xref: /netbsd-src/sys/arch/powerpc/booke/dev/pq3etsec.c (revision 1b9578b8c2c1f848eeb16dabbfd7d1f0d9fdefbd)
1 /*	$NetBSD: pq3etsec.c,v 1.6 2011/06/21 06:25:19 matt Exp $	*/
2 /*-
3  * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to The NetBSD Foundation
7  * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8  * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9  *
10  * This material is based upon work supported by the Defense Advanced Research
11  * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12  * Contract No. N66001-09-C-2073.
13  * Approved for Public Release, Distribution Unlimited
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 #include "opt_inet.h"
38 
39 #include <sys/cdefs.h>
40 
41 #include <sys/param.h>
42 #include <sys/cpu.h>
43 #include <sys/device.h>
44 #include <sys/mbuf.h>
45 #include <sys/ioctl.h>
46 #include <sys/intr.h>
47 #include <sys/bus.h>
48 #include <sys/kernel.h>
49 #include <sys/kmem.h>
50 #include <sys/proc.h>
51 #include <sys/atomic.h>
52 #include <sys/callout.h>
53 
54 #include <net/if.h>
55 #include <net/if_dl.h>
56 #include <net/if_ether.h>
57 #include <net/if_media.h>
58 
59 #include <dev/mii/miivar.h>
60 
61 #include "ioconf.h"
62 
63 #include <net/bpf.h>
64 
65 #ifdef INET
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/ip.h>
69 #include <netinet/in_offload.h>
70 #endif /* INET */
71 #ifdef INET6
72 #include <netinet6/in6.h>
73 #include <netinet/ip6.h>
74 #endif
75 #include <netinet6/in6_offload.h>
76 
77 
78 #include <powerpc/spr.h>
79 #include <powerpc/booke/spr.h>
80 
81 #include <powerpc/booke/cpuvar.h>
82 #include <powerpc/booke/e500var.h>
83 #include <powerpc/booke/e500reg.h>
84 #include <powerpc/booke/etsecreg.h>
85 
86 #define	M_HASFCB		M_LINK2	/* tx packet has FCB prepended */
87 
88 #define	ETSEC_MAXTXMBUFS	30
89 #define	ETSEC_NTXSEGS		30
90 #define	ETSEC_MAXRXMBUFS	511
91 #define	ETSEC_MINRXMBUFS	32
92 #define	ETSEC_NRXSEGS		1
93 
94 #define	IFCAP_RCTRL_IPCSEN	IFCAP_CSUM_IPv4_Rx
95 #define	IFCAP_RCTRL_TUCSEN	(IFCAP_CSUM_TCPv4_Rx\
96 				 |IFCAP_CSUM_UDPv4_Rx\
97 				 |IFCAP_CSUM_TCPv6_Rx\
98 				 |IFCAP_CSUM_UDPv6_Rx)
99 
100 #define	IFCAP_TCTRL_IPCSEN	IFCAP_CSUM_IPv4_Tx
101 #define	IFCAP_TCTRL_TUCSEN	(IFCAP_CSUM_TCPv4_Tx\
102 				 |IFCAP_CSUM_UDPv4_Tx\
103 				 |IFCAP_CSUM_TCPv6_Tx\
104 				 |IFCAP_CSUM_UDPv6_Tx)
105 
106 #define	IFCAP_ETSEC		(IFCAP_RCTRL_IPCSEN|IFCAP_RCTRL_TUCSEN\
107 				 |IFCAP_TCTRL_IPCSEN|IFCAP_TCTRL_TUCSEN)
108 
109 #define	M_CSUM_IP	(M_CSUM_CIP|M_CSUM_CTU)
110 #define	M_CSUM_IP6	(M_CSUM_TCPv6|M_CSUM_UDPv6)
111 #define	M_CSUM_TUP	(M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TCPv6|M_CSUM_UDPv6)
112 #define	M_CSUM_UDP	(M_CSUM_UDPv4|M_CSUM_UDPv6)
113 #define	M_CSUM_IP4	(M_CSUM_IPv4|M_CSUM_UDPv4|M_CSUM_TCPv4)
114 #define	M_CSUM_CIP	(M_CSUM_IPv4)
115 #define	M_CSUM_CTU	(M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TCPv6|M_CSUM_UDPv6)
116 
117 struct pq3etsec_txqueue {
118 	bus_dmamap_t txq_descmap;
119 	volatile struct txbd *txq_consumer;
120 	volatile struct txbd *txq_producer;
121 	volatile struct txbd *txq_first;
122 	volatile struct txbd *txq_last;
123 	struct ifqueue txq_mbufs;
124 	struct mbuf *txq_next;
125 #ifdef ETSEC_DEBUG
126 	struct mbuf *txq_lmbufs[512];
127 #endif
128 	uint32_t txq_qmask;
129 	uint32_t txq_free;
130 	uint32_t txq_threshold;
131 	uint32_t txq_lastintr;
132 	bus_size_t txq_reg_tbase;
133 	bus_dma_segment_t txq_descmap_seg;
134 };
135 
136 struct pq3etsec_rxqueue {
137 	bus_dmamap_t rxq_descmap;
138 	volatile struct rxbd *rxq_consumer;
139 	volatile struct rxbd *rxq_producer;
140 	volatile struct rxbd *rxq_first;
141 	volatile struct rxbd *rxq_last;
142 	struct mbuf *rxq_mhead;
143 	struct mbuf **rxq_mtail;
144 	struct mbuf *rxq_mconsumer;
145 #ifdef ETSEC_DEBUG
146 	struct mbuf *rxq_mbufs[512];
147 #endif
148 	uint32_t rxq_qmask;
149 	uint32_t rxq_inuse;
150 	uint32_t rxq_threshold;
151 	bus_size_t rxq_reg_rbase;
152 	bus_size_t rxq_reg_rbptr;
153 	bus_dma_segment_t rxq_descmap_seg;
154 };
155 
156 struct pq3etsec_mapcache {
157 	u_int dmc_nmaps;
158 	u_int dmc_maxseg;
159 	u_int dmc_maxmaps;
160 	u_int dmc_maxmapsize;
161 	bus_dmamap_t dmc_maps[0];
162 };
163 
164 struct pq3etsec_softc {
165 	device_t sc_dev;
166 	struct ethercom sc_ec;
167 #define sc_if		sc_ec.ec_if
168 	struct mii_data sc_mii;
169 	bus_space_tag_t sc_bst;
170 	bus_space_handle_t sc_bsh;
171 	bus_dma_tag_t sc_dmat;
172 	int sc_phy_addr;
173 	prop_dictionary_t sc_intrmap;
174 	uint32_t sc_intrmask;
175 
176 	uint32_t sc_soft_flags;
177 #define	SOFT_RESET		0x0001
178 #define	SOFT_RXINTR		0x0010
179 #define	SOFT_RXBSY		0x0020
180 #define	SOFT_TXINTR		0x0100
181 #define	SOFT_TXERROR		0x0200
182 
183 	struct pq3etsec_txqueue sc_txq;
184 	struct pq3etsec_rxqueue sc_rxq;
185 	uint32_t sc_txerrors;
186 	uint32_t sc_rxerrors;
187 
188 	size_t sc_rx_adjlen;
189 
190 	/*
191 	 * Copies of various ETSEC registers.
192 	 */
193 	uint32_t sc_imask;
194 	uint32_t sc_maccfg1;
195 	uint32_t sc_maccfg2;
196 	uint32_t sc_maxfrm;
197 	uint32_t sc_ecntrl;
198 	uint32_t sc_dmactrl;
199 	uint32_t sc_macstnaddr1;
200 	uint32_t sc_macstnaddr2;
201 	uint32_t sc_tctrl;
202 	uint32_t sc_rctrl;
203 	uint32_t sc_gaddr[16];
204 	uint64_t sc_macaddrs[15];
205 
206 	void *sc_tx_ih;
207 	void *sc_rx_ih;
208 	void *sc_error_ih;
209 	void *sc_soft_ih;
210 
211 	kmutex_t *sc_lock;
212 
213 	struct evcnt sc_ev_tx_stall;
214 	struct evcnt sc_ev_tx_intr;
215 	struct evcnt sc_ev_rx_stall;
216 	struct evcnt sc_ev_rx_intr;
217 	struct evcnt sc_ev_error_intr;
218 	struct evcnt sc_ev_soft_intr;
219 	struct evcnt sc_ev_tx_pause;
220 	struct evcnt sc_ev_rx_pause;
221 	struct evcnt sc_ev_mii_ticks;
222 
223 	struct callout sc_mii_callout;
224 	uint64_t sc_mii_last_tick;
225 
226 	struct ifqueue sc_rx_bufcache;
227 	struct pq3etsec_mapcache *sc_rx_mapcache;
228 	struct pq3etsec_mapcache *sc_tx_mapcache;
229 };
230 
231 static int pq3etsec_match(device_t, cfdata_t, void *);
232 static void pq3etsec_attach(device_t, device_t, void *);
233 
234 static void pq3etsec_ifstart(struct ifnet *);
235 static void pq3etsec_ifwatchdog(struct ifnet *);
236 static int pq3etsec_ifinit(struct ifnet *);
237 static void pq3etsec_ifstop(struct ifnet *, int);
238 static int pq3etsec_ifioctl(struct ifnet *, u_long, void *);
239 
240 static int pq3etsec_mapcache_create(struct pq3etsec_softc *,
241     struct pq3etsec_mapcache **, size_t, size_t, size_t, size_t);
242 static void pq3etsec_mapcache_destroy(struct pq3etsec_softc *,
243     struct pq3etsec_mapcache *);
244 static bus_dmamap_t pq3etsec_mapcache_get(struct pq3etsec_softc *,
245     struct pq3etsec_mapcache *);
246 static void pq3etsec_mapcache_put(struct pq3etsec_softc *,
247     struct pq3etsec_mapcache *, bus_dmamap_t);
248 
249 static int pq3etsec_txq_attach(struct pq3etsec_softc *,
250     struct pq3etsec_txqueue *, u_int);
251 static void pq3etsec_txq_purge(struct pq3etsec_softc *,
252     struct pq3etsec_txqueue *);
253 static void pq3etsec_txq_reset(struct pq3etsec_softc *,
254     struct pq3etsec_txqueue *);
255 static bool pq3etsec_txq_consume(struct pq3etsec_softc *,
256     struct pq3etsec_txqueue *);
257 static bool pq3etsec_txq_produce(struct pq3etsec_softc *,
258     struct pq3etsec_txqueue *, struct mbuf *m);
259 static bool pq3etsec_txq_active_p(struct pq3etsec_softc *,
260     struct pq3etsec_txqueue *);
261 
262 static int pq3etsec_rxq_attach(struct pq3etsec_softc *,
263     struct pq3etsec_rxqueue *, u_int);
264 static bool pq3etsec_rxq_produce(struct pq3etsec_softc *,
265     struct pq3etsec_rxqueue *);
266 static void pq3etsec_rxq_purge(struct pq3etsec_softc *,
267     struct pq3etsec_rxqueue *, bool);
268 static void pq3etsec_rxq_reset(struct pq3etsec_softc *,
269     struct pq3etsec_rxqueue *);
270 
271 static void pq3etsec_mc_setup(struct pq3etsec_softc *);
272 
273 static void pq3etsec_mii_tick(void *);
274 static int pq3etsec_rx_intr(void *);
275 static int pq3etsec_tx_intr(void *);
276 static int pq3etsec_error_intr(void *);
277 static void pq3etsec_soft_intr(void *);
278 
279 CFATTACH_DECL_NEW(pq3etsec, sizeof(struct pq3etsec_softc),
280     pq3etsec_match, pq3etsec_attach, NULL, NULL);
281 
282 static int
283 pq3etsec_match(device_t parent, cfdata_t cf, void *aux)
284 {
285 
286 	if (!e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
287 		return 0;
288 
289 	return 1;
290 }
291 
292 static inline uint32_t
293 etsec_read(struct pq3etsec_softc *sc, bus_size_t off)
294 {
295 	return bus_space_read_4(sc->sc_bst, sc->sc_bsh, off);
296 }
297 
298 static inline void
299 etsec_write(struct pq3etsec_softc *sc, bus_size_t off, uint32_t data)
300 {
301 	bus_space_write_4(sc->sc_bst, sc->sc_bsh, off, data);
302 }
303 
304 static int
305 pq3etsec_mii_readreg(device_t self, int phy, int reg)
306 {
307 	struct pq3etsec_softc * const sc = device_private(self);
308 	uint32_t miimcom = etsec_read(sc, MIIMCOM);
309 
310 //	int s = splnet();
311 
312 	etsec_write(sc, MIIMADD,
313 	    __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
314 
315 	etsec_write(sc, IEVENT, IEVENT_MMRD);
316 	etsec_write(sc, MIIMCOM, 0);	/* clear any past bits */
317 	etsec_write(sc, MIIMCOM, MIIMCOM_READ);
318 #if 0
319 	sc->sc_imask |= IEVENT_MMRD;
320 	etsec_write(sc, IMASK, sc->sc_imask);
321 #endif
322 
323 	while (etsec_read(sc, MIIMIND) != 0) {
324 			delay(1);
325 	}
326 	int data = etsec_read(sc, MIIMSTAT);
327 
328 	if (miimcom == MIIMCOM_SCAN)
329 		etsec_write(sc, MIIMCOM, miimcom);
330 
331 #if 0
332 	aprint_normal_dev(sc->sc_dev, "%s: phy %d reg %d: %#x\n",
333 	    __func__, phy, reg, data);
334 #endif
335 	etsec_write(sc, IEVENT, IEVENT_MMRD);
336 //	splx(s);
337 	return data;
338 }
339 
340 static void
341 pq3etsec_mii_writereg(device_t self, int phy, int reg, int data)
342 {
343 	struct pq3etsec_softc * const sc = device_private(self);
344 	uint32_t miimcom = etsec_read(sc, MIIMCOM);
345 
346 #if 0
347 	aprint_normal_dev(sc->sc_dev, "%s: phy %d reg %d: %#x\n",
348 	    __func__, phy, reg, data);
349 #endif
350 
351 //	int s = splnet();
352 	etsec_write(sc, IEVENT, IEVENT_MMWR);
353 	etsec_write(sc, MIIMADD,
354 	    __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
355 	etsec_write(sc, MIIMCOM, 0);	/* clear any past bits */
356 	etsec_write(sc, MIIMCON, data);
357 
358 #if 0
359 	sc->sc_imask |= IEVENT_MMWR;
360 	etsec_write(sc, IMASK, sc->sc_imask);
361 #endif
362 
363 	int timo = 1000;	/* 1ms */
364 	while ((etsec_read(sc, MIIMIND) & MIIMIND_BUSY) && --timo > 0) {
365 			delay(1);
366 	}
367 
368 	if (miimcom == MIIMCOM_SCAN)
369 		etsec_write(sc, MIIMCOM, miimcom);
370 	etsec_write(sc, IEVENT, IEVENT_MMWR);
371 //	splx(s);
372 }
373 
374 static void
375 pq3etsec_mii_statchg(device_t self)
376 {
377 	struct pq3etsec_softc * const sc = device_private(self);
378 	struct mii_data * const mii = &sc->sc_mii;
379 
380 	uint32_t maccfg1 = sc->sc_maccfg1;
381 	uint32_t maccfg2 = sc->sc_maccfg2;
382 	uint32_t ecntrl = sc->sc_ecntrl;
383 
384 	maccfg1 &= ~(MACCFG1_TX_FLOW|MACCFG1_RX_FLOW);
385 	maccfg2 &= ~(MACCFG2_IFMODE|MACCFG2_FD);
386 
387 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
388 		maccfg2 |= MACCFG2_FD;
389 	}
390 
391 	/*
392 	 * Now deal with the flow control bits.
393 	 */
394 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO
395 	    && (mii->mii_media_active & IFM_ETH_FMASK)) {
396 		if (mii->mii_media_active & IFM_ETH_RXPAUSE)
397 			maccfg1 |= MACCFG1_RX_FLOW;
398 		if (mii->mii_media_active & IFM_ETH_TXPAUSE)
399 			maccfg1 |= MACCFG1_TX_FLOW;
400 	}
401 
402 	/*
403 	 * Now deal with the speed.
404 	 */
405 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
406 		maccfg2 |= MACCFG2_IFMODE_GMII;
407 	} else {
408 		maccfg2 |= MACCFG2_IFMODE_MII;
409 		ecntrl &= ~ECNTRL_R100M;
410 		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_10_T) {
411 			ecntrl |= ECNTRL_R100M;
412 		}
413 	}
414 
415 	/*
416 	 * If things are different, re-init things.
417 	 */
418 	if (maccfg1 != sc->sc_maccfg1
419 	    || maccfg2 != sc->sc_maccfg2
420 	    || ecntrl != sc->sc_ecntrl) {
421 		if (sc->sc_if.if_flags & IFF_RUNNING)
422 			atomic_or_uint(&sc->sc_soft_flags, SOFT_RESET);
423 		sc->sc_maccfg1 = maccfg1;
424 		sc->sc_maccfg2 = maccfg2;
425 		sc->sc_ecntrl = ecntrl;
426 	}
427 }
428 
429 #if 0
430 static void
431 pq3etsec_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
432 {
433 	struct pq3etsec_softc * const sc = ifp->if_softc;
434 
435 	mii_pollstat(&sc->sc_mii);
436 	ether_mediastatus(ifp, ifmr);
437         ifmr->ifm_status = sc->sc_mii.mii_media_status;
438         ifmr->ifm_active = sc->sc_mii.mii_media_active;
439 }
440 
441 static int
442 pq3etsec_mediachange(struct ifnet *ifp)
443 {
444 	struct pq3etsec_softc * const sc = ifp->if_softc;
445 
446 	if ((ifp->if_flags & IFF_UP) == 0)
447 		return 0;
448 
449 	int rv = mii_mediachg(&sc->sc_mii);
450 	return (rv == ENXIO) ? 0 : rv;
451 }
452 #endif
453 
454 static void
455 pq3etsec_attach(device_t parent, device_t self, void *aux)
456 {
457 	struct cpunode_softc * const psc = device_private(parent);
458 	struct pq3etsec_softc * const sc = device_private(self);
459 	struct cpunode_attach_args * const cna = aux;
460 	struct cpunode_locators * const cnl = &cna->cna_locs;
461 	cfdata_t cf = device_cfdata(self);
462 	int error;
463 
464 	psc->sc_children |= cna->cna_childmask;
465 	sc->sc_dev = self;
466 	sc->sc_bst = cna->cna_memt;
467 	sc->sc_dmat = &booke_bus_dma_tag;
468 
469 	/*
470 	 * If we have a common MDIO bus, if all off instance 1.
471 	 */
472 	device_t miiself = (cf->cf_flags & 0x100) ? tsec_cd.cd_devs[0] : self;
473 
474 	/*
475 	 * See if the phy is in the config file...
476 	 */
477 	if (cf->cf_flags & 0x3f) {
478 		sc->sc_phy_addr = (cf->cf_flags & 0x3f) - 1;
479 	} else {
480 		unsigned char prop_name[20];
481 		snprintf(prop_name, sizeof(prop_name), "tsec%u-phy-addr",
482 		    cnl->cnl_instance);
483 		sc->sc_phy_addr = board_info_get_number(prop_name);
484 	}
485 	aprint_normal(" phy %d", sc->sc_phy_addr);
486 
487 	error = bus_space_map(sc->sc_bst, cnl->cnl_addr, cnl->cnl_size, 0,
488 	    &sc->sc_bsh);
489 	if (error) {
490 		aprint_error(": error mapping registers: %d\n", error);
491 		return;
492 	}
493 
494 	/*
495 	 * Assume firmware has aready set the mac address and fetch it
496 	 * before we reinit it.
497 	 */
498 	sc->sc_macstnaddr2 = etsec_read(sc, MACSTNADDR2);
499 	sc->sc_macstnaddr1 = etsec_read(sc, MACSTNADDR1);
500 	sc->sc_rctrl = RCTRL_DEFAULT;
501 	sc->sc_maccfg2 = MACCFG2_DEFAULT;
502 
503 	if (sc->sc_macstnaddr1 == 0 && sc->sc_macstnaddr2 == 0) {
504 		size_t len;
505 		const uint8_t *mac_addr =
506 		    board_info_get_data("tsec-mac-addr-base", &len);
507 		KASSERT(len == ETHER_ADDR_LEN);
508 		sc->sc_macstnaddr2 =
509 		    (mac_addr[1] << 24)
510 		    | (mac_addr[0] << 16);
511 		sc->sc_macstnaddr1 =
512 		    ((mac_addr[5] + cnl->cnl_instance - 1) << 24)
513 		    | (mac_addr[4] << 16)
514 		    | (mac_addr[3] << 8)
515 		    | (mac_addr[2] << 0);
516 #if 0
517 		aprint_error(": mac-address unknown\n");
518 		return;
519 #endif
520 	}
521 
522 	char enaddr[ETHER_ADDR_LEN] = {
523 	    [0] = sc->sc_macstnaddr2 >> 16,
524 	    [1] = sc->sc_macstnaddr2 >> 24,
525 	    [2] = sc->sc_macstnaddr1 >>  0,
526 	    [3] = sc->sc_macstnaddr1 >>  8,
527 	    [4] = sc->sc_macstnaddr1 >> 16,
528 	    [5] = sc->sc_macstnaddr1 >> 24,
529 	};
530 
531 	error = pq3etsec_rxq_attach(sc, &sc->sc_rxq, 0);
532 	if (error) {
533 		aprint_error(": failed to init rxq: %d\n", error);
534 		return;
535 	}
536 
537 	error = pq3etsec_txq_attach(sc, &sc->sc_txq, 0);
538 	if (error) {
539 		aprint_error(": failed to init txq: %d\n", error);
540 		return;
541 	}
542 
543 	error = pq3etsec_mapcache_create(sc, &sc->sc_rx_mapcache,
544 	    ETSEC_MAXRXMBUFS, ETSEC_MINRXMBUFS, MCLBYTES, ETSEC_NRXSEGS);
545 	if (error) {
546 		aprint_error(": failed to allocate rx dmamaps: %d\n", error);
547 		return;
548 	}
549 
550 	error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
551 	    ETSEC_MAXTXMBUFS, ETSEC_MAXTXMBUFS, MCLBYTES, ETSEC_NTXSEGS);
552 	if (error) {
553 		aprint_error(": failed to allocate tx dmamaps: %d\n", error);
554 		return;
555 	}
556 
557 	sc->sc_tx_ih = intr_establish(cnl->cnl_intrs[0], IPL_VM, IST_ONCHIP,
558 	    pq3etsec_tx_intr, sc);
559 	if (sc->sc_tx_ih == NULL) {
560 		aprint_error(": failed to establish tx interrupt: %d\n",
561 		    cnl->cnl_intrs[0]);
562 		return;
563 	}
564 
565 	sc->sc_rx_ih = intr_establish(cnl->cnl_intrs[1], IPL_VM, IST_ONCHIP,
566 	    pq3etsec_rx_intr, sc);
567 	if (sc->sc_rx_ih == NULL) {
568 		aprint_error(": failed to establish rx interrupt: %d\n",
569 		    cnl->cnl_intrs[1]);
570 		return;
571 	}
572 
573 	sc->sc_error_ih = intr_establish(cnl->cnl_intrs[2], IPL_VM, IST_ONCHIP,
574 	    pq3etsec_error_intr, sc);
575 	if (sc->sc_error_ih == NULL) {
576 		aprint_error(": failed to establish error interrupt: %d\n",
577 		    cnl->cnl_intrs[2]);
578 		return;
579 	}
580 
581 	sc->sc_soft_ih = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
582 	    pq3etsec_soft_intr, sc);
583 	if (sc->sc_soft_ih == NULL) {
584 		aprint_error(": failed to establish soft interrupt\n");
585 		return;
586 	}
587 
588 	aprint_normal("\n");
589 
590 	etsec_write(sc, ATTR, ATTR_DEFAULT);
591 	etsec_write(sc, ATTRELI, ATTRELI_DEFAULT);
592 
593 	sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
594 
595 	callout_init(&sc->sc_mii_callout, CALLOUT_MPSAFE);
596 	callout_setfunc(&sc->sc_mii_callout, pq3etsec_mii_tick, sc);
597 
598 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
599 	   ether_sprintf(enaddr));
600 
601 	const char * const xname = device_xname(sc->sc_dev);
602 	struct ethercom * const ec = &sc->sc_ec;
603 	struct ifnet * const ifp = &ec->ec_if;
604 
605 	ec->ec_mii = &sc->sc_mii;
606 
607 	sc->sc_mii.mii_ifp = ifp;
608 	sc->sc_mii.mii_readreg = pq3etsec_mii_readreg;
609 	sc->sc_mii.mii_writereg = pq3etsec_mii_writereg;
610 	sc->sc_mii.mii_statchg = pq3etsec_mii_statchg;
611 
612 	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
613 	    ether_mediastatus);
614 
615 	if (sc->sc_phy_addr < 32) {
616 		mii_attach(miiself, &sc->sc_mii, 0xffffffff,
617 		    sc->sc_phy_addr, MII_OFFSET_ANY, MIIF_DOPAUSE);
618 
619 		if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
620 			ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
621 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
622 		} else {
623 			callout_schedule(&sc->sc_mii_callout, hz);
624 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
625 		}
626 	} else {
627 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
628 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_1000_T|IFM_FDX);
629 	}
630 
631 	ec->ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING
632 	    | ETHERCAP_JUMBO_MTU;
633 
634 	strlcpy(ifp->if_xname, xname, IFNAMSIZ);
635 	ifp->if_softc = sc;
636 	ifp->if_capabilities = IFCAP_ETSEC;
637 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
638 	ifp->if_ioctl = pq3etsec_ifioctl;
639 	ifp->if_start = pq3etsec_ifstart;
640 	ifp->if_watchdog = pq3etsec_ifwatchdog;
641 	ifp->if_init = pq3etsec_ifinit;
642 	ifp->if_stop = pq3etsec_ifstop;
643 	IFQ_SET_READY(&ifp->if_snd);
644 
645 	pq3etsec_ifstop(ifp, true);
646 
647 	/*
648 	 * Attach the interface.
649 	 */
650 	if_attach(ifp);
651 	ether_ifattach(ifp, enaddr);
652 
653 	evcnt_attach_dynamic(&sc->sc_ev_rx_stall, EVCNT_TYPE_MISC,
654 	    NULL, xname, "rx stall");
655 	evcnt_attach_dynamic(&sc->sc_ev_tx_stall, EVCNT_TYPE_MISC,
656 	    NULL, xname, "tx stall");
657 	evcnt_attach_dynamic(&sc->sc_ev_tx_intr, EVCNT_TYPE_INTR,
658 	    NULL, xname, "tx intr");
659 	evcnt_attach_dynamic(&sc->sc_ev_rx_intr, EVCNT_TYPE_INTR,
660 	    NULL, xname, "rx intr");
661 	evcnt_attach_dynamic(&sc->sc_ev_error_intr, EVCNT_TYPE_INTR,
662 	    NULL, xname, "error intr");
663 	evcnt_attach_dynamic(&sc->sc_ev_soft_intr, EVCNT_TYPE_INTR,
664 	    NULL, xname, "soft intr");
665 	evcnt_attach_dynamic(&sc->sc_ev_tx_pause, EVCNT_TYPE_MISC,
666 	    NULL, xname, "tx pause");
667 	evcnt_attach_dynamic(&sc->sc_ev_rx_pause, EVCNT_TYPE_MISC,
668 	    NULL, xname, "rx pause");
669 	evcnt_attach_dynamic(&sc->sc_ev_mii_ticks, EVCNT_TYPE_MISC,
670 	    NULL, xname, "mii ticks");
671 }
672 
673 static uint64_t
674 pq3etsec_macaddr_create(const uint8_t *lladdr)
675 {
676 	uint64_t macaddr = 0;
677 
678 	lladdr += ETHER_ADDR_LEN;
679 	for (u_int i = ETHER_ADDR_LEN; i-- > 0; ) {
680 		macaddr = (macaddr << 8) | *--lladdr;
681 	}
682 	return macaddr << 16;
683 }
684 
685 static int
686 pq3etsec_ifinit(struct ifnet *ifp)
687 {
688 	struct pq3etsec_softc * const sc = ifp->if_softc;
689 	int error = 0;
690 
691 	sc->sc_maxfrm = max(ifp->if_mtu + 32, MCLBYTES);
692 	if (ifp->if_mtu > ETHERMTU_JUMBO)
693 		return error;
694 
695 	KASSERT(ifp->if_flags & IFF_UP);
696 
697 	/*
698 	 * Stop the interface (steps 1 to 4 in the Soft Reset and
699 	 * Reconfigurating Procedure.
700 	 */
701 	pq3etsec_ifstop(ifp, 0);
702 
703 	/*
704 	 * If our frame size has changed (or it's our first time through)
705 	 * destroy the existing transmit mapcache.
706 	 */
707 	if (sc->sc_tx_mapcache != NULL
708 	    && sc->sc_maxfrm != sc->sc_tx_mapcache->dmc_maxmapsize) {
709 		pq3etsec_mapcache_destroy(sc, sc->sc_tx_mapcache);
710 		sc->sc_tx_mapcache = NULL;
711 	}
712 
713 	if (sc->sc_tx_mapcache == NULL) {
714 		error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
715 		    ETSEC_MAXTXMBUFS, ETSEC_MAXTXMBUFS, sc->sc_maxfrm,
716 		    ETSEC_NTXSEGS);
717 		if (error)
718 			return error;
719 	}
720 
721 	sc->sc_ev_mii_ticks.ev_count++;
722 	mii_tick(&sc->sc_mii);
723 
724 	if (ifp->if_flags & IFF_PROMISC) {
725 		sc->sc_rctrl |= RCTRL_PROM;
726 	} else {
727 		sc->sc_rctrl &= ~RCTRL_PROM;
728 	}
729 
730 	uint32_t rctrl_prsdep = 0;
731 	sc->sc_rctrl &= ~(RCTRL_IPCSEN|RCTRL_TUCSEN|RCTRL_VLEX|RCTRL_PRSDEP);
732 	if (VLAN_ATTACHED(&sc->sc_ec)) {
733 		sc->sc_rctrl |= RCTRL_VLEX;
734 		rctrl_prsdep = RCTRL_PRSDEP_L2;
735 	}
736 	if (ifp->if_capenable & IFCAP_RCTRL_IPCSEN) {
737 		sc->sc_rctrl |= RCTRL_IPCSEN;
738 		rctrl_prsdep = RCTRL_PRSDEP_L3;
739 	}
740 	if (ifp->if_capenable & IFCAP_RCTRL_TUCSEN) {
741 		sc->sc_rctrl |= RCTRL_TUCSEN;
742 		rctrl_prsdep = RCTRL_PRSDEP_L4;
743 	}
744 	sc->sc_rctrl |= rctrl_prsdep;
745 #if 0
746 	if (sc->sc_rctrl & (RCTRL_IPCSEN|RCTRL_TUCSEN|RCTRL_VLEX|RCTRL_PRSDEP))
747 		aprint_normal_dev(sc->sc_dev,
748 		    "rctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlex=%"PRIuMAX" prsdep=%"PRIuMAX"\n",
749 		    sc->sc_rctrl,
750 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_IPCSEN),
751 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_TUCSEN),
752 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_VLEX),
753 		    __SHIFTOUT(sc->sc_rctrl, RCTRL_PRSDEP));
754 #endif
755 
756 	sc->sc_tctrl &= ~(TCTRL_IPCSEN|TCTRL_TUCSEN|TCTRL_VLINS);
757 	if (VLAN_ATTACHED(&sc->sc_ec))		/* is this really true */
758 		sc->sc_tctrl |= TCTRL_VLINS;
759 	if (ifp->if_capenable & IFCAP_TCTRL_IPCSEN)
760 		sc->sc_tctrl |= TCTRL_IPCSEN;
761 	if (ifp->if_capenable & IFCAP_TCTRL_TUCSEN)
762 		sc->sc_tctrl |= TCTRL_TUCSEN;
763 #if 0
764 	if (sc->sc_tctrl & (TCTRL_IPCSEN|TCTRL_TUCSEN|TCTRL_VLINS))
765 		aprint_normal_dev(sc->sc_dev,
766 		    "tctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlins=%"PRIuMAX"\n",
767 		    sc->sc_tctrl,
768 		    __SHIFTOUT(sc->sc_tctrl, TCTRL_IPCSEN),
769 		    __SHIFTOUT(sc->sc_tctrl, TCTRL_TUCSEN),
770 		    __SHIFTOUT(sc->sc_tctrl, TCTRL_VLINS));
771 #endif
772 
773 	sc->sc_maccfg1 &= ~(MACCFG1_TX_EN|MACCFG1_RX_EN);
774 
775 	const uint64_t macstnaddr =
776 	    pq3etsec_macaddr_create(CLLADDR(ifp->if_sadl));
777 
778 	sc->sc_imask = IEVENT_DPE;
779 
780 	/* 5. Load TDBPH, TBASEH, TBASE0-TBASE7 with new Tx BD pointers */
781 	pq3etsec_rxq_reset(sc, &sc->sc_rxq);
782 	pq3etsec_rxq_produce(sc, &sc->sc_rxq);	/* fill with rx buffers */
783 
784 	/* 6. Load RDBPH, RBASEH, RBASE0-RBASE7 with new Rx BD pointers */
785 	pq3etsec_txq_reset(sc, &sc->sc_txq);
786 
787 	/* 7. Setup other MAC registers (MACCFG2, MAXFRM, etc.) */
788 	KASSERT(MACCFG2_PADCRC & sc->sc_maccfg2);
789 	etsec_write(sc, MAXFRM, sc->sc_maxfrm);
790 	etsec_write(sc, MACSTNADDR1, (uint32_t)(macstnaddr >> 32));
791 	etsec_write(sc, MACSTNADDR2, (uint32_t)(macstnaddr >>  0));
792 	etsec_write(sc, MACCFG1, sc->sc_maccfg1);
793 	etsec_write(sc, MACCFG2, sc->sc_maccfg2);
794 	etsec_write(sc, ECNTRL, sc->sc_ecntrl);
795 
796 	/* 8. Setup group address hash table (GADDR0-GADDR15) */
797 	pq3etsec_mc_setup(sc);
798 
799 	/* 9. Setup receive frame filer table (via RQFAR, RQFCR, and RQFPR) */
800 	etsec_write(sc, MRBLR, MCLBYTES);
801 
802 	/* 10. Setup WWR, WOP, TOD bits in DMACTRL register */
803 	sc->sc_dmactrl |= DMACTRL_DEFAULT;
804 	etsec_write(sc, DMACTRL, sc->sc_dmactrl);
805 
806 	/* 11. Enable transmit queues in TQUEUE, and ensure that the transmit scheduling mode is correctly set in TCTRL. */
807 	etsec_write(sc, TQUEUE, TQUEUE_EN0);
808 	sc->sc_imask |= IEVENT_TXF|IEVENT_TXE|IEVENT_TXC;
809 
810 	etsec_write(sc, TCTRL, sc->sc_tctrl);	/* for TOE stuff */
811 
812 	/* 12. Enable receive queues in RQUEUE, */
813 	etsec_write(sc, RQUEUE, RQUEUE_EN0|RQUEUE_EX0);
814 	sc->sc_imask |= IEVENT_RXF|IEVENT_BSY|IEVENT_RXC;
815 
816 	/*     and optionally set TOE functionality in RCTRL. */
817 	etsec_write(sc, RCTRL, sc->sc_rctrl);
818 	sc->sc_rx_adjlen = __SHIFTOUT(sc->sc_rctrl, RCTRL_PAL);
819 	if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF)
820 		sc->sc_rx_adjlen += sizeof(struct rxfcb);
821 
822 	/* 13. Clear THLT and TXF bits in TSTAT register by writing 1 to them */
823 	etsec_write(sc, TSTAT, TSTAT_THLT | TSTAT_TXF);
824 
825 	/* 14. Clear QHLT and RXF bits in RSTAT register by writing 1 to them.*/
826 	etsec_write(sc, RSTAT, RSTAT_QHLT | RSTAT_RXF);
827 
828 	/* 15. Clear GRS/GTS bits in DMACTRL (do not change other bits) */
829 	sc->sc_dmactrl &= ~(DMACTRL_GRS|DMACTRL_GTS);
830 	etsec_write(sc, DMACTRL, sc->sc_dmactrl);
831 
832 	/* 16. Enable Tx_EN/Rx_EN in MACCFG1 register */
833 	etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
834 	etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
835 
836 	sc->sc_soft_flags = 0;
837 
838 	etsec_write(sc, IMASK, sc->sc_imask);
839 
840 	ifp->if_flags |= IFF_RUNNING;
841 
842 	return error;
843 }
844 
845 static void
846 pq3etsec_ifstop(struct ifnet *ifp, int disable)
847 {
848 	struct pq3etsec_softc * const sc = ifp->if_softc;
849 
850 	KASSERT(!cpu_intr_p());
851 	const uint32_t imask_gsc_mask = IEVENT_GTSC|IEVENT_GRSC;
852 	/*
853 	 * Clear the GTSC and GRSC from the interrupt mask until
854 	 * we are ready for them.  Then clear them from IEVENT,
855 	 * request the graceful shutdown, and then enable the
856 	 * GTSC and GRSC bits in the mask.  This should cause the
857 	 * error interrupt to fire which will issue a wakeup to
858 	 * allow us to resume.
859 	 */
860 
861 	/*
862 	 * 1. Set GRS/GTS bits in DMACTRL register
863 	 */
864 	sc->sc_dmactrl |= DMACTRL_GRS|DMACTRL_GTS;
865 	etsec_write(sc, IMASK, sc->sc_imask & ~imask_gsc_mask);
866 	etsec_write(sc, IEVENT, imask_gsc_mask);
867 	etsec_write(sc, DMACTRL, sc->sc_dmactrl);
868 
869 	if (etsec_read(sc, MACCFG1) & (MACCFG1_TX_EN|MACCFG1_RX_EN)) {
870 		/*
871 		 * 2. Poll GRSC/GTSC bits in IEVENT register until both are set
872 		 */
873 		etsec_write(sc, IMASK, sc->sc_imask | imask_gsc_mask);
874 
875 		u_int timo = 1000;
876 		uint32_t ievent = etsec_read(sc, IEVENT);
877 		while ((ievent & imask_gsc_mask) != imask_gsc_mask) {
878 			if (--timo == 0) {
879 				aprint_error_dev(sc->sc_dev,
880 				    "WARNING: "
881 				    "request to stop failed (IEVENT=%#x)\n",
882 				    ievent);
883 				break;
884 			}
885 			delay(10);
886 			ievent = etsec_read(sc, IEVENT);
887 		}
888 	}
889 
890 	/*
891 	 * Now reset the controller.
892 	 *
893 	 * 3. Set SOFT_RESET bit in MACCFG1 register
894 	 * 4. Clear SOFT_RESET bit in MACCFG1 register
895 	 */
896 	etsec_write(sc, MACCFG1, MACCFG1_SOFT_RESET);
897 	etsec_write(sc, MACCFG1, 0);
898 	etsec_write(sc, IMASK, 0);
899 	etsec_write(sc, IEVENT, ~0);
900 	sc->sc_imask = 0;
901 	ifp->if_flags &= ~IFF_RUNNING;
902 
903 	uint32_t tbipa = etsec_read(sc, TBIPA);
904 	if (tbipa == sc->sc_phy_addr) {
905 		aprint_normal_dev(sc->sc_dev, "relocating TBI\n");
906 		etsec_write(sc, TBIPA, 0x1f);
907 	}
908 	uint32_t miimcfg = etsec_read(sc, MIIMCFG);
909 	etsec_write(sc, MIIMCFG, MIIMCFG_RESET);
910 	etsec_write(sc, MIIMCFG, miimcfg);
911 
912 	/*
913 	 * Let's consume any remaing transmitted packets.  And if we are
914 	 * disabling the interface, purge ourselves of any untransmitted
915 	 * packets.  But don't consume any received packets, just drop them.
916 	 * If we aren't disabling the interface, save the mbufs in the
917 	 * receive queue for reuse.
918 	 */
919 	pq3etsec_rxq_purge(sc, &sc->sc_rxq, disable);
920 	pq3etsec_txq_consume(sc, &sc->sc_txq);
921 	if (disable) {
922 		pq3etsec_txq_purge(sc, &sc->sc_txq);
923 		IF_PURGE(&ifp->if_snd);
924 	}
925 }
926 
927 static void
928 pq3etsec_ifwatchdog(struct ifnet *ifp)
929 {
930 }
931 
932 static void
933 pq3etsec_mc_setup(
934 	struct pq3etsec_softc *sc)
935 {
936 	struct ethercom * const ec = &sc->sc_ec;
937 	struct ifnet * const ifp = &sc->sc_if;
938 	struct ether_multi *enm;
939 	struct ether_multistep step;
940 	uint32_t *gaddr = sc->sc_gaddr + ((sc->sc_rctrl & RCTRL_GHTX) ? 0 : 8);
941 	const uint32_t crc_shift = 32 - ((sc->sc_rctrl & RCTRL_GHTX) ? 9 : 8);
942 
943 	memset(sc->sc_gaddr, 0, sizeof(sc->sc_gaddr));
944 	memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
945 
946 	ifp->if_flags &= ~IFF_ALLMULTI;
947 
948 	ETHER_FIRST_MULTI(step, ec, enm);
949 	for (u_int i = 0; enm != NULL; ) {
950 		const char *addr = enm->enm_addrlo;
951 		if (memcmp(addr, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
952 			ifp->if_flags |= IFF_ALLMULTI;
953 			memset(gaddr, 0xff, 32 << (crc_shift & 1));
954 			memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
955 			break;
956 		}
957 		if ((sc->sc_rctrl & RCTRL_EMEN)
958 		    && i < __arraycount(sc->sc_macaddrs)) {
959 			sc->sc_macaddrs[i++] = pq3etsec_macaddr_create(addr);
960 		} else {
961 			uint32_t crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
962 #if 0
963 			printf("%s: %s: crc=%#x: %#x: [%u,%u]=%#x\n", __func__,
964 			    ether_sprintf(addr), crc,
965 			    crc >> crc_shift,
966 			    crc >> (crc_shift + 5),
967 			    (crc >> crc_shift) & 31,
968 			    1 << (((crc >> crc_shift) & 31) ^ 31));
969 #endif
970 			/*
971 			 * The documentation doesn't completely follow PowerPC
972 			 * bit order.  The BE crc32 (H) for 01:00:5E:00:00:01
973 			 * is 0x7fa32d9b.  By empirical testing, the
974 			 * corresponding hash bit is word 3, bit 31 (ppc bit
975 			 * order).  Since 3 << 31 | 31 is 0x7f, we deduce
976 			 * H[0:2] selects the register while H[3:7] selects
977 			 * the bit (ppc bit order).
978 			 */
979 			crc >>= crc_shift;
980 			gaddr[crc / 32] |= 1 << ((crc & 31) ^ 31);
981 		}
982 		ETHER_NEXT_MULTI(step, enm);
983 	}
984 	for (u_int i = 0; i < 8; i++) {
985 		etsec_write(sc, IGADDR(i), sc->sc_gaddr[i]);
986 		etsec_write(sc, GADDR(i), sc->sc_gaddr[i+8]);
987 #if 0
988 		if (sc->sc_gaddr[i] || sc->sc_gaddr[i+8])
989 		printf("%s: IGADDR%u(%#x)=%#x GADDR%u(%#x)=%#x\n", __func__,
990 		    i, IGADDR(i), etsec_read(sc, IGADDR(i)),
991 		    i, GADDR(i), etsec_read(sc, GADDR(i)));
992 #endif
993 	}
994 	for (u_int i = 0; i < __arraycount(sc->sc_macaddrs); i++) {
995 		uint64_t macaddr = sc->sc_macaddrs[i];
996 		etsec_write(sc, MACnADDR1(i), (uint32_t)(macaddr >> 32));
997 		etsec_write(sc, MACnADDR2(i), (uint32_t)(macaddr >>  0));
998 #if 0
999 		if (macaddr)
1000 		printf("%s: MAC%02uADDR2(%08x)=%#x MAC%02uADDR2(%#x)=%08x\n", __func__,
1001 		    i+1, MACnADDR1(i), etsec_read(sc, MACnADDR1(i)),
1002 		    i+1, MACnADDR2(i), etsec_read(sc, MACnADDR2(i)));
1003 #endif
1004 	}
1005 }
1006 
1007 static int
1008 pq3etsec_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
1009 {
1010 	struct pq3etsec_softc *sc  = ifp->if_softc;
1011 	struct ifreq * const ifr = data;
1012 	const int s = splnet();
1013 	int error;
1014 
1015 	switch (cmd) {
1016 	case SIOCSIFMEDIA:
1017 	case SIOCGIFMEDIA:
1018 		/* Flow control requires full-duplex mode. */
1019 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1020 		    (ifr->ifr_media & IFM_FDX) == 0)
1021 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1022 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1023 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1024 				/* We can do both TXPAUSE and RXPAUSE. */
1025 				ifr->ifr_media |=
1026 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1027 			}
1028 		}
1029 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1030 		break;
1031 
1032 	default:
1033 		error = ether_ioctl(ifp, cmd, data);
1034 		if (error != ENETRESET)
1035 			break;
1036 
1037 		if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
1038 			error = 0;
1039 			if (ifp->if_flags & IFF_RUNNING)
1040 				pq3etsec_mc_setup(sc);
1041 			break;
1042 		}
1043 		error = pq3etsec_ifinit(ifp);
1044 		break;
1045 	}
1046 
1047 	splx(s);
1048 	return error;
1049 }
1050 
1051 static void
1052 pq3etsec_rxq_desc_presync(
1053 	struct pq3etsec_softc *sc,
1054 	struct pq3etsec_rxqueue *rxq,
1055 	volatile struct rxbd *rxbd,
1056 	size_t count)
1057 {
1058 	bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1059 	    (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1060 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1061 }
1062 
1063 static void
1064 pq3etsec_rxq_desc_postsync(
1065 	struct pq3etsec_softc *sc,
1066 	struct pq3etsec_rxqueue *rxq,
1067 	volatile struct rxbd *rxbd,
1068 	size_t count)
1069 {
1070 	bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1071 	    (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1072 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1073 }
1074 
1075 static void
1076 pq3etsec_txq_desc_presync(
1077 	struct pq3etsec_softc *sc,
1078 	struct pq3etsec_txqueue *txq,
1079 	volatile struct txbd *txbd,
1080 	size_t count)
1081 {
1082 	bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1083 	    (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1084 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1085 }
1086 
1087 static void
1088 pq3etsec_txq_desc_postsync(
1089 	struct pq3etsec_softc *sc,
1090 	struct pq3etsec_txqueue *txq,
1091 	volatile struct txbd *txbd,
1092 	size_t count)
1093 {
1094 	bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1095 	    (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1096 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1097 }
1098 
1099 static bus_dmamap_t
1100 pq3etsec_mapcache_get(
1101 	struct pq3etsec_softc *sc,
1102 	struct pq3etsec_mapcache *dmc)
1103 {
1104 	if (dmc->dmc_nmaps == 0) {
1105 		bus_dmamap_t map;
1106 		int error = bus_dmamap_create(sc->sc_dmat, dmc->dmc_maxmapsize,
1107 			dmc->dmc_maxseg, dmc->dmc_maxmapsize, 0,
1108 			BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW, &map);
1109 		if (error) {
1110 			aprint_error_dev(sc->sc_dev,
1111 			    "failed to allocate a %zuB map: %d\n",
1112 			    dmc->dmc_maxmapsize, error);
1113 			return NULL;
1114 		}
1115 		return map;
1116 	}
1117 
1118 	KASSERT(dmc->dmc_maps[dmc->dmc_nmaps-1] != NULL);
1119 	return dmc->dmc_maps[--dmc->dmc_nmaps];
1120 }
1121 
1122 static void
1123 pq3etsec_mapcache_put(
1124 	struct pq3etsec_softc *sc,
1125 	struct pq3etsec_mapcache *dmc,
1126 	bus_dmamap_t map)
1127 {
1128 	KASSERT(map != NULL);
1129 	KASSERT(dmc->dmc_nmaps < dmc->dmc_maxmaps);
1130 	dmc->dmc_maps[dmc->dmc_nmaps++] = map;
1131 }
1132 
1133 static void
1134 pq3etsec_mapcache_destroy(
1135 	struct pq3etsec_softc *sc,
1136 	struct pq3etsec_mapcache *dmc)
1137 {
1138 	const size_t dmc_size =
1139 	    offsetof(struct pq3etsec_mapcache, dmc_maps[dmc->dmc_maxmaps]);
1140 
1141 	for (u_int i = 0; i < dmc->dmc_maxmaps; i++) {
1142 		bus_dmamap_destroy(sc->sc_dmat, dmc->dmc_maps[i]);
1143 	}
1144 	kmem_free(dmc, dmc_size);
1145 }
1146 
1147 static int
1148 pq3etsec_mapcache_create(
1149 	struct pq3etsec_softc *sc,
1150 	struct pq3etsec_mapcache **dmc_p,
1151 	size_t maxmaps,
1152 	size_t minmaps,
1153 	size_t maxmapsize,
1154 	size_t maxseg)
1155 {
1156 	const size_t dmc_size =
1157 	    offsetof(struct pq3etsec_mapcache, dmc_maps[maxmaps]);
1158 	struct pq3etsec_mapcache * const dmc = kmem_zalloc(dmc_size, KM_SLEEP);
1159 
1160 	dmc->dmc_maxmaps = maxmaps;
1161 	dmc->dmc_nmaps = minmaps;
1162 	dmc->dmc_maxmapsize = maxmapsize;
1163 	dmc->dmc_maxseg = maxseg;
1164 
1165 	for (u_int i = 0; i < minmaps; i++) {
1166 		int error = bus_dmamap_create(sc->sc_dmat, dmc->dmc_maxmapsize,
1167 		     dmc->dmc_maxseg, dmc->dmc_maxmapsize, 0,
1168 		     BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW, &dmc->dmc_maps[i]);
1169 		if (error) {
1170 			aprint_error_dev(sc->sc_dev,
1171 			    "failed to creat dma map cache "
1172 			    "entry %u of %zu (max %zu): %d\n",
1173 			    i, minmaps, maxmaps, error);
1174 			while (i-- > 0) {
1175 				bus_dmamap_destroy(sc->sc_dmat,
1176 				    dmc->dmc_maps[i]);
1177 			}
1178 			kmem_free(dmc, dmc_size);
1179 			return error;
1180 		}
1181 		KASSERT(dmc->dmc_maps[i] != NULL);
1182 	}
1183 
1184 	*dmc_p = dmc;
1185 
1186 	return 0;
1187 }
1188 
1189 #if 0
1190 static void
1191 pq3etsec_dmamem_free(
1192 	bus_dma_tag_t dmat,
1193 	size_t map_size,
1194 	bus_dma_segment_t *seg,
1195 	bus_dmamap_t map,
1196 	void *kvap)
1197 {
1198 	bus_dmamap_destroy(dmat, map);
1199 	bus_dmamem_unmap(dmat, kvap, map_size);
1200 	bus_dmamem_free(dmat, seg, 1);
1201 }
1202 #endif
1203 
1204 static int
1205 pq3etsec_dmamem_alloc(
1206 	bus_dma_tag_t dmat,
1207 	size_t map_size,
1208 	bus_dma_segment_t *seg,
1209 	bus_dmamap_t *map,
1210 	void **kvap)
1211 {
1212 	int error;
1213 	int nseg;
1214 
1215 	*kvap = NULL;
1216 	*map = NULL;
1217 
1218 	error = bus_dmamem_alloc(dmat, map_size, PAGE_SIZE, 0,
1219 	   seg, 1, &nseg, 0);
1220 	if (error)
1221 		return error;
1222 
1223 	KASSERT(nseg == 1);
1224 
1225 	error = bus_dmamem_map(dmat, seg, nseg, map_size, (void **)kvap,
1226 	    BUS_DMA_COHERENT);
1227 	if (error == 0) {
1228 		error = bus_dmamap_create(dmat, map_size, 1, map_size, 0, 0,
1229 		    map);
1230 		if (error == 0) {
1231 			error = bus_dmamap_load(dmat, *map, *kvap, map_size,
1232 			    NULL, 0);
1233 			if (error == 0)
1234 				return 0;
1235 			bus_dmamap_destroy(dmat, *map);
1236 			*map = NULL;
1237 		}
1238 		bus_dmamem_unmap(dmat, *kvap, map_size);
1239 		*kvap = NULL;
1240 	}
1241 	bus_dmamem_free(dmat, seg, nseg);
1242 	return 0;
1243 }
1244 
1245 static struct mbuf *
1246 pq3etsec_rx_buf_alloc(
1247 	struct pq3etsec_softc *sc)
1248 {
1249 	struct mbuf *m = m_gethdr(M_DONTWAIT, MT_DATA);
1250 	if (m == NULL) {
1251 		printf("%s:%d: %s\n", __func__, __LINE__, "m_gethdr");
1252 		return NULL;
1253 	}
1254 	MCLGET(m, M_DONTWAIT);
1255 	if ((m->m_flags & M_EXT) == 0) {
1256 		printf("%s:%d: %s\n", __func__, __LINE__, "MCLGET");
1257 		m_freem(m);
1258 		return NULL;
1259 	}
1260 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1261 
1262 	bus_dmamap_t map = pq3etsec_mapcache_get(sc, sc->sc_rx_mapcache);
1263 	if (map == NULL) {
1264 		printf("%s:%d: %s\n", __func__, __LINE__, "map get");
1265 		m_freem(m);
1266 		return NULL;
1267 	}
1268 	M_SETCTX(m, map);
1269 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1270 	int error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1271 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1272 	if (error) {
1273 		aprint_error_dev(sc->sc_dev, "fail to load rx dmamap: %d\n",
1274 		    error);
1275 		M_SETCTX(m, NULL);
1276 		m_freem(m);
1277 		pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1278 		return NULL;
1279 	}
1280 	KASSERT(map->dm_mapsize == MCLBYTES);
1281 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1282 	    BUS_DMASYNC_PREREAD);
1283 
1284 	return m;
1285 }
1286 
1287 static void
1288 pq3etsec_rx_map_unload(
1289 	struct pq3etsec_softc *sc,
1290 	struct mbuf *m)
1291 {
1292 	KASSERT(m);
1293 	for (; m != NULL; m = m->m_next) {
1294 		bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1295 		KASSERT(map);
1296 		KASSERT(map->dm_mapsize == MCLBYTES);
1297 		bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_len,
1298 		    BUS_DMASYNC_POSTREAD);
1299 		bus_dmamap_unload(sc->sc_dmat, map);
1300 		pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1301 		M_SETCTX(m, NULL);
1302 	}
1303 }
1304 
1305 static bool
1306 pq3etsec_rxq_produce(
1307 	struct pq3etsec_softc *sc,
1308 	struct pq3etsec_rxqueue *rxq)
1309 {
1310 	volatile struct rxbd *producer = rxq->rxq_producer;
1311 #if 0
1312 	size_t inuse = rxq->rxq_inuse;
1313 #endif
1314 	while (rxq->rxq_inuse < rxq->rxq_threshold) {
1315 		struct mbuf *m;
1316 		IF_DEQUEUE(&sc->sc_rx_bufcache, m);
1317 		if (m == NULL) {
1318 			m = pq3etsec_rx_buf_alloc(sc);
1319 			if (m == NULL) {
1320 				printf("%s: pq3etsec_rx_buf_alloc failed\n", __func__);
1321 				break;
1322 			}
1323 		}
1324 		bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1325 		KASSERT(map);
1326 
1327 #ifdef ETSEC_DEBUG
1328 		KASSERT(rxq->rxq_mbufs[producer-rxq->rxq_first] == NULL);
1329 		rxq->rxq_mbufs[producer-rxq->rxq_first] = m;
1330 #endif
1331 
1332 		/* rxbd_len is write-only by the ETSEC */
1333 		producer->rxbd_bufptr = map->dm_segs[0].ds_addr;
1334 		membar_producer();
1335 		producer->rxbd_flags |= RXBD_E;
1336 		if (__predict_false(rxq->rxq_mhead == NULL)) {
1337 			KASSERT(producer == rxq->rxq_consumer);
1338 			rxq->rxq_mconsumer = m;
1339 		}
1340 		*rxq->rxq_mtail = m;
1341 		rxq->rxq_mtail = &m->m_next;
1342 		m->m_len = MCLBYTES;
1343 		m->m_next = NULL;
1344 		rxq->rxq_inuse++;
1345 		if (++producer == rxq->rxq_last) {
1346 			membar_producer();
1347 			pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1348 			    rxq->rxq_last - rxq->rxq_producer);
1349 			producer = rxq->rxq_producer = rxq->rxq_first;
1350 		}
1351 	}
1352 	if (producer != rxq->rxq_producer) {
1353 		membar_producer();
1354 		pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1355 		    producer - rxq->rxq_producer);
1356 		rxq->rxq_producer = producer;
1357 	}
1358 	uint32_t qhlt = etsec_read(sc, RSTAT) & RSTAT_QHLT;
1359 	if (qhlt) {
1360 		KASSERT(qhlt & rxq->rxq_qmask);
1361 		sc->sc_ev_rx_stall.ev_count++;
1362 		etsec_write(sc, RSTAT, RSTAT_QHLT & rxq->rxq_qmask);
1363 	}
1364 #if 0
1365 	aprint_normal_dev(sc->sc_dev,
1366 	    "%s: buffers inuse went from %zu to %zu\n",
1367 	    __func__, inuse, rxq->rxq_inuse);
1368 #endif
1369 	return true;
1370 }
1371 
1372 static bool
1373 pq3etsec_rx_offload(
1374 	struct pq3etsec_softc *sc,
1375 	struct mbuf *m,
1376 	const struct rxfcb *fcb)
1377 {
1378 	if (fcb->rxfcb_flags & RXFCB_VLN) {
1379 		VLAN_INPUT_TAG(&sc->sc_if, m, fcb->rxfcb_vlctl,
1380 		    m_freem(m); return false);
1381 	}
1382 	if ((fcb->rxfcb_flags & RXFCB_IP) == 0
1383 	    || (fcb->rxfcb_flags & (RXFCB_CIP|RXFCB_CTU)) == 0)
1384 		return true;
1385 	int csum_flags = 0;
1386 	if ((fcb->rxfcb_flags & (RXFCB_IP6|RXFCB_CIP)) == RXFCB_CIP) {
1387 		csum_flags |= M_CSUM_IPv4;
1388 		if (fcb->rxfcb_flags & RXFCB_EIP)
1389 			csum_flags |= M_CSUM_IPv4_BAD;
1390 	}
1391 	if ((fcb->rxfcb_flags & RXFCB_CTU) == RXFCB_CTU) {
1392 		int ipv_flags;
1393 		if (fcb->rxfcb_flags & RXFCB_IP6)
1394 			ipv_flags = M_CSUM_TCPv6|M_CSUM_UDPv6;
1395 		else
1396 			ipv_flags = M_CSUM_TCPv4|M_CSUM_UDPv4;
1397 		if (fcb->rxfcb_pro == IPPROTO_TCP) {
1398 			csum_flags |= (M_CSUM_TCPv4|M_CSUM_TCPv6) & ipv_flags;
1399 		} else {
1400 			csum_flags |= (M_CSUM_UDPv4|M_CSUM_UDPv6) & ipv_flags;
1401 		}
1402 		if (fcb->rxfcb_flags & RXFCB_ETU)
1403 			csum_flags |= M_CSUM_TCP_UDP_BAD;
1404 	}
1405 
1406 	m->m_pkthdr.csum_flags = csum_flags;
1407 	return true;
1408 }
1409 
1410 static void
1411 pq3etsec_rx_input(
1412 	struct pq3etsec_softc *sc,
1413 	struct mbuf *m,
1414 	uint16_t rxbd_flags)
1415 {
1416 	struct ifnet * const ifp = &sc->sc_if;
1417 
1418 	pq3etsec_rx_map_unload(sc, m);
1419 
1420 	if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF) {
1421 		struct rxfcb fcb = *mtod(m, struct rxfcb *);
1422 		if (!pq3etsec_rx_offload(sc, m, &fcb))
1423 			return;
1424 	}
1425 	m_adj(m, sc->sc_rx_adjlen);
1426 
1427 	if (rxbd_flags & RXBD_M)
1428 		m->m_flags |= M_PROMISC;
1429 	if (rxbd_flags & RXBD_BC)
1430 		m->m_flags |= M_BCAST;
1431 	if (rxbd_flags & RXBD_MC)
1432 		m->m_flags |= M_MCAST;
1433 	m->m_flags |= M_HASFCS;
1434 	m->m_pkthdr.rcvif = &sc->sc_if;
1435 
1436 	ifp->if_ipackets++;
1437 	ifp->if_ibytes += m->m_pkthdr.len;
1438 
1439 	/*
1440 	 * Let's give it to the network subsystm to deal with.
1441 	 */
1442 	int s = splnet();
1443 	bpf_mtap(ifp, m);
1444 	(*ifp->if_input)(ifp, m);
1445 	splx(s);
1446 }
1447 
1448 static void
1449 pq3etsec_rxq_consume(
1450 	struct pq3etsec_softc *sc,
1451 	struct pq3etsec_rxqueue *rxq)
1452 {
1453 	struct ifnet * const ifp = &sc->sc_if;
1454 	volatile struct rxbd *consumer = rxq->rxq_consumer;
1455 	size_t rxconsumed = 0;
1456 
1457 	etsec_write(sc, RSTAT, RSTAT_RXF & rxq->rxq_qmask);
1458 
1459 	for (;;) {
1460 		if (consumer == rxq->rxq_producer) {
1461 			rxq->rxq_consumer = consumer;
1462 			rxq->rxq_inuse -= rxconsumed;
1463 			KASSERT(rxq->rxq_inuse == 0);
1464 			return;
1465 		}
1466 		pq3etsec_rxq_desc_postsync(sc, rxq, consumer, 1);
1467 		const uint16_t rxbd_flags = consumer->rxbd_flags;
1468 		if (rxbd_flags & RXBD_E) {
1469 			rxq->rxq_consumer = consumer;
1470 			rxq->rxq_inuse -= rxconsumed;
1471 			return;
1472 		}
1473 		KASSERT(rxq->rxq_mconsumer != NULL);
1474 #ifdef ETSEC_DEBUG
1475 		KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1476 #endif
1477 #if 0
1478 		printf("%s: rxdb[%u]: flags=%#x len=%#x: %08x %08x %08x %08x\n",
1479 		    __func__,
1480 		    consumer - rxq->rxq_first, rxbd_flags, consumer->rxbd_len,
1481 		    mtod(rxq->rxq_mconsumer, int *)[0],
1482 		    mtod(rxq->rxq_mconsumer, int *)[1],
1483 		    mtod(rxq->rxq_mconsumer, int *)[2],
1484 		    mtod(rxq->rxq_mconsumer, int *)[3]);
1485 #endif
1486 		/*
1487 		 * We own this packet again.  Clear all flags except wrap.
1488 		 */
1489 		rxconsumed++;
1490 		consumer->rxbd_flags = rxbd_flags & (RXBD_W|RXBD_I);
1491 
1492 		/*
1493 		 * If this descriptor has the LAST bit set and no errors,
1494 		 * it's a valid input packet.
1495 		 */
1496 		if ((rxbd_flags & (RXBD_L|RXBD_ERRORS)) == RXBD_L) {
1497 			size_t rxbd_len = consumer->rxbd_len;
1498 			struct mbuf *m = rxq->rxq_mhead;
1499 			struct mbuf *m_last = rxq->rxq_mconsumer;
1500 			if ((rxq->rxq_mhead = m_last->m_next) == NULL)
1501 				rxq->rxq_mtail = &rxq->rxq_mhead;
1502 			rxq->rxq_mconsumer = rxq->rxq_mhead;
1503 			m_last->m_next = NULL;
1504 			m_last->m_len = rxbd_len & (MCLBYTES - 1);
1505 			m->m_pkthdr.len = rxbd_len;
1506 			pq3etsec_rx_input(sc, m, rxbd_flags);
1507 		} else if (rxbd_flags & RXBD_L) {
1508 			KASSERT(rxbd_flags & RXBD_ERRORS);
1509 			struct mbuf *m;
1510 			/*
1511 			 * We encountered an error, take the mbufs and add
1512 			 * then to the rx bufcache so we can reuse them.
1513 			 */
1514 			ifp->if_ierrors++;
1515 			for (m = rxq->rxq_mhead;
1516 			     m != rxq->rxq_mconsumer;
1517 			     m = m->m_next) {
1518 				IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1519 			}
1520 			m = rxq->rxq_mconsumer;
1521 			if ((rxq->rxq_mhead = m->m_next) == NULL)
1522 				rxq->rxq_mtail = &rxq->rxq_mhead;
1523 			rxq->rxq_mconsumer = m->m_next;
1524 			IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1525 		} else {
1526 			rxq->rxq_mconsumer = rxq->rxq_mconsumer->m_next;
1527 		}
1528 #ifdef ETSEC_DEBUG
1529 		rxq->rxq_mbufs[consumer - rxq->rxq_first] = NULL;
1530 #endif
1531 
1532 		/*
1533 		 * Wrap at the last entry!
1534 		 */
1535 		if (rxbd_flags & RXBD_W) {
1536 			KASSERT(consumer + 1 == rxq->rxq_last);
1537 			consumer = rxq->rxq_first;
1538 		} else {
1539 			consumer++;
1540 		}
1541 #ifdef ETSEC_DEBUG
1542 		KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1543 #endif
1544 	}
1545 }
1546 
1547 static void
1548 pq3etsec_rxq_purge(
1549 	struct pq3etsec_softc *sc,
1550 	struct pq3etsec_rxqueue *rxq,
1551 	bool discard)
1552 {
1553 	struct mbuf *m;
1554 
1555 	if ((m = rxq->rxq_mhead) != NULL) {
1556 #ifdef ETSEC_DEBUG
1557 		memset(rxq->rxq_mbufs, 0, sizeof(rxq->rxq_mbufs));
1558 #endif
1559 
1560 		if (discard) {
1561 			pq3etsec_rx_map_unload(sc, m);
1562 			m_freem(m);
1563 		} else {
1564 			while (m != NULL) {
1565 				struct mbuf *m0 = m->m_next;
1566 				m->m_next = NULL;
1567 				IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1568 				m = m0;
1569 			}
1570 		}
1571 
1572 	}
1573 
1574 	rxq->rxq_mconsumer = NULL;
1575 	rxq->rxq_mhead = NULL;
1576 	rxq->rxq_mtail = &rxq->rxq_mhead;
1577 	rxq->rxq_inuse = 0;
1578 }
1579 
1580 static void
1581 pq3etsec_rxq_reset(
1582 	struct pq3etsec_softc *sc,
1583 	struct pq3etsec_rxqueue *rxq)
1584 {
1585 	/*
1586 	 * sync all the descriptors
1587 	 */
1588 	pq3etsec_rxq_desc_postsync(sc, rxq, rxq->rxq_first,
1589 	    rxq->rxq_last - rxq->rxq_first);
1590 
1591 	/*
1592 	 * Make sure we own all descriptors in the ring.
1593 	 */
1594 	volatile struct rxbd *rxbd;
1595 	for (rxbd = rxq->rxq_first; rxbd < rxq->rxq_last - 1; rxbd++) {
1596 		rxbd->rxbd_flags = RXBD_I;
1597 	}
1598 
1599 	/*
1600 	 * Last descriptor has the wrap flag.
1601 	 */
1602 	rxbd->rxbd_flags = RXBD_W|RXBD_I;
1603 
1604 	/*
1605 	 * Reset the producer consumer indexes.
1606 	 */
1607 	rxq->rxq_consumer = rxq->rxq_first;
1608 	rxq->rxq_producer = rxq->rxq_first;
1609 	rxq->rxq_inuse = 0;
1610 	if (rxq->rxq_threshold < ETSEC_MINRXMBUFS)
1611 		rxq->rxq_threshold = ETSEC_MINRXMBUFS;
1612 
1613 	sc->sc_imask |= IEVENT_RXF|IEVENT_BSY;
1614 
1615 	/*
1616 	 * Restart the transmit at the first descriptor
1617 	 */
1618 	etsec_write(sc, rxq->rxq_reg_rbase, rxq->rxq_descmap->dm_segs->ds_addr);
1619 }
1620 
1621 static int
1622 pq3etsec_rxq_attach(
1623 	struct pq3etsec_softc *sc,
1624 	struct pq3etsec_rxqueue *rxq,
1625 	u_int qno)
1626 {
1627 	size_t map_size = PAGE_SIZE;
1628 	size_t desc_count = map_size / sizeof(struct rxbd);
1629 	int error;
1630 	void *descs;
1631 
1632 	error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1633 	   &rxq->rxq_descmap_seg, &rxq->rxq_descmap, &descs);
1634 	if (error)
1635 		return error;
1636 
1637 	memset(descs, 0, map_size);
1638 	rxq->rxq_first = descs;
1639 	rxq->rxq_last = rxq->rxq_first + desc_count;
1640 	rxq->rxq_consumer = descs;
1641 	rxq->rxq_producer = descs;
1642 
1643 	pq3etsec_rxq_purge(sc, rxq, true);
1644 	pq3etsec_rxq_reset(sc, rxq);
1645 
1646 	rxq->rxq_reg_rbase = RBASEn(qno);
1647 	rxq->rxq_qmask = RSTAT_QHLTn(qno) | RSTAT_RXFn(qno);
1648 
1649 	return 0;
1650 }
1651 
1652 static bool
1653 pq3etsec_txq_active_p(
1654 	struct pq3etsec_softc * const sc,
1655 	struct pq3etsec_txqueue *txq)
1656 {
1657 	return !IF_IS_EMPTY(&txq->txq_mbufs);
1658 }
1659 
1660 static bool
1661 pq3etsec_txq_fillable_p(
1662 	struct pq3etsec_softc * const sc,
1663 	struct pq3etsec_txqueue *txq)
1664 {
1665 	return txq->txq_free >= txq->txq_threshold;
1666 }
1667 
1668 static int
1669 pq3etsec_txq_attach(
1670 	struct pq3etsec_softc *sc,
1671 	struct pq3etsec_txqueue *txq,
1672 	u_int qno)
1673 {
1674 	size_t map_size = PAGE_SIZE;
1675 	size_t desc_count = map_size / sizeof(struct txbd);
1676 	int error;
1677 	void *descs;
1678 
1679 	error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1680 	   &txq->txq_descmap_seg, &txq->txq_descmap, &descs);
1681 	if (error)
1682 		return error;
1683 
1684 	memset(descs, 0, map_size);
1685 	txq->txq_first = descs;
1686 	txq->txq_last = txq->txq_first + desc_count;
1687 	txq->txq_consumer = descs;
1688 	txq->txq_producer = descs;
1689 
1690 	IFQ_SET_MAXLEN(&txq->txq_mbufs, ETSEC_MAXTXMBUFS);
1691 
1692 	txq->txq_reg_tbase = TBASEn(qno);
1693 	txq->txq_qmask = TSTAT_THLTn(qno) | TSTAT_TXFn(qno);
1694 
1695 	pq3etsec_txq_reset(sc, txq);
1696 
1697 	return 0;
1698 }
1699 
1700 static int
1701 pq3etsec_txq_map_load(
1702 	struct pq3etsec_softc *sc,
1703 	struct pq3etsec_txqueue *txq,
1704 	struct mbuf *m)
1705 {
1706 	bus_dmamap_t map;
1707 	int error;
1708 
1709 	map = M_GETCTX(m, bus_dmamap_t);
1710 	if (map != NULL)
1711 		return 0;
1712 
1713 	map = pq3etsec_mapcache_get(sc, sc->sc_tx_mapcache);
1714 	if (map == NULL)
1715 		return ENOMEM;
1716 
1717 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1718 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1719 	if (error)
1720 		return error;
1721 
1722 	bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_pkthdr.len,
1723 	    BUS_DMASYNC_PREWRITE);
1724 	M_SETCTX(m, map);
1725 	return 0;
1726 }
1727 
1728 static void
1729 pq3etsec_txq_map_unload(
1730 	struct pq3etsec_softc *sc,
1731 	struct pq3etsec_txqueue *txq,
1732 	struct mbuf *m)
1733 {
1734 	KASSERT(m);
1735 	bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1736 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1737 	    BUS_DMASYNC_POSTWRITE);
1738 	bus_dmamap_unload(sc->sc_dmat, map);
1739 	pq3etsec_mapcache_put(sc, sc->sc_tx_mapcache, map);
1740 }
1741 
1742 static bool
1743 pq3etsec_txq_produce(
1744 	struct pq3etsec_softc *sc,
1745 	struct pq3etsec_txqueue *txq,
1746 	struct mbuf *m)
1747 {
1748 	bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1749 
1750 	if (map->dm_nsegs > txq->txq_free)
1751 		return false;
1752 
1753 	/*
1754 	 * TCP Offload flag must be set in the first descriptor.
1755 	 */
1756 	volatile struct txbd *producer = txq->txq_producer;
1757 	uint16_t last_flags = TXBD_L;
1758 	uint16_t first_flags = TXBD_R
1759 	    | ((m->m_flags & M_HASFCB) ? TXBD_TOE : 0);
1760 
1761 	/*
1762 	 * If we've produced enough descriptors without consuming any
1763 	 * we need to ask for an interrupt to reclaim some.
1764 	 */
1765 	txq->txq_lastintr += map->dm_nsegs;
1766 	if (txq->txq_lastintr >= txq->txq_threshold
1767 	    || txq->txq_mbufs.ifq_len + 1 == txq->txq_mbufs.ifq_maxlen) {
1768 		txq->txq_lastintr = 0;
1769 		last_flags |= TXBD_I;
1770 	}
1771 
1772 #ifdef ETSEC_DEBUG
1773 	KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1774 #endif
1775 	KASSERT(producer != txq->txq_last);
1776 	producer->txbd_bufptr = map->dm_segs[0].ds_addr;
1777 	producer->txbd_len = map->dm_segs[0].ds_len;
1778 
1779 	if (map->dm_nsegs > 1) {
1780 		volatile struct txbd *start = producer + 1;
1781 		size_t count = map->dm_nsegs - 1;
1782 		for (u_int i = 1; i < map->dm_nsegs; i++) {
1783 			if (__predict_false(++producer == txq->txq_last)) {
1784 				producer = txq->txq_first;
1785 				if (start < txq->txq_last) {
1786 					pq3etsec_txq_desc_presync(sc, txq,
1787 					    start, txq->txq_last - start);
1788 					count -= txq->txq_last - start;
1789 				}
1790 				start = txq->txq_first;
1791 			}
1792 #ifdef ETSEC_DEBUG
1793 			KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1794 #endif
1795 			producer->txbd_bufptr = map->dm_segs[i].ds_addr;
1796 			producer->txbd_len = map->dm_segs[i].ds_len;
1797 			producer->txbd_flags = TXBD_R
1798 			    | (producer->txbd_flags & TXBD_W)
1799 			    | (i == map->dm_nsegs - 1 ? last_flags : 0);
1800 #if 0
1801 			printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__, producer - txq->txq_first,
1802 			    producer->txbd_flags, producer->txbd_len, producer->txbd_bufptr);
1803 #endif
1804 		}
1805 		pq3etsec_txq_desc_presync(sc, txq, start, count);
1806 	} else {
1807 		first_flags |= last_flags;
1808 	}
1809 
1810 	membar_producer();
1811 	txq->txq_producer->txbd_flags =
1812 	    first_flags | (txq->txq_producer->txbd_flags & TXBD_W);
1813 #if 0
1814 	printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__,
1815 	    txq->txq_producer - txq->txq_first, txq->txq_producer->txbd_flags,
1816 	    txq->txq_producer->txbd_len, txq->txq_producer->txbd_bufptr);
1817 #endif
1818 	pq3etsec_txq_desc_presync(sc, txq, txq->txq_producer, 1);
1819 
1820 	/*
1821 	 * Reduce free count by the number of segments we consumed.
1822 	 */
1823 	txq->txq_free -= map->dm_nsegs;
1824 	KASSERT(map->dm_nsegs == 1 || txq->txq_producer != producer);
1825 	KASSERT(map->dm_nsegs == 1 || (txq->txq_producer->txbd_flags & TXBD_L) == 0);
1826 	KASSERT(producer->txbd_flags & TXBD_L);
1827 #ifdef ETSEC_DEBUG
1828 	txq->txq_lmbufs[producer - txq->txq_first] = m;
1829 #endif
1830 
1831 #if 0
1832 	printf("%s: mbuf %p: produced a %u byte packet in %u segments (%u..%u)\n",
1833 	    __func__, m, m->m_pkthdr.len, map->dm_nsegs,
1834 	    txq->txq_producer - txq->txq_first, producer - txq->txq_first);
1835 #endif
1836 
1837 	if (++producer == txq->txq_last)
1838 		txq->txq_producer = txq->txq_first;
1839 	else
1840 		txq->txq_producer = producer;
1841 	IF_ENQUEUE(&txq->txq_mbufs, m);
1842 
1843 	/*
1844 	 * Restart the transmitter.
1845 	 */
1846 	etsec_write(sc, TSTAT, txq->txq_qmask & TSTAT_THLT);	/* W1C */
1847 
1848 	return true;
1849 }
1850 
1851 static void
1852 pq3etsec_tx_offload(
1853 	struct pq3etsec_softc *sc,
1854 	struct pq3etsec_txqueue *txq,
1855 	struct mbuf **mp)
1856 {
1857 	struct mbuf *m = *mp;
1858 	u_int csum_flags = m->m_pkthdr.csum_flags;
1859 	struct m_tag *vtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m);
1860 
1861 	KASSERT(m->m_flags & M_PKTHDR);
1862 
1863 	/*
1864 	 * Let see if we are doing any offload first.
1865 	 */
1866 	if (csum_flags == 0 && vtag == 0) {
1867 		m->m_flags &= ~M_HASFCB;
1868 		return;
1869 	}
1870 
1871 	uint16_t flags = 0;
1872 	if (csum_flags & M_CSUM_IP) {
1873 		flags |= TXFCB_IP
1874 		    | ((csum_flags & M_CSUM_IP6) ? TXFCB_IP6 : 0)
1875 		    | ((csum_flags & M_CSUM_TUP) ? TXFCB_TUP : 0)
1876 		    | ((csum_flags & M_CSUM_UDP) ? TXFCB_UDP : 0)
1877 		    | ((csum_flags & M_CSUM_CIP) ? TXFCB_CIP : 0)
1878 		    | ((csum_flags & M_CSUM_CTU) ? TXFCB_CTU : 0);
1879 	}
1880 	if (vtag) {
1881 		flags |= TXFCB_VLN;
1882 	}
1883 	if (flags == 0) {
1884 		m->m_flags &= ~M_HASFCB;
1885 		return;
1886 	}
1887 
1888 	struct txfcb fcb;
1889 	fcb.txfcb_flags = flags;
1890 	if (csum_flags & M_CSUM_IPv4)
1891 		fcb.txfcb_l4os = M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
1892 	else
1893 		fcb.txfcb_l4os = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
1894 	fcb.txfcb_l3os = ETHER_HDR_LEN;
1895 	fcb.txfcb_phcs = 0;
1896 	fcb.txfcb_vlctl = vtag ? VLAN_TAG_VALUE(vtag) & 0xffff : 0;
1897 
1898 #if 0
1899 	printf("%s: csum_flags=%#x: txfcb flags=%#x lsos=%u l4os=%u phcs=%u vlctl=%#x\n",
1900 	    __func__, csum_flags, fcb.txfcb_flags, fcb.txfcb_l3os, fcb.txfcb_l4os,
1901 	    fcb.txfcb_phcs, fcb.txfcb_vlctl);
1902 #endif
1903 
1904 	if (M_LEADINGSPACE(m) >= sizeof(fcb)) {
1905 		m->m_data -= sizeof(fcb);
1906 		m->m_len += sizeof(fcb);
1907 	} else if (!(m->m_flags & M_EXT) && MHLEN - m->m_len >= sizeof(fcb)) {
1908 		memmove(m->m_pktdat + sizeof(fcb), m->m_data, m->m_len);
1909 		m->m_data = m->m_pktdat;
1910 		m->m_len += sizeof(fcb);
1911 	} else {
1912 		struct mbuf *mn;
1913 		MGET(mn, M_DONTWAIT, m->m_type);
1914 		if (mn == NULL) {
1915 			if (csum_flags & M_CSUM_IP4) {
1916 #ifdef INET
1917 				ip_undefer_csum(m, ETHER_HDR_LEN,
1918 				    csum_flags & M_CSUM_IP4);
1919 #else
1920 				panic("%s: impossible M_CSUM flags %#x",
1921 				    device_xname(sc->sc_dev), csum_flags);
1922 #endif
1923 			} else if (csum_flags & M_CSUM_IP6) {
1924 #ifdef INET6
1925 				ip6_undefer_csum(m, ETHER_HDR_LEN,
1926 				    csum_flags & M_CSUM_IP6);
1927 #else
1928 				panic("%s: impossible M_CSUM flags %#x",
1929 				    device_xname(sc->sc_dev), csum_flags);
1930 #endif
1931 			} else if (vtag) {
1932 			}
1933 
1934 			m->m_flags &= ~M_HASFCB;
1935 			return;
1936 		}
1937 
1938 		M_MOVE_PKTHDR(mn, m);
1939 		mn->m_next = m;
1940 		m = mn;
1941 		MH_ALIGN(m, sizeof(fcb));
1942 		m->m_len = sizeof(fcb);
1943 		*mp = m;
1944 	}
1945 	m->m_pkthdr.len += sizeof(fcb);
1946 	m->m_flags |= M_HASFCB;
1947 	*mtod(m, struct txfcb *) = fcb;
1948 	return;
1949 }
1950 
1951 static bool
1952 pq3etsec_txq_enqueue(
1953 	struct pq3etsec_softc *sc,
1954 	struct pq3etsec_txqueue *txq)
1955 {
1956 	for (;;) {
1957 		if (IF_QFULL(&txq->txq_mbufs))
1958 			return false;
1959 		struct mbuf *m = txq->txq_next;
1960 		if (m == NULL) {
1961 			int s = splnet();
1962 			IF_DEQUEUE(&sc->sc_if.if_snd, m);
1963 			splx(s);
1964 			if (m == NULL)
1965 				return true;
1966 			M_SETCTX(m, NULL);
1967 			pq3etsec_tx_offload(sc, txq, &m);
1968 		} else {
1969 			txq->txq_next = NULL;
1970 		}
1971 		int error = pq3etsec_txq_map_load(sc, txq, m);
1972 		if (error) {
1973 			aprint_error_dev(sc->sc_dev,
1974 			    "discarded packet due to "
1975 			    "dmamap load failure: %d\n", error);
1976 			m_freem(m);
1977 			continue;
1978 		}
1979 		KASSERT(txq->txq_next == NULL);
1980 		if (!pq3etsec_txq_produce(sc, txq, m)) {
1981 			txq->txq_next = m;
1982 			return false;
1983 		}
1984 		KASSERT(txq->txq_next == NULL);
1985 	}
1986 }
1987 
1988 static bool
1989 pq3etsec_txq_consume(
1990 	struct pq3etsec_softc *sc,
1991 	struct pq3etsec_txqueue *txq)
1992 {
1993 	struct ifnet * const ifp = &sc->sc_if;
1994 	volatile struct txbd *consumer = txq->txq_consumer;
1995 	size_t txfree = 0;
1996 
1997 #if 0
1998 	printf("%s: entry: free=%zu\n", __func__, txq->txq_free);
1999 #endif
2000 	etsec_write(sc, TSTAT, TSTAT_TXF & txq->txq_qmask);
2001 
2002 	for (;;) {
2003 		if (consumer == txq->txq_producer) {
2004 			txq->txq_consumer = consumer;
2005 			txq->txq_free += txfree;
2006 			txq->txq_lastintr -= min(txq->txq_lastintr, txfree);
2007 #if 0
2008 			printf("%s: empty: freed %zu descriptors going form %zu to %zu\n",
2009 			    __func__, txfree, txq->txq_free - txfree, txq->txq_free);
2010 #endif
2011 			KASSERT(txq->txq_lastintr == 0);
2012 			KASSERT(txq->txq_free == txq->txq_last - txq->txq_first - 1);
2013 			return true;
2014 		}
2015 		pq3etsec_txq_desc_postsync(sc, txq, consumer, 1);
2016 		const uint16_t txbd_flags = consumer->txbd_flags;
2017 		if (txbd_flags & TXBD_R) {
2018 			txq->txq_consumer = consumer;
2019 			txq->txq_free += txfree;
2020 			txq->txq_lastintr -= min(txq->txq_lastintr, txfree);
2021 #if 0
2022 			printf("%s: freed %zu descriptors\n",
2023 			    __func__, txfree);
2024 #endif
2025 			return pq3etsec_txq_fillable_p(sc, txq);
2026 		}
2027 
2028 		/*
2029 		 * If this is the last descriptor in the chain, get the
2030 		 * mbuf, free its dmamap, and free the mbuf chain itself.
2031 		 */
2032 		if (txbd_flags & TXBD_L) {
2033 			struct mbuf *m;
2034 
2035 			IF_DEQUEUE(&txq->txq_mbufs, m);
2036 #ifdef ETSEC_DEBUG
2037 			KASSERTMSG(m == txq->txq_lmbufs[consumer-txq->txq_first],
2038 			    ("%s: %p [%u]: flags %#x m (%p) != %p (%p)", __func__,
2039 			     consumer, consumer - txq->txq_first, txbd_flags,
2040 			     m, &txq->txq_lmbufs[consumer-txq->txq_first],
2041 			     txq->txq_lmbufs[consumer-txq->txq_first]));
2042 #endif
2043 			KASSERT(m);
2044 			pq3etsec_txq_map_unload(sc, txq, m);
2045 #if 0
2046 			printf("%s: mbuf %p: consumed a %u byte packet\n",
2047 			    __func__, m, m->m_pkthdr.len);
2048 #endif
2049 			if (m->m_flags & M_HASFCB)
2050 				m_adj(m, sizeof(struct txfcb));
2051 			ifp->if_opackets++;
2052 			ifp->if_obytes += m->m_pkthdr.len;
2053 			if (m->m_flags & M_MCAST)
2054 				ifp->if_omcasts++;
2055 			if (txbd_flags & TXBD_ERRORS)
2056 				ifp->if_oerrors++;
2057 			m_freem(m);
2058 #ifdef ETSEC_DEBUG
2059 			txq->txq_lmbufs[consumer - txq->txq_first] = NULL;
2060 #endif
2061 		} else {
2062 #ifdef ETSEC_DEBUG
2063 			KASSERT(txq->txq_lmbufs[consumer-txq->txq_first] == NULL);
2064 #endif
2065 		}
2066 
2067 		/*
2068 		 * We own this packet again.  Clear all flags except wrap.
2069 		 */
2070 		txfree++;
2071 		//consumer->txbd_flags = txbd_flags & TXBD_W;
2072 
2073 		/*
2074 		 * Wrap at the last entry!
2075 		 */
2076 		if (txbd_flags & TXBD_W) {
2077 			KASSERT(consumer + 1 == txq->txq_last);
2078 			consumer = txq->txq_first;
2079 		} else {
2080 			consumer++;
2081 			KASSERT(consumer < txq->txq_last);
2082 		}
2083 	}
2084 }
2085 
2086 static void
2087 pq3etsec_txq_purge(
2088 	struct pq3etsec_softc *sc,
2089 	struct pq3etsec_txqueue *txq)
2090 {
2091 	struct mbuf *m;
2092 	KASSERT((etsec_read(sc, MACCFG1) & MACCFG1_TX_EN) == 0);
2093 
2094 	for (;;) {
2095 		IF_DEQUEUE(&txq->txq_mbufs, m);
2096 		if (m == NULL)
2097 			break;
2098 		pq3etsec_txq_map_unload(sc, txq, m);
2099 		m_freem(m);
2100 	}
2101 	if ((m = txq->txq_next) != NULL) {
2102 		txq->txq_next = NULL;
2103 		pq3etsec_txq_map_unload(sc, txq, m);
2104 		m_freem(m);
2105 	}
2106 #ifdef ETSEC_DEBUG
2107 	memset(txq->txq_lmbufs, 0, sizeof(txq->txq_lmbufs));
2108 #endif
2109 }
2110 
2111 static void
2112 pq3etsec_txq_reset(
2113 	struct pq3etsec_softc *sc,
2114 	struct pq3etsec_txqueue *txq)
2115 {
2116 	/*
2117 	 * sync all the descriptors
2118 	 */
2119 	pq3etsec_txq_desc_postsync(sc, txq, txq->txq_first,
2120 	    txq->txq_last - txq->txq_first);
2121 
2122 	/*
2123 	 * Make sure we own all descriptors in the ring.
2124 	 */
2125 	volatile struct txbd *txbd;
2126 	for (txbd = txq->txq_first; txbd < txq->txq_last - 1; txbd++) {
2127 		txbd->txbd_flags = 0;
2128 	}
2129 
2130 	/*
2131 	 * Last descriptor has the wrap flag.
2132 	 */
2133 	txbd->txbd_flags = TXBD_W;
2134 
2135 	/*
2136 	 * Reset the producer consumer indexes.
2137 	 */
2138 	txq->txq_consumer = txq->txq_first;
2139 	txq->txq_producer = txq->txq_first;
2140 	txq->txq_free = txq->txq_last - txq->txq_first - 1;
2141 	txq->txq_threshold = txq->txq_free / 2;
2142 	txq->txq_lastintr = 0;
2143 
2144 	/*
2145 	 * What do we want to get interrupted on?
2146 	 */
2147 	sc->sc_imask |= IEVENT_TXF|IEVENT_TXE;
2148 
2149 	/*
2150 	 * Restart the transmit at the first descriptor
2151 	 */
2152 	etsec_write(sc, txq->txq_reg_tbase, txq->txq_descmap->dm_segs->ds_addr);
2153 }
2154 
2155 static void
2156 pq3etsec_ifstart(struct ifnet *ifp)
2157 {
2158 	struct pq3etsec_softc * const sc = ifp->if_softc;
2159 
2160 	atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2161 	softint_schedule(sc->sc_soft_ih);
2162 }
2163 
2164 static void
2165 pq3etsec_tx_error(
2166 	struct pq3etsec_softc * const sc)
2167 {
2168 	struct pq3etsec_txqueue * const txq = &sc->sc_txq;
2169 
2170 	pq3etsec_txq_consume(sc, txq);
2171 
2172 	if (pq3etsec_txq_fillable_p(sc, txq))
2173 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
2174 	if (sc->sc_txerrors & (IEVENT_LC|IEVENT_CRL|IEVENT_XFUN|IEVENT_BABT)) {
2175 	} else if (sc->sc_txerrors & IEVENT_EBERR) {
2176 	}
2177 
2178 	if (pq3etsec_txq_active_p(sc, txq))
2179 		etsec_write(sc, TSTAT, TSTAT_THLT & txq->txq_qmask);
2180 	if (!pq3etsec_txq_enqueue(sc, txq)) {
2181 		sc->sc_ev_tx_stall.ev_count++;
2182 		sc->sc_if.if_flags |= IFF_OACTIVE;
2183 	}
2184 
2185 	sc->sc_txerrors = 0;
2186 }
2187 
2188 int
2189 pq3etsec_tx_intr(void *arg)
2190 {
2191 	struct pq3etsec_softc * const sc = arg;
2192 
2193 	sc->sc_ev_tx_intr.ev_count++;
2194 
2195 	uint32_t ievent = etsec_read(sc, IEVENT);
2196 	ievent &= IEVENT_TXF|IEVENT_TXB;
2197 	etsec_write(sc, IEVENT, ievent);	/* write 1 to clear */
2198 
2199 #if 0
2200 	aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2201 	    __func__, ievent, etsec_read(sc, IMASK));
2202 #endif
2203 
2204 	if (ievent == 0)
2205 		return 0;
2206 
2207 	sc->sc_imask &= ~(IEVENT_TXF|IEVENT_TXB);
2208 	atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2209 	etsec_write(sc, IMASK, sc->sc_imask);
2210 	softint_schedule(sc->sc_soft_ih);
2211 	return 1;
2212 }
2213 
2214 int
2215 pq3etsec_rx_intr(void *arg)
2216 {
2217 	struct pq3etsec_softc * const sc = arg;
2218 
2219 	sc->sc_ev_rx_intr.ev_count++;
2220 
2221 	uint32_t ievent = etsec_read(sc, IEVENT);
2222 	ievent &= IEVENT_RXF|IEVENT_RXB;
2223 	etsec_write(sc, IEVENT, ievent);	/* write 1 to clear */
2224 	if (ievent == 0)
2225 		return 0;
2226 
2227 #if 0
2228 	aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x\n", __func__, ievent);
2229 #endif
2230 
2231 	sc->sc_imask &= ~(IEVENT_RXF|IEVENT_RXB);
2232 	atomic_or_uint(&sc->sc_soft_flags, SOFT_RXINTR);
2233 	etsec_write(sc, IMASK, sc->sc_imask);
2234 	softint_schedule(sc->sc_soft_ih);
2235 	return 1;
2236 }
2237 
2238 int
2239 pq3etsec_error_intr(void *arg)
2240 {
2241 	struct pq3etsec_softc * const sc = arg;
2242 
2243 	sc->sc_ev_error_intr.ev_count++;
2244 
2245 	for (int rv = 0, soft_flags = 0;; rv = 1) {
2246 		uint32_t ievent = etsec_read(sc, IEVENT);
2247 		ievent &= ~(IEVENT_RXF|IEVENT_RXB|IEVENT_TXF|IEVENT_TXB);
2248 		etsec_write(sc, IEVENT, ievent);	/* write 1 to clear */
2249 		if (ievent == 0) {
2250 			if (soft_flags) {
2251 				atomic_or_uint(&sc->sc_soft_flags, soft_flags);
2252 				softint_schedule(sc->sc_soft_ih);
2253 			}
2254 			return rv;
2255 		}
2256 #if 0
2257 		aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2258 		    __func__, ievent, etsec_read(sc, IMASK));
2259 #endif
2260 
2261 		if (ievent & (IEVENT_GRSC|IEVENT_GTSC)) {
2262 			sc->sc_imask &= ~(IEVENT_GRSC|IEVENT_GTSC);
2263 			etsec_write(sc, IMASK, sc->sc_imask);
2264 			wakeup(sc);
2265 		}
2266 		if (ievent & (IEVENT_MMRD|IEVENT_MMWR)) {
2267 			sc->sc_imask &= ~(IEVENT_MMRD|IEVENT_MMWR);
2268 			etsec_write(sc, IMASK, sc->sc_imask);
2269 			wakeup(&sc->sc_mii);
2270 		}
2271 		if (ievent & IEVENT_BSY) {
2272 			soft_flags |= SOFT_RXBSY;
2273 			sc->sc_imask &= ~IEVENT_BSY;
2274 			etsec_write(sc, IMASK, sc->sc_imask);
2275 		}
2276 		if (ievent & IEVENT_TXE) {
2277 			soft_flags |= SOFT_TXERROR;
2278 			sc->sc_imask &= ~IEVENT_TXE;
2279 			sc->sc_txerrors |= ievent;
2280 		}
2281 		if (ievent & IEVENT_TXC) {
2282 			sc->sc_ev_tx_pause.ev_count++;
2283 		}
2284 		if (ievent & IEVENT_RXC) {
2285 			sc->sc_ev_rx_pause.ev_count++;
2286 		}
2287 		if (ievent & IEVENT_DPE) {
2288 			soft_flags |= SOFT_RESET;
2289 			sc->sc_imask &= ~IEVENT_DPE;
2290 			etsec_write(sc, IMASK, sc->sc_imask);
2291 		}
2292 	}
2293 }
2294 
2295 void
2296 pq3etsec_soft_intr(void *arg)
2297 {
2298 	struct pq3etsec_softc * const sc = arg;
2299 	struct ifnet * const ifp = &sc->sc_if;
2300 
2301 	mutex_enter(sc->sc_lock);
2302 
2303 	u_int soft_flags = atomic_swap_uint(&sc->sc_soft_flags, 0);
2304 
2305 	sc->sc_ev_soft_intr.ev_count++;
2306 
2307 	if (soft_flags & SOFT_RESET) {
2308 		int s = splnet();
2309 		pq3etsec_ifinit(ifp);
2310 		splx(s);
2311 		soft_flags = 0;
2312 	}
2313 
2314 	if (soft_flags & SOFT_RXBSY) {
2315 		struct pq3etsec_rxqueue * const rxq = &sc->sc_rxq;
2316 		size_t threshold = 5 * rxq->rxq_threshold / 4;
2317 		if (threshold >= rxq->rxq_last - rxq->rxq_first) {
2318 			threshold = rxq->rxq_last - rxq->rxq_first - 1;
2319 		} else {
2320 			sc->sc_imask |= IEVENT_BSY;
2321 		}
2322 		aprint_normal_dev(sc->sc_dev,
2323 		    "increasing receive buffers from %zu to %zu\n",
2324 		    rxq->rxq_threshold, threshold);
2325 		rxq->rxq_threshold = threshold;
2326 	}
2327 
2328 	if ((soft_flags & SOFT_TXINTR)
2329 	    || pq3etsec_txq_active_p(sc, &sc->sc_txq)) {
2330 		/*
2331 		 * Let's do what we came here for.  Consume transmitted
2332 		 * packets off the the transmit ring.
2333 		 */
2334 		if (!pq3etsec_txq_consume(sc, &sc->sc_txq)
2335 		    || !pq3etsec_txq_enqueue(sc, &sc->sc_txq)) {
2336 			sc->sc_ev_tx_stall.ev_count++;
2337 			ifp->if_flags |= IFF_OACTIVE;
2338 		} else {
2339 			ifp->if_flags &= ~IFF_OACTIVE;
2340 		}
2341 		sc->sc_imask |= IEVENT_TXF;
2342 	}
2343 
2344 	if (soft_flags & (SOFT_RXINTR|SOFT_RXBSY)) {
2345 		/*
2346 		 * Let's consume
2347 		 */
2348 		pq3etsec_rxq_consume(sc, &sc->sc_rxq);
2349 		sc->sc_imask |= IEVENT_RXF;
2350 	}
2351 
2352 	if (soft_flags & SOFT_TXERROR) {
2353 		pq3etsec_tx_error(sc);
2354 		sc->sc_imask |= IEVENT_TXE;
2355 	}
2356 
2357 	if (ifp->if_flags & IFF_RUNNING) {
2358 		pq3etsec_rxq_produce(sc, &sc->sc_rxq);
2359 		etsec_write(sc, IMASK, sc->sc_imask);
2360 	} else {
2361 		KASSERT((soft_flags & SOFT_RXBSY) == 0);
2362 	}
2363 
2364 	mutex_exit(sc->sc_lock);
2365 }
2366 
2367 static void
2368 pq3etsec_mii_tick(void *arg)
2369 {
2370 	struct pq3etsec_softc * const sc = arg;
2371 	mutex_enter(sc->sc_lock);
2372 	callout_ack(&sc->sc_mii_callout);
2373 	sc->sc_ev_mii_ticks.ev_count++;
2374 #ifdef DEBUG
2375 	uint64_t now = mftb();
2376 	if (now - sc->sc_mii_last_tick < cpu_timebase - 5000) {
2377 		aprint_debug_dev(sc->sc_dev, "%s: diff=%"PRIu64"\n",
2378 		    __func__, now - sc->sc_mii_last_tick);
2379 		callout_stop(&sc->sc_mii_callout);
2380 	}
2381 #endif
2382 	mii_tick(&sc->sc_mii);
2383 	int s = splnet();
2384 	if (sc->sc_soft_flags & SOFT_RESET)
2385 		softint_schedule(sc->sc_soft_ih);
2386 	splx(s);
2387 	callout_schedule(&sc->sc_mii_callout, hz);
2388 #ifdef DEBUG
2389 	sc->sc_mii_last_tick = now;
2390 #endif
2391 	mutex_exit(sc->sc_lock);
2392 }
2393