xref: /netbsd-src/sys/arch/powerpc/booke/dev/pq3etsec.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*	$NetBSD: pq3etsec.c,v 1.16 2012/07/22 23:46:10 matt Exp $	*/
2 /*-
3  * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to The NetBSD Foundation
7  * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8  * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9  *
10  * This material is based upon work supported by the Defense Advanced Research
11  * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12  * Contract No. N66001-09-C-2073.
13  * Approved for Public Release, Distribution Unlimited
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 #include "opt_inet.h"
38 #include "opt_mpc85xx.h"
39 
40 #include <sys/cdefs.h>
41 
42 __KERNEL_RCSID(0, "$NetBSD: pq3etsec.c,v 1.16 2012/07/22 23:46:10 matt Exp $");
43 
44 #include <sys/param.h>
45 #include <sys/cpu.h>
46 #include <sys/device.h>
47 #include <sys/mbuf.h>
48 #include <sys/ioctl.h>
49 #include <sys/intr.h>
50 #include <sys/bus.h>
51 #include <sys/kernel.h>
52 #include <sys/kmem.h>
53 #include <sys/proc.h>
54 #include <sys/atomic.h>
55 #include <sys/callout.h>
56 
57 #include <net/if.h>
58 #include <net/if_dl.h>
59 #include <net/if_ether.h>
60 #include <net/if_media.h>
61 
62 #include <dev/mii/miivar.h>
63 
64 #include <net/bpf.h>
65 
66 #ifdef INET
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/ip.h>
70 #include <netinet/in_offload.h>
71 #endif /* INET */
72 #ifdef INET6
73 #include <netinet6/in6.h>
74 #include <netinet/ip6.h>
75 #endif
76 #include <netinet6/in6_offload.h>
77 
78 
79 #include <powerpc/spr.h>
80 #include <powerpc/booke/spr.h>
81 
82 #include <powerpc/booke/cpuvar.h>
83 #include <powerpc/booke/e500var.h>
84 #include <powerpc/booke/e500reg.h>
85 #include <powerpc/booke/etsecreg.h>
86 
87 #define	M_HASFCB		M_LINK2	/* tx packet has FCB prepended */
88 
89 #define	ETSEC_MAXTXMBUFS	30
90 #define	ETSEC_NTXSEGS		30
91 #define	ETSEC_MAXRXMBUFS	511
92 #define	ETSEC_MINRXMBUFS	32
93 #define	ETSEC_NRXSEGS		1
94 
95 #define	IFCAP_RCTRL_IPCSEN	IFCAP_CSUM_IPv4_Rx
96 #define	IFCAP_RCTRL_TUCSEN	(IFCAP_CSUM_TCPv4_Rx\
97 				 |IFCAP_CSUM_UDPv4_Rx\
98 				 |IFCAP_CSUM_TCPv6_Rx\
99 				 |IFCAP_CSUM_UDPv6_Rx)
100 
101 #define	IFCAP_TCTRL_IPCSEN	IFCAP_CSUM_IPv4_Tx
102 #define	IFCAP_TCTRL_TUCSEN	(IFCAP_CSUM_TCPv4_Tx\
103 				 |IFCAP_CSUM_UDPv4_Tx\
104 				 |IFCAP_CSUM_TCPv6_Tx\
105 				 |IFCAP_CSUM_UDPv6_Tx)
106 
107 #define	IFCAP_ETSEC		(IFCAP_RCTRL_IPCSEN|IFCAP_RCTRL_TUCSEN\
108 				 |IFCAP_TCTRL_IPCSEN|IFCAP_TCTRL_TUCSEN)
109 
110 #define	M_CSUM_IP	(M_CSUM_CIP|M_CSUM_CTU)
111 #define	M_CSUM_IP6	(M_CSUM_TCPv6|M_CSUM_UDPv6)
112 #define	M_CSUM_TUP	(M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TCPv6|M_CSUM_UDPv6)
113 #define	M_CSUM_UDP	(M_CSUM_UDPv4|M_CSUM_UDPv6)
114 #define	M_CSUM_IP4	(M_CSUM_IPv4|M_CSUM_UDPv4|M_CSUM_TCPv4)
115 #define	M_CSUM_CIP	(M_CSUM_IPv4)
116 #define	M_CSUM_CTU	(M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TCPv6|M_CSUM_UDPv6)
117 
118 struct pq3etsec_txqueue {
119 	bus_dmamap_t txq_descmap;
120 	volatile struct txbd *txq_consumer;
121 	volatile struct txbd *txq_producer;
122 	volatile struct txbd *txq_first;
123 	volatile struct txbd *txq_last;
124 	struct ifqueue txq_mbufs;
125 	struct mbuf *txq_next;
126 #ifdef ETSEC_DEBUG
127 	struct mbuf *txq_lmbufs[512];
128 #endif
129 	uint32_t txq_qmask;
130 	uint32_t txq_free;
131 	uint32_t txq_threshold;
132 	uint32_t txq_lastintr;
133 	bus_size_t txq_reg_tbase;
134 	bus_dma_segment_t txq_descmap_seg;
135 };
136 
137 struct pq3etsec_rxqueue {
138 	bus_dmamap_t rxq_descmap;
139 	volatile struct rxbd *rxq_consumer;
140 	volatile struct rxbd *rxq_producer;
141 	volatile struct rxbd *rxq_first;
142 	volatile struct rxbd *rxq_last;
143 	struct mbuf *rxq_mhead;
144 	struct mbuf **rxq_mtail;
145 	struct mbuf *rxq_mconsumer;
146 #ifdef ETSEC_DEBUG
147 	struct mbuf *rxq_mbufs[512];
148 #endif
149 	uint32_t rxq_qmask;
150 	uint32_t rxq_inuse;
151 	uint32_t rxq_threshold;
152 	bus_size_t rxq_reg_rbase;
153 	bus_size_t rxq_reg_rbptr;
154 	bus_dma_segment_t rxq_descmap_seg;
155 };
156 
157 struct pq3etsec_mapcache {
158 	u_int dmc_nmaps;
159 	u_int dmc_maxseg;
160 	u_int dmc_maxmaps;
161 	u_int dmc_maxmapsize;
162 	bus_dmamap_t dmc_maps[0];
163 };
164 
165 struct pq3etsec_softc {
166 	device_t sc_dev;
167 	device_t sc_mdio_dev;
168 	struct ethercom sc_ec;
169 #define sc_if		sc_ec.ec_if
170 	struct mii_data sc_mii;
171 	bus_space_tag_t sc_bst;
172 	bus_space_handle_t sc_bsh;
173 	bus_space_handle_t sc_mdio_bsh;
174 	bus_dma_tag_t sc_dmat;
175 	int sc_phy_addr;
176 	prop_dictionary_t sc_intrmap;
177 	uint32_t sc_intrmask;
178 
179 	uint32_t sc_soft_flags;
180 #define	SOFT_RESET		0x0001
181 #define	SOFT_RXINTR		0x0010
182 #define	SOFT_RXBSY		0x0020
183 #define	SOFT_TXINTR		0x0100
184 #define	SOFT_TXERROR		0x0200
185 
186 	struct pq3etsec_txqueue sc_txq;
187 	struct pq3etsec_rxqueue sc_rxq;
188 	uint32_t sc_txerrors;
189 	uint32_t sc_rxerrors;
190 
191 	size_t sc_rx_adjlen;
192 
193 	/*
194 	 * Copies of various ETSEC registers.
195 	 */
196 	uint32_t sc_imask;
197 	uint32_t sc_maccfg1;
198 	uint32_t sc_maccfg2;
199 	uint32_t sc_maxfrm;
200 	uint32_t sc_ecntrl;
201 	uint32_t sc_dmactrl;
202 	uint32_t sc_macstnaddr1;
203 	uint32_t sc_macstnaddr2;
204 	uint32_t sc_tctrl;
205 	uint32_t sc_rctrl;
206 	uint32_t sc_gaddr[16];
207 	uint64_t sc_macaddrs[15];
208 
209 	void *sc_tx_ih;
210 	void *sc_rx_ih;
211 	void *sc_error_ih;
212 	void *sc_soft_ih;
213 
214 	kmutex_t *sc_lock;
215 
216 	struct evcnt sc_ev_tx_stall;
217 	struct evcnt sc_ev_tx_intr;
218 	struct evcnt sc_ev_rx_stall;
219 	struct evcnt sc_ev_rx_intr;
220 	struct evcnt sc_ev_error_intr;
221 	struct evcnt sc_ev_soft_intr;
222 	struct evcnt sc_ev_tx_pause;
223 	struct evcnt sc_ev_rx_pause;
224 	struct evcnt sc_ev_mii_ticks;
225 
226 	struct callout sc_mii_callout;
227 	uint64_t sc_mii_last_tick;
228 
229 	struct ifqueue sc_rx_bufcache;
230 	struct pq3etsec_mapcache *sc_rx_mapcache;
231 	struct pq3etsec_mapcache *sc_tx_mapcache;
232 };
233 
234 struct pq3mdio_softc {
235 	device_t mdio_dev;
236 
237 	kmutex_t *mdio_lock;
238 
239 	bus_space_tag_t mdio_bst;
240 	bus_space_handle_t mdio_bsh;
241 };
242 
243 static int pq3etsec_match(device_t, cfdata_t, void *);
244 static void pq3etsec_attach(device_t, device_t, void *);
245 
246 static int pq3mdio_match(device_t, cfdata_t, void *);
247 static void pq3mdio_attach(device_t, device_t, void *);
248 
249 static void pq3etsec_ifstart(struct ifnet *);
250 static void pq3etsec_ifwatchdog(struct ifnet *);
251 static int pq3etsec_ifinit(struct ifnet *);
252 static void pq3etsec_ifstop(struct ifnet *, int);
253 static int pq3etsec_ifioctl(struct ifnet *, u_long, void *);
254 
255 static int pq3etsec_mapcache_create(struct pq3etsec_softc *,
256     struct pq3etsec_mapcache **, size_t, size_t, size_t);
257 static void pq3etsec_mapcache_destroy(struct pq3etsec_softc *,
258     struct pq3etsec_mapcache *);
259 static bus_dmamap_t pq3etsec_mapcache_get(struct pq3etsec_softc *,
260     struct pq3etsec_mapcache *);
261 static void pq3etsec_mapcache_put(struct pq3etsec_softc *,
262     struct pq3etsec_mapcache *, bus_dmamap_t);
263 
264 static int pq3etsec_txq_attach(struct pq3etsec_softc *,
265     struct pq3etsec_txqueue *, u_int);
266 static void pq3etsec_txq_purge(struct pq3etsec_softc *,
267     struct pq3etsec_txqueue *);
268 static void pq3etsec_txq_reset(struct pq3etsec_softc *,
269     struct pq3etsec_txqueue *);
270 static bool pq3etsec_txq_consume(struct pq3etsec_softc *,
271     struct pq3etsec_txqueue *);
272 static bool pq3etsec_txq_produce(struct pq3etsec_softc *,
273     struct pq3etsec_txqueue *, struct mbuf *m);
274 static bool pq3etsec_txq_active_p(struct pq3etsec_softc *,
275     struct pq3etsec_txqueue *);
276 
277 static int pq3etsec_rxq_attach(struct pq3etsec_softc *,
278     struct pq3etsec_rxqueue *, u_int);
279 static bool pq3etsec_rxq_produce(struct pq3etsec_softc *,
280     struct pq3etsec_rxqueue *);
281 static void pq3etsec_rxq_purge(struct pq3etsec_softc *,
282     struct pq3etsec_rxqueue *, bool);
283 static void pq3etsec_rxq_reset(struct pq3etsec_softc *,
284     struct pq3etsec_rxqueue *);
285 
286 static void pq3etsec_mc_setup(struct pq3etsec_softc *);
287 
288 static void pq3etsec_mii_tick(void *);
289 static int pq3etsec_rx_intr(void *);
290 static int pq3etsec_tx_intr(void *);
291 static int pq3etsec_error_intr(void *);
292 static void pq3etsec_soft_intr(void *);
293 
294 CFATTACH_DECL_NEW(pq3etsec, sizeof(struct pq3etsec_softc),
295     pq3etsec_match, pq3etsec_attach, NULL, NULL);
296 
297 CFATTACH_DECL_NEW(pq3mdio_tsec, sizeof(struct pq3mdio_softc),
298     pq3mdio_match, pq3mdio_attach, NULL, NULL);
299 
300 CFATTACH_DECL_NEW(pq3mdio_cpunode, sizeof(struct pq3mdio_softc),
301     pq3mdio_match, pq3mdio_attach, NULL, NULL);
302 
303 static inline uint32_t
304 etsec_mdio_read(struct pq3mdio_softc *mdio, bus_size_t off)
305 {
306 	return bus_space_read_4(mdio->mdio_bst, mdio->mdio_bsh, off);
307 }
308 
309 static inline void
310 etsec_mdio_write(struct pq3mdio_softc *mdio, bus_size_t off, uint32_t data)
311 {
312 	bus_space_write_4(mdio->mdio_bst, mdio->mdio_bsh, off, data);
313 }
314 
315 static inline uint32_t
316 etsec_read(struct pq3etsec_softc *sc, bus_size_t off)
317 {
318 	return bus_space_read_4(sc->sc_bst, sc->sc_bsh, off);
319 }
320 
321 static int
322 pq3mdio_find(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
323 {
324 	return strcmp(cf->cf_name, "mdio") == 0;
325 }
326 
327 static int
328 pq3mdio_match(device_t parent, cfdata_t cf, void *aux)
329 {
330 	const uint16_t svr = (mfspr(SPR_SVR) & ~0x80000) >> 16;
331 	const bool p1025_p = (svr == (SVR_P1025v1 >> 16)
332 	    || svr == (SVR_P1016v1 >> 16));
333 
334 	if (device_is_a(parent, "cpunode")) {
335 		if (!p1025_p
336 		    || !e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
337 			return 0;
338 
339 		return 1;
340 	}
341 
342 	if (device_is_a(parent, "tsec")) {
343 		if (p1025_p
344 		    || !e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
345 			return 0;
346 
347 		return 1;
348 	}
349 
350 	return 0;
351 }
352 
353 static void
354 pq3mdio_attach(device_t parent, device_t self, void *aux)
355 {
356 	struct pq3mdio_softc * const mdio = device_private(self);
357 	struct cpunode_attach_args * const cna = aux;
358 	struct cpunode_locators * const cnl = &cna->cna_locs;
359 
360 	mdio->mdio_dev = self;
361 	mdio->mdio_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
362 
363 	if (device_is_a(parent, "cpunode")) {
364 		struct cpunode_softc * const psc = device_private(parent);
365 		psc->sc_children |= cna->cna_childmask;
366 
367 		mdio->mdio_bst = cna->cna_memt;
368 		if (bus_space_map(mdio->mdio_bst, cnl->cnl_addr,
369 				cnl->cnl_size, 0, &mdio->mdio_bsh) != 0) {
370 			aprint_error(": error mapping registers @ %#x\n",
371 			    cnl->cnl_addr);
372 			return;
373 		}
374 	} else {
375 		struct pq3etsec_softc * const sc = device_private(parent);
376 
377 		KASSERT(device_is_a(parent, "tsec"));
378 		KASSERTMSG(cnl->cnl_addr == ETSEC1_BASE
379 		    || cnl->cnl_addr == ETSEC2_BASE
380 		    || cnl->cnl_addr == ETSEC3_BASE
381 		    || cnl->cnl_addr == ETSEC4_BASE,
382 		    "unknown tsec addr %x", cnl->cnl_addr);
383 
384 		mdio->mdio_bst = sc->sc_bst;
385 		mdio->mdio_bsh = sc->sc_bsh;
386 	}
387 
388 	aprint_normal("\n");
389 }
390 
391 static int
392 pq3mdio_mii_readreg(device_t self, int phy, int reg)
393 {
394 	struct pq3mdio_softc * const mdio = device_private(self);
395 	uint32_t miimcom = etsec_mdio_read(mdio, MIIMCOM);
396 
397 	mutex_enter(mdio->mdio_lock);
398 
399 	etsec_mdio_write(mdio, MIIMADD,
400 	    __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
401 
402 	etsec_mdio_write(mdio, MIIMCOM, 0);	/* clear any past bits */
403 	etsec_mdio_write(mdio, MIIMCOM, MIIMCOM_READ);
404 
405 	while (etsec_mdio_read(mdio, MIIMIND) != 0) {
406 			delay(1);
407 	}
408 	int data = etsec_mdio_read(mdio, MIIMSTAT);
409 
410 	if (miimcom == MIIMCOM_SCAN)
411 		etsec_mdio_write(mdio, MIIMCOM, miimcom);
412 
413 #if 0
414 	aprint_normal_dev(mdio->mdio_dev, "%s: phy %d reg %d: %#x\n",
415 	    __func__, phy, reg, data);
416 #endif
417 	mutex_exit(mdio->mdio_lock);
418 	return data;
419 }
420 
421 static void
422 pq3mdio_mii_writereg(device_t self, int phy, int reg, int data)
423 {
424 	struct pq3mdio_softc * const mdio = device_private(self);
425 	uint32_t miimcom = etsec_mdio_read(mdio, MIIMCOM);
426 
427 #if 0
428 	aprint_normal_dev(mdio->mdio_dev, "%s: phy %d reg %d: %#x\n",
429 	    __func__, phy, reg, data);
430 #endif
431 
432 	mutex_enter(mdio->mdio_lock);
433 
434 	etsec_mdio_write(mdio, MIIMADD,
435 	    __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
436 	etsec_mdio_write(mdio, MIIMCOM, 0);	/* clear any past bits */
437 	etsec_mdio_write(mdio, MIIMCON, data);
438 
439 	int timo = 1000;	/* 1ms */
440 	while ((etsec_mdio_read(mdio, MIIMIND) & MIIMIND_BUSY) && --timo > 0) {
441 			delay(1);
442 	}
443 
444 	if (miimcom == MIIMCOM_SCAN)
445 		etsec_mdio_write(mdio, MIIMCOM, miimcom);
446 
447 	mutex_exit(mdio->mdio_lock);
448 }
449 
450 static inline void
451 etsec_write(struct pq3etsec_softc *sc, bus_size_t off, uint32_t data)
452 {
453 	bus_space_write_4(sc->sc_bst, sc->sc_bsh, off, data);
454 }
455 
456 static void
457 pq3etsec_mii_statchg(struct ifnet *ifp)
458 {
459 	struct pq3etsec_softc * const sc = ifp->if_softc;
460 	struct mii_data * const mii = &sc->sc_mii;
461 
462 	uint32_t maccfg1 = sc->sc_maccfg1;
463 	uint32_t maccfg2 = sc->sc_maccfg2;
464 	uint32_t ecntrl = sc->sc_ecntrl;
465 
466 	maccfg1 &= ~(MACCFG1_TX_FLOW|MACCFG1_RX_FLOW);
467 	maccfg2 &= ~(MACCFG2_IFMODE|MACCFG2_FD);
468 
469 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
470 		maccfg2 |= MACCFG2_FD;
471 	}
472 
473 	/*
474 	 * Now deal with the flow control bits.
475 	 */
476 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO
477 	    && (mii->mii_media_active & IFM_ETH_FMASK)) {
478 		if (mii->mii_media_active & IFM_ETH_RXPAUSE)
479 			maccfg1 |= MACCFG1_RX_FLOW;
480 		if (mii->mii_media_active & IFM_ETH_TXPAUSE)
481 			maccfg1 |= MACCFG1_TX_FLOW;
482 	}
483 
484 	/*
485 	 * Now deal with the speed.
486 	 */
487 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
488 		maccfg2 |= MACCFG2_IFMODE_GMII;
489 	} else {
490 		maccfg2 |= MACCFG2_IFMODE_MII;
491 		ecntrl &= ~ECNTRL_R100M;
492 		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_10_T) {
493 			ecntrl |= ECNTRL_R100M;
494 		}
495 	}
496 
497 	/*
498 	 * If things are different, re-init things.
499 	 */
500 	if (maccfg1 != sc->sc_maccfg1
501 	    || maccfg2 != sc->sc_maccfg2
502 	    || ecntrl != sc->sc_ecntrl) {
503 		if (sc->sc_if.if_flags & IFF_RUNNING)
504 			atomic_or_uint(&sc->sc_soft_flags, SOFT_RESET);
505 		sc->sc_maccfg1 = maccfg1;
506 		sc->sc_maccfg2 = maccfg2;
507 		sc->sc_ecntrl = ecntrl;
508 	}
509 }
510 
511 #if 0
512 static void
513 pq3etsec_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
514 {
515 	struct pq3etsec_softc * const sc = ifp->if_softc;
516 
517 	mii_pollstat(&sc->sc_mii);
518 	ether_mediastatus(ifp, ifmr);
519         ifmr->ifm_status = sc->sc_mii.mii_media_status;
520         ifmr->ifm_active = sc->sc_mii.mii_media_active;
521 }
522 
523 static int
524 pq3etsec_mediachange(struct ifnet *ifp)
525 {
526 	struct pq3etsec_softc * const sc = ifp->if_softc;
527 
528 	if ((ifp->if_flags & IFF_UP) == 0)
529 		return 0;
530 
531 	int rv = mii_mediachg(&sc->sc_mii);
532 	return (rv == ENXIO) ? 0 : rv;
533 }
534 #endif
535 
536 static int
537 pq3etsec_match(device_t parent, cfdata_t cf, void *aux)
538 {
539 
540 	if (!e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
541 		return 0;
542 
543 	return 1;
544 }
545 
546 static void
547 pq3etsec_attach(device_t parent, device_t self, void *aux)
548 {
549 	struct cpunode_softc * const psc = device_private(parent);
550 	struct pq3etsec_softc * const sc = device_private(self);
551 	struct cpunode_attach_args * const cna = aux;
552 	struct cpunode_locators * const cnl = &cna->cna_locs;
553 	cfdata_t cf = device_cfdata(self);
554 	int error;
555 
556 	psc->sc_children |= cna->cna_childmask;
557 	sc->sc_dev = self;
558 	sc->sc_bst = cna->cna_memt;
559 	sc->sc_dmat = &booke_bus_dma_tag;
560 
561 	/*
562 	 * Pull out the mdio bus and phy we are supposed to use.
563 	 */
564 	const int mdio = cf->cf_loc[CPUNODECF_MDIO];
565 	const int phy = cf->cf_loc[CPUNODECF_PHY];
566 	if (mdio != CPUNODECF_MDIO_DEFAULT)
567 		aprint_normal(" mdio %d", mdio);
568 
569 	/*
570 	 * See if the phy is in the config file...
571 	 */
572 	if (phy != CPUNODECF_PHY_DEFAULT) {
573 		sc->sc_phy_addr = phy;
574 	} else {
575 		unsigned char prop_name[20];
576 		snprintf(prop_name, sizeof(prop_name), "tsec%u-phy-addr",
577 		    cnl->cnl_instance);
578 		sc->sc_phy_addr = board_info_get_number(prop_name);
579 	}
580 	if (sc->sc_phy_addr != MII_PHY_ANY)
581 		aprint_normal(" phy %d", sc->sc_phy_addr);
582 
583 	error = bus_space_map(sc->sc_bst, cnl->cnl_addr, cnl->cnl_size, 0,
584 	    &sc->sc_bsh);
585 	if (error) {
586 		aprint_error(": error mapping registers: %d\n", error);
587 		return;
588 	}
589 
590 	/*
591 	 * Assume firmware has aready set the mac address and fetch it
592 	 * before we reinit it.
593 	 */
594 	sc->sc_macstnaddr2 = etsec_read(sc, MACSTNADDR2);
595 	sc->sc_macstnaddr1 = etsec_read(sc, MACSTNADDR1);
596 	sc->sc_rctrl = RCTRL_DEFAULT;
597 	sc->sc_ecntrl = etsec_read(sc, ECNTRL);
598 	sc->sc_maccfg1 = etsec_read(sc, MACCFG1);
599 	sc->sc_maccfg2 = etsec_read(sc, MACCFG2) | MACCFG2_DEFAULT;
600 
601 	if (sc->sc_macstnaddr1 == 0 && sc->sc_macstnaddr2 == 0) {
602 		size_t len;
603 		const uint8_t *mac_addr =
604 		    board_info_get_data("tsec-mac-addr-base", &len);
605 		KASSERT(len == ETHER_ADDR_LEN);
606 		sc->sc_macstnaddr2 =
607 		    (mac_addr[1] << 24)
608 		    | (mac_addr[0] << 16);
609 		sc->sc_macstnaddr1 =
610 		    ((mac_addr[5] + cnl->cnl_instance - 1) << 24)
611 		    | (mac_addr[4] << 16)
612 		    | (mac_addr[3] << 8)
613 		    | (mac_addr[2] << 0);
614 #if 0
615 		aprint_error(": mac-address unknown\n");
616 		return;
617 #endif
618 	}
619 
620 	char enaddr[ETHER_ADDR_LEN] = {
621 	    [0] = sc->sc_macstnaddr2 >> 16,
622 	    [1] = sc->sc_macstnaddr2 >> 24,
623 	    [2] = sc->sc_macstnaddr1 >>  0,
624 	    [3] = sc->sc_macstnaddr1 >>  8,
625 	    [4] = sc->sc_macstnaddr1 >> 16,
626 	    [5] = sc->sc_macstnaddr1 >> 24,
627 	};
628 
629 	error = pq3etsec_rxq_attach(sc, &sc->sc_rxq, 0);
630 	if (error) {
631 		aprint_error(": failed to init rxq: %d\n", error);
632 		return;
633 	}
634 
635 	error = pq3etsec_txq_attach(sc, &sc->sc_txq, 0);
636 	if (error) {
637 		aprint_error(": failed to init txq: %d\n", error);
638 		return;
639 	}
640 
641 	error = pq3etsec_mapcache_create(sc, &sc->sc_rx_mapcache,
642 	    ETSEC_MAXRXMBUFS, MCLBYTES, ETSEC_NRXSEGS);
643 	if (error) {
644 		aprint_error(": failed to allocate rx dmamaps: %d\n", error);
645 		return;
646 	}
647 
648 	error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
649 	    ETSEC_MAXTXMBUFS, MCLBYTES, ETSEC_NTXSEGS);
650 	if (error) {
651 		aprint_error(": failed to allocate tx dmamaps: %d\n", error);
652 		return;
653 	}
654 
655 	sc->sc_tx_ih = intr_establish(cnl->cnl_intrs[0], IPL_VM, IST_ONCHIP,
656 	    pq3etsec_tx_intr, sc);
657 	if (sc->sc_tx_ih == NULL) {
658 		aprint_error(": failed to establish tx interrupt: %d\n",
659 		    cnl->cnl_intrs[0]);
660 		return;
661 	}
662 
663 	sc->sc_rx_ih = intr_establish(cnl->cnl_intrs[1], IPL_VM, IST_ONCHIP,
664 	    pq3etsec_rx_intr, sc);
665 	if (sc->sc_rx_ih == NULL) {
666 		aprint_error(": failed to establish rx interrupt: %d\n",
667 		    cnl->cnl_intrs[1]);
668 		return;
669 	}
670 
671 	sc->sc_error_ih = intr_establish(cnl->cnl_intrs[2], IPL_VM, IST_ONCHIP,
672 	    pq3etsec_error_intr, sc);
673 	if (sc->sc_error_ih == NULL) {
674 		aprint_error(": failed to establish error interrupt: %d\n",
675 		    cnl->cnl_intrs[2]);
676 		return;
677 	}
678 
679 	sc->sc_soft_ih = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
680 	    pq3etsec_soft_intr, sc);
681 	if (sc->sc_soft_ih == NULL) {
682 		aprint_error(": failed to establish soft interrupt\n");
683 		return;
684 	}
685 
686 	/*
687 	 * If there was no MDIO 
688 	 */
689 	if (mdio == CPUNODECF_MDIO_DEFAULT) {
690 		aprint_normal("\n");
691 		cfdata_t mdio_cf = config_search_ia(pq3mdio_find, self, NULL, cna);
692 		if (mdio_cf != NULL) {
693 			sc->sc_mdio_dev = config_attach(self, mdio_cf, cna, NULL);
694 		}
695 	} else {
696 		sc->sc_mdio_dev = device_find_by_driver_unit("mdio", mdio);
697 		if (sc->sc_mdio_dev == NULL) {
698 			aprint_error(": failed to locate mdio device\n");
699 			return;
700 		}
701 		aprint_normal("\n");
702 	}
703 
704 	etsec_write(sc, ATTR, ATTR_DEFAULT);
705 	etsec_write(sc, ATTRELI, ATTRELI_DEFAULT);
706 
707 	sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
708 
709 	callout_init(&sc->sc_mii_callout, CALLOUT_MPSAFE);
710 	callout_setfunc(&sc->sc_mii_callout, pq3etsec_mii_tick, sc);
711 
712 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
713 	   ether_sprintf(enaddr));
714 
715 	const char * const xname = device_xname(sc->sc_dev);
716 	struct ethercom * const ec = &sc->sc_ec;
717 	struct ifnet * const ifp = &ec->ec_if;
718 
719 	ec->ec_mii = &sc->sc_mii;
720 
721 	sc->sc_mii.mii_ifp = ifp;
722 	sc->sc_mii.mii_readreg = pq3mdio_mii_readreg;
723 	sc->sc_mii.mii_writereg = pq3mdio_mii_writereg;
724 	sc->sc_mii.mii_statchg = pq3etsec_mii_statchg;
725 
726 	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
727 	    ether_mediastatus);
728 
729 	if (sc->sc_mdio_dev != NULL && sc->sc_phy_addr < 32) {
730 		mii_attach(sc->sc_mdio_dev, &sc->sc_mii, 0xffffffff,
731 		    sc->sc_phy_addr, MII_OFFSET_ANY, MIIF_DOPAUSE);
732 
733 		if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
734 			ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
735 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
736 		} else {
737 			callout_schedule(&sc->sc_mii_callout, hz);
738 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
739 		}
740 	} else {
741 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
742 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_1000_T|IFM_FDX);
743 	}
744 
745 	ec->ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING
746 	    | ETHERCAP_JUMBO_MTU;
747 
748 	strlcpy(ifp->if_xname, xname, IFNAMSIZ);
749 	ifp->if_softc = sc;
750 	ifp->if_capabilities = IFCAP_ETSEC;
751 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
752 	ifp->if_ioctl = pq3etsec_ifioctl;
753 	ifp->if_start = pq3etsec_ifstart;
754 	ifp->if_watchdog = pq3etsec_ifwatchdog;
755 	ifp->if_init = pq3etsec_ifinit;
756 	ifp->if_stop = pq3etsec_ifstop;
757 	IFQ_SET_READY(&ifp->if_snd);
758 
759 	pq3etsec_ifstop(ifp, true);
760 
761 	/*
762 	 * Attach the interface.
763 	 */
764 	if_attach(ifp);
765 	ether_ifattach(ifp, enaddr);
766 
767 	evcnt_attach_dynamic(&sc->sc_ev_rx_stall, EVCNT_TYPE_MISC,
768 	    NULL, xname, "rx stall");
769 	evcnt_attach_dynamic(&sc->sc_ev_tx_stall, EVCNT_TYPE_MISC,
770 	    NULL, xname, "tx stall");
771 	evcnt_attach_dynamic(&sc->sc_ev_tx_intr, EVCNT_TYPE_INTR,
772 	    NULL, xname, "tx intr");
773 	evcnt_attach_dynamic(&sc->sc_ev_rx_intr, EVCNT_TYPE_INTR,
774 	    NULL, xname, "rx intr");
775 	evcnt_attach_dynamic(&sc->sc_ev_error_intr, EVCNT_TYPE_INTR,
776 	    NULL, xname, "error intr");
777 	evcnt_attach_dynamic(&sc->sc_ev_soft_intr, EVCNT_TYPE_INTR,
778 	    NULL, xname, "soft intr");
779 	evcnt_attach_dynamic(&sc->sc_ev_tx_pause, EVCNT_TYPE_MISC,
780 	    NULL, xname, "tx pause");
781 	evcnt_attach_dynamic(&sc->sc_ev_rx_pause, EVCNT_TYPE_MISC,
782 	    NULL, xname, "rx pause");
783 	evcnt_attach_dynamic(&sc->sc_ev_mii_ticks, EVCNT_TYPE_MISC,
784 	    NULL, xname, "mii ticks");
785 }
786 
787 static uint64_t
788 pq3etsec_macaddr_create(const uint8_t *lladdr)
789 {
790 	uint64_t macaddr = 0;
791 
792 	lladdr += ETHER_ADDR_LEN;
793 	for (u_int i = ETHER_ADDR_LEN; i-- > 0; ) {
794 		macaddr = (macaddr << 8) | *--lladdr;
795 	}
796 	return macaddr << 16;
797 }
798 
799 static int
800 pq3etsec_ifinit(struct ifnet *ifp)
801 {
802 	struct pq3etsec_softc * const sc = ifp->if_softc;
803 	int error = 0;
804 
805 	sc->sc_maxfrm = max(ifp->if_mtu + 32, MCLBYTES);
806 	if (ifp->if_mtu > ETHERMTU_JUMBO)
807 		return error;
808 
809 	KASSERT(ifp->if_flags & IFF_UP);
810 
811 	/*
812 	 * Stop the interface (steps 1 to 4 in the Soft Reset and
813 	 * Reconfigurating Procedure.
814 	 */
815 	pq3etsec_ifstop(ifp, 0);
816 
817 	/*
818 	 * If our frame size has changed (or it's our first time through)
819 	 * destroy the existing transmit mapcache.
820 	 */
821 	if (sc->sc_tx_mapcache != NULL
822 	    && sc->sc_maxfrm != sc->sc_tx_mapcache->dmc_maxmapsize) {
823 		pq3etsec_mapcache_destroy(sc, sc->sc_tx_mapcache);
824 		sc->sc_tx_mapcache = NULL;
825 	}
826 
827 	if (sc->sc_tx_mapcache == NULL) {
828 		error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
829 		    ETSEC_MAXTXMBUFS, sc->sc_maxfrm, ETSEC_NTXSEGS);
830 		if (error)
831 			return error;
832 	}
833 
834 	sc->sc_ev_mii_ticks.ev_count++;
835 	mii_tick(&sc->sc_mii);
836 
837 	if (ifp->if_flags & IFF_PROMISC) {
838 		sc->sc_rctrl |= RCTRL_PROM;
839 	} else {
840 		sc->sc_rctrl &= ~RCTRL_PROM;
841 	}
842 
843 	uint32_t rctrl_prsdep = 0;
844 	sc->sc_rctrl &= ~(RCTRL_IPCSEN|RCTRL_TUCSEN|RCTRL_VLEX|RCTRL_PRSDEP);
845 	if (VLAN_ATTACHED(&sc->sc_ec)) {
846 		sc->sc_rctrl |= RCTRL_VLEX;
847 		rctrl_prsdep = RCTRL_PRSDEP_L2;
848 	}
849 	if (ifp->if_capenable & IFCAP_RCTRL_IPCSEN) {
850 		sc->sc_rctrl |= RCTRL_IPCSEN;
851 		rctrl_prsdep = RCTRL_PRSDEP_L3;
852 	}
853 	if (ifp->if_capenable & IFCAP_RCTRL_TUCSEN) {
854 		sc->sc_rctrl |= RCTRL_TUCSEN;
855 		rctrl_prsdep = RCTRL_PRSDEP_L4;
856 	}
857 	sc->sc_rctrl |= rctrl_prsdep;
858 #if 0
859 	if (sc->sc_rctrl & (RCTRL_IPCSEN|RCTRL_TUCSEN|RCTRL_VLEX|RCTRL_PRSDEP))
860 		aprint_normal_dev(sc->sc_dev,
861 		    "rctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlex=%"PRIuMAX" prsdep=%"PRIuMAX"\n",
862 		    sc->sc_rctrl,
863 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_IPCSEN),
864 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_TUCSEN),
865 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_VLEX),
866 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_PRSDEP));
867 #endif
868 
869 	sc->sc_tctrl &= ~(TCTRL_IPCSEN|TCTRL_TUCSEN|TCTRL_VLINS);
870 	if (VLAN_ATTACHED(&sc->sc_ec))		/* is this really true */
871 		sc->sc_tctrl |= TCTRL_VLINS;
872 	if (ifp->if_capenable & IFCAP_TCTRL_IPCSEN)
873 		sc->sc_tctrl |= TCTRL_IPCSEN;
874 	if (ifp->if_capenable & IFCAP_TCTRL_TUCSEN)
875 		sc->sc_tctrl |= TCTRL_TUCSEN;
876 #if 0
877 	if (sc->sc_tctrl & (TCTRL_IPCSEN|TCTRL_TUCSEN|TCTRL_VLINS))
878 		aprint_normal_dev(sc->sc_dev,
879 		    "tctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlins=%"PRIuMAX"\n",
880 		    sc->sc_tctrl,
881 		    __SHIFTOUT(sc->sc_tctrl, TCTRL_IPCSEN),
882 		    __SHIFTOUT(sc->sc_tctrl, TCTRL_TUCSEN),
883 		    __SHIFTOUT(sc->sc_tctrl, TCTRL_VLINS));
884 #endif
885 
886 	sc->sc_maccfg1 &= ~(MACCFG1_TX_EN|MACCFG1_RX_EN);
887 
888 	const uint64_t macstnaddr =
889 	    pq3etsec_macaddr_create(CLLADDR(ifp->if_sadl));
890 
891 	sc->sc_imask = IEVENT_DPE;
892 
893 	/* 5. Load TDBPH, TBASEH, TBASE0-TBASE7 with new Tx BD pointers */
894 	pq3etsec_rxq_reset(sc, &sc->sc_rxq);
895 	pq3etsec_rxq_produce(sc, &sc->sc_rxq);	/* fill with rx buffers */
896 
897 	/* 6. Load RDBPH, RBASEH, RBASE0-RBASE7 with new Rx BD pointers */
898 	pq3etsec_txq_reset(sc, &sc->sc_txq);
899 
900 	/* 7. Setup other MAC registers (MACCFG2, MAXFRM, etc.) */
901 	KASSERT(MACCFG2_PADCRC & sc->sc_maccfg2);
902 	etsec_write(sc, MAXFRM, sc->sc_maxfrm);
903 	etsec_write(sc, MACSTNADDR1, (uint32_t)(macstnaddr >> 32));
904 	etsec_write(sc, MACSTNADDR2, (uint32_t)(macstnaddr >>  0));
905 	etsec_write(sc, MACCFG1, sc->sc_maccfg1);
906 	etsec_write(sc, MACCFG2, sc->sc_maccfg2);
907 	etsec_write(sc, ECNTRL, sc->sc_ecntrl);
908 
909 	/* 8. Setup group address hash table (GADDR0-GADDR15) */
910 	pq3etsec_mc_setup(sc);
911 
912 	/* 9. Setup receive frame filer table (via RQFAR, RQFCR, and RQFPR) */
913 	etsec_write(sc, MRBLR, MCLBYTES);
914 
915 	/* 10. Setup WWR, WOP, TOD bits in DMACTRL register */
916 	sc->sc_dmactrl |= DMACTRL_DEFAULT;
917 	etsec_write(sc, DMACTRL, sc->sc_dmactrl);
918 
919 	/* 11. Enable transmit queues in TQUEUE, and ensure that the transmit scheduling mode is correctly set in TCTRL. */
920 	etsec_write(sc, TQUEUE, TQUEUE_EN0);
921 	sc->sc_imask |= IEVENT_TXF|IEVENT_TXE|IEVENT_TXC;
922 
923 	etsec_write(sc, TCTRL, sc->sc_tctrl);	/* for TOE stuff */
924 
925 	/* 12. Enable receive queues in RQUEUE, */
926 	etsec_write(sc, RQUEUE, RQUEUE_EN0|RQUEUE_EX0);
927 	sc->sc_imask |= IEVENT_RXF|IEVENT_BSY|IEVENT_RXC;
928 
929 	/*     and optionally set TOE functionality in RCTRL. */
930 	etsec_write(sc, RCTRL, sc->sc_rctrl);
931 	sc->sc_rx_adjlen = __SHIFTOUT(sc->sc_rctrl, RCTRL_PAL);
932 	if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF)
933 		sc->sc_rx_adjlen += sizeof(struct rxfcb);
934 
935 	/* 13. Clear THLT and TXF bits in TSTAT register by writing 1 to them */
936 	etsec_write(sc, TSTAT, TSTAT_THLT | TSTAT_TXF);
937 
938 	/* 14. Clear QHLT and RXF bits in RSTAT register by writing 1 to them.*/
939 	etsec_write(sc, RSTAT, RSTAT_QHLT | RSTAT_RXF);
940 
941 	/* 15. Clear GRS/GTS bits in DMACTRL (do not change other bits) */
942 	sc->sc_dmactrl &= ~(DMACTRL_GRS|DMACTRL_GTS);
943 	etsec_write(sc, DMACTRL, sc->sc_dmactrl);
944 
945 	/* 16. Enable Tx_EN/Rx_EN in MACCFG1 register */
946 	etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
947 	etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
948 
949 	sc->sc_soft_flags = 0;
950 
951 	etsec_write(sc, IMASK, sc->sc_imask);
952 
953 	ifp->if_flags |= IFF_RUNNING;
954 
955 	return error;
956 }
957 
958 static void
959 pq3etsec_ifstop(struct ifnet *ifp, int disable)
960 {
961 	struct pq3etsec_softc * const sc = ifp->if_softc;
962 
963 	KASSERT(!cpu_intr_p());
964 	const uint32_t imask_gsc_mask = IEVENT_GTSC|IEVENT_GRSC;
965 	/*
966 	 * Clear the GTSC and GRSC from the interrupt mask until
967 	 * we are ready for them.  Then clear them from IEVENT,
968 	 * request the graceful shutdown, and then enable the
969 	 * GTSC and GRSC bits in the mask.  This should cause the
970 	 * error interrupt to fire which will issue a wakeup to
971 	 * allow us to resume.
972 	 */
973 
974 	/*
975 	 * 1. Set GRS/GTS bits in DMACTRL register
976 	 */
977 	sc->sc_dmactrl |= DMACTRL_GRS|DMACTRL_GTS;
978 	etsec_write(sc, IMASK, sc->sc_imask & ~imask_gsc_mask);
979 	etsec_write(sc, IEVENT, imask_gsc_mask);
980 	etsec_write(sc, DMACTRL, sc->sc_dmactrl);
981 
982 	if (etsec_read(sc, MACCFG1) & (MACCFG1_TX_EN|MACCFG1_RX_EN)) {
983 		/*
984 		 * 2. Poll GRSC/GTSC bits in IEVENT register until both are set
985 		 */
986 		etsec_write(sc, IMASK, sc->sc_imask | imask_gsc_mask);
987 
988 		u_int timo = 1000;
989 		uint32_t ievent = etsec_read(sc, IEVENT);
990 		while ((ievent & imask_gsc_mask) != imask_gsc_mask) {
991 			if (--timo == 0) {
992 				aprint_error_dev(sc->sc_dev,
993 				    "WARNING: "
994 				    "request to stop failed (IEVENT=%#x)\n",
995 				    ievent);
996 				break;
997 			}
998 			delay(10);
999 			ievent = etsec_read(sc, IEVENT);
1000 		}
1001 	}
1002 
1003 	/*
1004 	 * Now reset the controller.
1005 	 *
1006 	 * 3. Set SOFT_RESET bit in MACCFG1 register
1007 	 * 4. Clear SOFT_RESET bit in MACCFG1 register
1008 	 */
1009 	etsec_write(sc, MACCFG1, MACCFG1_SOFT_RESET);
1010 	etsec_write(sc, MACCFG1, 0);
1011 	etsec_write(sc, IMASK, 0);
1012 	etsec_write(sc, IEVENT, ~0);
1013 	sc->sc_imask = 0;
1014 	ifp->if_flags &= ~IFF_RUNNING;
1015 
1016 	uint32_t tbipa = etsec_read(sc, TBIPA);
1017 	if (tbipa == sc->sc_phy_addr) {
1018 		aprint_normal_dev(sc->sc_dev, "relocating TBI\n");
1019 		etsec_write(sc, TBIPA, 0x1f);
1020 	}
1021 	uint32_t miimcfg = etsec_read(sc, MIIMCFG);
1022 	etsec_write(sc, MIIMCFG, MIIMCFG_RESET);
1023 	etsec_write(sc, MIIMCFG, miimcfg);
1024 
1025 	/*
1026 	 * Let's consume any remaing transmitted packets.  And if we are
1027 	 * disabling the interface, purge ourselves of any untransmitted
1028 	 * packets.  But don't consume any received packets, just drop them.
1029 	 * If we aren't disabling the interface, save the mbufs in the
1030 	 * receive queue for reuse.
1031 	 */
1032 	pq3etsec_rxq_purge(sc, &sc->sc_rxq, disable);
1033 	pq3etsec_txq_consume(sc, &sc->sc_txq);
1034 	if (disable) {
1035 		pq3etsec_txq_purge(sc, &sc->sc_txq);
1036 		IF_PURGE(&ifp->if_snd);
1037 	}
1038 }
1039 
1040 static void
1041 pq3etsec_ifwatchdog(struct ifnet *ifp)
1042 {
1043 }
1044 
1045 static void
1046 pq3etsec_mc_setup(
1047 	struct pq3etsec_softc *sc)
1048 {
1049 	struct ethercom * const ec = &sc->sc_ec;
1050 	struct ifnet * const ifp = &sc->sc_if;
1051 	struct ether_multi *enm;
1052 	struct ether_multistep step;
1053 	uint32_t *gaddr = sc->sc_gaddr + ((sc->sc_rctrl & RCTRL_GHTX) ? 0 : 8);
1054 	const uint32_t crc_shift = 32 - ((sc->sc_rctrl & RCTRL_GHTX) ? 9 : 8);
1055 
1056 	memset(sc->sc_gaddr, 0, sizeof(sc->sc_gaddr));
1057 	memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
1058 
1059 	ifp->if_flags &= ~IFF_ALLMULTI;
1060 
1061 	ETHER_FIRST_MULTI(step, ec, enm);
1062 	for (u_int i = 0; enm != NULL; ) {
1063 		const char *addr = enm->enm_addrlo;
1064 		if (memcmp(addr, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
1065 			ifp->if_flags |= IFF_ALLMULTI;
1066 			memset(gaddr, 0xff, 32 << (crc_shift & 1));
1067 			memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
1068 			break;
1069 		}
1070 		if ((sc->sc_rctrl & RCTRL_EMEN)
1071 		    && i < __arraycount(sc->sc_macaddrs)) {
1072 			sc->sc_macaddrs[i++] = pq3etsec_macaddr_create(addr);
1073 		} else {
1074 			uint32_t crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
1075 #if 0
1076 			printf("%s: %s: crc=%#x: %#x: [%u,%u]=%#x\n", __func__,
1077 			    ether_sprintf(addr), crc,
1078 			    crc >> crc_shift,
1079 			    crc >> (crc_shift + 5),
1080 			    (crc >> crc_shift) & 31,
1081 			    1 << (((crc >> crc_shift) & 31) ^ 31));
1082 #endif
1083 			/*
1084 			 * The documentation doesn't completely follow PowerPC
1085 			 * bit order.  The BE crc32 (H) for 01:00:5E:00:00:01
1086 			 * is 0x7fa32d9b.  By empirical testing, the
1087 			 * corresponding hash bit is word 3, bit 31 (ppc bit
1088 			 * order).  Since 3 << 31 | 31 is 0x7f, we deduce
1089 			 * H[0:2] selects the register while H[3:7] selects
1090 			 * the bit (ppc bit order).
1091 			 */
1092 			crc >>= crc_shift;
1093 			gaddr[crc / 32] |= 1 << ((crc & 31) ^ 31);
1094 		}
1095 		ETHER_NEXT_MULTI(step, enm);
1096 	}
1097 	for (u_int i = 0; i < 8; i++) {
1098 		etsec_write(sc, IGADDR(i), sc->sc_gaddr[i]);
1099 		etsec_write(sc, GADDR(i), sc->sc_gaddr[i+8]);
1100 #if 0
1101 		if (sc->sc_gaddr[i] || sc->sc_gaddr[i+8])
1102 		printf("%s: IGADDR%u(%#x)=%#x GADDR%u(%#x)=%#x\n", __func__,
1103 		    i, IGADDR(i), etsec_read(sc, IGADDR(i)),
1104 		    i, GADDR(i), etsec_read(sc, GADDR(i)));
1105 #endif
1106 	}
1107 	for (u_int i = 0; i < __arraycount(sc->sc_macaddrs); i++) {
1108 		uint64_t macaddr = sc->sc_macaddrs[i];
1109 		etsec_write(sc, MACnADDR1(i), (uint32_t)(macaddr >> 32));
1110 		etsec_write(sc, MACnADDR2(i), (uint32_t)(macaddr >>  0));
1111 #if 0
1112 		if (macaddr)
1113 		printf("%s: MAC%02uADDR2(%08x)=%#x MAC%02uADDR2(%#x)=%08x\n", __func__,
1114 		    i+1, MACnADDR1(i), etsec_read(sc, MACnADDR1(i)),
1115 		    i+1, MACnADDR2(i), etsec_read(sc, MACnADDR2(i)));
1116 #endif
1117 	}
1118 }
1119 
1120 static int
1121 pq3etsec_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
1122 {
1123 	struct pq3etsec_softc *sc  = ifp->if_softc;
1124 	struct ifreq * const ifr = data;
1125 	const int s = splnet();
1126 	int error;
1127 
1128 	switch (cmd) {
1129 	case SIOCSIFMEDIA:
1130 	case SIOCGIFMEDIA:
1131 		/* Flow control requires full-duplex mode. */
1132 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1133 		    (ifr->ifr_media & IFM_FDX) == 0)
1134 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1135 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1136 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1137 				/* We can do both TXPAUSE and RXPAUSE. */
1138 				ifr->ifr_media |=
1139 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1140 			}
1141 		}
1142 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1143 		break;
1144 
1145 	default:
1146 		error = ether_ioctl(ifp, cmd, data);
1147 		if (error != ENETRESET)
1148 			break;
1149 
1150 		if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
1151 			error = 0;
1152 			if (ifp->if_flags & IFF_RUNNING)
1153 				pq3etsec_mc_setup(sc);
1154 			break;
1155 		}
1156 		error = pq3etsec_ifinit(ifp);
1157 		break;
1158 	}
1159 
1160 	splx(s);
1161 	return error;
1162 }
1163 
1164 static void
1165 pq3etsec_rxq_desc_presync(
1166 	struct pq3etsec_softc *sc,
1167 	struct pq3etsec_rxqueue *rxq,
1168 	volatile struct rxbd *rxbd,
1169 	size_t count)
1170 {
1171 	bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1172 	    (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1173 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1174 }
1175 
1176 static void
1177 pq3etsec_rxq_desc_postsync(
1178 	struct pq3etsec_softc *sc,
1179 	struct pq3etsec_rxqueue *rxq,
1180 	volatile struct rxbd *rxbd,
1181 	size_t count)
1182 {
1183 	bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1184 	    (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1185 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1186 }
1187 
1188 static void
1189 pq3etsec_txq_desc_presync(
1190 	struct pq3etsec_softc *sc,
1191 	struct pq3etsec_txqueue *txq,
1192 	volatile struct txbd *txbd,
1193 	size_t count)
1194 {
1195 	bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1196 	    (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1197 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1198 }
1199 
1200 static void
1201 pq3etsec_txq_desc_postsync(
1202 	struct pq3etsec_softc *sc,
1203 	struct pq3etsec_txqueue *txq,
1204 	volatile struct txbd *txbd,
1205 	size_t count)
1206 {
1207 	bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1208 	    (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1209 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1210 }
1211 
1212 static bus_dmamap_t
1213 pq3etsec_mapcache_get(
1214 	struct pq3etsec_softc *sc,
1215 	struct pq3etsec_mapcache *dmc)
1216 {
1217 	KASSERT(dmc->dmc_nmaps > 0);
1218 	KASSERT(dmc->dmc_maps[dmc->dmc_nmaps-1] != NULL);
1219 	return dmc->dmc_maps[--dmc->dmc_nmaps];
1220 }
1221 
1222 static void
1223 pq3etsec_mapcache_put(
1224 	struct pq3etsec_softc *sc,
1225 	struct pq3etsec_mapcache *dmc,
1226 	bus_dmamap_t map)
1227 {
1228 	KASSERT(map != NULL);
1229 	KASSERT(dmc->dmc_nmaps < dmc->dmc_maxmaps);
1230 	dmc->dmc_maps[dmc->dmc_nmaps++] = map;
1231 }
1232 
1233 static void
1234 pq3etsec_mapcache_destroy(
1235 	struct pq3etsec_softc *sc,
1236 	struct pq3etsec_mapcache *dmc)
1237 {
1238 	const size_t dmc_size =
1239 	    offsetof(struct pq3etsec_mapcache, dmc_maps[dmc->dmc_maxmaps]);
1240 
1241 	for (u_int i = 0; i < dmc->dmc_maxmaps; i++) {
1242 		bus_dmamap_destroy(sc->sc_dmat, dmc->dmc_maps[i]);
1243 	}
1244 	kmem_intr_free(dmc, dmc_size);
1245 }
1246 
1247 static int
1248 pq3etsec_mapcache_create(
1249 	struct pq3etsec_softc *sc,
1250 	struct pq3etsec_mapcache **dmc_p,
1251 	size_t maxmaps,
1252 	size_t maxmapsize,
1253 	size_t maxseg)
1254 {
1255 	const size_t dmc_size =
1256 	    offsetof(struct pq3etsec_mapcache, dmc_maps[maxmaps]);
1257 	struct pq3etsec_mapcache * const dmc =
1258 		kmem_intr_zalloc(dmc_size, KM_NOSLEEP);
1259 
1260 	dmc->dmc_maxmaps = maxmaps;
1261 	dmc->dmc_nmaps = maxmaps;
1262 	dmc->dmc_maxmapsize = maxmapsize;
1263 	dmc->dmc_maxseg = maxseg;
1264 
1265 	for (u_int i = 0; i < maxmaps; i++) {
1266 		int error = bus_dmamap_create(sc->sc_dmat, dmc->dmc_maxmapsize,
1267 		     dmc->dmc_maxseg, dmc->dmc_maxmapsize, 0,
1268 		     BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW, &dmc->dmc_maps[i]);
1269 		if (error) {
1270 			aprint_error_dev(sc->sc_dev,
1271 			    "failed to creat dma map cache "
1272 			    "entry %u of %zu: %d\n",
1273 			    i, maxmaps, error);
1274 			while (i-- > 0) {
1275 				bus_dmamap_destroy(sc->sc_dmat,
1276 				    dmc->dmc_maps[i]);
1277 			}
1278 			kmem_intr_free(dmc, dmc_size);
1279 			return error;
1280 		}
1281 		KASSERT(dmc->dmc_maps[i] != NULL);
1282 	}
1283 
1284 	*dmc_p = dmc;
1285 
1286 	return 0;
1287 }
1288 
1289 #if 0
1290 static void
1291 pq3etsec_dmamem_free(
1292 	bus_dma_tag_t dmat,
1293 	size_t map_size,
1294 	bus_dma_segment_t *seg,
1295 	bus_dmamap_t map,
1296 	void *kvap)
1297 {
1298 	bus_dmamap_destroy(dmat, map);
1299 	bus_dmamem_unmap(dmat, kvap, map_size);
1300 	bus_dmamem_free(dmat, seg, 1);
1301 }
1302 #endif
1303 
1304 static int
1305 pq3etsec_dmamem_alloc(
1306 	bus_dma_tag_t dmat,
1307 	size_t map_size,
1308 	bus_dma_segment_t *seg,
1309 	bus_dmamap_t *map,
1310 	void **kvap)
1311 {
1312 	int error;
1313 	int nseg;
1314 
1315 	*kvap = NULL;
1316 	*map = NULL;
1317 
1318 	error = bus_dmamem_alloc(dmat, map_size, PAGE_SIZE, 0,
1319 	   seg, 1, &nseg, 0);
1320 	if (error)
1321 		return error;
1322 
1323 	KASSERT(nseg == 1);
1324 
1325 	error = bus_dmamem_map(dmat, seg, nseg, map_size, (void **)kvap,
1326 	    BUS_DMA_COHERENT);
1327 	if (error == 0) {
1328 		error = bus_dmamap_create(dmat, map_size, 1, map_size, 0, 0,
1329 		    map);
1330 		if (error == 0) {
1331 			error = bus_dmamap_load(dmat, *map, *kvap, map_size,
1332 			    NULL, 0);
1333 			if (error == 0)
1334 				return 0;
1335 			bus_dmamap_destroy(dmat, *map);
1336 			*map = NULL;
1337 		}
1338 		bus_dmamem_unmap(dmat, *kvap, map_size);
1339 		*kvap = NULL;
1340 	}
1341 	bus_dmamem_free(dmat, seg, nseg);
1342 	return 0;
1343 }
1344 
1345 static struct mbuf *
1346 pq3etsec_rx_buf_alloc(
1347 	struct pq3etsec_softc *sc)
1348 {
1349 	struct mbuf *m = m_gethdr(M_DONTWAIT, MT_DATA);
1350 	if (m == NULL) {
1351 		printf("%s:%d: %s\n", __func__, __LINE__, "m_gethdr");
1352 		return NULL;
1353 	}
1354 	MCLGET(m, M_DONTWAIT);
1355 	if ((m->m_flags & M_EXT) == 0) {
1356 		printf("%s:%d: %s\n", __func__, __LINE__, "MCLGET");
1357 		m_freem(m);
1358 		return NULL;
1359 	}
1360 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1361 
1362 	bus_dmamap_t map = pq3etsec_mapcache_get(sc, sc->sc_rx_mapcache);
1363 	if (map == NULL) {
1364 		printf("%s:%d: %s\n", __func__, __LINE__, "map get");
1365 		m_freem(m);
1366 		return NULL;
1367 	}
1368 	M_SETCTX(m, map);
1369 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1370 	int error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1371 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1372 	if (error) {
1373 		aprint_error_dev(sc->sc_dev, "fail to load rx dmamap: %d\n",
1374 		    error);
1375 		M_SETCTX(m, NULL);
1376 		m_freem(m);
1377 		pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1378 		return NULL;
1379 	}
1380 	KASSERT(map->dm_mapsize == MCLBYTES);
1381 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1382 	    BUS_DMASYNC_PREREAD);
1383 
1384 	return m;
1385 }
1386 
1387 static void
1388 pq3etsec_rx_map_unload(
1389 	struct pq3etsec_softc *sc,
1390 	struct mbuf *m)
1391 {
1392 	KASSERT(m);
1393 	for (; m != NULL; m = m->m_next) {
1394 		bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1395 		KASSERT(map);
1396 		KASSERT(map->dm_mapsize == MCLBYTES);
1397 		bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_len,
1398 		    BUS_DMASYNC_POSTREAD);
1399 		bus_dmamap_unload(sc->sc_dmat, map);
1400 		pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1401 		M_SETCTX(m, NULL);
1402 	}
1403 }
1404 
1405 static bool
1406 pq3etsec_rxq_produce(
1407 	struct pq3etsec_softc *sc,
1408 	struct pq3etsec_rxqueue *rxq)
1409 {
1410 	volatile struct rxbd *producer = rxq->rxq_producer;
1411 #if 0
1412 	size_t inuse = rxq->rxq_inuse;
1413 #endif
1414 	while (rxq->rxq_inuse < rxq->rxq_threshold) {
1415 		struct mbuf *m;
1416 		IF_DEQUEUE(&sc->sc_rx_bufcache, m);
1417 		if (m == NULL) {
1418 			m = pq3etsec_rx_buf_alloc(sc);
1419 			if (m == NULL) {
1420 				printf("%s: pq3etsec_rx_buf_alloc failed\n", __func__);
1421 				break;
1422 			}
1423 		}
1424 		bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1425 		KASSERT(map);
1426 
1427 #ifdef ETSEC_DEBUG
1428 		KASSERT(rxq->rxq_mbufs[producer-rxq->rxq_first] == NULL);
1429 		rxq->rxq_mbufs[producer-rxq->rxq_first] = m;
1430 #endif
1431 
1432 		/* rxbd_len is write-only by the ETSEC */
1433 		producer->rxbd_bufptr = map->dm_segs[0].ds_addr;
1434 		membar_producer();
1435 		producer->rxbd_flags |= RXBD_E;
1436 		if (__predict_false(rxq->rxq_mhead == NULL)) {
1437 			KASSERT(producer == rxq->rxq_consumer);
1438 			rxq->rxq_mconsumer = m;
1439 		}
1440 		*rxq->rxq_mtail = m;
1441 		rxq->rxq_mtail = &m->m_next;
1442 		m->m_len = MCLBYTES;
1443 		m->m_next = NULL;
1444 		rxq->rxq_inuse++;
1445 		if (++producer == rxq->rxq_last) {
1446 			membar_producer();
1447 			pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1448 			    rxq->rxq_last - rxq->rxq_producer);
1449 			producer = rxq->rxq_producer = rxq->rxq_first;
1450 		}
1451 	}
1452 	if (producer != rxq->rxq_producer) {
1453 		membar_producer();
1454 		pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1455 		    producer - rxq->rxq_producer);
1456 		rxq->rxq_producer = producer;
1457 	}
1458 	uint32_t qhlt = etsec_read(sc, RSTAT) & RSTAT_QHLT;
1459 	if (qhlt) {
1460 		KASSERT(qhlt & rxq->rxq_qmask);
1461 		sc->sc_ev_rx_stall.ev_count++;
1462 		etsec_write(sc, RSTAT, RSTAT_QHLT & rxq->rxq_qmask);
1463 	}
1464 #if 0
1465 	aprint_normal_dev(sc->sc_dev,
1466 	    "%s: buffers inuse went from %zu to %zu\n",
1467 	    __func__, inuse, rxq->rxq_inuse);
1468 #endif
1469 	return true;
1470 }
1471 
1472 static bool
1473 pq3etsec_rx_offload(
1474 	struct pq3etsec_softc *sc,
1475 	struct mbuf *m,
1476 	const struct rxfcb *fcb)
1477 {
1478 	if (fcb->rxfcb_flags & RXFCB_VLN) {
1479 		VLAN_INPUT_TAG(&sc->sc_if, m, fcb->rxfcb_vlctl,
1480 		    m_freem(m); return false);
1481 	}
1482 	if ((fcb->rxfcb_flags & RXFCB_IP) == 0
1483 	    || (fcb->rxfcb_flags & (RXFCB_CIP|RXFCB_CTU)) == 0)
1484 		return true;
1485 	int csum_flags = 0;
1486 	if ((fcb->rxfcb_flags & (RXFCB_IP6|RXFCB_CIP)) == RXFCB_CIP) {
1487 		csum_flags |= M_CSUM_IPv4;
1488 		if (fcb->rxfcb_flags & RXFCB_EIP)
1489 			csum_flags |= M_CSUM_IPv4_BAD;
1490 	}
1491 	if ((fcb->rxfcb_flags & RXFCB_CTU) == RXFCB_CTU) {
1492 		int ipv_flags;
1493 		if (fcb->rxfcb_flags & RXFCB_IP6)
1494 			ipv_flags = M_CSUM_TCPv6|M_CSUM_UDPv6;
1495 		else
1496 			ipv_flags = M_CSUM_TCPv4|M_CSUM_UDPv4;
1497 		if (fcb->rxfcb_pro == IPPROTO_TCP) {
1498 			csum_flags |= (M_CSUM_TCPv4|M_CSUM_TCPv6) & ipv_flags;
1499 		} else {
1500 			csum_flags |= (M_CSUM_UDPv4|M_CSUM_UDPv6) & ipv_flags;
1501 		}
1502 		if (fcb->rxfcb_flags & RXFCB_ETU)
1503 			csum_flags |= M_CSUM_TCP_UDP_BAD;
1504 	}
1505 
1506 	m->m_pkthdr.csum_flags = csum_flags;
1507 	return true;
1508 }
1509 
1510 static void
1511 pq3etsec_rx_input(
1512 	struct pq3etsec_softc *sc,
1513 	struct mbuf *m,
1514 	uint16_t rxbd_flags)
1515 {
1516 	struct ifnet * const ifp = &sc->sc_if;
1517 
1518 	pq3etsec_rx_map_unload(sc, m);
1519 
1520 	if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF) {
1521 		struct rxfcb fcb = *mtod(m, struct rxfcb *);
1522 		if (!pq3etsec_rx_offload(sc, m, &fcb))
1523 			return;
1524 	}
1525 	m_adj(m, sc->sc_rx_adjlen);
1526 
1527 	if (rxbd_flags & RXBD_M)
1528 		m->m_flags |= M_PROMISC;
1529 	if (rxbd_flags & RXBD_BC)
1530 		m->m_flags |= M_BCAST;
1531 	if (rxbd_flags & RXBD_MC)
1532 		m->m_flags |= M_MCAST;
1533 	m->m_flags |= M_HASFCS;
1534 	m->m_pkthdr.rcvif = &sc->sc_if;
1535 
1536 	ifp->if_ipackets++;
1537 	ifp->if_ibytes += m->m_pkthdr.len;
1538 
1539 	/*
1540 	 * Let's give it to the network subsystm to deal with.
1541 	 */
1542 	int s = splnet();
1543 	bpf_mtap(ifp, m);
1544 	(*ifp->if_input)(ifp, m);
1545 	splx(s);
1546 }
1547 
1548 static void
1549 pq3etsec_rxq_consume(
1550 	struct pq3etsec_softc *sc,
1551 	struct pq3etsec_rxqueue *rxq)
1552 {
1553 	struct ifnet * const ifp = &sc->sc_if;
1554 	volatile struct rxbd *consumer = rxq->rxq_consumer;
1555 	size_t rxconsumed = 0;
1556 
1557 	etsec_write(sc, RSTAT, RSTAT_RXF & rxq->rxq_qmask);
1558 
1559 	for (;;) {
1560 		if (consumer == rxq->rxq_producer) {
1561 			rxq->rxq_consumer = consumer;
1562 			rxq->rxq_inuse -= rxconsumed;
1563 			KASSERT(rxq->rxq_inuse == 0);
1564 			return;
1565 		}
1566 		pq3etsec_rxq_desc_postsync(sc, rxq, consumer, 1);
1567 		const uint16_t rxbd_flags = consumer->rxbd_flags;
1568 		if (rxbd_flags & RXBD_E) {
1569 			rxq->rxq_consumer = consumer;
1570 			rxq->rxq_inuse -= rxconsumed;
1571 			return;
1572 		}
1573 		KASSERT(rxq->rxq_mconsumer != NULL);
1574 #ifdef ETSEC_DEBUG
1575 		KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1576 #endif
1577 #if 0
1578 		printf("%s: rxdb[%u]: flags=%#x len=%#x: %08x %08x %08x %08x\n",
1579 		    __func__,
1580 		    consumer - rxq->rxq_first, rxbd_flags, consumer->rxbd_len,
1581 		    mtod(rxq->rxq_mconsumer, int *)[0],
1582 		    mtod(rxq->rxq_mconsumer, int *)[1],
1583 		    mtod(rxq->rxq_mconsumer, int *)[2],
1584 		    mtod(rxq->rxq_mconsumer, int *)[3]);
1585 #endif
1586 		/*
1587 		 * We own this packet again.  Clear all flags except wrap.
1588 		 */
1589 		rxconsumed++;
1590 		consumer->rxbd_flags = rxbd_flags & (RXBD_W|RXBD_I);
1591 
1592 		/*
1593 		 * If this descriptor has the LAST bit set and no errors,
1594 		 * it's a valid input packet.
1595 		 */
1596 		if ((rxbd_flags & (RXBD_L|RXBD_ERRORS)) == RXBD_L) {
1597 			size_t rxbd_len = consumer->rxbd_len;
1598 			struct mbuf *m = rxq->rxq_mhead;
1599 			struct mbuf *m_last = rxq->rxq_mconsumer;
1600 			if ((rxq->rxq_mhead = m_last->m_next) == NULL)
1601 				rxq->rxq_mtail = &rxq->rxq_mhead;
1602 			rxq->rxq_mconsumer = rxq->rxq_mhead;
1603 			m_last->m_next = NULL;
1604 			m_last->m_len = rxbd_len & (MCLBYTES - 1);
1605 			m->m_pkthdr.len = rxbd_len;
1606 			pq3etsec_rx_input(sc, m, rxbd_flags);
1607 		} else if (rxbd_flags & RXBD_L) {
1608 			KASSERT(rxbd_flags & RXBD_ERRORS);
1609 			struct mbuf *m;
1610 			/*
1611 			 * We encountered an error, take the mbufs and add
1612 			 * then to the rx bufcache so we can reuse them.
1613 			 */
1614 			ifp->if_ierrors++;
1615 			for (m = rxq->rxq_mhead;
1616 			     m != rxq->rxq_mconsumer;
1617 			     m = m->m_next) {
1618 				IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1619 			}
1620 			m = rxq->rxq_mconsumer;
1621 			if ((rxq->rxq_mhead = m->m_next) == NULL)
1622 				rxq->rxq_mtail = &rxq->rxq_mhead;
1623 			rxq->rxq_mconsumer = m->m_next;
1624 			IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1625 		} else {
1626 			rxq->rxq_mconsumer = rxq->rxq_mconsumer->m_next;
1627 		}
1628 #ifdef ETSEC_DEBUG
1629 		rxq->rxq_mbufs[consumer - rxq->rxq_first] = NULL;
1630 #endif
1631 
1632 		/*
1633 		 * Wrap at the last entry!
1634 		 */
1635 		if (rxbd_flags & RXBD_W) {
1636 			KASSERT(consumer + 1 == rxq->rxq_last);
1637 			consumer = rxq->rxq_first;
1638 		} else {
1639 			consumer++;
1640 		}
1641 #ifdef ETSEC_DEBUG
1642 		KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1643 #endif
1644 	}
1645 }
1646 
1647 static void
1648 pq3etsec_rxq_purge(
1649 	struct pq3etsec_softc *sc,
1650 	struct pq3etsec_rxqueue *rxq,
1651 	bool discard)
1652 {
1653 	struct mbuf *m;
1654 
1655 	if ((m = rxq->rxq_mhead) != NULL) {
1656 #ifdef ETSEC_DEBUG
1657 		memset(rxq->rxq_mbufs, 0, sizeof(rxq->rxq_mbufs));
1658 #endif
1659 
1660 		if (discard) {
1661 			pq3etsec_rx_map_unload(sc, m);
1662 			m_freem(m);
1663 		} else {
1664 			while (m != NULL) {
1665 				struct mbuf *m0 = m->m_next;
1666 				m->m_next = NULL;
1667 				IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1668 				m = m0;
1669 			}
1670 		}
1671 
1672 	}
1673 
1674 	rxq->rxq_mconsumer = NULL;
1675 	rxq->rxq_mhead = NULL;
1676 	rxq->rxq_mtail = &rxq->rxq_mhead;
1677 	rxq->rxq_inuse = 0;
1678 }
1679 
1680 static void
1681 pq3etsec_rxq_reset(
1682 	struct pq3etsec_softc *sc,
1683 	struct pq3etsec_rxqueue *rxq)
1684 {
1685 	/*
1686 	 * sync all the descriptors
1687 	 */
1688 	pq3etsec_rxq_desc_postsync(sc, rxq, rxq->rxq_first,
1689 	    rxq->rxq_last - rxq->rxq_first);
1690 
1691 	/*
1692 	 * Make sure we own all descriptors in the ring.
1693 	 */
1694 	volatile struct rxbd *rxbd;
1695 	for (rxbd = rxq->rxq_first; rxbd < rxq->rxq_last - 1; rxbd++) {
1696 		rxbd->rxbd_flags = RXBD_I;
1697 	}
1698 
1699 	/*
1700 	 * Last descriptor has the wrap flag.
1701 	 */
1702 	rxbd->rxbd_flags = RXBD_W|RXBD_I;
1703 
1704 	/*
1705 	 * Reset the producer consumer indexes.
1706 	 */
1707 	rxq->rxq_consumer = rxq->rxq_first;
1708 	rxq->rxq_producer = rxq->rxq_first;
1709 	rxq->rxq_inuse = 0;
1710 	if (rxq->rxq_threshold < ETSEC_MINRXMBUFS)
1711 		rxq->rxq_threshold = ETSEC_MINRXMBUFS;
1712 
1713 	sc->sc_imask |= IEVENT_RXF|IEVENT_BSY;
1714 
1715 	/*
1716 	 * Restart the transmit at the first descriptor
1717 	 */
1718 	etsec_write(sc, rxq->rxq_reg_rbase, rxq->rxq_descmap->dm_segs->ds_addr);
1719 }
1720 
1721 static int
1722 pq3etsec_rxq_attach(
1723 	struct pq3etsec_softc *sc,
1724 	struct pq3etsec_rxqueue *rxq,
1725 	u_int qno)
1726 {
1727 	size_t map_size = PAGE_SIZE;
1728 	size_t desc_count = map_size / sizeof(struct rxbd);
1729 	int error;
1730 	void *descs;
1731 
1732 	error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1733 	   &rxq->rxq_descmap_seg, &rxq->rxq_descmap, &descs);
1734 	if (error)
1735 		return error;
1736 
1737 	memset(descs, 0, map_size);
1738 	rxq->rxq_first = descs;
1739 	rxq->rxq_last = rxq->rxq_first + desc_count;
1740 	rxq->rxq_consumer = descs;
1741 	rxq->rxq_producer = descs;
1742 
1743 	pq3etsec_rxq_purge(sc, rxq, true);
1744 	pq3etsec_rxq_reset(sc, rxq);
1745 
1746 	rxq->rxq_reg_rbase = RBASEn(qno);
1747 	rxq->rxq_qmask = RSTAT_QHLTn(qno) | RSTAT_RXFn(qno);
1748 
1749 	return 0;
1750 }
1751 
1752 static bool
1753 pq3etsec_txq_active_p(
1754 	struct pq3etsec_softc * const sc,
1755 	struct pq3etsec_txqueue *txq)
1756 {
1757 	return !IF_IS_EMPTY(&txq->txq_mbufs);
1758 }
1759 
1760 static bool
1761 pq3etsec_txq_fillable_p(
1762 	struct pq3etsec_softc * const sc,
1763 	struct pq3etsec_txqueue *txq)
1764 {
1765 	return txq->txq_free >= txq->txq_threshold;
1766 }
1767 
1768 static int
1769 pq3etsec_txq_attach(
1770 	struct pq3etsec_softc *sc,
1771 	struct pq3etsec_txqueue *txq,
1772 	u_int qno)
1773 {
1774 	size_t map_size = PAGE_SIZE;
1775 	size_t desc_count = map_size / sizeof(struct txbd);
1776 	int error;
1777 	void *descs;
1778 
1779 	error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1780 	   &txq->txq_descmap_seg, &txq->txq_descmap, &descs);
1781 	if (error)
1782 		return error;
1783 
1784 	memset(descs, 0, map_size);
1785 	txq->txq_first = descs;
1786 	txq->txq_last = txq->txq_first + desc_count;
1787 	txq->txq_consumer = descs;
1788 	txq->txq_producer = descs;
1789 
1790 	IFQ_SET_MAXLEN(&txq->txq_mbufs, ETSEC_MAXTXMBUFS);
1791 
1792 	txq->txq_reg_tbase = TBASEn(qno);
1793 	txq->txq_qmask = TSTAT_THLTn(qno) | TSTAT_TXFn(qno);
1794 
1795 	pq3etsec_txq_reset(sc, txq);
1796 
1797 	return 0;
1798 }
1799 
1800 static int
1801 pq3etsec_txq_map_load(
1802 	struct pq3etsec_softc *sc,
1803 	struct pq3etsec_txqueue *txq,
1804 	struct mbuf *m)
1805 {
1806 	bus_dmamap_t map;
1807 	int error;
1808 
1809 	map = M_GETCTX(m, bus_dmamap_t);
1810 	if (map != NULL)
1811 		return 0;
1812 
1813 	map = pq3etsec_mapcache_get(sc, sc->sc_tx_mapcache);
1814 	if (map == NULL)
1815 		return ENOMEM;
1816 
1817 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1818 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1819 	if (error)
1820 		return error;
1821 
1822 	bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_pkthdr.len,
1823 	    BUS_DMASYNC_PREWRITE);
1824 	M_SETCTX(m, map);
1825 	return 0;
1826 }
1827 
1828 static void
1829 pq3etsec_txq_map_unload(
1830 	struct pq3etsec_softc *sc,
1831 	struct pq3etsec_txqueue *txq,
1832 	struct mbuf *m)
1833 {
1834 	KASSERT(m);
1835 	bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1836 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1837 	    BUS_DMASYNC_POSTWRITE);
1838 	bus_dmamap_unload(sc->sc_dmat, map);
1839 	pq3etsec_mapcache_put(sc, sc->sc_tx_mapcache, map);
1840 }
1841 
1842 static bool
1843 pq3etsec_txq_produce(
1844 	struct pq3etsec_softc *sc,
1845 	struct pq3etsec_txqueue *txq,
1846 	struct mbuf *m)
1847 {
1848 	bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1849 
1850 	if (map->dm_nsegs > txq->txq_free)
1851 		return false;
1852 
1853 	/*
1854 	 * TCP Offload flag must be set in the first descriptor.
1855 	 */
1856 	volatile struct txbd *producer = txq->txq_producer;
1857 	uint16_t last_flags = TXBD_L;
1858 	uint16_t first_flags = TXBD_R
1859 	    | ((m->m_flags & M_HASFCB) ? TXBD_TOE : 0);
1860 
1861 	/*
1862 	 * If we've produced enough descriptors without consuming any
1863 	 * we need to ask for an interrupt to reclaim some.
1864 	 */
1865 	txq->txq_lastintr += map->dm_nsegs;
1866 	if (txq->txq_lastintr >= txq->txq_threshold
1867 	    || txq->txq_mbufs.ifq_len + 1 == txq->txq_mbufs.ifq_maxlen) {
1868 		txq->txq_lastintr = 0;
1869 		last_flags |= TXBD_I;
1870 	}
1871 
1872 #ifdef ETSEC_DEBUG
1873 	KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1874 #endif
1875 	KASSERT(producer != txq->txq_last);
1876 	producer->txbd_bufptr = map->dm_segs[0].ds_addr;
1877 	producer->txbd_len = map->dm_segs[0].ds_len;
1878 
1879 	if (map->dm_nsegs > 1) {
1880 		volatile struct txbd *start = producer + 1;
1881 		size_t count = map->dm_nsegs - 1;
1882 		for (u_int i = 1; i < map->dm_nsegs; i++) {
1883 			if (__predict_false(++producer == txq->txq_last)) {
1884 				producer = txq->txq_first;
1885 				if (start < txq->txq_last) {
1886 					pq3etsec_txq_desc_presync(sc, txq,
1887 					    start, txq->txq_last - start);
1888 					count -= txq->txq_last - start;
1889 				}
1890 				start = txq->txq_first;
1891 			}
1892 #ifdef ETSEC_DEBUG
1893 			KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1894 #endif
1895 			producer->txbd_bufptr = map->dm_segs[i].ds_addr;
1896 			producer->txbd_len = map->dm_segs[i].ds_len;
1897 			producer->txbd_flags = TXBD_R
1898 			    | (producer->txbd_flags & TXBD_W)
1899 			    | (i == map->dm_nsegs - 1 ? last_flags : 0);
1900 #if 0
1901 			printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__, producer - txq->txq_first,
1902 			    producer->txbd_flags, producer->txbd_len, producer->txbd_bufptr);
1903 #endif
1904 		}
1905 		pq3etsec_txq_desc_presync(sc, txq, start, count);
1906 	} else {
1907 		first_flags |= last_flags;
1908 	}
1909 
1910 	membar_producer();
1911 	txq->txq_producer->txbd_flags =
1912 	    first_flags | (txq->txq_producer->txbd_flags & TXBD_W);
1913 #if 0
1914 	printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__,
1915 	    txq->txq_producer - txq->txq_first, txq->txq_producer->txbd_flags,
1916 	    txq->txq_producer->txbd_len, txq->txq_producer->txbd_bufptr);
1917 #endif
1918 	pq3etsec_txq_desc_presync(sc, txq, txq->txq_producer, 1);
1919 
1920 	/*
1921 	 * Reduce free count by the number of segments we consumed.
1922 	 */
1923 	txq->txq_free -= map->dm_nsegs;
1924 	KASSERT(map->dm_nsegs == 1 || txq->txq_producer != producer);
1925 	KASSERT(map->dm_nsegs == 1 || (txq->txq_producer->txbd_flags & TXBD_L) == 0);
1926 	KASSERT(producer->txbd_flags & TXBD_L);
1927 #ifdef ETSEC_DEBUG
1928 	txq->txq_lmbufs[producer - txq->txq_first] = m;
1929 #endif
1930 
1931 #if 0
1932 	printf("%s: mbuf %p: produced a %u byte packet in %u segments (%u..%u)\n",
1933 	    __func__, m, m->m_pkthdr.len, map->dm_nsegs,
1934 	    txq->txq_producer - txq->txq_first, producer - txq->txq_first);
1935 #endif
1936 
1937 	if (++producer == txq->txq_last)
1938 		txq->txq_producer = txq->txq_first;
1939 	else
1940 		txq->txq_producer = producer;
1941 	IF_ENQUEUE(&txq->txq_mbufs, m);
1942 
1943 	/*
1944 	 * Restart the transmitter.
1945 	 */
1946 	etsec_write(sc, TSTAT, txq->txq_qmask & TSTAT_THLT);	/* W1C */
1947 
1948 	return true;
1949 }
1950 
1951 static void
1952 pq3etsec_tx_offload(
1953 	struct pq3etsec_softc *sc,
1954 	struct pq3etsec_txqueue *txq,
1955 	struct mbuf **mp)
1956 {
1957 	struct mbuf *m = *mp;
1958 	u_int csum_flags = m->m_pkthdr.csum_flags;
1959 	struct m_tag *vtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m);
1960 
1961 	KASSERT(m->m_flags & M_PKTHDR);
1962 
1963 	/*
1964 	 * Let see if we are doing any offload first.
1965 	 */
1966 	if (csum_flags == 0 && vtag == 0) {
1967 		m->m_flags &= ~M_HASFCB;
1968 		return;
1969 	}
1970 
1971 	uint16_t flags = 0;
1972 	if (csum_flags & M_CSUM_IP) {
1973 		flags |= TXFCB_IP
1974 		    | ((csum_flags & M_CSUM_IP6) ? TXFCB_IP6 : 0)
1975 		    | ((csum_flags & M_CSUM_TUP) ? TXFCB_TUP : 0)
1976 		    | ((csum_flags & M_CSUM_UDP) ? TXFCB_UDP : 0)
1977 		    | ((csum_flags & M_CSUM_CIP) ? TXFCB_CIP : 0)
1978 		    | ((csum_flags & M_CSUM_CTU) ? TXFCB_CTU : 0);
1979 	}
1980 	if (vtag) {
1981 		flags |= TXFCB_VLN;
1982 	}
1983 	if (flags == 0) {
1984 		m->m_flags &= ~M_HASFCB;
1985 		return;
1986 	}
1987 
1988 	struct txfcb fcb;
1989 	fcb.txfcb_flags = flags;
1990 	if (csum_flags & M_CSUM_IPv4)
1991 		fcb.txfcb_l4os = M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
1992 	else
1993 		fcb.txfcb_l4os = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
1994 	fcb.txfcb_l3os = ETHER_HDR_LEN;
1995 	fcb.txfcb_phcs = 0;
1996 	fcb.txfcb_vlctl = vtag ? VLAN_TAG_VALUE(vtag) & 0xffff : 0;
1997 
1998 #if 0
1999 	printf("%s: csum_flags=%#x: txfcb flags=%#x lsos=%u l4os=%u phcs=%u vlctl=%#x\n",
2000 	    __func__, csum_flags, fcb.txfcb_flags, fcb.txfcb_l3os, fcb.txfcb_l4os,
2001 	    fcb.txfcb_phcs, fcb.txfcb_vlctl);
2002 #endif
2003 
2004 	if (M_LEADINGSPACE(m) >= sizeof(fcb)) {
2005 		m->m_data -= sizeof(fcb);
2006 		m->m_len += sizeof(fcb);
2007 	} else if (!(m->m_flags & M_EXT) && MHLEN - m->m_len >= sizeof(fcb)) {
2008 		memmove(m->m_pktdat + sizeof(fcb), m->m_data, m->m_len);
2009 		m->m_data = m->m_pktdat;
2010 		m->m_len += sizeof(fcb);
2011 	} else {
2012 		struct mbuf *mn;
2013 		MGET(mn, M_DONTWAIT, m->m_type);
2014 		if (mn == NULL) {
2015 			if (csum_flags & M_CSUM_IP4) {
2016 #ifdef INET
2017 				ip_undefer_csum(m, ETHER_HDR_LEN,
2018 				    csum_flags & M_CSUM_IP4);
2019 #else
2020 				panic("%s: impossible M_CSUM flags %#x",
2021 				    device_xname(sc->sc_dev), csum_flags);
2022 #endif
2023 			} else if (csum_flags & M_CSUM_IP6) {
2024 #ifdef INET6
2025 				ip6_undefer_csum(m, ETHER_HDR_LEN,
2026 				    csum_flags & M_CSUM_IP6);
2027 #else
2028 				panic("%s: impossible M_CSUM flags %#x",
2029 				    device_xname(sc->sc_dev), csum_flags);
2030 #endif
2031 			} else if (vtag) {
2032 			}
2033 
2034 			m->m_flags &= ~M_HASFCB;
2035 			return;
2036 		}
2037 
2038 		M_MOVE_PKTHDR(mn, m);
2039 		mn->m_next = m;
2040 		m = mn;
2041 		MH_ALIGN(m, sizeof(fcb));
2042 		m->m_len = sizeof(fcb);
2043 		*mp = m;
2044 	}
2045 	m->m_pkthdr.len += sizeof(fcb);
2046 	m->m_flags |= M_HASFCB;
2047 	*mtod(m, struct txfcb *) = fcb;
2048 	return;
2049 }
2050 
2051 static bool
2052 pq3etsec_txq_enqueue(
2053 	struct pq3etsec_softc *sc,
2054 	struct pq3etsec_txqueue *txq)
2055 {
2056 	for (;;) {
2057 		if (IF_QFULL(&txq->txq_mbufs))
2058 			return false;
2059 		struct mbuf *m = txq->txq_next;
2060 		if (m == NULL) {
2061 			int s = splnet();
2062 			IF_DEQUEUE(&sc->sc_if.if_snd, m);
2063 			splx(s);
2064 			if (m == NULL)
2065 				return true;
2066 			M_SETCTX(m, NULL);
2067 			pq3etsec_tx_offload(sc, txq, &m);
2068 		} else {
2069 			txq->txq_next = NULL;
2070 		}
2071 		int error = pq3etsec_txq_map_load(sc, txq, m);
2072 		if (error) {
2073 			aprint_error_dev(sc->sc_dev,
2074 			    "discarded packet due to "
2075 			    "dmamap load failure: %d\n", error);
2076 			m_freem(m);
2077 			continue;
2078 		}
2079 		KASSERT(txq->txq_next == NULL);
2080 		if (!pq3etsec_txq_produce(sc, txq, m)) {
2081 			txq->txq_next = m;
2082 			return false;
2083 		}
2084 		KASSERT(txq->txq_next == NULL);
2085 	}
2086 }
2087 
2088 static bool
2089 pq3etsec_txq_consume(
2090 	struct pq3etsec_softc *sc,
2091 	struct pq3etsec_txqueue *txq)
2092 {
2093 	struct ifnet * const ifp = &sc->sc_if;
2094 	volatile struct txbd *consumer = txq->txq_consumer;
2095 	size_t txfree = 0;
2096 
2097 #if 0
2098 	printf("%s: entry: free=%zu\n", __func__, txq->txq_free);
2099 #endif
2100 	etsec_write(sc, TSTAT, TSTAT_TXF & txq->txq_qmask);
2101 
2102 	for (;;) {
2103 		if (consumer == txq->txq_producer) {
2104 			txq->txq_consumer = consumer;
2105 			txq->txq_free += txfree;
2106 			txq->txq_lastintr -= min(txq->txq_lastintr, txfree);
2107 #if 0
2108 			printf("%s: empty: freed %zu descriptors going form %zu to %zu\n",
2109 			    __func__, txfree, txq->txq_free - txfree, txq->txq_free);
2110 #endif
2111 			KASSERT(txq->txq_lastintr == 0);
2112 			KASSERT(txq->txq_free == txq->txq_last - txq->txq_first - 1);
2113 			return true;
2114 		}
2115 		pq3etsec_txq_desc_postsync(sc, txq, consumer, 1);
2116 		const uint16_t txbd_flags = consumer->txbd_flags;
2117 		if (txbd_flags & TXBD_R) {
2118 			txq->txq_consumer = consumer;
2119 			txq->txq_free += txfree;
2120 			txq->txq_lastintr -= min(txq->txq_lastintr, txfree);
2121 #if 0
2122 			printf("%s: freed %zu descriptors\n",
2123 			    __func__, txfree);
2124 #endif
2125 			return pq3etsec_txq_fillable_p(sc, txq);
2126 		}
2127 
2128 		/*
2129 		 * If this is the last descriptor in the chain, get the
2130 		 * mbuf, free its dmamap, and free the mbuf chain itself.
2131 		 */
2132 		if (txbd_flags & TXBD_L) {
2133 			struct mbuf *m;
2134 
2135 			IF_DEQUEUE(&txq->txq_mbufs, m);
2136 #ifdef ETSEC_DEBUG
2137 			KASSERTMSG(
2138 			    m == txq->txq_lmbufs[consumer-txq->txq_first],
2139 			    "%s: %p [%u]: flags %#x m (%p) != %p (%p)",
2140 			    __func__, consumer, consumer - txq->txq_first,
2141 			    txbd_flags, m,
2142 			    &txq->txq_lmbufs[consumer-txq->txq_first],
2143 			    txq->txq_lmbufs[consumer-txq->txq_first]);
2144 #endif
2145 			KASSERT(m);
2146 			pq3etsec_txq_map_unload(sc, txq, m);
2147 #if 0
2148 			printf("%s: mbuf %p: consumed a %u byte packet\n",
2149 			    __func__, m, m->m_pkthdr.len);
2150 #endif
2151 			if (m->m_flags & M_HASFCB)
2152 				m_adj(m, sizeof(struct txfcb));
2153 			ifp->if_opackets++;
2154 			ifp->if_obytes += m->m_pkthdr.len;
2155 			if (m->m_flags & M_MCAST)
2156 				ifp->if_omcasts++;
2157 			if (txbd_flags & TXBD_ERRORS)
2158 				ifp->if_oerrors++;
2159 			m_freem(m);
2160 #ifdef ETSEC_DEBUG
2161 			txq->txq_lmbufs[consumer - txq->txq_first] = NULL;
2162 #endif
2163 		} else {
2164 #ifdef ETSEC_DEBUG
2165 			KASSERT(txq->txq_lmbufs[consumer-txq->txq_first] == NULL);
2166 #endif
2167 		}
2168 
2169 		/*
2170 		 * We own this packet again.  Clear all flags except wrap.
2171 		 */
2172 		txfree++;
2173 		//consumer->txbd_flags = txbd_flags & TXBD_W;
2174 
2175 		/*
2176 		 * Wrap at the last entry!
2177 		 */
2178 		if (txbd_flags & TXBD_W) {
2179 			KASSERT(consumer + 1 == txq->txq_last);
2180 			consumer = txq->txq_first;
2181 		} else {
2182 			consumer++;
2183 			KASSERT(consumer < txq->txq_last);
2184 		}
2185 	}
2186 }
2187 
2188 static void
2189 pq3etsec_txq_purge(
2190 	struct pq3etsec_softc *sc,
2191 	struct pq3etsec_txqueue *txq)
2192 {
2193 	struct mbuf *m;
2194 	KASSERT((etsec_read(sc, MACCFG1) & MACCFG1_TX_EN) == 0);
2195 
2196 	for (;;) {
2197 		IF_DEQUEUE(&txq->txq_mbufs, m);
2198 		if (m == NULL)
2199 			break;
2200 		pq3etsec_txq_map_unload(sc, txq, m);
2201 		m_freem(m);
2202 	}
2203 	if ((m = txq->txq_next) != NULL) {
2204 		txq->txq_next = NULL;
2205 		pq3etsec_txq_map_unload(sc, txq, m);
2206 		m_freem(m);
2207 	}
2208 #ifdef ETSEC_DEBUG
2209 	memset(txq->txq_lmbufs, 0, sizeof(txq->txq_lmbufs));
2210 #endif
2211 }
2212 
2213 static void
2214 pq3etsec_txq_reset(
2215 	struct pq3etsec_softc *sc,
2216 	struct pq3etsec_txqueue *txq)
2217 {
2218 	/*
2219 	 * sync all the descriptors
2220 	 */
2221 	pq3etsec_txq_desc_postsync(sc, txq, txq->txq_first,
2222 	    txq->txq_last - txq->txq_first);
2223 
2224 	/*
2225 	 * Make sure we own all descriptors in the ring.
2226 	 */
2227 	volatile struct txbd *txbd;
2228 	for (txbd = txq->txq_first; txbd < txq->txq_last - 1; txbd++) {
2229 		txbd->txbd_flags = 0;
2230 	}
2231 
2232 	/*
2233 	 * Last descriptor has the wrap flag.
2234 	 */
2235 	txbd->txbd_flags = TXBD_W;
2236 
2237 	/*
2238 	 * Reset the producer consumer indexes.
2239 	 */
2240 	txq->txq_consumer = txq->txq_first;
2241 	txq->txq_producer = txq->txq_first;
2242 	txq->txq_free = txq->txq_last - txq->txq_first - 1;
2243 	txq->txq_threshold = txq->txq_free / 2;
2244 	txq->txq_lastintr = 0;
2245 
2246 	/*
2247 	 * What do we want to get interrupted on?
2248 	 */
2249 	sc->sc_imask |= IEVENT_TXF|IEVENT_TXE;
2250 
2251 	/*
2252 	 * Restart the transmit at the first descriptor
2253 	 */
2254 	etsec_write(sc, txq->txq_reg_tbase, txq->txq_descmap->dm_segs->ds_addr);
2255 }
2256 
2257 static void
2258 pq3etsec_ifstart(struct ifnet *ifp)
2259 {
2260 	struct pq3etsec_softc * const sc = ifp->if_softc;
2261 
2262 	atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2263 	softint_schedule(sc->sc_soft_ih);
2264 }
2265 
2266 static void
2267 pq3etsec_tx_error(
2268 	struct pq3etsec_softc * const sc)
2269 {
2270 	struct pq3etsec_txqueue * const txq = &sc->sc_txq;
2271 
2272 	pq3etsec_txq_consume(sc, txq);
2273 
2274 	if (pq3etsec_txq_fillable_p(sc, txq))
2275 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
2276 	if (sc->sc_txerrors & (IEVENT_LC|IEVENT_CRL|IEVENT_XFUN|IEVENT_BABT)) {
2277 	} else if (sc->sc_txerrors & IEVENT_EBERR) {
2278 	}
2279 
2280 	if (pq3etsec_txq_active_p(sc, txq))
2281 		etsec_write(sc, TSTAT, TSTAT_THLT & txq->txq_qmask);
2282 	if (!pq3etsec_txq_enqueue(sc, txq)) {
2283 		sc->sc_ev_tx_stall.ev_count++;
2284 		sc->sc_if.if_flags |= IFF_OACTIVE;
2285 	}
2286 
2287 	sc->sc_txerrors = 0;
2288 }
2289 
2290 int
2291 pq3etsec_tx_intr(void *arg)
2292 {
2293 	struct pq3etsec_softc * const sc = arg;
2294 
2295 	sc->sc_ev_tx_intr.ev_count++;
2296 
2297 	uint32_t ievent = etsec_read(sc, IEVENT);
2298 	ievent &= IEVENT_TXF|IEVENT_TXB;
2299 	etsec_write(sc, IEVENT, ievent);	/* write 1 to clear */
2300 
2301 #if 0
2302 	aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2303 	    __func__, ievent, etsec_read(sc, IMASK));
2304 #endif
2305 
2306 	if (ievent == 0)
2307 		return 0;
2308 
2309 	sc->sc_imask &= ~(IEVENT_TXF|IEVENT_TXB);
2310 	atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2311 	etsec_write(sc, IMASK, sc->sc_imask);
2312 	softint_schedule(sc->sc_soft_ih);
2313 	return 1;
2314 }
2315 
2316 int
2317 pq3etsec_rx_intr(void *arg)
2318 {
2319 	struct pq3etsec_softc * const sc = arg;
2320 
2321 	sc->sc_ev_rx_intr.ev_count++;
2322 
2323 	uint32_t ievent = etsec_read(sc, IEVENT);
2324 	ievent &= IEVENT_RXF|IEVENT_RXB;
2325 	etsec_write(sc, IEVENT, ievent);	/* write 1 to clear */
2326 	if (ievent == 0)
2327 		return 0;
2328 
2329 #if 0
2330 	aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x\n", __func__, ievent);
2331 #endif
2332 
2333 	sc->sc_imask &= ~(IEVENT_RXF|IEVENT_RXB);
2334 	atomic_or_uint(&sc->sc_soft_flags, SOFT_RXINTR);
2335 	etsec_write(sc, IMASK, sc->sc_imask);
2336 	softint_schedule(sc->sc_soft_ih);
2337 	return 1;
2338 }
2339 
2340 int
2341 pq3etsec_error_intr(void *arg)
2342 {
2343 	struct pq3etsec_softc * const sc = arg;
2344 
2345 	sc->sc_ev_error_intr.ev_count++;
2346 
2347 	for (int rv = 0, soft_flags = 0;; rv = 1) {
2348 		uint32_t ievent = etsec_read(sc, IEVENT);
2349 		ievent &= ~(IEVENT_RXF|IEVENT_RXB|IEVENT_TXF|IEVENT_TXB);
2350 		etsec_write(sc, IEVENT, ievent);	/* write 1 to clear */
2351 		if (ievent == 0) {
2352 			if (soft_flags) {
2353 				atomic_or_uint(&sc->sc_soft_flags, soft_flags);
2354 				softint_schedule(sc->sc_soft_ih);
2355 			}
2356 			return rv;
2357 		}
2358 #if 0
2359 		aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2360 		    __func__, ievent, etsec_read(sc, IMASK));
2361 #endif
2362 
2363 		if (ievent & (IEVENT_GRSC|IEVENT_GTSC)) {
2364 			sc->sc_imask &= ~(IEVENT_GRSC|IEVENT_GTSC);
2365 			etsec_write(sc, IMASK, sc->sc_imask);
2366 			wakeup(sc);
2367 		}
2368 		if (ievent & (IEVENT_MMRD|IEVENT_MMWR)) {
2369 			sc->sc_imask &= ~(IEVENT_MMRD|IEVENT_MMWR);
2370 			etsec_write(sc, IMASK, sc->sc_imask);
2371 			wakeup(&sc->sc_mii);
2372 		}
2373 		if (ievent & IEVENT_BSY) {
2374 			soft_flags |= SOFT_RXBSY;
2375 			sc->sc_imask &= ~IEVENT_BSY;
2376 			etsec_write(sc, IMASK, sc->sc_imask);
2377 		}
2378 		if (ievent & IEVENT_TXE) {
2379 			soft_flags |= SOFT_TXERROR;
2380 			sc->sc_imask &= ~IEVENT_TXE;
2381 			sc->sc_txerrors |= ievent;
2382 		}
2383 		if (ievent & IEVENT_TXC) {
2384 			sc->sc_ev_tx_pause.ev_count++;
2385 		}
2386 		if (ievent & IEVENT_RXC) {
2387 			sc->sc_ev_rx_pause.ev_count++;
2388 		}
2389 		if (ievent & IEVENT_DPE) {
2390 			soft_flags |= SOFT_RESET;
2391 			sc->sc_imask &= ~IEVENT_DPE;
2392 			etsec_write(sc, IMASK, sc->sc_imask);
2393 		}
2394 	}
2395 }
2396 
2397 void
2398 pq3etsec_soft_intr(void *arg)
2399 {
2400 	struct pq3etsec_softc * const sc = arg;
2401 	struct ifnet * const ifp = &sc->sc_if;
2402 
2403 	mutex_enter(sc->sc_lock);
2404 
2405 	u_int soft_flags = atomic_swap_uint(&sc->sc_soft_flags, 0);
2406 
2407 	sc->sc_ev_soft_intr.ev_count++;
2408 
2409 	if (soft_flags & SOFT_RESET) {
2410 		int s = splnet();
2411 		pq3etsec_ifinit(ifp);
2412 		splx(s);
2413 		soft_flags = 0;
2414 	}
2415 
2416 	if (soft_flags & SOFT_RXBSY) {
2417 		struct pq3etsec_rxqueue * const rxq = &sc->sc_rxq;
2418 		size_t threshold = 5 * rxq->rxq_threshold / 4;
2419 		if (threshold >= rxq->rxq_last - rxq->rxq_first) {
2420 			threshold = rxq->rxq_last - rxq->rxq_first - 1;
2421 		} else {
2422 			sc->sc_imask |= IEVENT_BSY;
2423 		}
2424 		aprint_normal_dev(sc->sc_dev,
2425 		    "increasing receive buffers from %zu to %zu\n",
2426 		    rxq->rxq_threshold, threshold);
2427 		rxq->rxq_threshold = threshold;
2428 	}
2429 
2430 	if ((soft_flags & SOFT_TXINTR)
2431 	    || pq3etsec_txq_active_p(sc, &sc->sc_txq)) {
2432 		/*
2433 		 * Let's do what we came here for.  Consume transmitted
2434 		 * packets off the the transmit ring.
2435 		 */
2436 		if (!pq3etsec_txq_consume(sc, &sc->sc_txq)
2437 		    || !pq3etsec_txq_enqueue(sc, &sc->sc_txq)) {
2438 			sc->sc_ev_tx_stall.ev_count++;
2439 			ifp->if_flags |= IFF_OACTIVE;
2440 		} else {
2441 			ifp->if_flags &= ~IFF_OACTIVE;
2442 		}
2443 		sc->sc_imask |= IEVENT_TXF;
2444 	}
2445 
2446 	if (soft_flags & (SOFT_RXINTR|SOFT_RXBSY)) {
2447 		/*
2448 		 * Let's consume
2449 		 */
2450 		pq3etsec_rxq_consume(sc, &sc->sc_rxq);
2451 		sc->sc_imask |= IEVENT_RXF;
2452 	}
2453 
2454 	if (soft_flags & SOFT_TXERROR) {
2455 		pq3etsec_tx_error(sc);
2456 		sc->sc_imask |= IEVENT_TXE;
2457 	}
2458 
2459 	if (ifp->if_flags & IFF_RUNNING) {
2460 		pq3etsec_rxq_produce(sc, &sc->sc_rxq);
2461 		etsec_write(sc, IMASK, sc->sc_imask);
2462 	} else {
2463 		KASSERT((soft_flags & SOFT_RXBSY) == 0);
2464 	}
2465 
2466 	mutex_exit(sc->sc_lock);
2467 }
2468 
2469 static void
2470 pq3etsec_mii_tick(void *arg)
2471 {
2472 	struct pq3etsec_softc * const sc = arg;
2473 	mutex_enter(sc->sc_lock);
2474 	callout_ack(&sc->sc_mii_callout);
2475 	sc->sc_ev_mii_ticks.ev_count++;
2476 #ifdef DEBUG
2477 	uint64_t now = mftb();
2478 	if (now - sc->sc_mii_last_tick < cpu_timebase - 5000) {
2479 		aprint_debug_dev(sc->sc_dev, "%s: diff=%"PRIu64"\n",
2480 		    __func__, now - sc->sc_mii_last_tick);
2481 		callout_stop(&sc->sc_mii_callout);
2482 	}
2483 #endif
2484 	mii_tick(&sc->sc_mii);
2485 	int s = splnet();
2486 	if (sc->sc_soft_flags & SOFT_RESET)
2487 		softint_schedule(sc->sc_soft_ih);
2488 	splx(s);
2489 	callout_schedule(&sc->sc_mii_callout, hz);
2490 #ifdef DEBUG
2491 	sc->sc_mii_last_tick = now;
2492 #endif
2493 	mutex_exit(sc->sc_lock);
2494 }
2495