xref: /netbsd-src/sys/arch/powerpc/booke/dev/pq3etsec.c (revision 46f5119e40af2e51998f686b2fdcc76b5488f7f3)
1 /*	$NetBSD: pq3etsec.c,v 1.3 2011/03/16 05:31:03 matt Exp $	*/
2 /*-
3  * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to The NetBSD Foundation
7  * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8  * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9  *
10  * This material is based upon work supported by the Defense Advanced Research
11  * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12  * Contract No. N66001-09-C-2073.
13  * Approved for Public Release, Distribution Unlimited
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 #include "opt_inet.h"
38 
39 #include <sys/cdefs.h>
40 
41 #include <sys/param.h>
42 #include <sys/cpu.h>
43 #include <sys/device.h>
44 #include <sys/mbuf.h>
45 #include <sys/ioctl.h>
46 #include <sys/intr.h>
47 #include <sys/bus.h>
48 #include <sys/kernel.h>
49 #include <sys/kmem.h>
50 #include <sys/proc.h>
51 #include <sys/atomic.h>
52 #include <sys/callout.h>
53 
54 #include <net/if.h>
55 #include <net/if_dl.h>
56 #include <net/if_ether.h>
57 #include <net/if_media.h>
58 
59 #include <dev/mii/miivar.h>
60 
61 #include "ioconf.h"
62 
63 #include <net/bpf.h>
64 
65 #ifdef INET
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/ip.h>
69 #include <netinet/in_offload.h>
70 #endif /* INET */
71 #ifdef INET6
72 #include <netinet6/in6.h>
73 #include <netinet/ip6.h>
74 #endif
75 #include <netinet6/in6_offload.h>
76 
77 
78 #include <powerpc/spr.h>
79 #include <powerpc/booke/spr.h>
80 
81 #include <powerpc/booke/cpuvar.h>
82 #include <powerpc/booke/e500var.h>
83 #include <powerpc/booke/e500reg.h>
84 #include <powerpc/booke/etsecreg.h>
85 
86 #define	M_HASFCB		M_LINK2	/* tx packet has FCB prepended */
87 
88 #define	ETSEC_MAXTXMBUFS	30
89 #define	ETSEC_NTXSEGS		30
90 #define	ETSEC_MAXRXMBUFS	511
91 #define	ETSEC_MINRXMBUFS	32
92 #define	ETSEC_NRXSEGS		1
93 
94 #define	IFCAP_RCTRL_IPCSEN	IFCAP_CSUM_IPv4_Rx
95 #define	IFCAP_RCTRL_TUCSEN	(IFCAP_CSUM_TCPv4_Rx\
96 				 |IFCAP_CSUM_UDPv4_Rx\
97 				 |IFCAP_CSUM_TCPv6_Rx\
98 				 |IFCAP_CSUM_UDPv6_Rx)
99 
100 #define	IFCAP_TCTRL_IPCSEN	IFCAP_CSUM_IPv4_Tx
101 #define	IFCAP_TCTRL_TUCSEN	(IFCAP_CSUM_TCPv4_Tx\
102 				 |IFCAP_CSUM_UDPv4_Tx\
103 				 |IFCAP_CSUM_TCPv6_Tx\
104 				 |IFCAP_CSUM_UDPv6_Tx)
105 
106 #define	IFCAP_ETSEC		(IFCAP_RCTRL_IPCSEN|IFCAP_RCTRL_TUCSEN\
107 				 |IFCAP_TCTRL_IPCSEN|IFCAP_TCTRL_TUCSEN)
108 
109 #define	M_CSUM_IP	(M_CSUM_CIP|M_CSUM_CTU)
110 #define	M_CSUM_IP6	(M_CSUM_TCPv6|M_CSUM_UDPv6)
111 #define	M_CSUM_TUP	(M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TCPv6|M_CSUM_UDPv6)
112 #define	M_CSUM_UDP	(M_CSUM_UDPv4|M_CSUM_UDPv6)
113 #define	M_CSUM_IP4	(M_CSUM_IPv4|M_CSUM_UDPv4|M_CSUM_TCPv4)
114 #define	M_CSUM_CIP	(M_CSUM_IPv4)
115 #define	M_CSUM_CTU	(M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TCPv6|M_CSUM_UDPv6)
116 
117 struct pq3etsec_txqueue {
118 	bus_dmamap_t txq_descmap;
119 	volatile struct txbd *txq_consumer;
120 	volatile struct txbd *txq_producer;
121 	volatile struct txbd *txq_first;
122 	volatile struct txbd *txq_last;
123 	struct ifqueue txq_mbufs;
124 	struct mbuf *txq_next;
125 #ifdef ETSEC_DEBUG
126 	struct mbuf *txq_lmbufs[512];
127 #endif
128 	uint32_t txq_qmask;
129 	uint32_t txq_free;
130 	uint32_t txq_threshold;
131 	uint32_t txq_lastintr;
132 	bus_size_t txq_reg_tbase;
133 	bus_dma_segment_t txq_descmap_seg;
134 };
135 
136 struct pq3etsec_rxqueue {
137 	bus_dmamap_t rxq_descmap;
138 	volatile struct rxbd *rxq_consumer;
139 	volatile struct rxbd *rxq_producer;
140 	volatile struct rxbd *rxq_first;
141 	volatile struct rxbd *rxq_last;
142 	struct mbuf *rxq_mhead;
143 	struct mbuf **rxq_mtail;
144 	struct mbuf *rxq_mconsumer;
145 #ifdef ETSEC_DEBUG
146 	struct mbuf *rxq_mbufs[512];
147 #endif
148 	uint32_t rxq_qmask;
149 	uint32_t rxq_inuse;
150 	uint32_t rxq_threshold;
151 	bus_size_t rxq_reg_rbase;
152 	bus_size_t rxq_reg_rbptr;
153 	bus_dma_segment_t rxq_descmap_seg;
154 };
155 
156 struct pq3etsec_mapcache {
157 	u_int dmc_nmaps;
158 	u_int dmc_maxseg;
159 	u_int dmc_maxmaps;
160 	u_int dmc_maxmapsize;
161 	bus_dmamap_t dmc_maps[0];
162 };
163 
164 struct pq3etsec_softc {
165 	device_t sc_dev;
166 	struct ethercom sc_ec;
167 #define sc_if		sc_ec.ec_if
168 	struct mii_data sc_mii;
169 	bus_space_tag_t sc_bst;
170 	bus_space_handle_t sc_bsh;
171 	bus_dma_tag_t sc_dmat;
172 	int sc_phy_addr;
173 	prop_dictionary_t sc_intrmap;
174 	uint32_t sc_intrmask;
175 
176 	uint32_t sc_soft_flags;
177 #define	SOFT_RESET		0x0001
178 #define	SOFT_RXINTR		0x0010
179 #define	SOFT_RXBSY		0x0020
180 #define	SOFT_TXINTR		0x0100
181 #define	SOFT_TXERROR		0x0200
182 
183 	struct pq3etsec_txqueue sc_txq;
184 	struct pq3etsec_rxqueue sc_rxq;
185 	uint32_t sc_txerrors;
186 	uint32_t sc_rxerrors;
187 
188 	size_t sc_rx_adjlen;
189 
190 	/*
191 	 * Copies of various ETSEC registers.
192 	 */
193 	uint32_t sc_imask;
194 	uint32_t sc_maccfg1;
195 	uint32_t sc_maccfg2;
196 	uint32_t sc_maxfrm;
197 	uint32_t sc_ecntrl;
198 	uint32_t sc_dmactrl;
199 	uint32_t sc_macstnaddr1;
200 	uint32_t sc_macstnaddr2;
201 	uint32_t sc_tctrl;
202 	uint32_t sc_rctrl;
203 	uint32_t sc_gaddr[16];
204 	uint64_t sc_macaddrs[15];
205 
206 	void *sc_tx_ih;
207 	void *sc_rx_ih;
208 	void *sc_error_ih;
209 	void *sc_soft_ih;
210 
211 	kmutex_t *sc_lock;
212 
213 	struct evcnt sc_ev_tx_stall;
214 	struct evcnt sc_ev_tx_intr;
215 	struct evcnt sc_ev_rx_stall;
216 	struct evcnt sc_ev_rx_intr;
217 	struct evcnt sc_ev_error_intr;
218 	struct evcnt sc_ev_soft_intr;
219 	struct evcnt sc_ev_tx_pause;
220 	struct evcnt sc_ev_rx_pause;
221 	struct evcnt sc_ev_mii_ticks;
222 
223 	struct callout sc_mii_callout;
224 	uint64_t sc_mii_last_tick;
225 
226 	struct ifqueue sc_rx_bufcache;
227 	struct pq3etsec_mapcache *sc_rx_mapcache;
228 	struct pq3etsec_mapcache *sc_tx_mapcache;
229 };
230 
231 static int pq3etsec_match(device_t, cfdata_t, void *);
232 static void pq3etsec_attach(device_t, device_t, void *);
233 
234 static void pq3etsec_ifstart(struct ifnet *);
235 static void pq3etsec_ifwatchdog(struct ifnet *);
236 static int pq3etsec_ifinit(struct ifnet *);
237 static void pq3etsec_ifstop(struct ifnet *, int);
238 static int pq3etsec_ifioctl(struct ifnet *, u_long, void *);
239 
240 static int pq3etsec_mapcache_create(struct pq3etsec_softc *,
241     struct pq3etsec_mapcache **, size_t, size_t, size_t, size_t);
242 static void pq3etsec_mapcache_destroy(struct pq3etsec_softc *,
243     struct pq3etsec_mapcache *);
244 static bus_dmamap_t pq3etsec_mapcache_get(struct pq3etsec_softc *,
245     struct pq3etsec_mapcache *);
246 static void pq3etsec_mapcache_put(struct pq3etsec_softc *,
247     struct pq3etsec_mapcache *, bus_dmamap_t);
248 
249 static int pq3etsec_txq_attach(struct pq3etsec_softc *,
250     struct pq3etsec_txqueue *, u_int);
251 static void pq3etsec_txq_purge(struct pq3etsec_softc *,
252     struct pq3etsec_txqueue *);
253 static void pq3etsec_txq_reset(struct pq3etsec_softc *,
254     struct pq3etsec_txqueue *);
255 static bool pq3etsec_txq_consume(struct pq3etsec_softc *,
256     struct pq3etsec_txqueue *);
257 static bool pq3etsec_txq_produce(struct pq3etsec_softc *,
258     struct pq3etsec_txqueue *, struct mbuf *m);
259 static bool pq3etsec_txq_active_p(struct pq3etsec_softc *,
260     struct pq3etsec_txqueue *);
261 
262 static int pq3etsec_rxq_attach(struct pq3etsec_softc *,
263     struct pq3etsec_rxqueue *, u_int);
264 static bool pq3etsec_rxq_produce(struct pq3etsec_softc *,
265     struct pq3etsec_rxqueue *);
266 static void pq3etsec_rxq_purge(struct pq3etsec_softc *,
267     struct pq3etsec_rxqueue *, bool);
268 static void pq3etsec_rxq_reset(struct pq3etsec_softc *,
269     struct pq3etsec_rxqueue *);
270 
271 static void pq3etsec_mc_setup(struct pq3etsec_softc *);
272 
273 static void pq3etsec_mii_tick(void *);
274 static int pq3etsec_rx_intr(void *);
275 static int pq3etsec_tx_intr(void *);
276 static int pq3etsec_error_intr(void *);
277 static void pq3etsec_soft_intr(void *);
278 
279 CFATTACH_DECL_NEW(pq3etsec, sizeof(struct pq3etsec_softc),
280     pq3etsec_match, pq3etsec_attach, NULL, NULL);
281 
282 static int
283 pq3etsec_match(device_t parent, cfdata_t cf, void *aux)
284 {
285 
286 	if (!e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
287 		return 0;
288 
289 	return 1;
290 }
291 
292 static inline uint32_t
293 etsec_read(struct pq3etsec_softc *sc, bus_size_t off)
294 {
295 	return bus_space_read_4(sc->sc_bst, sc->sc_bsh, off);
296 }
297 
298 static inline void
299 etsec_write(struct pq3etsec_softc *sc, bus_size_t off, uint32_t data)
300 {
301 	bus_space_write_4(sc->sc_bst, sc->sc_bsh, off, data);
302 }
303 
304 static int
305 pq3etsec_mii_readreg(device_t self, int phy, int reg)
306 {
307 	struct pq3etsec_softc * const sc = device_private(self);
308 	uint32_t miimcom = etsec_read(sc, MIIMCOM);
309 
310 //	int s = splnet();
311 
312 	etsec_write(sc, MIIMADD,
313 	    __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
314 
315 	etsec_write(sc, IEVENT, IEVENT_MMRD);
316 	etsec_write(sc, MIIMCOM, 0);	/* clear any past bits */
317 	etsec_write(sc, MIIMCOM, MIIMCOM_READ);
318 #if 0
319 	sc->sc_imask |= IEVENT_MMRD;
320 	etsec_write(sc, IMASK, sc->sc_imask);
321 #endif
322 
323 	while (etsec_read(sc, MIIMIND) != 0) {
324 			delay(1);
325 	}
326 	int data = etsec_read(sc, MIIMSTAT);
327 
328 	if (miimcom == MIIMCOM_SCAN)
329 		etsec_write(sc, MIIMCOM, miimcom);
330 
331 #if 0
332 	aprint_normal_dev(sc->sc_dev, "%s: phy %d reg %d: %#x\n",
333 	    __func__, phy, reg, data);
334 #endif
335 	etsec_write(sc, IEVENT, IEVENT_MMRD);
336 //	splx(s);
337 	return data;
338 }
339 
340 static void
341 pq3etsec_mii_writereg(device_t self, int phy, int reg, int data)
342 {
343 	struct pq3etsec_softc * const sc = device_private(self);
344 	uint32_t miimcom = etsec_read(sc, MIIMCOM);
345 
346 #if 0
347 	aprint_normal_dev(sc->sc_dev, "%s: phy %d reg %d: %#x\n",
348 	    __func__, phy, reg, data);
349 #endif
350 
351 //	int s = splnet();
352 	etsec_write(sc, IEVENT, IEVENT_MMWR);
353 	etsec_write(sc, MIIMADD,
354 	    __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
355 	etsec_write(sc, MIIMCOM, 0);	/* clear any past bits */
356 	etsec_write(sc, MIIMCON, data);
357 
358 #if 0
359 	sc->sc_imask |= IEVENT_MMWR;
360 	etsec_write(sc, IMASK, sc->sc_imask);
361 #endif
362 
363 	int timo = 1000;	/* 1ms */
364 	while ((etsec_read(sc, MIIMIND) & MIIMIND_BUSY) && --timo > 0) {
365 			delay(1);
366 	}
367 
368 	if (miimcom == MIIMCOM_SCAN)
369 		etsec_write(sc, MIIMCOM, miimcom);
370 	etsec_write(sc, IEVENT, IEVENT_MMWR);
371 //	splx(s);
372 }
373 
374 static void
375 pq3etsec_mii_statchg(device_t self)
376 {
377 	struct pq3etsec_softc * const sc = device_private(self);
378 	struct mii_data * const mii = &sc->sc_mii;
379 
380 	uint32_t maccfg1 = sc->sc_maccfg1;
381 	uint32_t maccfg2 = sc->sc_maccfg2;
382 	uint32_t ecntrl = sc->sc_ecntrl;
383 
384 	maccfg1 &= ~(MACCFG1_TX_FLOW|MACCFG1_RX_FLOW);
385 	maccfg2 &= ~(MACCFG2_IFMODE|MACCFG2_FD);
386 
387 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
388 		maccfg2 |= MACCFG2_FD;
389 	}
390 
391 	/*
392 	 * Now deal with the flow control bits.
393 	 */
394 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO
395 	    && (mii->mii_media_active & IFM_ETH_FMASK)) {
396 		if (mii->mii_media_active & IFM_ETH_RXPAUSE)
397 			maccfg1 |= MACCFG1_RX_FLOW;
398 		if (mii->mii_media_active & IFM_ETH_TXPAUSE)
399 			maccfg1 |= MACCFG1_TX_FLOW;
400 	}
401 
402 	/*
403 	 * Now deal with the speed.
404 	 */
405 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
406 		maccfg2 |= MACCFG2_IFMODE_GMII;
407 	} else {
408 		maccfg2 |= MACCFG2_IFMODE_MII;
409 		ecntrl &= ~ECNTRL_R100M;
410 		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_10_T) {
411 			ecntrl |= ECNTRL_R100M;
412 		}
413 	}
414 
415 	/*
416 	 * If things are different, re-init things.
417 	 */
418 	if (maccfg1 != sc->sc_maccfg1
419 	    || maccfg2 != sc->sc_maccfg2
420 	    || ecntrl != sc->sc_ecntrl) {
421 		if (sc->sc_if.if_flags & IFF_RUNNING)
422 			atomic_or_uint(&sc->sc_soft_flags, SOFT_RESET);
423 		sc->sc_maccfg1 = maccfg1;
424 		sc->sc_maccfg2 = maccfg2;
425 		sc->sc_ecntrl = ecntrl;
426 	}
427 }
428 
429 #if 0
430 static void
431 pq3etsec_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
432 {
433 	struct pq3etsec_softc * const sc = ifp->if_softc;
434 
435 	mii_pollstat(&sc->sc_mii);
436 	ether_mediastatus(ifp, ifmr);
437         ifmr->ifm_status = sc->sc_mii.mii_media_status;
438         ifmr->ifm_active = sc->sc_mii.mii_media_active;
439 }
440 
441 static int
442 pq3etsec_mediachange(struct ifnet *ifp)
443 {
444 	struct pq3etsec_softc * const sc = ifp->if_softc;
445 
446 	if ((ifp->if_flags & IFF_UP) == 0)
447 		return 0;
448 
449 	int rv = mii_mediachg(&sc->sc_mii);
450 	return (rv == ENXIO) ? 0 : rv;
451 }
452 #endif
453 
454 static void
455 pq3etsec_attach(device_t parent, device_t self, void *aux)
456 {
457 	struct cpunode_softc * const psc = device_private(parent);
458 	struct pq3etsec_softc * const sc = device_private(self);
459 	struct cpunode_attach_args * const cna = aux;
460 	struct cpunode_locators * const cnl = &cna->cna_locs;
461 	int error;
462 
463 	psc->sc_children |= cna->cna_childmask;
464 	sc->sc_dev = self;
465 	sc->sc_bst = cna->cna_memt;
466 	sc->sc_dmat = &booke_bus_dma_tag;
467 
468 	/*
469 	 * If we have a common MDIO bus, if all off instance 1.
470 	 */
471 	device_t miiself = (self->dv_cfdata->cf_flags & 0x100)
472 	    ? tsec_cd.cd_devs[0]
473 	    : self;
474 
475 	/*
476 	 * See if the phy is in the config file...
477 	 */
478 	if (self->dv_cfdata->cf_flags & 0x3f) {
479 		sc->sc_phy_addr = (self->dv_cfdata->cf_flags & 0x3f) - 1;
480 	} else {
481 		unsigned char prop_name[20];
482 		snprintf(prop_name, sizeof(prop_name), "tsec%u-phy-addr",
483 		    cnl->cnl_instance);
484 		sc->sc_phy_addr = board_info_get_number(prop_name);
485 	}
486 	aprint_normal(" phy %d", sc->sc_phy_addr);
487 
488 	error = bus_space_map(sc->sc_bst, cnl->cnl_addr, cnl->cnl_size, 0,
489 	    &sc->sc_bsh);
490 	if (error) {
491 		aprint_error(": error mapping registers: %d\n", error);
492 		return;
493 	}
494 
495 	/*
496 	 * Assume firmware has aready set the mac address and fetch it
497 	 * before we reinit it.
498 	 */
499 	sc->sc_macstnaddr2 = etsec_read(sc, MACSTNADDR2);
500 	sc->sc_macstnaddr1 = etsec_read(sc, MACSTNADDR1);
501 	sc->sc_rctrl = RCTRL_DEFAULT;
502 	sc->sc_maccfg2 = MACCFG2_DEFAULT;
503 
504 	if (sc->sc_macstnaddr1 == 0 && sc->sc_macstnaddr2 == 0) {
505 		size_t len;
506 		const uint8_t *mac_addr =
507 		    board_info_get_data("tsec-mac-addr-base", &len);
508 		KASSERT(len == ETHER_ADDR_LEN);
509 		sc->sc_macstnaddr2 =
510 		    (mac_addr[1] << 24)
511 		    | (mac_addr[0] << 16);
512 		sc->sc_macstnaddr1 =
513 		    ((mac_addr[5] + cnl->cnl_instance - 1) << 24)
514 		    | (mac_addr[4] << 16)
515 		    | (mac_addr[3] << 8)
516 		    | (mac_addr[2] << 0);
517 #if 0
518 		aprint_error(": mac-address unknown\n");
519 		return;
520 #endif
521 	}
522 
523 	char enaddr[ETHER_ADDR_LEN] = {
524 	    [0] = sc->sc_macstnaddr2 >> 16,
525 	    [1] = sc->sc_macstnaddr2 >> 24,
526 	    [2] = sc->sc_macstnaddr1 >>  0,
527 	    [3] = sc->sc_macstnaddr1 >>  8,
528 	    [4] = sc->sc_macstnaddr1 >> 16,
529 	    [5] = sc->sc_macstnaddr1 >> 24,
530 	};
531 
532 	error = pq3etsec_rxq_attach(sc, &sc->sc_rxq, 0);
533 	if (error) {
534 		aprint_error(": failed to init rxq: %d\n", error);
535 		return;
536 	}
537 
538 	error = pq3etsec_txq_attach(sc, &sc->sc_txq, 0);
539 	if (error) {
540 		aprint_error(": failed to init txq: %d\n", error);
541 		return;
542 	}
543 
544 	error = pq3etsec_mapcache_create(sc, &sc->sc_rx_mapcache,
545 	    ETSEC_MAXRXMBUFS, ETSEC_MINRXMBUFS, MCLBYTES, ETSEC_NRXSEGS);
546 	if (error) {
547 		aprint_error(": failed to allocate rx dmamaps: %d\n", error);
548 		return;
549 	}
550 
551 	error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
552 	    ETSEC_MAXTXMBUFS, ETSEC_MAXTXMBUFS, MCLBYTES, ETSEC_NTXSEGS);
553 	if (error) {
554 		aprint_error(": failed to allocate tx dmamaps: %d\n", error);
555 		return;
556 	}
557 
558 	sc->sc_tx_ih = intr_establish(cnl->cnl_intrs[0], IPL_VM, IST_ONCHIP,
559 	    pq3etsec_tx_intr, sc);
560 	if (sc->sc_tx_ih == NULL) {
561 		aprint_error(": failed to establish tx interrupt: %d\n",
562 		    cnl->cnl_intrs[0]);
563 		return;
564 	}
565 
566 	sc->sc_rx_ih = intr_establish(cnl->cnl_intrs[1], IPL_VM, IST_ONCHIP,
567 	    pq3etsec_rx_intr, sc);
568 	if (sc->sc_rx_ih == NULL) {
569 		aprint_error(": failed to establish rx interrupt: %d\n",
570 		    cnl->cnl_intrs[1]);
571 		return;
572 	}
573 
574 	sc->sc_error_ih = intr_establish(cnl->cnl_intrs[2], IPL_VM, IST_ONCHIP,
575 	    pq3etsec_error_intr, sc);
576 	if (sc->sc_error_ih == NULL) {
577 		aprint_error(": failed to establish error interrupt: %d\n",
578 		    cnl->cnl_intrs[2]);
579 		return;
580 	}
581 
582 	sc->sc_soft_ih = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
583 	    pq3etsec_soft_intr, sc);
584 	if (sc->sc_soft_ih == NULL) {
585 		aprint_error(": failed to establish soft interrupt\n");
586 		return;
587 	}
588 
589 	aprint_normal("\n");
590 
591 	sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
592 
593 	callout_init(&sc->sc_mii_callout, CALLOUT_MPSAFE);
594 	callout_setfunc(&sc->sc_mii_callout, pq3etsec_mii_tick, sc);
595 
596 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
597 	   ether_sprintf(enaddr));
598 
599 	const char * const xname = device_xname(sc->sc_dev);
600 	struct ethercom * const ec = &sc->sc_ec;
601 	struct ifnet * const ifp = &ec->ec_if;
602 
603 	ec->ec_mii = &sc->sc_mii;
604 
605 	sc->sc_mii.mii_ifp = ifp;
606 	sc->sc_mii.mii_readreg = pq3etsec_mii_readreg;
607 	sc->sc_mii.mii_writereg = pq3etsec_mii_writereg;
608 	sc->sc_mii.mii_statchg = pq3etsec_mii_statchg;
609 
610 	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
611 	    ether_mediastatus);
612 
613 	if (sc->sc_phy_addr < 32) {
614 		mii_attach(miiself, &sc->sc_mii, 0xffffffff,
615 		    sc->sc_phy_addr, MII_OFFSET_ANY, MIIF_DOPAUSE);
616 
617 		if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
618 			ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
619 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
620 		} else {
621 			callout_schedule(&sc->sc_mii_callout, hz);
622 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
623 		}
624 	} else {
625 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
626 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_1000_T|IFM_FDX);
627 	}
628 
629 	ec->ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING
630 	    | ETHERCAP_JUMBO_MTU;
631 
632 	strlcpy(ifp->if_xname, xname, IFNAMSIZ);
633 	ifp->if_softc = sc;
634 	ifp->if_capabilities = IFCAP_ETSEC;
635 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
636 	ifp->if_ioctl = pq3etsec_ifioctl;
637 	ifp->if_start = pq3etsec_ifstart;
638 	ifp->if_watchdog = pq3etsec_ifwatchdog;
639 	ifp->if_init = pq3etsec_ifinit;
640 	ifp->if_stop = pq3etsec_ifstop;
641 	IFQ_SET_READY(&ifp->if_snd);
642 
643 	pq3etsec_ifstop(ifp, true);
644 
645 	/*
646 	 * Attach the interface.
647 	 */
648 	if_attach(ifp);
649 	ether_ifattach(ifp, enaddr);
650 
651 	evcnt_attach_dynamic(&sc->sc_ev_rx_stall, EVCNT_TYPE_MISC,
652 	    NULL, xname, "rx stall");
653 	evcnt_attach_dynamic(&sc->sc_ev_tx_stall, EVCNT_TYPE_MISC,
654 	    NULL, xname, "tx stall");
655 	evcnt_attach_dynamic(&sc->sc_ev_tx_intr, EVCNT_TYPE_INTR,
656 	    NULL, xname, "tx intr");
657 	evcnt_attach_dynamic(&sc->sc_ev_rx_intr, EVCNT_TYPE_INTR,
658 	    NULL, xname, "rx intr");
659 	evcnt_attach_dynamic(&sc->sc_ev_error_intr, EVCNT_TYPE_INTR,
660 	    NULL, xname, "error intr");
661 	evcnt_attach_dynamic(&sc->sc_ev_soft_intr, EVCNT_TYPE_INTR,
662 	    NULL, xname, "soft intr");
663 	evcnt_attach_dynamic(&sc->sc_ev_tx_pause, EVCNT_TYPE_MISC,
664 	    NULL, xname, "tx pause");
665 	evcnt_attach_dynamic(&sc->sc_ev_rx_pause, EVCNT_TYPE_MISC,
666 	    NULL, xname, "rx pause");
667 	evcnt_attach_dynamic(&sc->sc_ev_mii_ticks, EVCNT_TYPE_MISC,
668 	    NULL, xname, "mii ticks");
669 }
670 
671 static uint64_t
672 pq3etsec_macaddr_create(const uint8_t *lladdr)
673 {
674 	uint64_t macaddr = 0;
675 
676 	lladdr += ETHER_ADDR_LEN;
677 	for (u_int i = ETHER_ADDR_LEN; i-- > 0; ) {
678 		macaddr = (macaddr << 8) | *--lladdr;
679 	}
680 	return macaddr << 16;
681 }
682 
683 static int
684 pq3etsec_ifinit(struct ifnet *ifp)
685 {
686 	struct pq3etsec_softc * const sc = ifp->if_softc;
687 	int error = 0;
688 
689 	sc->sc_maxfrm = max(ifp->if_mtu + 32, MCLBYTES);
690 	if (ifp->if_mtu > ETHERMTU_JUMBO)
691 		return error;
692 
693 	KASSERT(ifp->if_flags & IFF_UP);
694 
695 	/*
696 	 * Stop the interface (steps 1 to 4 in the Soft Reset and
697 	 * Reconfigurating Procedure.
698 	 */
699 	pq3etsec_ifstop(ifp, 0);
700 
701 	/*
702 	 * If our frame size has changed (or it's our first time through)
703 	 * destroy the existing transmit mapcache.
704 	 */
705 	if (sc->sc_tx_mapcache != NULL
706 	    && sc->sc_maxfrm != sc->sc_tx_mapcache->dmc_maxmapsize) {
707 		pq3etsec_mapcache_destroy(sc, sc->sc_tx_mapcache);
708 		sc->sc_tx_mapcache = NULL;
709 	}
710 
711 	if (sc->sc_tx_mapcache == NULL) {
712 		error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
713 		    ETSEC_MAXTXMBUFS, ETSEC_MAXTXMBUFS, sc->sc_maxfrm,
714 		    ETSEC_NTXSEGS);
715 		if (error)
716 			return error;
717 	}
718 
719 	sc->sc_ev_mii_ticks.ev_count++;
720 	mii_tick(&sc->sc_mii);
721 
722 	if (ifp->if_flags & IFF_PROMISC) {
723 		sc->sc_rctrl |= RCTRL_PROM;
724 	} else {
725 		sc->sc_rctrl &= ~RCTRL_PROM;
726 	}
727 
728 	uint32_t rctrl_prsdep = 0;
729 	sc->sc_rctrl &= ~(RCTRL_IPCSEN|RCTRL_TUCSEN|RCTRL_VLEX|RCTRL_PRSDEP);
730 	if (VLAN_ATTACHED(&sc->sc_ec)) {
731 		sc->sc_rctrl |= RCTRL_VLEX;
732 		rctrl_prsdep = RCTRL_PRSDEP_L2;
733 	}
734 	if (ifp->if_capenable & IFCAP_RCTRL_IPCSEN) {
735 		sc->sc_rctrl |= RCTRL_IPCSEN;
736 		rctrl_prsdep = RCTRL_PRSDEP_L3;
737 	}
738 	if (ifp->if_capenable & IFCAP_RCTRL_TUCSEN) {
739 		sc->sc_rctrl |= RCTRL_TUCSEN;
740 		rctrl_prsdep = RCTRL_PRSDEP_L4;
741 	}
742 	sc->sc_rctrl |= rctrl_prsdep;
743 #if 0
744 	if (sc->sc_rctrl & (RCTRL_IPCSEN|RCTRL_TUCSEN|RCTRL_VLEX|RCTRL_PRSDEP))
745 		aprint_normal_dev(sc->sc_dev,
746 		    "rctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlex=%"PRIuMAX" prsdep=%"PRIuMAX"\n",
747 		    sc->sc_rctrl,
748 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_IPCSEN),
749 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_TUCSEN),
750 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_VLEX),
751 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_PRSDEP));
752 #endif
753 
754 	sc->sc_tctrl &= ~(TCTRL_IPCSEN|TCTRL_TUCSEN|TCTRL_VLINS);
755 	if (VLAN_ATTACHED(&sc->sc_ec))		/* is this really true */
756 		sc->sc_tctrl |= TCTRL_VLINS;
757 	if (ifp->if_capenable & IFCAP_TCTRL_IPCSEN)
758 		sc->sc_tctrl |= TCTRL_IPCSEN;
759 	if (ifp->if_capenable & IFCAP_TCTRL_TUCSEN)
760 		sc->sc_tctrl |= TCTRL_TUCSEN;
761 #if 0
762 	if (sc->sc_tctrl & (TCTRL_IPCSEN|TCTRL_TUCSEN|TCTRL_VLINS))
763 		aprint_normal_dev(sc->sc_dev,
764 		    "tctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlins=%"PRIuMAX"\n",
765 		    sc->sc_tctrl,
766 		    __SHIFTOUT(sc->sc_tctrl, TCTRL_IPCSEN),
767 		    __SHIFTOUT(sc->sc_tctrl, TCTRL_TUCSEN),
768 		    __SHIFTOUT(sc->sc_tctrl, TCTRL_VLINS));
769 #endif
770 
771 	sc->sc_maccfg1 &= ~(MACCFG1_TX_EN|MACCFG1_RX_EN);
772 
773 	const uint64_t macstnaddr =
774 	    pq3etsec_macaddr_create(CLLADDR(ifp->if_sadl));
775 
776 	sc->sc_imask = IEVENT_DPE;
777 
778 	/* 5. Load TDBPH, TBASEH, TBASE0-TBASE7 with new Tx BD pointers */
779 	pq3etsec_rxq_reset(sc, &sc->sc_rxq);
780 	pq3etsec_rxq_produce(sc, &sc->sc_rxq);	/* fill with rx buffers */
781 
782 	/* 6. Load RDBPH, RBASEH, RBASE0-RBASE7 with new Rx BD pointers */
783 	pq3etsec_txq_reset(sc, &sc->sc_txq);
784 
785 	/* 7. Setup other MAC registers (MACCFG2, MAXFRM, etc.) */
786 	KASSERT(MACCFG2_PADCRC & sc->sc_maccfg2);
787 	etsec_write(sc, MAXFRM, sc->sc_maxfrm);
788 	etsec_write(sc, MACSTNADDR1, (uint32_t)(macstnaddr >> 32));
789 	etsec_write(sc, MACSTNADDR2, (uint32_t)(macstnaddr >>  0));
790 	etsec_write(sc, MACCFG1, sc->sc_maccfg1);
791 	etsec_write(sc, MACCFG2, sc->sc_maccfg2);
792 	etsec_write(sc, ECNTRL, sc->sc_ecntrl);
793 
794 	/* 8. Setup group address hash table (GADDR0-GADDR15) */
795 	pq3etsec_mc_setup(sc);
796 
797 	/* 9. Setup receive frame filer table (via RQFAR, RQFCR, and RQFPR) */
798 	etsec_write(sc, MRBLR, MCLBYTES);
799 
800 	/* 10. Setup WWR, WOP, TOD bits in DMACTRL register */
801 	sc->sc_dmactrl |= DMACTRL_DEFAULT;
802 	etsec_write(sc, DMACTRL, sc->sc_dmactrl);
803 
804 	/* 11. Enable transmit queues in TQUEUE, and ensure that the transmit scheduling mode is correctly set in TCTRL. */
805 	etsec_write(sc, TQUEUE, TQUEUE_EN0);
806 	sc->sc_imask |= IEVENT_TXF|IEVENT_TXE|IEVENT_TXC;
807 
808 	etsec_write(sc, TCTRL, sc->sc_tctrl);	/* for TOE stuff */
809 
810 	/* 12. Enable receive queues in RQUEUE, */
811 	etsec_write(sc, RQUEUE, RQUEUE_EN0|RQUEUE_EX0);
812 	sc->sc_imask |= IEVENT_RXF|IEVENT_BSY|IEVENT_RXC;
813 
814 	/*     and optionally set TOE functionality in RCTRL. */
815 	etsec_write(sc, RCTRL, sc->sc_rctrl);
816 	sc->sc_rx_adjlen = __SHIFTOUT(sc->sc_rctrl, RCTRL_PAL);
817 	if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF)
818 		sc->sc_rx_adjlen += sizeof(struct rxfcb);
819 
820 	/* 13. Clear THLT and TXF bits in TSTAT register by writing 1 to them */
821 	etsec_write(sc, TSTAT, TSTAT_THLT | TSTAT_TXF);
822 
823 	/* 14. Clear QHLT and RXF bits in RSTAT register by writing 1 to them.*/
824 	etsec_write(sc, RSTAT, RSTAT_QHLT | RSTAT_RXF);
825 
826 	/* 15. Clear GRS/GTS bits in DMACTRL (do not change other bits) */
827 	sc->sc_dmactrl &= ~(DMACTRL_GRS|DMACTRL_GTS);
828 	etsec_write(sc, DMACTRL, sc->sc_dmactrl);
829 
830 	/* 16. Enable Tx_EN/Rx_EN in MACCFG1 register */
831 	etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
832 	etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
833 
834 	sc->sc_soft_flags = 0;
835 
836 	etsec_write(sc, IMASK, sc->sc_imask);
837 
838 	ifp->if_flags |= IFF_RUNNING;
839 
840 	return error;
841 }
842 
843 static void
844 pq3etsec_ifstop(struct ifnet *ifp, int disable)
845 {
846 	struct pq3etsec_softc * const sc = ifp->if_softc;
847 
848 	KASSERT(!cpu_intr_p());
849 	const uint32_t imask_gsc_mask = IEVENT_GTSC|IEVENT_GRSC;
850 	/*
851 	 * Clear the GTSC and GRSC from the interrupt mask until
852 	 * we are ready for them.  Then clear them from IEVENT,
853 	 * request the graceful shutdown, and then enable the
854 	 * GTSC and GRSC bits in the mask.  This should cause the
855 	 * error interrupt to fire which will issue a wakeup to
856 	 * allow us to resume.
857 	 */
858 
859 	/*
860 	 * 1. Set GRS/GTS bits in DMACTRL register
861 	 */
862 	sc->sc_dmactrl |= DMACTRL_GRS|DMACTRL_GTS;
863 	etsec_write(sc, IMASK, sc->sc_imask & ~imask_gsc_mask);
864 	etsec_write(sc, IEVENT, imask_gsc_mask);
865 	etsec_write(sc, DMACTRL, sc->sc_dmactrl);
866 
867 	if (etsec_read(sc, MACCFG1) & (MACCFG1_TX_EN|MACCFG1_RX_EN)) {
868 		/*
869 		 * 2. Poll GRSC/GTSC bits in IEVENT register until both are set
870 		 */
871 		etsec_write(sc, IMASK, sc->sc_imask | imask_gsc_mask);
872 
873 		u_int timo = 1000;
874 		uint32_t ievent = etsec_read(sc, IEVENT);
875 		while ((ievent & imask_gsc_mask) != imask_gsc_mask) {
876 			if (--timo == 0) {
877 				aprint_error_dev(sc->sc_dev,
878 				    "WARNING: "
879 				    "request to stop failed (IEVENT=%#x)\n",
880 				    ievent);
881 				break;
882 			}
883 			delay(10);
884 			ievent = etsec_read(sc, IEVENT);
885 		}
886 	}
887 
888 	/*
889 	 * Now reset the controller.
890 	 *
891 	 * 3. Set SOFT_RESET bit in MACCFG1 register
892 	 * 4. Clear SOFT_RESET bit in MACCFG1 register
893 	 */
894 	etsec_write(sc, MACCFG1, MACCFG1_SOFT_RESET);
895 	etsec_write(sc, MACCFG1, 0);
896 	etsec_write(sc, IMASK, 0);
897 	etsec_write(sc, IEVENT, ~0);
898 	sc->sc_imask = 0;
899 	ifp->if_flags &= ~IFF_RUNNING;
900 
901 	uint32_t tbipa = etsec_read(sc, TBIPA);
902 	if (tbipa == sc->sc_phy_addr) {
903 		aprint_normal_dev(sc->sc_dev, "relocating TBI\n");
904 		etsec_write(sc, TBIPA, 0x1f);
905 	}
906 	uint32_t miimcfg = etsec_read(sc, MIIMCFG);
907 	etsec_write(sc, MIIMCFG, MIIMCFG_RESET);
908 	etsec_write(sc, MIIMCFG, miimcfg);
909 
910 	/*
911 	 * Let's consume any remaing transmitted packets.  And if we are
912 	 * disabling the interface, purge ourselves of any untransmitted
913 	 * packets.  But don't consume any received packets, just drop them.
914 	 * If we aren't disabling the interface, save the mbufs in the
915 	 * receive queue for reuse.
916 	 */
917 	pq3etsec_rxq_purge(sc, &sc->sc_rxq, disable);
918 	pq3etsec_txq_consume(sc, &sc->sc_txq);
919 	if (disable) {
920 		pq3etsec_txq_purge(sc, &sc->sc_txq);
921 		IF_PURGE(&ifp->if_snd);
922 	}
923 }
924 
925 static void
926 pq3etsec_ifwatchdog(struct ifnet *ifp)
927 {
928 }
929 
930 static void
931 pq3etsec_mc_setup(
932 	struct pq3etsec_softc *sc)
933 {
934 	struct ethercom * const ec = &sc->sc_ec;
935 	struct ifnet * const ifp = &sc->sc_if;
936 	struct ether_multi *enm;
937 	struct ether_multistep step;
938 	uint32_t *gaddr = sc->sc_gaddr + ((sc->sc_rctrl & RCTRL_GHTX) ? 0 : 8);
939 	const uint32_t crc_shift = 32 - ((sc->sc_rctrl & RCTRL_GHTX) ? 9 : 8);
940 
941 	memset(sc->sc_gaddr, 0, sizeof(sc->sc_gaddr));
942 	memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
943 
944 	ifp->if_flags &= ~IFF_ALLMULTI;
945 
946 	ETHER_FIRST_MULTI(step, ec, enm);
947 	for (u_int i = 0; enm != NULL; ) {
948 		const char *addr = enm->enm_addrlo;
949 		if (memcmp(addr, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
950 			ifp->if_flags |= IFF_ALLMULTI;
951 			memset(gaddr, 0xff, 32 << (crc_shift & 1));
952 			memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
953 			break;
954 		}
955 		if ((sc->sc_rctrl & RCTRL_EMEN)
956 		    && i < __arraycount(sc->sc_macaddrs)) {
957 			sc->sc_macaddrs[i++] = pq3etsec_macaddr_create(addr);
958 		} else {
959 			uint32_t crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
960 #if 0
961 			printf("%s: %s: crc=%#x: %#x: [%u,%u]=%#x\n", __func__,
962 			    ether_sprintf(addr), crc,
963 			    crc >> crc_shift,
964 			    crc >> (crc_shift + 5),
965 			    (crc >> crc_shift) & 31,
966 			    1 << (((crc >> crc_shift) & 31) ^ 31));
967 #endif
968 			/*
969 			 * The documentation doesn't completely follow PowerPC
970 			 * bit order.  The BE crc32 (H) for 01:00:5E:00:00:01
971 			 * is 0x7fa32d9b.  By empirical testing, the
972 			 * corresponding hash bit is word 3, bit 31 (ppc bit
973 			 * order).  Since 3 << 31 | 31 is 0x7f, we deduce
974 			 * H[0:2] selects the register while H[3:7] selects
975 			 * the bit (ppc bit order).
976 			 */
977 			crc >>= crc_shift;
978 			gaddr[crc / 32] |= 1 << ((crc & 31) ^ 31);
979 		}
980 		ETHER_NEXT_MULTI(step, enm);
981 	}
982 	for (u_int i = 0; i < 8; i++) {
983 		etsec_write(sc, IGADDR(i), sc->sc_gaddr[i]);
984 		etsec_write(sc, GADDR(i), sc->sc_gaddr[i+8]);
985 #if 0
986 		if (sc->sc_gaddr[i] || sc->sc_gaddr[i+8])
987 		printf("%s: IGADDR%u(%#x)=%#x GADDR%u(%#x)=%#x\n", __func__,
988 		    i, IGADDR(i), etsec_read(sc, IGADDR(i)),
989 		    i, GADDR(i), etsec_read(sc, GADDR(i)));
990 #endif
991 	}
992 	for (u_int i = 0; i < __arraycount(sc->sc_macaddrs); i++) {
993 		uint64_t macaddr = sc->sc_macaddrs[i];
994 		etsec_write(sc, MACnADDR1(i), (uint32_t)(macaddr >> 32));
995 		etsec_write(sc, MACnADDR2(i), (uint32_t)(macaddr >>  0));
996 #if 0
997 		if (macaddr)
998 		printf("%s: MAC%02uADDR2(%08x)=%#x MAC%02uADDR2(%#x)=%08x\n", __func__,
999 		    i+1, MACnADDR1(i), etsec_read(sc, MACnADDR1(i)),
1000 		    i+1, MACnADDR2(i), etsec_read(sc, MACnADDR2(i)));
1001 #endif
1002 	}
1003 }
1004 
1005 static int
1006 pq3etsec_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
1007 {
1008 	struct pq3etsec_softc *sc  = ifp->if_softc;
1009 	struct ifreq * const ifr = data;
1010 	const int s = splnet();
1011 	int error;
1012 
1013 	switch (cmd) {
1014 	case SIOCSIFMEDIA:
1015 	case SIOCGIFMEDIA:
1016 		/* Flow control requires full-duplex mode. */
1017 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1018 		    (ifr->ifr_media & IFM_FDX) == 0)
1019 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1020 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1021 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1022 				/* We can do both TXPAUSE and RXPAUSE. */
1023 				ifr->ifr_media |=
1024 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1025 			}
1026 		}
1027 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1028 		break;
1029 
1030 	default:
1031 		error = ether_ioctl(ifp, cmd, data);
1032 		if (error != ENETRESET)
1033 			break;
1034 
1035 		if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
1036 			error = 0;
1037 			if (ifp->if_flags & IFF_RUNNING)
1038 				pq3etsec_mc_setup(sc);
1039 			break;
1040 		}
1041 		error = pq3etsec_ifinit(ifp);
1042 		break;
1043 	}
1044 
1045 	splx(s);
1046 	return error;
1047 }
1048 
1049 static void
1050 pq3etsec_rxq_desc_presync(
1051 	struct pq3etsec_softc *sc,
1052 	struct pq3etsec_rxqueue *rxq,
1053 	volatile struct rxbd *rxbd,
1054 	size_t count)
1055 {
1056 	bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1057 	    (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1058 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1059 }
1060 
1061 static void
1062 pq3etsec_rxq_desc_postsync(
1063 	struct pq3etsec_softc *sc,
1064 	struct pq3etsec_rxqueue *rxq,
1065 	volatile struct rxbd *rxbd,
1066 	size_t count)
1067 {
1068 	bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1069 	    (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1070 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1071 }
1072 
1073 static void
1074 pq3etsec_txq_desc_presync(
1075 	struct pq3etsec_softc *sc,
1076 	struct pq3etsec_txqueue *txq,
1077 	volatile struct txbd *txbd,
1078 	size_t count)
1079 {
1080 	bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1081 	    (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1082 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1083 }
1084 
1085 static void
1086 pq3etsec_txq_desc_postsync(
1087 	struct pq3etsec_softc *sc,
1088 	struct pq3etsec_txqueue *txq,
1089 	volatile struct txbd *txbd,
1090 	size_t count)
1091 {
1092 	bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1093 	    (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1094 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1095 }
1096 
1097 static bus_dmamap_t
1098 pq3etsec_mapcache_get(
1099 	struct pq3etsec_softc *sc,
1100 	struct pq3etsec_mapcache *dmc)
1101 {
1102 	if (dmc->dmc_nmaps == 0) {
1103 		bus_dmamap_t map;
1104 		int error = bus_dmamap_create(sc->sc_dmat, dmc->dmc_maxmapsize,
1105 			dmc->dmc_maxseg, dmc->dmc_maxmapsize, 0,
1106 			BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW, &map);
1107 		if (error) {
1108 			aprint_error_dev(sc->sc_dev,
1109 			    "failed to allocate a %zuB map: %d\n",
1110 			    dmc->dmc_maxmapsize, error);
1111 			return NULL;
1112 		}
1113 		return map;
1114 	}
1115 
1116 	KASSERT(dmc->dmc_maps[dmc->dmc_nmaps-1] != NULL);
1117 	return dmc->dmc_maps[--dmc->dmc_nmaps];
1118 }
1119 
1120 static void
1121 pq3etsec_mapcache_put(
1122 	struct pq3etsec_softc *sc,
1123 	struct pq3etsec_mapcache *dmc,
1124 	bus_dmamap_t map)
1125 {
1126 	KASSERT(map != NULL);
1127 	KASSERT(dmc->dmc_nmaps < dmc->dmc_maxmaps);
1128 	dmc->dmc_maps[dmc->dmc_nmaps++] = map;
1129 }
1130 
1131 static void
1132 pq3etsec_mapcache_destroy(
1133 	struct pq3etsec_softc *sc,
1134 	struct pq3etsec_mapcache *dmc)
1135 {
1136 	const size_t dmc_size =
1137 	    offsetof(struct pq3etsec_mapcache, dmc_maps[dmc->dmc_maxmaps]);
1138 
1139 	for (u_int i = 0; i < dmc->dmc_maxmaps; i++) {
1140 		bus_dmamap_destroy(sc->sc_dmat, dmc->dmc_maps[i]);
1141 	}
1142 	kmem_free(dmc, dmc_size);
1143 }
1144 
1145 static int
1146 pq3etsec_mapcache_create(
1147 	struct pq3etsec_softc *sc,
1148 	struct pq3etsec_mapcache **dmc_p,
1149 	size_t maxmaps,
1150 	size_t minmaps,
1151 	size_t maxmapsize,
1152 	size_t maxseg)
1153 {
1154 	const size_t dmc_size =
1155 	    offsetof(struct pq3etsec_mapcache, dmc_maps[maxmaps]);
1156 	struct pq3etsec_mapcache * const dmc = kmem_zalloc(dmc_size, KM_SLEEP);
1157 
1158 	dmc->dmc_maxmaps = maxmaps;
1159 	dmc->dmc_nmaps = minmaps;
1160 	dmc->dmc_maxmapsize = maxmapsize;
1161 	dmc->dmc_maxseg = maxseg;
1162 
1163 	for (u_int i = 0; i < minmaps; i++) {
1164 		int error = bus_dmamap_create(sc->sc_dmat, dmc->dmc_maxmapsize,
1165 		     dmc->dmc_maxseg, dmc->dmc_maxmapsize, 0,
1166 		     BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW, &dmc->dmc_maps[i]);
1167 		if (error) {
1168 			aprint_error_dev(sc->sc_dev,
1169 			    "failed to creat dma map cache "
1170 			    "entry %u of %zu (max %zu): %d\n",
1171 			    i, minmaps, maxmaps, error);
1172 			while (i-- > 0) {
1173 				bus_dmamap_destroy(sc->sc_dmat,
1174 				    dmc->dmc_maps[i]);
1175 			}
1176 			kmem_free(dmc, dmc_size);
1177 			return error;
1178 		}
1179 		KASSERT(dmc->dmc_maps[i] != NULL);
1180 	}
1181 
1182 	*dmc_p = dmc;
1183 
1184 	return 0;
1185 }
1186 
1187 #if 0
1188 static void
1189 pq3etsec_dmamem_free(
1190 	bus_dma_tag_t dmat,
1191 	size_t map_size,
1192 	bus_dma_segment_t *seg,
1193 	bus_dmamap_t map,
1194 	void *kvap)
1195 {
1196 	bus_dmamap_destroy(dmat, map);
1197 	bus_dmamem_unmap(dmat, kvap, map_size);
1198 	bus_dmamem_free(dmat, seg, 1);
1199 }
1200 #endif
1201 
1202 static int
1203 pq3etsec_dmamem_alloc(
1204 	bus_dma_tag_t dmat,
1205 	size_t map_size,
1206 	bus_dma_segment_t *seg,
1207 	bus_dmamap_t *map,
1208 	void **kvap)
1209 {
1210 	int error;
1211 	int nseg;
1212 
1213 	*kvap = NULL;
1214 	*map = NULL;
1215 
1216 	error = bus_dmamem_alloc(dmat, map_size, PAGE_SIZE, 0,
1217 	   seg, 1, &nseg, 0);
1218 	if (error)
1219 		return error;
1220 
1221 	KASSERT(nseg == 1);
1222 
1223 	error = bus_dmamem_map(dmat, seg, nseg, map_size, (void **)kvap,
1224 	    BUS_DMA_COHERENT);
1225 	if (error == 0) {
1226 		error = bus_dmamap_create(dmat, map_size, 1, map_size, 0, 0,
1227 		    map);
1228 		if (error == 0) {
1229 			error = bus_dmamap_load(dmat, *map, *kvap, map_size,
1230 			    NULL, 0);
1231 			if (error == 0)
1232 				return 0;
1233 			bus_dmamap_destroy(dmat, *map);
1234 			*map = NULL;
1235 		}
1236 		bus_dmamem_unmap(dmat, *kvap, map_size);
1237 		*kvap = NULL;
1238 	}
1239 	bus_dmamem_free(dmat, seg, nseg);
1240 	return 0;
1241 }
1242 
1243 static struct mbuf *
1244 pq3etsec_rx_buf_alloc(
1245 	struct pq3etsec_softc *sc)
1246 {
1247 	struct mbuf *m = m_gethdr(M_DONTWAIT, MT_DATA);
1248 	if (m == NULL) {
1249 		printf("%s:%d: %s\n", __func__, __LINE__, "m_gethdr");
1250 		return NULL;
1251 	}
1252 	MCLGET(m, M_DONTWAIT);
1253 	if ((m->m_flags & M_EXT) == 0) {
1254 		printf("%s:%d: %s\n", __func__, __LINE__, "MCLGET");
1255 		m_freem(m);
1256 		return NULL;
1257 	}
1258 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1259 
1260 	bus_dmamap_t map = pq3etsec_mapcache_get(sc, sc->sc_rx_mapcache);
1261 	if (map == NULL) {
1262 		printf("%s:%d: %s\n", __func__, __LINE__, "map get");
1263 		m_freem(m);
1264 		return NULL;
1265 	}
1266 	M_SETCTX(m, map);
1267 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1268 	int error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1269 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1270 	if (error) {
1271 		aprint_error_dev(sc->sc_dev, "fail to load rx dmamap: %d\n",
1272 		    error);
1273 		M_SETCTX(m, NULL);
1274 		m_freem(m);
1275 		pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1276 		return NULL;
1277 	}
1278 	KASSERT(map->dm_mapsize == MCLBYTES);
1279 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1280 	    BUS_DMASYNC_PREREAD);
1281 
1282 	return m;
1283 }
1284 
1285 static void
1286 pq3etsec_rx_map_unload(
1287 	struct pq3etsec_softc *sc,
1288 	struct mbuf *m)
1289 {
1290 	KASSERT(m);
1291 	for (; m != NULL; m = m->m_next) {
1292 		bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1293 		KASSERT(map);
1294 		KASSERT(map->dm_mapsize == MCLBYTES);
1295 		bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_len,
1296 		    BUS_DMASYNC_POSTREAD);
1297 		bus_dmamap_unload(sc->sc_dmat, map);
1298 		pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1299 		M_SETCTX(m, NULL);
1300 	}
1301 }
1302 
1303 static bool
1304 pq3etsec_rxq_produce(
1305 	struct pq3etsec_softc *sc,
1306 	struct pq3etsec_rxqueue *rxq)
1307 {
1308 	volatile struct rxbd *producer = rxq->rxq_producer;
1309 #if 0
1310 	size_t inuse = rxq->rxq_inuse;
1311 #endif
1312 	while (rxq->rxq_inuse < rxq->rxq_threshold) {
1313 		struct mbuf *m;
1314 		IF_DEQUEUE(&sc->sc_rx_bufcache, m);
1315 		if (m == NULL) {
1316 			m = pq3etsec_rx_buf_alloc(sc);
1317 			if (m == NULL) {
1318 				printf("%s: pq3etsec_rx_buf_alloc failed\n", __func__);
1319 				break;
1320 			}
1321 		}
1322 		bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1323 		KASSERT(map);
1324 
1325 #ifdef ETSEC_DEBUG
1326 		KASSERT(rxq->rxq_mbufs[producer-rxq->rxq_first] == NULL);
1327 		rxq->rxq_mbufs[producer-rxq->rxq_first] = m;
1328 #endif
1329 
1330 		/* rxbd_len is write-only by the ETSEC */
1331 		producer->rxbd_bufptr = map->dm_segs[0].ds_addr;
1332 		membar_producer();
1333 		producer->rxbd_flags |= RXBD_E;
1334 		if (__predict_false(rxq->rxq_mhead == NULL)) {
1335 			KASSERT(producer == rxq->rxq_consumer);
1336 			rxq->rxq_mconsumer = m;
1337 		}
1338 		*rxq->rxq_mtail = m;
1339 		rxq->rxq_mtail = &m->m_next;
1340 		m->m_len = MCLBYTES;
1341 		m->m_next = NULL;
1342 		rxq->rxq_inuse++;
1343 		if (++producer == rxq->rxq_last) {
1344 			membar_producer();
1345 			pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1346 			    rxq->rxq_last - rxq->rxq_producer);
1347 			producer = rxq->rxq_producer = rxq->rxq_first;
1348 		}
1349 	}
1350 	if (producer != rxq->rxq_producer) {
1351 		membar_producer();
1352 		pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1353 		    producer - rxq->rxq_producer);
1354 		rxq->rxq_producer = producer;
1355 	}
1356 	uint32_t qhlt = etsec_read(sc, RSTAT) & RSTAT_QHLT;
1357 	if (qhlt) {
1358 		KASSERT(qhlt & rxq->rxq_qmask);
1359 		sc->sc_ev_rx_stall.ev_count++;
1360 		etsec_write(sc, RSTAT, RSTAT_QHLT & rxq->rxq_qmask);
1361 	}
1362 #if 0
1363 	aprint_normal_dev(sc->sc_dev,
1364 	    "%s: buffers inuse went from %zu to %zu\n",
1365 	    __func__, inuse, rxq->rxq_inuse);
1366 #endif
1367 	return true;
1368 }
1369 
1370 static bool
1371 pq3etsec_rx_offload(
1372 	struct pq3etsec_softc *sc,
1373 	struct mbuf *m,
1374 	const struct rxfcb *fcb)
1375 {
1376 	if (fcb->rxfcb_flags & RXFCB_VLN) {
1377 		VLAN_INPUT_TAG(&sc->sc_if, m, fcb->rxfcb_vlctl,
1378 		    m_freem(m); return false);
1379 	}
1380 	if ((fcb->rxfcb_flags & RXFCB_IP) == 0
1381 	    || (fcb->rxfcb_flags & (RXFCB_CIP|RXFCB_CTU)) == 0)
1382 		return true;
1383 	int csum_flags = 0;
1384 	if ((fcb->rxfcb_flags & (RXFCB_IP6|RXFCB_CIP)) == RXFCB_CIP) {
1385 		csum_flags |= M_CSUM_IPv4;
1386 		if (fcb->rxfcb_flags & RXFCB_EIP)
1387 			csum_flags |= M_CSUM_IPv4_BAD;
1388 	}
1389 	if ((fcb->rxfcb_flags & RXFCB_CTU) == RXFCB_CTU) {
1390 		int ipv_flags;
1391 		if (fcb->rxfcb_flags & RXFCB_IP6)
1392 			ipv_flags = M_CSUM_TCPv6|M_CSUM_UDPv6;
1393 		else
1394 			ipv_flags = M_CSUM_TCPv4|M_CSUM_UDPv4;
1395 		if (fcb->rxfcb_pro == IPPROTO_TCP) {
1396 			csum_flags |= (M_CSUM_TCPv4|M_CSUM_TCPv6) & ipv_flags;
1397 		} else {
1398 			csum_flags |= (M_CSUM_UDPv4|M_CSUM_UDPv6) & ipv_flags;
1399 		}
1400 		if (fcb->rxfcb_flags & RXFCB_ETU)
1401 			csum_flags |= M_CSUM_TCP_UDP_BAD;
1402 	}
1403 
1404 	m->m_pkthdr.csum_flags = csum_flags;
1405 	return true;
1406 }
1407 
1408 static void
1409 pq3etsec_rx_input(
1410 	struct pq3etsec_softc *sc,
1411 	struct mbuf *m,
1412 	uint16_t rxbd_flags)
1413 {
1414 	struct ifnet * const ifp = &sc->sc_if;
1415 
1416 	pq3etsec_rx_map_unload(sc, m);
1417 
1418 	if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF) {
1419 		struct rxfcb fcb = *mtod(m, struct rxfcb *);
1420 		if (!pq3etsec_rx_offload(sc, m, &fcb))
1421 			return;
1422 	}
1423 	m_adj(m, sc->sc_rx_adjlen);
1424 
1425 	if (rxbd_flags & RXBD_M)
1426 		m->m_flags |= M_PROMISC;
1427 	if (rxbd_flags & RXBD_BC)
1428 		m->m_flags |= M_BCAST;
1429 	if (rxbd_flags & RXBD_MC)
1430 		m->m_flags |= M_MCAST;
1431 	m->m_flags |= M_HASFCS;
1432 	m->m_pkthdr.rcvif = &sc->sc_if;
1433 
1434 	ifp->if_ipackets++;
1435 	ifp->if_ibytes += m->m_pkthdr.len;
1436 
1437 	/*
1438 	 * Let's give it to the network subsystm to deal with.
1439 	 */
1440 	int s = splnet();
1441 	bpf_mtap(ifp, m);
1442 	(*ifp->if_input)(ifp, m);
1443 	splx(s);
1444 }
1445 
1446 static void
1447 pq3etsec_rxq_consume(
1448 	struct pq3etsec_softc *sc,
1449 	struct pq3etsec_rxqueue *rxq)
1450 {
1451 	struct ifnet * const ifp = &sc->sc_if;
1452 	volatile struct rxbd *consumer = rxq->rxq_consumer;
1453 	size_t rxconsumed = 0;
1454 
1455 	etsec_write(sc, RSTAT, RSTAT_RXF & rxq->rxq_qmask);
1456 
1457 	for (;;) {
1458 		if (consumer == rxq->rxq_producer) {
1459 			rxq->rxq_consumer = consumer;
1460 			rxq->rxq_inuse -= rxconsumed;
1461 			return;
1462 		}
1463 		pq3etsec_rxq_desc_postsync(sc, rxq, consumer, 1);
1464 		const uint16_t rxbd_flags = consumer->rxbd_flags;
1465 		if (rxbd_flags & RXBD_E) {
1466 			rxq->rxq_consumer = consumer;
1467 			rxq->rxq_inuse -= rxconsumed;
1468 			return;
1469 		}
1470 		KASSERT(rxq->rxq_mconsumer != NULL);
1471 #ifdef ETSEC_DEBUG
1472 		KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1473 #endif
1474 #if 0
1475 		printf("%s: rxdb[%u]: flags=%#x len=%#x: %08x %08x %08x %08x\n",
1476 		    __func__,
1477 		    consumer - rxq->rxq_first, rxbd_flags, consumer->rxbd_len,
1478 		    mtod(rxq->rxq_mconsumer, int *)[0],
1479 		    mtod(rxq->rxq_mconsumer, int *)[1],
1480 		    mtod(rxq->rxq_mconsumer, int *)[2],
1481 		    mtod(rxq->rxq_mconsumer, int *)[3]);
1482 #endif
1483 		/*
1484 		 * We own this packet again.  Clear all flags except wrap.
1485 		 */
1486 		rxconsumed++;
1487 		consumer->rxbd_flags = rxbd_flags & (RXBD_W|RXBD_I);
1488 
1489 		/*
1490 		 * If this descriptor has the LAST bit set and no errors,
1491 		 * it's a valid input packet.
1492 		 */
1493 		if ((rxbd_flags & (RXBD_L|RXBD_ERRORS)) == RXBD_L) {
1494 			size_t rxbd_len = consumer->rxbd_len;
1495 			struct mbuf *m = rxq->rxq_mhead;
1496 			struct mbuf *m_last = rxq->rxq_mconsumer;
1497 			if ((rxq->rxq_mhead = m_last->m_next) == NULL)
1498 				rxq->rxq_mtail = &rxq->rxq_mhead;
1499 			rxq->rxq_mconsumer = rxq->rxq_mhead;
1500 			m_last->m_next = NULL;
1501 			m_last->m_len = rxbd_len & (MCLBYTES - 1);
1502 			m->m_pkthdr.len = rxbd_len;
1503 			pq3etsec_rx_input(sc, m, rxbd_flags);
1504 		} else if (rxbd_flags & RXBD_L) {
1505 			KASSERT(rxbd_flags & RXBD_ERRORS);
1506 			struct mbuf *m;
1507 			/*
1508 			 * We encountered an error, take the mbufs and add
1509 			 * then to the rx bufcache so we can reuse them.
1510 			 */
1511 			ifp->if_ierrors++;
1512 			for (m = rxq->rxq_mhead;
1513 			     m != rxq->rxq_mconsumer;
1514 			     m = m->m_next) {
1515 				IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1516 			}
1517 			m = rxq->rxq_mconsumer;
1518 			if ((rxq->rxq_mhead = m->m_next) == NULL)
1519 				rxq->rxq_mtail = &rxq->rxq_mhead;
1520 			rxq->rxq_mconsumer = m->m_next;
1521 			IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1522 		} else {
1523 			rxq->rxq_mconsumer = rxq->rxq_mconsumer->m_next;
1524 		}
1525 #ifdef ETSEC_DEBUG
1526 		rxq->rxq_mbufs[consumer - rxq->rxq_first] = NULL;
1527 #endif
1528 
1529 		/*
1530 		 * Wrap at the last entry!
1531 		 */
1532 		if (rxbd_flags & RXBD_W) {
1533 			KASSERT(consumer + 1 == rxq->rxq_last);
1534 			consumer = rxq->rxq_first;
1535 		} else {
1536 			consumer++;
1537 		}
1538 #ifdef ETSEC_DEBUG
1539 		KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1540 #endif
1541 	}
1542 }
1543 
1544 static void
1545 pq3etsec_rxq_purge(
1546 	struct pq3etsec_softc *sc,
1547 	struct pq3etsec_rxqueue *rxq,
1548 	bool discard)
1549 {
1550 	struct mbuf *m;
1551 
1552 	if ((m = rxq->rxq_mhead) != NULL) {
1553 #ifdef ETSEC_DEBUG
1554 		memset(rxq->rxq_mbufs, 0, sizeof(rxq->rxq_mbufs));
1555 #endif
1556 
1557 		if (discard) {
1558 			pq3etsec_rx_map_unload(sc, m);
1559 			m_freem(m);
1560 		} else {
1561 			while (m != NULL) {
1562 				struct mbuf *m0 = m->m_next;
1563 				m->m_next = NULL;
1564 				IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1565 				m = m0;
1566 			}
1567 		}
1568 
1569 	}
1570 
1571 	rxq->rxq_mconsumer = NULL;
1572 	rxq->rxq_mhead = NULL;
1573 	rxq->rxq_mtail = &rxq->rxq_mhead;
1574 	rxq->rxq_inuse = 0;
1575 }
1576 
1577 static void
1578 pq3etsec_rxq_reset(
1579 	struct pq3etsec_softc *sc,
1580 	struct pq3etsec_rxqueue *rxq)
1581 {
1582 	/*
1583 	 * sync all the descriptors
1584 	 */
1585 	pq3etsec_rxq_desc_postsync(sc, rxq, rxq->rxq_first,
1586 	    rxq->rxq_last - rxq->rxq_first);
1587 
1588 	/*
1589 	 * Make sure we own all descriptors in the ring.
1590 	 */
1591 	volatile struct rxbd *rxbd;
1592 	for (rxbd = rxq->rxq_first; rxbd < rxq->rxq_last - 1; rxbd++) {
1593 		rxbd->rxbd_flags = RXBD_I;
1594 	}
1595 
1596 	/*
1597 	 * Last descriptor has the wrap flag.
1598 	 */
1599 	rxbd->rxbd_flags = RXBD_W|RXBD_I;
1600 
1601 	/*
1602 	 * Reset the producer consumer indexes.
1603 	 */
1604 	rxq->rxq_consumer = rxq->rxq_first;
1605 	rxq->rxq_producer = rxq->rxq_first;
1606 	rxq->rxq_inuse = 0;
1607 	if (rxq->rxq_threshold < ETSEC_MINRXMBUFS)
1608 		rxq->rxq_threshold = ETSEC_MINRXMBUFS;
1609 
1610 	sc->sc_imask |= IEVENT_RXF|IEVENT_BSY;
1611 
1612 	/*
1613 	 * Restart the transmit at the first descriptor
1614 	 */
1615 	etsec_write(sc, rxq->rxq_reg_rbase, rxq->rxq_descmap->dm_segs->ds_addr);
1616 }
1617 
1618 static int
1619 pq3etsec_rxq_attach(
1620 	struct pq3etsec_softc *sc,
1621 	struct pq3etsec_rxqueue *rxq,
1622 	u_int qno)
1623 {
1624 	size_t map_size = PAGE_SIZE;
1625 	size_t desc_count = map_size / sizeof(struct rxbd);
1626 	int error;
1627 	void *descs;
1628 
1629 	error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1630 	   &rxq->rxq_descmap_seg, &rxq->rxq_descmap, &descs);
1631 	if (error)
1632 		return error;
1633 
1634 	memset(descs, 0, map_size);
1635 	rxq->rxq_first = descs;
1636 	rxq->rxq_last = rxq->rxq_first + desc_count;
1637 	rxq->rxq_consumer = descs;
1638 	rxq->rxq_producer = descs;
1639 
1640 	pq3etsec_rxq_purge(sc, rxq, true);
1641 	pq3etsec_rxq_reset(sc, rxq);
1642 
1643 	rxq->rxq_reg_rbase = RBASEn(qno);
1644 	rxq->rxq_qmask = RSTAT_QHLTn(qno) | RSTAT_RXFn(qno);
1645 
1646 	return 0;
1647 }
1648 
1649 static bool
1650 pq3etsec_txq_active_p(
1651 	struct pq3etsec_softc * const sc,
1652 	struct pq3etsec_txqueue *txq)
1653 {
1654 	return !IF_IS_EMPTY(&txq->txq_mbufs);
1655 }
1656 
1657 static bool
1658 pq3etsec_txq_fillable_p(
1659 	struct pq3etsec_softc * const sc,
1660 	struct pq3etsec_txqueue *txq)
1661 {
1662 	return txq->txq_free >= txq->txq_threshold;
1663 }
1664 
1665 static int
1666 pq3etsec_txq_attach(
1667 	struct pq3etsec_softc *sc,
1668 	struct pq3etsec_txqueue *txq,
1669 	u_int qno)
1670 {
1671 	size_t map_size = PAGE_SIZE;
1672 	size_t desc_count = map_size / sizeof(struct txbd);
1673 	int error;
1674 	void *descs;
1675 
1676 	error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1677 	   &txq->txq_descmap_seg, &txq->txq_descmap, &descs);
1678 	if (error)
1679 		return error;
1680 
1681 	memset(descs, 0, map_size);
1682 	txq->txq_first = descs;
1683 	txq->txq_last = txq->txq_first + desc_count;
1684 	txq->txq_consumer = descs;
1685 	txq->txq_producer = descs;
1686 
1687 	IFQ_SET_MAXLEN(&txq->txq_mbufs, ETSEC_MAXTXMBUFS);
1688 
1689 	txq->txq_reg_tbase = TBASEn(qno);
1690 	txq->txq_qmask = TSTAT_THLTn(qno) | TSTAT_TXFn(qno);
1691 
1692 	pq3etsec_txq_reset(sc, txq);
1693 
1694 	return 0;
1695 }
1696 
1697 static int
1698 pq3etsec_txq_map_load(
1699 	struct pq3etsec_softc *sc,
1700 	struct pq3etsec_txqueue *txq,
1701 	struct mbuf *m)
1702 {
1703 	bus_dmamap_t map;
1704 	int error;
1705 
1706 	map = M_GETCTX(m, bus_dmamap_t);
1707 	if (map != NULL)
1708 		return 0;
1709 
1710 	map = pq3etsec_mapcache_get(sc, sc->sc_tx_mapcache);
1711 	if (map == NULL)
1712 		return ENOMEM;
1713 
1714 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1715 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1716 	if (error)
1717 		return error;
1718 
1719 	bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_pkthdr.len,
1720 	    BUS_DMASYNC_PREWRITE);
1721 	M_SETCTX(m, map);
1722 	return 0;
1723 }
1724 
1725 static void
1726 pq3etsec_txq_map_unload(
1727 	struct pq3etsec_softc *sc,
1728 	struct pq3etsec_txqueue *txq,
1729 	struct mbuf *m)
1730 {
1731 	KASSERT(m);
1732 	bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1733 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1734 	    BUS_DMASYNC_POSTWRITE);
1735 	bus_dmamap_unload(sc->sc_dmat, map);
1736 	pq3etsec_mapcache_put(sc, sc->sc_tx_mapcache, map);
1737 }
1738 
1739 static bool
1740 pq3etsec_txq_produce(
1741 	struct pq3etsec_softc *sc,
1742 	struct pq3etsec_txqueue *txq,
1743 	struct mbuf *m)
1744 {
1745 	bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1746 
1747 	if (map->dm_nsegs > txq->txq_free)
1748 		return false;
1749 
1750 	/*
1751 	 * TCP Offload flag must be set in the first descriptor.
1752 	 */
1753 	volatile struct txbd *producer = txq->txq_producer;
1754 	uint16_t last_flags = TXBD_L;
1755 	uint16_t first_flags = TXBD_R
1756 	    | ((m->m_flags & M_HASFCB) ? TXBD_TOE : 0);
1757 
1758 	/*
1759 	 * If we've produced enough descriptors without consuming any
1760 	 * we need to ask for an interrupt to reclaim some.
1761 	 */
1762 	txq->txq_lastintr += map->dm_nsegs;
1763 	if (txq->txq_lastintr >= txq->txq_threshold
1764 	    || txq->txq_mbufs.ifq_len + 1 == txq->txq_mbufs.ifq_maxlen) {
1765 		txq->txq_lastintr = 0;
1766 		last_flags |= TXBD_I;
1767 	}
1768 
1769 #ifdef ETSEC_DEBUG
1770 	KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1771 #endif
1772 	KASSERT(producer != txq->txq_last);
1773 	producer->txbd_bufptr = map->dm_segs[0].ds_addr;
1774 	producer->txbd_len = map->dm_segs[0].ds_len;
1775 
1776 	if (map->dm_nsegs > 1) {
1777 		volatile struct txbd *start = producer + 1;
1778 		size_t count = map->dm_nsegs - 1;
1779 		for (u_int i = 1; i < map->dm_nsegs; i++) {
1780 			if (__predict_false(++producer == txq->txq_last)) {
1781 				producer = txq->txq_first;
1782 				if (start < txq->txq_last) {
1783 					pq3etsec_txq_desc_presync(sc, txq,
1784 					    start, txq->txq_last - start);
1785 					count -= txq->txq_last - start;
1786 				}
1787 				start = txq->txq_first;
1788 			}
1789 #ifdef ETSEC_DEBUG
1790 			KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1791 #endif
1792 			producer->txbd_bufptr = map->dm_segs[i].ds_addr;
1793 			producer->txbd_len = map->dm_segs[i].ds_len;
1794 			producer->txbd_flags = TXBD_R
1795 			    | (producer->txbd_flags & TXBD_W)
1796 			    | (i == map->dm_nsegs - 1 ? last_flags : 0);
1797 #if 0
1798 			printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__, producer - txq->txq_first,
1799 			    producer->txbd_flags, producer->txbd_len, producer->txbd_bufptr);
1800 #endif
1801 		}
1802 		pq3etsec_txq_desc_presync(sc, txq, start, count);
1803 	} else {
1804 		first_flags |= last_flags;
1805 	}
1806 
1807 	membar_producer();
1808 	txq->txq_producer->txbd_flags =
1809 	    first_flags | (txq->txq_producer->txbd_flags & TXBD_W);
1810 #if 0
1811 	printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__,
1812 	    txq->txq_producer - txq->txq_first, txq->txq_producer->txbd_flags,
1813 	    txq->txq_producer->txbd_len, txq->txq_producer->txbd_bufptr);
1814 #endif
1815 	pq3etsec_txq_desc_presync(sc, txq, txq->txq_producer, 1);
1816 
1817 	/*
1818 	 * Reduce free count by the number of segments we consumed.
1819 	 */
1820 	txq->txq_free -= map->dm_nsegs;
1821 	KASSERT(map->dm_nsegs == 1 || txq->txq_producer != producer);
1822 	KASSERT(map->dm_nsegs == 1 || (txq->txq_producer->txbd_flags & TXBD_L) == 0);
1823 	KASSERT(producer->txbd_flags & TXBD_L);
1824 #ifdef ETSEC_DEBUG
1825 	txq->txq_lmbufs[producer - txq->txq_first] = m;
1826 #endif
1827 
1828 #if 0
1829 	printf("%s: mbuf %p: produced a %u byte packet in %u segments (%u..%u)\n",
1830 	    __func__, m, m->m_pkthdr.len, map->dm_nsegs,
1831 	    txq->txq_producer - txq->txq_first, producer - txq->txq_first);
1832 #endif
1833 
1834 	if (++producer == txq->txq_last)
1835 		txq->txq_producer = txq->txq_first;
1836 	else
1837 		txq->txq_producer = producer;
1838 	IF_ENQUEUE(&txq->txq_mbufs, m);
1839 
1840 	/*
1841 	 * Restart the transmitter.
1842 	 */
1843 	etsec_write(sc, TSTAT, txq->txq_qmask & TSTAT_THLT);	/* W1C */
1844 
1845 	return true;
1846 }
1847 
1848 static void
1849 pq3etsec_tx_offload(
1850 	struct pq3etsec_softc *sc,
1851 	struct pq3etsec_txqueue *txq,
1852 	struct mbuf **mp)
1853 {
1854 	struct mbuf *m = *mp;
1855 	u_int csum_flags = m->m_pkthdr.csum_flags;
1856 	struct m_tag *vtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m);
1857 
1858 	KASSERT(m->m_flags & M_PKTHDR);
1859 
1860 	/*
1861 	 * Let see if we are doing any offload first.
1862 	 */
1863 	if (csum_flags == 0 && vtag == 0) {
1864 		m->m_flags &= ~M_HASFCB;
1865 		return;
1866 	}
1867 
1868 	uint16_t flags = 0;
1869 	if (csum_flags & M_CSUM_IP) {
1870 		flags |= TXFCB_IP
1871 		    | ((csum_flags & M_CSUM_IP6) ? TXFCB_IP6 : 0)
1872 		    | ((csum_flags & M_CSUM_TUP) ? TXFCB_TUP : 0)
1873 		    | ((csum_flags & M_CSUM_UDP) ? TXFCB_UDP : 0)
1874 		    | ((csum_flags & M_CSUM_CIP) ? TXFCB_CIP : 0)
1875 		    | ((csum_flags & M_CSUM_CTU) ? TXFCB_CTU : 0);
1876 	}
1877 	if (vtag) {
1878 		flags |= TXFCB_VLN;
1879 	}
1880 	if (flags == 0) {
1881 		m->m_flags &= ~M_HASFCB;
1882 		return;
1883 	}
1884 
1885 	struct txfcb fcb;
1886 	fcb.txfcb_flags = flags;
1887 	if (csum_flags & M_CSUM_IPv4)
1888 		fcb.txfcb_l4os = M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
1889 	else
1890 		fcb.txfcb_l4os = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
1891 	fcb.txfcb_l3os = ETHER_HDR_LEN;
1892 	fcb.txfcb_phcs = 0;
1893 	fcb.txfcb_vlctl = vtag ? VLAN_TAG_VALUE(vtag) & 0xffff : 0;
1894 
1895 #if 0
1896 	printf("%s: csum_flags=%#x: txfcb flags=%#x lsos=%u l4os=%u phcs=%u vlctl=%#x\n",
1897 	    __func__, csum_flags, fcb.txfcb_flags, fcb.txfcb_l3os, fcb.txfcb_l4os,
1898 	    fcb.txfcb_phcs, fcb.txfcb_vlctl);
1899 #endif
1900 
1901 	if (M_LEADINGSPACE(m) >= sizeof(fcb)) {
1902 		m->m_data -= sizeof(fcb);
1903 		m->m_len += sizeof(fcb);
1904 	} else if (!(m->m_flags & M_EXT) && MHLEN - m->m_len >= sizeof(fcb)) {
1905 		memmove(m->m_pktdat + sizeof(fcb), m->m_data, m->m_len);
1906 		m->m_data = m->m_pktdat;
1907 		m->m_len += sizeof(fcb);
1908 	} else {
1909 		struct mbuf *mn;
1910 		MGET(mn, M_DONTWAIT, m->m_type);
1911 		if (mn == NULL) {
1912 			if (csum_flags & M_CSUM_IP4) {
1913 #ifdef INET
1914 				ip_undefer_csum(m, ETHER_HDR_LEN,
1915 				    csum_flags & M_CSUM_IP4);
1916 #else
1917 				panic("%s: impossible M_CSUM flags %#x",
1918 				    device_xname(sc->sc_dev), csum_flags);
1919 #endif
1920 			} else if (csum_flags & M_CSUM_IP6) {
1921 #ifdef INET6
1922 				ip6_undefer_csum(m, ETHER_HDR_LEN,
1923 				    csum_flags & M_CSUM_IP6);
1924 #else
1925 				panic("%s: impossible M_CSUM flags %#x",
1926 				    device_xname(sc->sc_dev), csum_flags);
1927 #endif
1928 			} else if (vtag) {
1929 			}
1930 
1931 			m->m_flags &= ~M_HASFCB;
1932 			return;
1933 		}
1934 
1935 		M_MOVE_PKTHDR(mn, m);
1936 		mn->m_next = m;
1937 		m = mn;
1938 		MH_ALIGN(m, sizeof(fcb));
1939 		m->m_len = sizeof(fcb);
1940 		*mp = m;
1941 	}
1942 	m->m_pkthdr.len += sizeof(fcb);
1943 	m->m_flags |= M_HASFCB;
1944 	*mtod(m, struct txfcb *) = fcb;
1945 	return;
1946 }
1947 
1948 static bool
1949 pq3etsec_txq_enqueue(
1950 	struct pq3etsec_softc *sc,
1951 	struct pq3etsec_txqueue *txq)
1952 {
1953 	for (;;) {
1954 		if (IF_QFULL(&txq->txq_mbufs))
1955 			return false;
1956 		struct mbuf *m = txq->txq_next;
1957 		if (m == NULL) {
1958 			int s = splnet();
1959 			IF_DEQUEUE(&sc->sc_if.if_snd, m);
1960 			splx(s);
1961 			if (m == NULL)
1962 				return true;
1963 			M_SETCTX(m, NULL);
1964 			pq3etsec_tx_offload(sc, txq, &m);
1965 		} else {
1966 			txq->txq_next = NULL;
1967 		}
1968 		int error = pq3etsec_txq_map_load(sc, txq, m);
1969 		if (error) {
1970 			aprint_error_dev(sc->sc_dev,
1971 			    "discarded packet due to "
1972 			    "dmamap load failure: %d\n", error);
1973 			m_freem(m);
1974 			continue;
1975 		}
1976 		KASSERT(txq->txq_next == NULL);
1977 		if (!pq3etsec_txq_produce(sc, txq, m)) {
1978 			txq->txq_next = m;
1979 			return false;
1980 		}
1981 		KASSERT(txq->txq_next == NULL);
1982 	}
1983 }
1984 
1985 static bool
1986 pq3etsec_txq_consume(
1987 	struct pq3etsec_softc *sc,
1988 	struct pq3etsec_txqueue *txq)
1989 {
1990 	struct ifnet * const ifp = &sc->sc_if;
1991 	volatile struct txbd *consumer = txq->txq_consumer;
1992 	size_t txfree = 0;
1993 
1994 #if 0
1995 	printf("%s: entry: free=%zu\n", __func__, txq->txq_free);
1996 #endif
1997 	etsec_write(sc, TSTAT, TSTAT_TXF & txq->txq_qmask);
1998 
1999 	for (;;) {
2000 		if (consumer == txq->txq_producer) {
2001 			txq->txq_consumer = consumer;
2002 			txq->txq_free += txfree;
2003 			txq->txq_lastintr -= min(txq->txq_lastintr, txfree);
2004 #if 0
2005 			printf("%s: empty: freed %zu descriptors going form %zu to %zu\n",
2006 			    __func__, txfree, txq->txq_free - txfree, txq->txq_free);
2007 #endif
2008 			KASSERT(txq->txq_lastintr == 0);
2009 			KASSERT(txq->txq_free == txq->txq_last - txq->txq_first - 1);
2010 			return true;
2011 		}
2012 		pq3etsec_txq_desc_postsync(sc, txq, consumer, 1);
2013 		const uint16_t txbd_flags = consumer->txbd_flags;
2014 		if (txbd_flags & TXBD_R) {
2015 			txq->txq_consumer = consumer;
2016 			txq->txq_free += txfree;
2017 			txq->txq_lastintr -= min(txq->txq_lastintr, txfree);
2018 #if 0
2019 			printf("%s: freed %zu descriptors\n",
2020 			    __func__, txfree);
2021 #endif
2022 			return pq3etsec_txq_fillable_p(sc, txq);
2023 		}
2024 
2025 		/*
2026 		 * If this is the last descriptor in the chain, get the
2027 		 * mbuf, free its dmamap, and free the mbuf chain itself.
2028 		 */
2029 		if (txbd_flags & TXBD_L) {
2030 			struct mbuf *m;
2031 
2032 			IF_DEQUEUE(&txq->txq_mbufs, m);
2033 #ifdef ETSEC_DEBUG
2034 			KASSERTMSG(m == txq->txq_lmbufs[consumer-txq->txq_first],
2035 			    ("%s: %p [%u]: flags %#x m (%p) != %p (%p)", __func__,
2036 			     consumer, consumer - txq->txq_first, txbd_flags,
2037 			     m, &txq->txq_lmbufs[consumer-txq->txq_first],
2038 			     txq->txq_lmbufs[consumer-txq->txq_first]));
2039 #endif
2040 			KASSERT(m);
2041 			pq3etsec_txq_map_unload(sc, txq, m);
2042 #if 0
2043 			printf("%s: mbuf %p: consumed a %u byte packet\n",
2044 			    __func__, m, m->m_pkthdr.len);
2045 #endif
2046 			if (m->m_flags & M_HASFCB)
2047 				m_adj(m, sizeof(struct txfcb));
2048 			ifp->if_opackets++;
2049 			ifp->if_obytes += m->m_pkthdr.len;
2050 			if (m->m_flags & M_MCAST)
2051 				ifp->if_omcasts++;
2052 			if (txbd_flags & TXBD_ERRORS)
2053 				ifp->if_oerrors++;
2054 			m_freem(m);
2055 #ifdef ETSEC_DEBUG
2056 			txq->txq_lmbufs[consumer - txq->txq_first] = NULL;
2057 #endif
2058 		} else {
2059 #ifdef ETSEC_DEBUG
2060 			KASSERT(txq->txq_lmbufs[consumer-txq->txq_first] == NULL);
2061 #endif
2062 		}
2063 
2064 		/*
2065 		 * We own this packet again.  Clear all flags except wrap.
2066 		 */
2067 		txfree++;
2068 		//consumer->txbd_flags = txbd_flags & TXBD_W;
2069 
2070 		/*
2071 		 * Wrap at the last entry!
2072 		 */
2073 		if (txbd_flags & TXBD_W) {
2074 			KASSERT(consumer + 1 == txq->txq_last);
2075 			consumer = txq->txq_first;
2076 		} else {
2077 			consumer++;
2078 			KASSERT(consumer < txq->txq_last);
2079 		}
2080 	}
2081 }
2082 
2083 static void
2084 pq3etsec_txq_purge(
2085 	struct pq3etsec_softc *sc,
2086 	struct pq3etsec_txqueue *txq)
2087 {
2088 	struct mbuf *m;
2089 	KASSERT((etsec_read(sc, MACCFG1) & MACCFG1_TX_EN) == 0);
2090 
2091 	for (;;) {
2092 		IF_DEQUEUE(&txq->txq_mbufs, m);
2093 		if (m == NULL)
2094 			break;
2095 		pq3etsec_txq_map_unload(sc, txq, m);
2096 		m_freem(m);
2097 	}
2098 	if ((m = txq->txq_next) != NULL) {
2099 		txq->txq_next = NULL;
2100 		pq3etsec_txq_map_unload(sc, txq, m);
2101 		m_freem(m);
2102 	}
2103 #ifdef ETSEC_DEBUG
2104 	memset(txq->txq_lmbufs, 0, sizeof(txq->txq_lmbufs));
2105 #endif
2106 }
2107 
2108 static void
2109 pq3etsec_txq_reset(
2110 	struct pq3etsec_softc *sc,
2111 	struct pq3etsec_txqueue *txq)
2112 {
2113 	/*
2114 	 * sync all the descriptors
2115 	 */
2116 	pq3etsec_txq_desc_postsync(sc, txq, txq->txq_first,
2117 	    txq->txq_last - txq->txq_first);
2118 
2119 	/*
2120 	 * Make sure we own all descriptors in the ring.
2121 	 */
2122 	volatile struct txbd *txbd;
2123 	for (txbd = txq->txq_first; txbd < txq->txq_last - 1; txbd++) {
2124 		txbd->txbd_flags = 0;
2125 	}
2126 
2127 	/*
2128 	 * Last descriptor has the wrap flag.
2129 	 */
2130 	txbd->txbd_flags = TXBD_W;
2131 
2132 	/*
2133 	 * Reset the producer consumer indexes.
2134 	 */
2135 	txq->txq_consumer = txq->txq_first;
2136 	txq->txq_producer = txq->txq_first;
2137 	txq->txq_free = txq->txq_last - txq->txq_first - 1;
2138 	txq->txq_threshold = txq->txq_free / 2;
2139 	txq->txq_lastintr = 0;
2140 
2141 	/*
2142 	 * What do we want to get interrupted on?
2143 	 */
2144 	sc->sc_imask |= IEVENT_TXF|IEVENT_TXE;
2145 
2146 	/*
2147 	 * Restart the transmit at the first descriptor
2148 	 */
2149 	etsec_write(sc, txq->txq_reg_tbase, txq->txq_descmap->dm_segs->ds_addr);
2150 }
2151 
2152 static void
2153 pq3etsec_ifstart(struct ifnet *ifp)
2154 {
2155 	struct pq3etsec_softc * const sc = ifp->if_softc;
2156 
2157 	atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2158 	softint_schedule(sc->sc_soft_ih);
2159 }
2160 
2161 static void
2162 pq3etsec_tx_error(
2163 	struct pq3etsec_softc * const sc)
2164 {
2165 	struct pq3etsec_txqueue * const txq = &sc->sc_txq;
2166 
2167 	pq3etsec_txq_consume(sc, txq);
2168 
2169 	if (pq3etsec_txq_fillable_p(sc, txq))
2170 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
2171 	if (sc->sc_txerrors & (IEVENT_LC|IEVENT_CRL|IEVENT_XFUN|IEVENT_BABT)) {
2172 	} else if (sc->sc_txerrors & IEVENT_EBERR) {
2173 	}
2174 
2175 	if (pq3etsec_txq_active_p(sc, txq))
2176 		etsec_write(sc, TSTAT, TSTAT_THLT & txq->txq_qmask);
2177 	if (!pq3etsec_txq_enqueue(sc, txq)) {
2178 		sc->sc_ev_tx_stall.ev_count++;
2179 		sc->sc_if.if_flags |= IFF_OACTIVE;
2180 	}
2181 
2182 	sc->sc_txerrors = 0;
2183 }
2184 
2185 int
2186 pq3etsec_tx_intr(void *arg)
2187 {
2188 	struct pq3etsec_softc * const sc = arg;
2189 
2190 	sc->sc_ev_tx_intr.ev_count++;
2191 
2192 	uint32_t ievent = etsec_read(sc, IEVENT);
2193 	ievent &= IEVENT_TXF|IEVENT_TXB;
2194 	etsec_write(sc, IEVENT, ievent);	/* write 1 to clear */
2195 
2196 #if 0
2197 	aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2198 	    __func__, ievent, etsec_read(sc, IMASK));
2199 #endif
2200 
2201 	if (ievent == 0)
2202 		return 0;
2203 
2204 	sc->sc_imask &= ~(IEVENT_TXF|IEVENT_TXB);
2205 	atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2206 	etsec_write(sc, IMASK, sc->sc_imask);
2207 	softint_schedule(sc->sc_soft_ih);
2208 	return 1;
2209 }
2210 
2211 int
2212 pq3etsec_rx_intr(void *arg)
2213 {
2214 	struct pq3etsec_softc * const sc = arg;
2215 
2216 	sc->sc_ev_rx_intr.ev_count++;
2217 
2218 	uint32_t ievent = etsec_read(sc, IEVENT);
2219 	ievent &= IEVENT_RXF|IEVENT_RXB;
2220 	etsec_write(sc, IEVENT, ievent);	/* write 1 to clear */
2221 	if (ievent == 0)
2222 		return 0;
2223 
2224 #if 0
2225 	aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x\n", __func__, ievent);
2226 #endif
2227 
2228 	sc->sc_imask &= ~(IEVENT_RXF|IEVENT_RXB);
2229 	atomic_or_uint(&sc->sc_soft_flags, SOFT_RXINTR);
2230 	etsec_write(sc, IMASK, sc->sc_imask);
2231 	softint_schedule(sc->sc_soft_ih);
2232 	return 1;
2233 }
2234 
2235 int
2236 pq3etsec_error_intr(void *arg)
2237 {
2238 	struct pq3etsec_softc * const sc = arg;
2239 
2240 	sc->sc_ev_error_intr.ev_count++;
2241 
2242 	for (int rv = 0, soft_flags = 0;; rv = 1) {
2243 		uint32_t ievent = etsec_read(sc, IEVENT);
2244 		ievent &= ~(IEVENT_RXF|IEVENT_RXB|IEVENT_TXF|IEVENT_TXB);
2245 		etsec_write(sc, IEVENT, ievent);	/* write 1 to clear */
2246 		if (ievent == 0) {
2247 			if (soft_flags) {
2248 				atomic_or_uint(&sc->sc_soft_flags, soft_flags);
2249 				softint_schedule(sc->sc_soft_ih);
2250 			}
2251 			return rv;
2252 		}
2253 #if 0
2254 		aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2255 		    __func__, ievent, etsec_read(sc, IMASK));
2256 #endif
2257 
2258 		if (ievent & (IEVENT_GRSC|IEVENT_GTSC)) {
2259 			sc->sc_imask &= ~(IEVENT_GRSC|IEVENT_GTSC);
2260 			etsec_write(sc, IMASK, sc->sc_imask);
2261 			wakeup(sc);
2262 		}
2263 		if (ievent & (IEVENT_MMRD|IEVENT_MMWR)) {
2264 			sc->sc_imask &= ~(IEVENT_MMRD|IEVENT_MMWR);
2265 			etsec_write(sc, IMASK, sc->sc_imask);
2266 			wakeup(&sc->sc_mii);
2267 		}
2268 		if (ievent & IEVENT_BSY) {
2269 			soft_flags |= SOFT_RXBSY;
2270 			sc->sc_imask &= ~IEVENT_BSY;
2271 			etsec_write(sc, IMASK, sc->sc_imask);
2272 		}
2273 		if (ievent & IEVENT_TXE) {
2274 			soft_flags |= SOFT_TXERROR;
2275 			sc->sc_imask &= ~IEVENT_TXE;
2276 			sc->sc_txerrors |= ievent;
2277 		}
2278 		if (ievent & IEVENT_TXC) {
2279 			sc->sc_ev_tx_pause.ev_count++;
2280 		}
2281 		if (ievent & IEVENT_RXC) {
2282 			sc->sc_ev_rx_pause.ev_count++;
2283 		}
2284 		if (ievent & IEVENT_DPE) {
2285 			soft_flags |= SOFT_RESET;
2286 			sc->sc_imask &= ~IEVENT_DPE;
2287 			etsec_write(sc, IMASK, sc->sc_imask);
2288 		}
2289 	}
2290 }
2291 
2292 void
2293 pq3etsec_soft_intr(void *arg)
2294 {
2295 	struct pq3etsec_softc * const sc = arg;
2296 	struct ifnet * const ifp = &sc->sc_if;
2297 
2298 	mutex_enter(sc->sc_lock);
2299 
2300 	u_int soft_flags = atomic_swap_uint(&sc->sc_soft_flags, 0);
2301 
2302 	sc->sc_ev_soft_intr.ev_count++;
2303 
2304 	if (soft_flags & SOFT_RESET) {
2305 		int s = splnet();
2306 		pq3etsec_ifinit(ifp);
2307 		splx(s);
2308 		soft_flags = 0;
2309 	}
2310 
2311 	if (soft_flags & SOFT_RXBSY) {
2312 		struct pq3etsec_rxqueue * const rxq = &sc->sc_rxq;
2313 		size_t threshold = 5 * rxq->rxq_threshold / 4;
2314 		if (threshold >= rxq->rxq_last - rxq->rxq_first) {
2315 			threshold = rxq->rxq_last - rxq->rxq_first - 1;
2316 		} else {
2317 			sc->sc_imask |= IEVENT_BSY;
2318 		}
2319 		aprint_normal_dev(sc->sc_dev,
2320 		    "increasing receive buffers from %zu to %zu\n",
2321 		    rxq->rxq_threshold, threshold);
2322 		rxq->rxq_threshold = threshold;
2323 	}
2324 
2325 	if ((soft_flags & SOFT_TXINTR)
2326 	    || pq3etsec_txq_active_p(sc, &sc->sc_txq)) {
2327 		/*
2328 		 * Let's do what we came here for.  Consume transmitted
2329 		 * packets off the the transmit ring.
2330 		 */
2331 		if (!pq3etsec_txq_consume(sc, &sc->sc_txq)
2332 		    || !pq3etsec_txq_enqueue(sc, &sc->sc_txq)) {
2333 			sc->sc_ev_tx_stall.ev_count++;
2334 			ifp->if_flags |= IFF_OACTIVE;
2335 		} else {
2336 			ifp->if_flags &= ~IFF_OACTIVE;
2337 		}
2338 		sc->sc_imask |= IEVENT_TXF;
2339 	}
2340 
2341 	if (soft_flags & (SOFT_RXINTR|SOFT_RXBSY)) {
2342 		/*
2343 		 * Let's consume
2344 		 */
2345 		pq3etsec_rxq_consume(sc, &sc->sc_rxq);
2346 		sc->sc_imask |= IEVENT_RXF;
2347 	}
2348 
2349 	if (soft_flags & SOFT_TXERROR) {
2350 		pq3etsec_tx_error(sc);
2351 		sc->sc_imask |= IEVENT_TXE;
2352 	}
2353 
2354 	if (ifp->if_flags & IFF_RUNNING) {
2355 		pq3etsec_rxq_produce(sc, &sc->sc_rxq);
2356 		etsec_write(sc, IMASK, sc->sc_imask);
2357 	} else {
2358 		KASSERT((soft_flags & SOFT_RXBSY) == 0);
2359 	}
2360 
2361 	mutex_exit(sc->sc_lock);
2362 }
2363 
2364 static void
2365 pq3etsec_mii_tick(void *arg)
2366 {
2367 	struct pq3etsec_softc * const sc = arg;
2368 	mutex_enter(sc->sc_lock);
2369 	callout_ack(&sc->sc_mii_callout);
2370 	sc->sc_ev_mii_ticks.ev_count++;
2371 #ifdef DEBUG
2372 	uint64_t now = mftb();
2373 	if (now - sc->sc_mii_last_tick < cpu_timebase - 5000) {
2374 		aprint_debug_dev(sc->sc_dev, "%s: diff=%"PRIu64"\n",
2375 		    __func__, now - sc->sc_mii_last_tick);
2376 		callout_stop(&sc->sc_mii_callout);
2377 	}
2378 #endif
2379 	mii_tick(&sc->sc_mii);
2380 	int s = splnet();
2381 	if (sc->sc_soft_flags & SOFT_RESET)
2382 		softint_schedule(sc->sc_soft_ih);
2383 	splx(s);
2384 	callout_schedule(&sc->sc_mii_callout, hz);
2385 	sc->sc_mii_last_tick = now;
2386 	mutex_exit(sc->sc_lock);
2387 }
2388