs and add
1694 			 * then to the rx bufcache so we can reuse them.
1695 			 */
1696 			if_statinc(ifp, if_ierrors);
1697 			for (m = rxq->rxq_mhead;
1698 			     m != rxq->rxq_mconsumer;
1699 			     m = m->m_next) {
1700 				IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1701 			}
1702 			m = rxq->rxq_mconsumer;
1703 			if ((rxq->rxq_mhead = m->m_next) == NULL)
1704 				rxq->rxq_mtail = &rxq->rxq_mhead;
1705 			rxq->rxq_mconsumer = m->m_next;
1706 			IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1707 		} else {
1708 			rxq->rxq_mconsumer = rxq->rxq_mconsumer->m_next;
1709 		}
1710 #ifdef ETSEC_DEBUG
1711 		rxq->rxq_mbufs[consumer - rxq->rxq_first] = NULL;
1712 #endif
1713 
1714 		/*
1715 		 * Wrap at the last entry!
1716 		 */
1717 		if (rxbd_flags & RXBD_W) {
1718 			KASSERT(consumer + 1 == rxq->rxq_last);
1719 			consumer = rxq->rxq_first;
1720 		} else {
1721 			consumer++;
1722 		}
1723 #ifdef ETSEC_DEBUG
1724 		KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1725 #endif
1726 	}
1727 
1728 	if (rxconsumed != 0)
1729 		rnd_add_uint32(&sc->rnd_source, rxconsumed);
1730 }
1731 
1732 static void
1733 pq3etsec_rxq_purge(
1734 	struct pq3etsec_softc *sc,
1735 	struct pq3etsec_rxqueue *rxq,
1736 	bool discard)
1737 {
1738 	struct mbuf *m;
1739 
1740 	if ((m = rxq->rxq_mhead) != NULL) {
1741 #ifdef ETSEC_DEBUG
1742 		memset(rxq->rxq_mbufs, 0, sizeof(rxq->rxq_mbufs));
1743 #endif
1744 
1745 		if (discard) {
1746 			pq3etsec_rx_map_unload(sc, m);
1747 			m_freem(m);
1748 		} else {
1749 			while (m != NULL) {
1750 				struct mbuf *m0 = m->m_next;
1751 				m->m_next = NULL;
1752 				IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1753 				m = m0;
1754 			}
1755 		}
1756 	}
1757 
1758 	rxq->rxq_mconsumer = NULL;
1759 	rxq->rxq_mhead = NULL;
1760 	rxq->rxq_mtail = &rxq->rxq_mhead;
1761 	rxq->rxq_inuse = 0;
1762 }
1763 
1764 static void
1765 pq3etsec_rxq_reset(
1766 	struct pq3etsec_softc *sc,
1767 	struct pq3etsec_rxqueue *rxq)
1768 {
1769 	/*
1770 	 * sync all the descriptors
1771 	 */
1772 	pq3etsec_rxq_desc_postsync(sc, rxq, rxq->rxq_first,
1773 	    rxq->rxq_last - rxq->rxq_first);
1774 
1775 	/*
1776 	 * Make sure we own all descriptors in the ring.
1777 	 */
1778 	volatile struct rxbd *rxbd;
1779 	for (rxbd = rxq->rxq_first; rxbd < rxq->rxq_last - 1; rxbd++) {
1780 		rxbd->rxbd_flags = RXBD_I;
1781 	}
1782 
1783 	/*
1784 	 * Last descriptor has the wrap flag.
1785 	 */
1786 	rxbd->rxbd_flags = RXBD_W | RXBD_I;
1787 
1788 	/*
1789 	 * Reset the producer consumer indexes.
1790 	 */
1791 	rxq->rxq_consumer = rxq->rxq_first;
1792 	rxq->rxq_producer = rxq->rxq_first;
1793 	rxq->rxq_inuse = 0;
1794 	if (rxq->rxq_threshold < ETSEC_MINRXMBUFS)
1795 		rxq->rxq_threshold = ETSEC_MINRXMBUFS;
1796 
1797 	sc->sc_imask |= IEVENT_RXF | IEVENT_BSY;
1798 
1799 	/*
1800 	 * Restart the transmit at the first descriptor
1801 	 */
1802 	etsec_write(sc, rxq->rxq_reg_rbase, rxq->rxq_descmap->dm_segs->ds_addr);
1803 }
1804 
1805 static int
1806 pq3etsec_rxq_attach(
1807 	struct pq3etsec_softc *sc,
1808 	struct pq3etsec_rxqueue *rxq,
1809 	u_int qno)
1810 {
1811 	size_t map_size = PAGE_SIZE;
1812 	size_t desc_count = map_size / sizeof(struct rxbd);
1813 	int error;
1814 	void *descs;
1815 
1816 	error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1817 	   &rxq->rxq_descmap_seg, &rxq->rxq_descmap, &descs);
1818 	if (error)
1819 		return error;
1820 
1821 	memset(descs, 0, map_size);
1822 	rxq->rxq_first = descs;
1823 	rxq->rxq_last = rxq->rxq_first + desc_count;
1824 	rxq->rxq_consumer = descs;
1825 	rxq->rxq_producer = descs;
1826 
1827 	pq3etsec_rxq_purge(sc, rxq, true);
1828 	pq3etsec_rxq_reset(sc, rxq);
1829 
1830 	rxq->rxq_reg_rbase = RBASEn(qno);
1831 	rxq->rxq_qmask = RSTAT_QHLTn(qno) | RSTAT_RXFn(qno);
1832 
1833 	return 0;
1834 }
1835 
1836 static bool
1837 pq3etsec_txq_active_p(
1838 	struct pq3etsec_softc * const sc,
1839 	struct pq3etsec_txqueue *txq)
1840 {
1841 	return !IF_IS_EMPTY(&txq->txq_mbufs);
1842 }
1843 
1844 static bool
1845 pq3etsec_txq_fillable_p(
1846 	struct pq3etsec_softc * const sc,
1847 	struct pq3etsec_txqueue *txq)
1848 {
1849 	return txq->txq_free >= txq->txq_threshold;
1850 }
1851 
1852 static int
1853 pq3etsec_txq_attach(
1854 	struct pq3etsec_softc *sc,
1855 	struct pq3etsec_txqueue *txq,
1856 	u_int qno)
1857 {
1858 	size_t map_size = PAGE_SIZE;
1859 	size_t desc_count = map_size / sizeof(struct txbd);
1860 	int error;
1861 	void *descs;
1862 
1863 	error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1864 	   &txq->txq_descmap_seg, &txq->txq_descmap, &descs);
1865 	if (error)
1866 		return error;
1867 
1868 	memset(descs, 0, map_size);
1869 	txq->txq_first = descs;
1870 	txq->txq_last = txq->txq_first + desc_count;
1871 	txq->txq_consumer = descs;
1872 	txq->txq_producer = descs;
1873 
1874 	IFQ_SET_MAXLEN(&txq->txq_mbufs, ETSEC_MAXTXMBUFS);
1875 
1876 	txq->txq_reg_tbase = TBASEn(qno);
1877 	txq->txq_qmask = TSTAT_THLTn(qno) | TSTAT_TXFn(qno);
1878 
1879 	pq3etsec_txq_reset(sc, txq);
1880 
1881 	return 0;
1882 }
1883 
1884 static int
1885 pq3etsec_txq_map_load(
1886 	struct pq3etsec_softc *sc,
1887 	struct pq3etsec_txqueue *txq,
1888 	struct mbuf *m)
1889 {
1890 	bus_dmamap_t map;
1891 	int error;
1892 
1893 	map = M_GETCTX(m, bus_dmamap_t);
1894 	if (map != NULL)
1895 		return 0;
1896 
1897 	map = pq3etsec_mapcache_get(sc, sc->sc_tx_mapcache);
1898 	if (map == NULL)
1899 		return ENOMEM;
1900 
1901 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1902 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1903 	if (error)
1904 		return error;
1905 
1906 	bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_pkthdr.len,
1907 	    BUS_DMASYNC_PREWRITE);
1908 	M_SETCTX(m, map);
1909 	return 0;
1910 }
1911 
1912 static void
1913 pq3etsec_txq_map_unload(
1914 	struct pq3etsec_softc *sc,
1915 	struct pq3etsec_txqueue *txq,
1916 	struct mbuf *m)
1917 {
1918 	KASSERT(m);
1919 	bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1920 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1921 	    BUS_DMASYNC_POSTWRITE);
1922 	bus_dmamap_unload(sc->sc_dmat, map);
1923 	pq3etsec_mapcache_put(sc, sc->sc_tx_mapcache, map);
1924 }
1925 
1926 static bool
1927 pq3etsec_txq_produce(
1928 	struct pq3etsec_softc *sc,
1929 	struct pq3etsec_txqueue *txq,
1930 	struct mbuf *m)
1931 {
1932 	bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1933 
1934 	if (map->dm_nsegs > txq->txq_free)
1935 		return false;
1936 
1937 	/*
1938 	 * TCP Offload flag must be set in the first descriptor.
1939 	 */
1940 	volatile struct txbd *producer = txq->txq_producer;
1941 	uint16_t last_flags = TXBD_L;
1942 	uint16_t first_flags = TXBD_R
1943 	    | ((m->m_flags & M_HASFCB) ? TXBD_TOE : 0);
1944 
1945 	/*
1946 	 * If we've produced enough descriptors without consuming any
1947 	 * we need to ask for an interrupt to reclaim some.
1948 	 */
1949 	txq->txq_lastintr += map->dm_nsegs;
1950 	if (ETSEC_IC_TX_ENABLED(sc)
1951 	    || txq->txq_lastintr >= txq->txq_threshold
1952 	    || txq->txq_mbufs.ifq_len + 1 == txq->txq_mbufs.ifq_maxlen) {
1953 		txq->txq_lastintr = 0;
1954 		last_flags |= TXBD_I;
1955 	}
1956 
1957 #ifdef ETSEC_DEBUG
1958 	KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1959 #endif
1960 	KASSERT(producer != txq->txq_last);
1961 	producer->txbd_bufptr = map->dm_segs[0].ds_addr;
1962 	producer->txbd_len = map->dm_segs[0].ds_len;
1963 
1964 	if (map->dm_nsegs > 1) {
1965 		volatile struct txbd *start = producer + 1;
1966 		size_t count = map->dm_nsegs - 1;
1967 		for (u_int i = 1; i < map->dm_nsegs; i++) {
1968 			if (__predict_false(++producer == txq->txq_last)) {
1969 				producer = txq->txq_first;
1970 				if (start < txq->txq_last) {
1971 					pq3etsec_txq_desc_presync(sc, txq,
1972 					    start, txq->txq_last - start);
1973 					count -= txq->txq_last - start;
1974 				}
1975 				start = txq->txq_first;
1976 			}
1977 #ifdef ETSEC_DEBUG
1978 			KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1979 #endif
1980 			producer->txbd_bufptr = map->dm_segs[i].ds_addr;
1981 			producer->txbd_len = map->dm_segs[i].ds_len;
1982 			producer->txbd_flags = TXBD_R
1983 			    | (producer->txbd_flags & TXBD_W)
1984 			    | (i == map->dm_nsegs - 1 ? last_flags : 0);
1985 #if 0
1986 			printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__, producer - txq->txq_first,
1987 			    producer->txbd_flags, producer->txbd_len, producer->txbd_bufptr);
1988 #endif
1989 		}
1990 		pq3etsec_txq_desc_presync(sc, txq, start, count);
1991 	} else {
1992 		first_flags |= last_flags;
1993 	}
1994 
1995 	membar_producer();
1996 	txq->txq_producer->txbd_flags =
1997 	    first_flags | (txq->txq_producer->txbd_flags & TXBD_W);
1998 #if 0
1999 	printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__,
2000 	    txq->txq_producer - txq->txq_first, txq->txq_producer->txbd_flags,
2001 	    txq->txq_producer->txbd_len, txq->txq_producer->txbd_bufptr);
2002 #endif
2003 	pq3etsec_txq_desc_presync(sc, txq, txq->txq_producer, 1);
2004 
2005 	/*
2006 	 * Reduce free count by the number of segments we consumed.
2007 	 */
2008 	txq->txq_free -= map->dm_nsegs;
2009 	KASSERT(map->dm_nsegs == 1 || txq->txq_producer != producer);
2010 	KASSERT(map->dm_nsegs == 1 || (txq->txq_producer->txbd_flags & TXBD_L) == 0);
2011 	KASSERT(producer->txbd_flags & TXBD_L);
2012 #ifdef ETSEC_DEBUG
2013 	txq->txq_lmbufs[producer - txq->txq_first] = m;
2014 #endif
2015 
2016 #if 0
2017 	printf("%s: mbuf %p: produced a %u byte packet in %u segments (%u..%u)\n",
2018 	    __func__, m, m->m_pkthdr.len, map->dm_nsegs,
2019 	    txq->txq_producer - txq->txq_first, producer - txq->txq_first);
2020 #endif
2021 
2022 	if (++producer == txq->txq_last)
2023 		txq->txq_producer = txq->txq_first;
2024 	else
2025 		txq->txq_producer = producer;
2026 	IF_ENQUEUE(&txq->txq_mbufs, m);
2027 
2028 	/*
2029 	 * Restart the transmitter.
2030 	 */
2031 	etsec_write(sc, TSTAT, txq->txq_qmask & TSTAT_THLT);	/* W1C */
2032 
2033 	return true;
2034 }
2035 
2036 static void
2037 pq3etsec_tx_offload(
2038 	struct pq3etsec_softc *sc,
2039 	struct pq3etsec_txqueue *txq,
2040 	struct mbuf **mp)
2041 {
2042 	struct mbuf *m = *mp;
2043 	u_int csum_flags = m->m_pkthdr.csum_flags;
2044 	bool have_vtag;
2045 	uint16_t vtag;
2046 
2047 	KASSERT(m->m_flags & M_PKTHDR);
2048 
2049 	have_vtag = vlan_has_tag(m);
2050 	vtag = (have_vtag) ? vlan_get_tag(m) : 0;
2051 
2052 	/*
2053 	 * Let see if we are doing any offload first.
2054 	 */
2055 	if (csum_flags == 0 && !have_vtag) {
2056 		m->m_flags &= ~M_HASFCB;
2057 		return;
2058 	}
2059 
2060 	uint16_t flags = 0;
2061 	if (csum_flags & M_CSUM_IP) {
2062 		flags |= TXFCB_IP
2063 		    | ((csum_flags & M_CSUM_IP6) ? TXFCB_IP6 : 0)
2064 		    | ((csum_flags & M_CSUM_TUP) ? TXFCB_TUP : 0)
2065 		    | ((csum_flags & M_CSUM_UDP) ? TXFCB_UDP : 0)
2066 		    | ((csum_flags & M_CSUM_CIP) ? TXFCB_CIP : 0)
2067 		    | ((csum_flags & M_CSUM_CTU) ? TXFCB_CTU : 0);
2068 	}
2069 	if (have_vtag) {
2070 		flags |= TXFCB_VLN;
2071 	}
2072 	if (flags == 0) {
2073 		m->m_flags &= ~M_HASFCB;
2074 		return;
2075 	}
2076 
2077 	struct txfcb fcb;
2078 	fcb.txfcb_flags = flags;
2079 	if (csum_flags & M_CSUM_IPv4)
2080 		fcb.txfcb_l4os = M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
2081 	else
2082 		fcb.txfcb_l4os = M_CSUM_DATA_IPv6_IPHL(m->m_pkthdr.csum_data);
2083 	fcb.txfcb_l3os = ETHER_HDR_LEN;
2084 	fcb.txfcb_phcs = 0;
2085 	fcb.txfcb_vlctl = vtag;
2086 
2087 #if 0
2088 	printf("%s: csum_flags=%#x: txfcb flags=%#x lsos=%u l4os=%u phcs=%u vlctl=%#x\n",
2089 	    __func__, csum_flags, fcb.txfcb_flags, fcb.txfcb_l3os, fcb.txfcb_l4os,
2090 	    fcb.txfcb_phcs, fcb.txfcb_vlctl);
2091 #endif
2092 
2093 	if (M_LEADINGSPACE(m) >= sizeof(fcb)) {
2094 		m->m_data -= sizeof(fcb);
2095 		m->m_len += sizeof(fcb);
2096 	} else if (!(m->m_flags & M_EXT) && MHLEN - m->m_len >= sizeof(fcb)) {
2097 		memmove(m->m_pktdat + sizeof(fcb), m->m_data, m->m_len);
2098 		m->m_data = m->m_pktdat;
2099 		m->m_len += sizeof(fcb);
2100 	} else {
2101 		struct mbuf *mn;
2102 		MGET(mn, M_DONTWAIT, m->m_type);
2103 		if (mn == NULL) {
2104 			if (csum_flags & M_CSUM_IP4) {
2105 #ifdef INET
2106 				in_undefer_cksum(m, ETHER_HDR_LEN,
2107 				    csum_flags & M_CSUM_IP4);
2108 #else
2109 				panic("%s: impossible M_CSUM flags %#x",
2110 				    device_xname(sc->sc_dev), csum_flags);
2111 #endif
2112 			} else if (csum_flags & M_CSUM_IP6) {
2113 #ifdef INET6
2114 				in6_undefer_cksum(m, ETHER_HDR_LEN,
2115 				    csum_flags & M_CSUM_IP6);
2116 #else
2117 				panic("%s: impossible M_CSUM flags %#x",
2118 				    device_xname(sc->sc_dev), csum_flags);
2119 #endif
2120 			}
2121 
2122 			m->m_flags &= ~M_HASFCB;
2123 			return;
2124 		}
2125 
2126 		m_move_pkthdr(mn, m);
2127 		mn->m_next = m;
2128 		m = mn;
2129 		m_align(m, sizeof(fcb));
2130 		m->m_len = sizeof(fcb);
2131 		*mp = m;
2132 	}
2133 	m->m_pkthdr.len += sizeof(fcb);
2134 	m->m_flags |= M_HASFCB;
2135 	*mtod(m, struct txfcb *) = fcb;
2136 	return;
2137 }
2138 
2139 static bool
2140 pq3etsec_txq_enqueue(
2141 	struct pq3etsec_softc *sc,
2142 	struct pq3etsec_txqueue *txq)
2143 {
2144 	for (;;) {
2145 		if (IF_QFULL(&txq->txq_mbufs))
2146 			return false;
2147 		struct mbuf *m = txq->txq_next;
2148 		if (m == NULL) {
2149 			int s = splnet();
2150 			IFQ_DEQUEUE(&sc->sc_if.if_snd, m);
2151 			splx(s);
2152 			if (m == NULL)
2153 				return true;
2154 			M_SETCTX(m, NULL);
2155 			pq3etsec_tx_offload(sc, txq, &m);
2156 		} else {
2157 			txq->txq_next = NULL;
2158 		}
2159 		int error = pq3etsec_txq_map_load(sc, txq, m);
2160 		if (error) {
2161 			aprint_error_dev(sc->sc_dev,
2162 			    "discarded packet due to "
2163 			    "dmamap load failure: %d\n", error);
2164 			m_freem(m);
2165 			continue;
2166 		}
2167 		KASSERT(txq->txq_next == NULL);
2168 		if (!pq3etsec_txq_produce(sc, txq, m)) {
2169 			txq->txq_next = m;
2170 			return false;
2171 		}
2172 		KASSERT(txq->txq_next == NULL);
2173 	}
2174 }
2175 
2176 static bool
2177 pq3etsec_txq_consume(
2178 	struct pq3etsec_softc *sc,
2179 	struct pq3etsec_txqueue *txq)
2180 {
2181 	struct ifnet * const ifp = &sc->sc_if;
2182 	volatile struct txbd *consumer = txq->txq_consumer;
2183 	size_t txfree = 0;
2184 	bool ret;
2185 
2186 #if 0
2187 	printf("%s: entry: free=%zu\n", __func__, txq->txq_free);
2188 #endif
2189 	etsec_write(sc, TSTAT, TSTAT_TXF & txq->txq_qmask);
2190 
2191 	for (;;) {
2192 		if (consumer == txq->txq_producer) {
2193 			txq->txq_consumer = consumer;
2194 			txq->txq_free += txfree;
2195 			txq->txq_lastintr -= uimin(txq->txq_lastintr, txfree);
2196 			KASSERT(txq->txq_lastintr == 0);
2197 			KASSERT(txq->txq_free ==
2198 			    txq->txq_last - txq->txq_first - 1);
2199 			ret = true;
2200 			break;
2201 		}
2202 		pq3etsec_txq_desc_postsync(sc, txq, consumer, 1);
2203 		const uint16_t txbd_flags = consumer->txbd_flags;
2204 		if (txbd_flags & TXBD_R) {
2205 			txq->txq_consumer = consumer;
2206 			txq->txq_free += txfree;
2207 			txq->txq_lastintr -= uimin(txq->txq_lastintr, txfree);
2208 			ret = pq3etsec_txq_fillable_p(sc, txq);
2209 			break;
2210 		}
2211 
2212 		/*
2213 		 * If this is the last descriptor in the chain, get the
2214 		 * mbuf, free its dmamap, and free the mbuf chain itself.
2215 		 */
2216 		if (txbd_flags & TXBD_L) {
2217 			struct mbuf *m;
2218 
2219 			IF_DEQUEUE(&txq->txq_mbufs, m);
2220 #ifdef ETSEC_DEBUG
2221 			KASSERTMSG(
2222 			    m == txq->txq_lmbufs[consumer-txq->txq_first],
2223 			    "%s: %p [%u]: flags %#x m (%p) != %p (%p)",
2224 			    __func__, consumer, consumer - txq->txq_first,
2225 			    txbd_flags, m,
2226 			    &txq->txq_lmbufs[consumer-txq->txq_first],
2227 			    txq->txq_lmbufs[consumer-txq->txq_first]);
2228 #endif
2229 			KASSERT(m);
2230 			pq3etsec_txq_map_unload(sc, txq, m);
2231 #if 0
2232 			printf("%s: mbuf %p: consumed a %u byte packet\n",
2233 			    __func__, m, m->m_pkthdr.len);
2234 #endif
2235 			if (m->m_flags & M_HASFCB)
2236 				m_adj(m, sizeof(struct txfcb));
2237 			bpf_mtap(ifp, m, BPF_D_OUT);
2238 			net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
2239 			if_statinc_ref(nsr, if_opackets);
2240 			if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
2241 			if (m->m_flags & M_MCAST)
2242 				if_statinc_ref(nsr, if_omcasts);
2243 			if (txbd_flags & TXBD_ERRORS)
2244 				if_statinc_ref(nsr, if_oerrors);
2245 			IF_STAT_PUTREF(ifp);
2246 			m_freem(m);
2247 #ifdef ETSEC_DEBUG
2248 			txq->txq_lmbufs[consumer - txq->txq_first] = NULL;
2249 #endif
2250 		} else {
2251 #ifdef ETSEC_DEBUG
2252 			KASSERT(txq->txq_lmbufs[consumer-txq->txq_first] == NULL);
2253 #endif
2254 		}
2255 
2256 		/*
2257 		 * We own this packet again.  Clear all flags except wrap.
2258 		 */
2259 		txfree++;
2260 		//consumer->txbd_flags = txbd_flags & TXBD_W;
2261 
2262 		/*
2263 		 * Wrap at the last entry!
2264 		 */
2265 		if (txbd_flags & TXBD_W) {
2266 			KASSERT(consumer + 1 == txq->txq_last);
2267 			consumer = txq->txq_first;
2268 		} else {
2269 			consumer++;
2270 			KASSERT(consumer < txq->txq_last);
2271 		}
2272 	}
2273 
2274 	if (txfree != 0)
2275 		rnd_add_uint32(&sc->rnd_source, txfree);
2276 	return ret;
2277 }
2278 
2279 static void
2280 pq3etsec_txq_purge(
2281 	struct pq3etsec_softc *sc,
2282 	struct pq3etsec_txqueue *txq)
2283 {
2284 	struct mbuf *m;
2285 	KASSERT((etsec_read(sc, MACCFG1) & MACCFG1_TX_EN) == 0);
2286 
2287 	for (;;) {
2288 		IF_DEQUEUE(&txq->txq_mbufs, m);
2289 		if (m == NULL)
2290 			break;
2291 		pq3etsec_txq_map_unload(sc, txq, m);
2292 		m_freem(m);
2293 	}
2294 	if ((m = txq->txq_next) != NULL) {
2295 		txq->txq_next = NULL;
2296 		pq3etsec_txq_map_unload(sc, txq, m);
2297 		m_freem(m);
2298 	}
2299 #ifdef ETSEC_DEBUG
2300 	memset(txq->txq_lmbufs, 0, sizeof(txq->txq_lmbufs));
2301 #endif
2302 }
2303 
2304 static void
2305 pq3etsec_txq_reset(
2306 	struct pq3etsec_softc *sc,
2307 	struct pq3etsec_txqueue *txq)
2308 {
2309 	/*
2310 	 * sync all the descriptors
2311 	 */
2312 	pq3etsec_txq_desc_postsync(sc, txq, txq->txq_first,
2313 	    txq->txq_last - txq->txq_first);
2314 
2315 	/*
2316 	 * Make sure we own all descriptors in the ring.
2317 	 */
2318 	volatile struct txbd *txbd;
2319 	for (txbd = txq->txq_first; txbd < txq->txq_last - 1; txbd++) {
2320 		txbd->txbd_flags = 0;
2321 	}
2322 
2323 	/*
2324 	 * Last descriptor has the wrap flag.
2325 	 */
2326 	txbd->txbd_flags = TXBD_W;
2327 
2328 	/*
2329 	 * Reset the producer consumer indexes.
2330 	 */
2331 	txq->txq_consumer = txq->txq_first;
2332 	txq->txq_producer = txq->txq_first;
2333 	txq->txq_free = txq->txq_last - txq->txq_first - 1;
2334 	txq->txq_threshold = txq->txq_free / 2;
2335 	txq->txq_lastintr = 0;
2336 
2337 	/*
2338 	 * What do we want to get interrupted on?
2339 	 */
2340 	sc->sc_imask |= IEVENT_TXF | IEVENT_TXE;
2341 
2342 	/*
2343 	 * Restart the transmit at the first descriptor
2344 	 */
2345 	etsec_write(sc, txq->txq_reg_tbase, txq->txq_descmap->dm_segs->ds_addr);
2346 }
2347 
2348 static void
2349 pq3etsec_ifstart(struct ifnet *ifp)
2350 {
2351 	struct pq3etsec_softc * const sc = ifp->if_softc;
2352 
2353 	if (__predict_false((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)) {
2354 		return;
2355 	}
2356 
2357 	atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2358 	softint_schedule(sc->sc_soft_ih);
2359 }
2360 
2361 static void
2362 pq3etsec_tx_error(
2363 	struct pq3etsec_softc * const sc)
2364 {
2365 	struct pq3etsec_txqueue * const txq = &sc->sc_txq;
2366 
2367 	pq3etsec_txq_consume(sc, txq);
2368 
2369 	if (pq3etsec_txq_fillable_p(sc, txq))
2370 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
2371 	if (sc->sc_txerrors
2372 	    & (IEVENT_LC | IEVENT_CRL | IEVENT_XFUN | IEVENT_BABT)) {
2373 	} else if (sc->sc_txerrors & IEVENT_EBERR) {
2374 	}
2375 
2376 	if (pq3etsec_txq_active_p(sc, txq))
2377 		etsec_write(sc, TSTAT, TSTAT_THLT & txq->txq_qmask);
2378 	if (!pq3etsec_txq_enqueue(sc, txq)) {
2379 		sc->sc_ev_tx_stall.ev_count++;
2380 		sc->sc_if.if_flags |= IFF_OACTIVE;
2381 	}
2382 
2383 	sc->sc_txerrors = 0;
2384 }
2385 
2386 int
2387 pq3etsec_tx_intr(void *arg)
2388 {
2389 	struct pq3etsec_softc * const sc = arg;
2390 
2391 	mutex_enter(sc->sc_hwlock);
2392 
2393 	sc->sc_ev_tx_intr.ev_count++;
2394 
2395 	uint32_t ievent = etsec_read(sc, IEVENT);
2396 	ievent &= IEVENT_TXF | IEVENT_TXB;
2397 	etsec_write(sc, IEVENT, ievent);	/* write 1 to clear */
2398 
2399 #if 0
2400 	aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2401 	    __func__, ievent, etsec_read(sc, IMASK));
2402 #endif
2403 
2404 	if (ievent == 0) {
2405 		mutex_exit(sc->sc_hwlock);
2406 		return 0;
2407 	}
2408 
2409 	sc->sc_imask &= ~(IEVENT_TXF | IEVENT_TXB);
2410 	atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2411 	etsec_write(sc, IMASK, sc->sc_imask);
2412 	softint_schedule(sc->sc_soft_ih);
2413 
2414 	mutex_exit(sc->sc_hwlock);
2415 
2416 	return 1;
2417 }
2418 
2419 int
2420 pq3etsec_rx_intr(void *arg)
2421 {
2422 	struct pq3etsec_softc * const sc = arg;
2423 
2424 	mutex_enter(sc->sc_hwlock);
2425 
2426 	sc->sc_ev_rx_intr.ev_count++;
2427 
2428 	uint32_t ievent = etsec_read(sc, IEVENT);
2429 	ievent &= IEVENT_RXF | IEVENT_RXB;
2430 	etsec_write(sc, IEVENT, ievent);	/* write 1 to clear */
2431 	if (ievent == 0) {
2432 		mutex_exit(sc->sc_hwlock);
2433 		return 0;
2434 	}
2435 
2436 #if 0
2437 	aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x\n", __func__, ievent);
2438 #endif
2439 
2440 	sc->sc_imask &= ~(IEVENT_RXF | IEVENT_RXB);
2441 	atomic_or_uint(&sc->sc_soft_flags, SOFT_RXINTR);
2442 	etsec_write(sc, IMASK, sc->sc_imask);
2443 	softint_schedule(sc->sc_soft_ih);
2444 
2445 	mutex_exit(sc->sc_hwlock);
2446 
2447 	return 1;
2448 }
2449 
2450 int
2451 pq3etsec_error_intr(void *arg)
2452 {
2453 	struct pq3etsec_softc * const sc = arg;
2454 
2455 	mutex_enter(sc->sc_hwlock);
2456 
2457 	sc->sc_ev_error_intr.ev_count++;
2458 
2459 	for (int rv = 0, soft_flags = 0;; rv = 1) {
2460 		uint32_t ievent = etsec_read(sc, IEVENT);
2461 		ievent &= ~(IEVENT_RXF | IEVENT_RXB | IEVENT_TXF | IEVENT_TXB);
2462 		etsec_write(sc, IEVENT, ievent);	/* write 1 to clear */
2463 		if (ievent == 0) {
2464 			if (soft_flags) {
2465 				atomic_or_uint(&sc->sc_soft_flags, soft_flags);
2466 				softint_schedule(sc->sc_soft_ih);
2467 			}
2468 			mutex_exit(sc->sc_hwlock);
2469 			return rv;
2470 		}
2471 #if 0
2472 		aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2473 		    __func__, ievent, etsec_read(sc, IMASK));
2474 #endif
2475 
2476 		if (ievent & (IEVENT_GRSC | IEVENT_GTSC)) {
2477 			sc->sc_imask &= ~(IEVENT_GRSC | IEVENT_GTSC);
2478 			etsec_write(sc, IMASK, sc->sc_imask);
2479 			wakeup(sc);
2480 		}
2481 		if (ievent & (IEVENT_MMRD | IEVENT_MMWR)) {
2482 			sc->sc_imask &= ~(IEVENT_MMRD | IEVENT_MMWR);
2483 			etsec_write(sc, IMASK, sc->sc_imask);
2484 			wakeup(&sc->sc_mii);
2485 		}
2486 		if (ievent & IEVENT_BSY) {
2487 			soft_flags |= SOFT_RXBSY;
2488 			sc->sc_imask &= ~IEVENT_BSY;
2489 			etsec_write(sc, IMASK, sc->sc_imask);
2490 		}
2491 		if (ievent & IEVENT_TXE) {
2492 			soft_flags |= SOFT_TXERROR;
2493 			sc->sc_imask &= ~IEVENT_TXE;
2494 			sc->sc_txerrors |= ievent;
2495 		}
2496 		if (ievent & IEVENT_TXC) {
2497 			sc->sc_ev_tx_pause.ev_count++;
2498 		}
2499 		if (ievent & IEVENT_RXC) {
2500 			sc->sc_ev_rx_pause.ev_count++;
2501 		}
2502 		if (ievent & IEVENT_DPE) {
2503 			soft_flags |= SOFT_RESET;
2504 			sc->sc_imask &= ~IEVENT_DPE;
2505 			etsec_write(sc, IMASK, sc->sc_imask);
2506 		}
2507 	}
2508 }
2509 
2510 void
2511 pq3etsec_soft_intr(void *arg)
2512 {
2513 	struct pq3etsec_softc * const sc = arg;
2514 	struct ifnet * const ifp = &sc->sc_if;
2515 	uint32_t imask = 0;
2516 
2517 	mutex_enter(sc->sc_lock);
2518 
2519 	u_int soft_flags = atomic_swap_uint(&sc->sc_soft_flags, 0);
2520 
2521 	sc->sc_ev_soft_intr.ev_count++;
2522 
2523 	if (soft_flags & SOFT_RESET) {
2524 		int s = splnet();
2525 		pq3etsec_ifinit(ifp);
2526 		splx(s);
2527 		soft_flags = 0;
2528 	}
2529 
2530 	if (soft_flags & SOFT_RXBSY) {
2531 		struct pq3etsec_rxqueue * const rxq = &sc->sc_rxq;
2532 		size_t threshold = 5 * rxq->rxq_threshold / 4;
2533 		if (threshold >= rxq->rxq_last - rxq->rxq_first) {
2534 			threshold = rxq->rxq_last - rxq->rxq_first - 1;
2535 		} else {
2536 			imask |= IEVENT_BSY;
2537 		}
2538 		aprint_normal_dev(sc->sc_dev,
2539 		    "increasing receive buffers from %zu to %zu\n",
2540 		    rxq->rxq_threshold, threshold);
2541 		rxq->rxq_threshold = threshold;
2542 	}
2543 
2544 	if ((soft_flags & SOFT_TXINTR)
2545 	    || pq3etsec_txq_active_p(sc, &sc->sc_txq)) {
2546 		/*
2547 		 * Let's do what we came here for.  Consume transmitted
2548 		 * packets off the transmit ring.
2549 		 */
2550 		if (!pq3etsec_txq_consume(sc, &sc->sc_txq)
2551 		    || !pq3etsec_txq_enqueue(sc, &sc->sc_txq)) {
2552 			sc->sc_ev_tx_stall.ev_count++;
2553 			ifp->if_flags |= IFF_OACTIVE;
2554 		} else {
2555 			ifp->if_flags &= ~IFF_OACTIVE;
2556 		}
2557 		imask |= IEVENT_TXF;
2558 	}
2559 
2560 	if (soft_flags & (SOFT_RXINTR | SOFT_RXBSY)) {
2561 		/* Let's consume */
2562 		pq3etsec_rxq_consume(sc, &sc->sc_rxq);
2563 		imask |= IEVENT_RXF;
2564 	}
2565 
2566 	if (soft_flags & SOFT_TXERROR) {
2567 		pq3etsec_tx_error(sc);
2568 		imask |= IEVENT_TXE;
2569 	}
2570 
2571 	if (ifp->if_flags & IFF_RUNNING) {
2572 		pq3etsec_rxq_produce(sc, &sc->sc_rxq);
2573 		mutex_spin_enter(sc->sc_hwlock);
2574 		sc->sc_imask |= imask;
2575 		etsec_write(sc, IMASK, sc->sc_imask);
2576 		mutex_spin_exit(sc->sc_hwlock);
2577 	} else {
2578 		KASSERT((soft_flags & SOFT_RXBSY) == 0);
2579 	}
2580 
2581 	mutex_exit(sc->sc_lock);
2582 }
2583 
2584 static void
2585 pq3etsec_mii_tick(void *arg)
2586 {
2587 	struct pq3etsec_softc * const sc = arg;
2588 	mutex_enter(sc->sc_lock);
2589 	callout_ack(&sc->sc_mii_callout);
2590 	sc->sc_ev_mii_ticks.ev_count++;
2591 #ifdef DEBUG
2592 	uint64_t now = mftb();
2593 	if (now - sc->sc_mii_last_tick < cpu_timebase - 5000) {
2594 		aprint_debug_dev(sc->sc_dev, "%s: diff=%"PRIu64"\n",
2595 		    __func__, now - sc->sc_mii_last_tick);
2596 		callout_stop(&sc->sc_mii_callout);
2597 	}
2598 #endif
2599 	mii_tick(&sc->sc_mii);
2600 	int s = splnet();
2601 	if (sc->sc_soft_flags & SOFT_RESET)
2602 		softint_schedule(sc->sc_soft_ih);
2603 	splx(s);
2604 	callout_schedule(&sc->sc_mii_callout, hz);
2605 #ifdef DEBUG
2606 	sc->sc_mii_last_tick = now;
2607 #endif
2608 	mutex_exit(sc->sc_lock);
2609 }
2610 
2611 static void
2612 pq3etsec_set_ic_rx(struct pq3etsec_softc *sc)
2613 {
2614 	uint32_t reg;
2615 
2616 	if (ETSEC_IC_RX_ENABLED(sc)) {
2617 		reg = RXIC_ICEN;
2618 		reg |= RXIC_ICFT_SET(sc->sc_ic_rx_count);
2619 		reg |= RXIC_ICTT_SET(sc->sc_ic_rx_time);
2620 	} else {
2621 		/* Disable RX interrupt coalescing */
2622 		reg = 0;
2623 	}
2624 
2625 	etsec_write(sc, RXIC, reg);
2626 }
2627 
2628 static void
2629 pq3etsec_set_ic_tx(struct pq3etsec_softc *sc)
2630 {
2631 	uint32_t reg;
2632 
2633 	if (ETSEC_IC_TX_ENABLED(sc)) {
2634 		reg = TXIC_ICEN;
2635 		reg |= TXIC_ICFT_SET(sc->sc_ic_tx_count);
2636 		reg |= TXIC_ICTT_SET(sc->sc_ic_tx_time);
2637 	} else {
2638 		/* Disable TX interrupt coalescing */
2639 		reg = 0;
2640 	}
2641 
2642 	etsec_write(sc, TXIC, reg);
2643 }
2644 
2645 /*
2646  * sysctl
2647  */
2648 static int
2649 pq3etsec_sysctl_ic_time_helper(SYSCTLFN_ARGS, int *valuep)
2650 {
2651 	struct sysctlnode node = *rnode;
2652 	struct pq3etsec_softc *sc = rnode->sysctl_data;
2653 	int value = *valuep;
2654 	int error;
2655 
2656 	node.sysctl_data = &value;
2657 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2658 	if (error != 0 || newp == NULL)
2659 		return error;
2660 
2661 	if (value < 0 || value > 65535)
2662 		return EINVAL;
2663 
2664 	mutex_enter(sc->sc_lock);
2665 	*valuep = value;
2666 	if (valuep == &sc->sc_ic_rx_time)
2667 		pq3etsec_set_ic_rx(sc);
2668 	else
2669 		pq3etsec_set_ic_tx(sc);
2670 	mutex_exit(sc->sc_lock);
2671 
2672 	return 0;
2673 }
2674 
2675 static int
2676 pq3etsec_sysctl_ic_count_helper(SYSCTLFN_ARGS, int *valuep)
2677 {
2678 	struct sysctlnode node = *rnode;
2679 	struct pq3etsec_softc *sc = rnode->sysctl_data;
2680 	int value = *valuep;
2681 	int error;
2682 
2683 	node.sysctl_data = &value;
2684 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2685 	if (error != 0 || newp == NULL)
2686 		return error;
2687 
2688 	if (value < 0 || value > 255)
2689 		return EINVAL;
2690 
2691 	mutex_enter(sc->sc_lock);
2692 	*valuep = value;
2693 	if (valuep == &sc->sc_ic_rx_count)
2694 		pq3etsec_set_ic_rx(sc);
2695 	else
2696 		pq3etsec_set_ic_tx(sc);
2697 	mutex_exit(sc->sc_lock);
2698 
2699 	return 0;
2700 }
2701 
2702 static int
2703 pq3etsec_sysctl_ic_rx_time_helper(SYSCTLFN_ARGS)
2704 {
2705 	struct pq3etsec_softc *sc = rnode->sysctl_data;
2706 
2707 	return pq3etsec_sysctl_ic_time_helper(SYSCTLFN_CALL(rnode),
2708 	    &sc->sc_ic_rx_time);
2709 }
2710 
2711 static int
2712 pq3etsec_sysctl_ic_rx_count_helper(SYSCTLFN_ARGS)
2713 {
2714 	struct pq3etsec_softc *sc = rnode->sysctl_data;
2715 
2716 	return pq3etsec_sysctl_ic_count_helper(SYSCTLFN_CALL(rnode),
2717 	    &sc->sc_ic_rx_count);
2718 }
2719 
2720 static int
2721 pq3etsec_sysctl_ic_tx_time_helper(SYSCTLFN_ARGS)
2722 {
2723 	struct pq3etsec_softc *sc = rnode->sysctl_data;
2724 
2725 	return pq3etsec_sysctl_ic_time_helper(SYSCTLFN_CALL(rnode),
2726 	    &sc->sc_ic_tx_time);
2727 }
2728 
2729 static int
2730 pq3etsec_sysctl_ic_tx_count_helper(SYSCTLFN_ARGS)
2731 {
2732 	struct pq3etsec_softc *sc = rnode->sysctl_data;
2733 
2734 	return pq3etsec_sysctl_ic_count_helper(SYSCTLFN_CALL(rnode),
2735 	    &sc->sc_ic_tx_count);
2736 }
2737 
2738 static void pq3etsec_sysctl_setup(struct sysctllog **clog,
2739     struct pq3etsec_softc *sc)
2740 {
2741 	const struct sysctlnode *cnode, *rnode;
2742 
2743 	if (sysctl_createv(clog, 0, NULL, &rnode,
2744 	    CTLFLAG_PERMANENT,
2745 	    CTLTYPE_NODE, device_xname(sc->sc_dev),
2746 	    SYSCTL_DESCR("TSEC interface"),
2747 	    NULL, 0, NULL, 0,
2748 	    CTL_HW, CTL_CREATE, CTL_EOL) != 0)
2749 		goto bad;
2750 
2751 	if (sysctl_createv(clog, 0, &rnode, &rnode,
2752 	    CTLFLAG_PERMANENT,
2753 	    CTLTYPE_NODE, "int_coal",
2754 	    SYSCTL_DESCR("Interrupts coalescing"),
2755 	    NULL, 0, NULL, 0,
2756 	    CTL_CREATE, CTL_EOL) != 0)
2757 		goto bad;
2758 
2759 	if (sysctl_createv(clog, 0, &rnode, &cnode,
2760 	    CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2761 	    CTLTYPE_INT, "rx_time",
2762 	    SYSCTL_DESCR("RX time threshold (0-65535)"),
2763 	    pq3etsec_sysctl_ic_rx_time_helper, 0, (void *)sc, 0,
2764 	    CTL_CREATE, CTL_EOL) != 0)
2765 		goto bad;
2766 
2767 	if (sysctl_createv(clog, 0, &rnode, &cnode,
2768 	    CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2769 	    CTLTYPE_INT, "rx_count",
2770 	    SYSCTL_DESCR("RX frame count threshold (0-255)"),
2771 	    pq3etsec_sysctl_ic_rx_count_helper, 0, (void *)sc, 0,
2772 	    CTL_CREATE, CTL_EOL) != 0)
2773 		goto bad;
2774 
2775 	if (sysctl_createv(clog, 0, &rnode, &cnode,
2776 	    CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2777 	    CTLTYPE_INT, "tx_time",
2778 	    SYSCTL_DESCR("TX time threshold (0-65535)"),
2779 	    pq3etsec_sysctl_ic_tx_time_helper, 0, (void *)sc, 0,
2780 	    CTL_CREATE, CTL_EOL) != 0)
2781 		goto bad;
2782 
2783 	if (sysctl_createv(clog, 0, &rnode, &cnode,
2784 	    CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2785 	    CTLTYPE_INT, "tx_count",
2786 	    SYSCTL_DESCR("TX frame count threshold (0-255)"),
2787 	    pq3etsec_sysctl_ic_tx_count_helper, 0, (void *)sc, 0,
2788 	    CTL_CREATE, CTL_EOL) != 0)
2789 		goto bad;
2790 
2791 	return;
2792 
2793  bad:
2794 	aprint_error_dev(sc->sc_dev, "could not attach sysctl nodes\n");
2795 }
2796