xref: /netbsd-src/sys/arch/mips/ralink/ralink_eth.c (revision 413d532bcc3f62d122e56d92e13ac64825a40baf)
1 /*	$NetBSD: ralink_eth.c,v 1.6 2012/07/22 14:32:52 matt Exp $	*/
2 /*-
3  * Copyright (c) 2011 CradlePoint Technology, Inc.
4  * All rights reserved.
5  *
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY CRADLEPOINT TECHNOLOGY, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /* ralink_eth.c -- Ralink Ethernet Driver */
30 
31 #include <sys/cdefs.h>
32 __KERNEL_RCSID(0, "$NetBSD: ralink_eth.c,v 1.6 2012/07/22 14:32:52 matt Exp $");
33 
34 #include <sys/param.h>
35 #include <sys/bus.h>
36 #include <sys/callout.h>
37 #include <sys/device.h>
38 #include <sys/endian.h>
39 #include <sys/errno.h>
40 #include <sys/ioctl.h>
41 #include <sys/intr.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/mbuf.h>
45 #include <sys/socket.h>
46 #include <sys/systm.h>
47 
48 #include <uvm/uvm_extern.h>
49 
50 #include <net/if.h>
51 #include <net/if_dl.h>
52 #include <net/if_media.h>
53 #include <net/if_ether.h>
54 #include <net/if_vlanvar.h>
55 
56 #include <net/bpf.h>
57 
58 #include <dev/mii/mii.h>
59 #include <dev/mii/miivar.h>
60 #include <dev/mii/mii_bitbang.h>
61 
62 #include <mips/ralink/ralink_var.h>
63 #include <mips/ralink/ralink_reg.h>
64 #if 0
65 #define CPDEBUG				/* XXX TMP DEBUG FIXME */
66 #define RALINK_ETH_DEBUG			/* XXX TMP DEBUG FIXME */
67 #define ENABLE_RALINK_DEBUG_ERROR 1
68 #define ENABLE_RALINK_DEBUG_MISC  1
69 #define ENABLE_RALINK_DEBUG_INFO  1
70 #define ENABLE_RALINK_DEBUG_FORCE 1
71 #define ENABLE_RALINK_DEBUG_REG 1
72 #endif
73 #include <mips/ralink/ralink_debug.h>
74 
75 
76 /* PDMA RX Descriptor Format */
77 struct ralink_rx_desc {
78 	uint32_t data_ptr;
79 	uint32_t rxd_info1;
80 #define RXD_LEN1(x)  (((x) >> 0) & 0x3fff)
81 #define RXD_LAST1    (1 << 14)
82 #define RXD_LEN0(x)  (((x) >> 16) & 0x3fff)
83 #define RXD_LAST0    (1 << 30)
84 #define RXD_DDONE    (1 << 31)
85 	uint32_t unused;
86 	uint32_t rxd_info2;
87 #define RXD_FOE(x)   (((x) >> 0) & 0x3fff)
88 #define RXD_FVLD     (1 << 14)
89 #define RXD_INFO(x)  (((x) >> 16) & 0xff)
90 #define RXD_PORT(x)  (((x) >> 24) & 0x7)
91 #define RXD_INFO_CPU (1 << 27)
92 #define RXD_L4_FAIL  (1 << 28)
93 #define RXD_IP_FAIL  (1 << 29)
94 #define RXD_L4_VLD   (1 << 30)
95 #define RXD_IP_VLD   (1 << 31)
96 };
97 
98 /* PDMA RX Descriptor Format */
99 struct ralink_tx_desc {
100 	uint32_t data_ptr0;
101 	uint32_t txd_info1;
102 #define TXD_LEN1(x)  (((x) & 0x3fff) << 0)
103 #define TXD_LAST1    (1 << 14)
104 #define TXD_BURST    (1 << 15)
105 #define TXD_LEN0(x)  (((x) & 0x3fff) << 16)
106 #define TXD_LAST0    (1 << 30)
107 #define TXD_DDONE    (1 << 31)
108 	uint32_t data_ptr1;
109 	uint32_t txd_info2;
110 #define TXD_VIDX(x)  (((x) & 0xf) << 0)
111 #define TXD_VPRI(x)  (((x) & 0x7) << 4)
112 #define TXD_VEN      (1 << 7)
113 #define TXD_SIDX(x)  (((x) & 0xf) << 8)
114 #define TXD_SEN(x)   (1 << 13)
115 #define TXD_QN(x)    (((x) & 0x7) << 16)
116 #define TXD_PN(x)    (((x) & 0x7) << 24)
117 #define  TXD_PN_CPU   0
118 #define  TXD_PN_GDMA1 1
119 #define  TXD_PN_GDMA2 2
120 #define TXD_TCP_EN   (1 << 29)
121 #define TXD_UDP_EN   (1 << 30)
122 #define TXD_IP_EN    (1 << 31)
123 };
124 
125 /* TODO:
126  * try to scale number of descriptors swith size of memory
127  * these numbers may have a significant impact on performance/memory/mbuf usage
128  */
129 #if RTMEMSIZE >= 64
130 #define RALINK_ETH_NUM_RX_DESC 256
131 #define RALINK_ETH_NUM_TX_DESC 256
132 #else
133 #define RALINK_ETH_NUM_RX_DESC 64
134 #define RALINK_ETH_NUM_TX_DESC 64
135 #endif
136 /* maximum segments per packet */
137 #define RALINK_ETH_MAX_TX_SEGS 1
138 
139 /* define a struct for ease of dma memory allocation */
140 struct ralink_descs {
141 	struct ralink_rx_desc rxdesc[RALINK_ETH_NUM_RX_DESC];
142 	struct ralink_tx_desc txdesc[RALINK_ETH_NUM_TX_DESC];
143 };
144 
145 /* Software state for transmit jobs. */
146 struct ralink_eth_txstate {
147 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
148 	bus_dmamap_t txs_dmamap;	/* our DMA map */
149 	int txs_idx;			/* the index in txdesc ring that */
150 					/*  this state is tracking */
151 	SIMPLEQ_ENTRY(ralink_eth_txstate) txs_q;
152 };
153 
154 SIMPLEQ_HEAD(ralink_eth_txsq, ralink_eth_txstate);
155 
156 /*
157  * Software state for receive jobs.
158  */
159 struct ralink_eth_rxstate {
160 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
161 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
162 };
163 
164 typedef struct ralink_eth_softc {
165 	device_t sc_dev;		/* generic device information */
166 	bus_space_tag_t sc_memt;	/* bus space tag */
167 	bus_space_handle_t sc_sy_memh;	/* handle at SYSCTL_BASE */
168 	bus_space_handle_t sc_fe_memh;	/* handle at FRAME_ENGINE_BASE */
169 	bus_space_handle_t sc_sw_memh;	/* handle at ETH_SW_BASE */
170 	int sc_sy_size;			/* size of Sysctl regs space */
171 	int sc_fe_size;			/* size of Frame Engine regs space */
172 	int sc_sw_size;			/* size of Ether Switch regs space */
173 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
174 	void *sc_ih;			/* interrupt handle */
175 
176 	/* tx/rx dma mapping */
177 	bus_dma_segment_t sc_dseg;
178 	int sc_ndseg;
179 	bus_dmamap_t sc_pdmamap;	/* PDMA DMA map */
180 #define sc_pdma sc_pdmamap->dm_segs[0].ds_addr
181 
182 	struct ralink_descs *sc_descs;
183 #define sc_rxdesc sc_descs->rxdesc
184 #define sc_txdesc sc_descs->txdesc
185 
186 #define RALINK_MIN_BUF 64
187 	char ralink_zero_buf[RALINK_MIN_BUF];
188 
189 	struct ralink_eth_txstate sc_txstate[RALINK_ETH_NUM_TX_DESC];
190 	struct ralink_eth_rxstate sc_rxstate[RALINK_ETH_NUM_RX_DESC];
191 
192 	struct ralink_eth_txsq sc_txfreeq;	/* free Tx descsofts */
193 	struct ralink_eth_txsq sc_txdirtyq;	/* dirty Tx descsofts */
194 
195 	struct ethercom sc_ethercom;		/* ethernet common data */
196 	u_int sc_pending_tx;
197 
198 	/* mii */
199 	struct mii_data sc_mii;
200 	struct callout sc_tick_callout;
201 
202 	struct evcnt sc_evcnt_spurious_intr;
203 	struct evcnt sc_evcnt_rxintr;
204 	struct evcnt sc_evcnt_rxintr_skip_len;
205 	struct evcnt sc_evcnt_rxintr_skip_tag_none;
206 	struct evcnt sc_evcnt_rxintr_skip_tag_inval;
207 	struct evcnt sc_evcnt_rxintr_skip_inact;
208 	struct evcnt sc_evcnt_txintr;
209 	struct evcnt sc_evcnt_input;
210 	struct evcnt sc_evcnt_output;
211 	struct evcnt sc_evcnt_watchdog;
212 	struct evcnt sc_evcnt_wd_reactivate;
213 	struct evcnt sc_evcnt_wd_tx;
214 	struct evcnt sc_evcnt_wd_spurious;
215 	struct evcnt sc_evcnt_add_rxbuf_hdr_fail;
216 	struct evcnt sc_evcnt_add_rxbuf_mcl_fail;
217 } ralink_eth_softc_t;
218 
219 /* alignment so the IP header is aligned */
220 #define RALINK_ETHER_ALIGN 2
221 
222 /* device functions */
223 static int  ralink_eth_match(device_t, cfdata_t, void *);
224 static void ralink_eth_attach(device_t, device_t, void *);
225 static int  ralink_eth_detach(device_t, int);
226 static int  ralink_eth_activate(device_t, enum devact);
227 
228 /* local driver functions */
229 static void ralink_eth_hw_init(ralink_eth_softc_t *);
230 static int  ralink_eth_intr(void *);
231 static void ralink_eth_reset(ralink_eth_softc_t *);
232 static void ralink_eth_rxintr(ralink_eth_softc_t *);
233 static void ralink_eth_txintr(ralink_eth_softc_t *);
234 
235 /* partition functions */
236 static int  ralink_eth_enable(ralink_eth_softc_t *);
237 static void ralink_eth_disable(ralink_eth_softc_t *);
238 
239 /* ifnet functions */
240 static int  ralink_eth_init(struct ifnet *);
241 static void ralink_eth_rxdrain(ralink_eth_softc_t *);
242 static void ralink_eth_stop(struct ifnet *, int);
243 static int  ralink_eth_add_rxbuf(ralink_eth_softc_t *, int);
244 static void ralink_eth_start(struct ifnet *);
245 static void ralink_eth_watchdog(struct ifnet *);
246 static int  ralink_eth_ioctl(struct ifnet *, u_long, void *);
247 
248 /* mii functions */
249 #if defined(RT3050) || defined(RT3052)
250 static void ralink_eth_mdio_enable(ralink_eth_softc_t *, bool);
251 #endif
252 static void ralink_eth_mii_statchg(struct ifnet *);
253 static void ralink_eth_mii_tick(void *);
254 static int  ralink_eth_mii_read(device_t, int, int);
255 static void ralink_eth_mii_write(device_t, int, int, int);
256 
257 CFATTACH_DECL_NEW(reth, sizeof(struct ralink_eth_softc),
258     ralink_eth_match, ralink_eth_attach, ralink_eth_detach, ralink_eth_activate);
259 
260 static inline uint32_t
261 sy_read(const ralink_eth_softc_t *sc, const bus_size_t off)
262 {
263 	return bus_space_read_4(sc->sc_memt, sc->sc_sy_memh, off);
264 }
265 
266 static inline void
267 sy_write(const ralink_eth_softc_t *sc, const bus_size_t off, const uint32_t val)
268 {
269 	bus_space_write_4(sc->sc_memt, sc->sc_sy_memh, off, val);
270 }
271 
272 static inline uint32_t
273 fe_read(const ralink_eth_softc_t *sc, const bus_size_t off)
274 {
275 	return bus_space_read_4(sc->sc_memt, sc->sc_fe_memh, off);
276 }
277 
278 static inline void
279 fe_write(const ralink_eth_softc_t *sc, const bus_size_t off, const uint32_t val)
280 {
281 	bus_space_write_4(sc->sc_memt, sc->sc_fe_memh, off, val);
282 }
283 
284 static inline uint32_t
285 sw_read(const ralink_eth_softc_t *sc, const bus_size_t off)
286 {
287 	return bus_space_read_4(sc->sc_memt, sc->sc_sw_memh, off);
288 }
289 
290 static inline void
291 sw_write(const ralink_eth_softc_t *sc, const bus_size_t off, const uint32_t val)
292 {
293 	bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, off, val);
294 }
295 
296 /*
297  * ralink_eth_match
298  */
299 int
300 ralink_eth_match(device_t parent, cfdata_t cf, void *aux)
301 {
302 	return 1;
303 }
304 
305 /*
306  * ralink_eth_attach
307  */
308 void
309 ralink_eth_attach(device_t parent, device_t self, void *aux)
310 {
311 	ralink_eth_softc_t * const sc = device_private(self);
312 	const struct mainbus_attach_args *ma = aux;
313 	int error;
314 	int i;
315 
316 	aprint_naive(": Ralink Ethernet\n");
317 	aprint_normal(": Ralink Ethernet\n");
318 
319 	evcnt_attach_dynamic(&sc->sc_evcnt_spurious_intr, EVCNT_TYPE_INTR, NULL,
320 		device_xname(self), "spurious intr");
321 	evcnt_attach_dynamic(&sc->sc_evcnt_rxintr, EVCNT_TYPE_INTR, NULL,
322 		device_xname(self), "rxintr");
323 	evcnt_attach_dynamic(&sc->sc_evcnt_rxintr_skip_len,
324 		EVCNT_TYPE_INTR, &sc->sc_evcnt_rxintr,
325 		device_xname(self), "rxintr skip: no room for VLAN header");
326 	evcnt_attach_dynamic(&sc->sc_evcnt_rxintr_skip_tag_none,
327 		EVCNT_TYPE_INTR, &sc->sc_evcnt_rxintr,
328 		device_xname(self), "rxintr skip: no VLAN tag");
329 	evcnt_attach_dynamic(&sc->sc_evcnt_rxintr_skip_tag_inval,
330 		EVCNT_TYPE_INTR, &sc->sc_evcnt_rxintr,
331 		device_xname(self), "rxintr skip: invalid VLAN tag");
332 	evcnt_attach_dynamic(&sc->sc_evcnt_rxintr_skip_inact,
333 		EVCNT_TYPE_INTR, &sc->sc_evcnt_rxintr,
334 		device_xname(self), "rxintr skip: partition inactive");
335 	evcnt_attach_dynamic(&sc->sc_evcnt_txintr, EVCNT_TYPE_INTR, NULL,
336 		device_xname(self), "txintr");
337 	evcnt_attach_dynamic(&sc->sc_evcnt_input, EVCNT_TYPE_INTR, NULL,
338 		device_xname(self), "input");
339 	evcnt_attach_dynamic(&sc->sc_evcnt_output, EVCNT_TYPE_INTR, NULL,
340 		device_xname(self), "output");
341 	evcnt_attach_dynamic(&sc->sc_evcnt_watchdog, EVCNT_TYPE_INTR, NULL,
342 		device_xname(self), "watchdog");
343 	evcnt_attach_dynamic(&sc->sc_evcnt_wd_tx,
344 		EVCNT_TYPE_INTR, &sc->sc_evcnt_watchdog,
345 		device_xname(self), "watchdog TX timeout");
346 	evcnt_attach_dynamic(&sc->sc_evcnt_wd_spurious,
347 		EVCNT_TYPE_INTR, &sc->sc_evcnt_watchdog,
348 		device_xname(self), "watchdog spurious");
349 	evcnt_attach_dynamic(&sc->sc_evcnt_wd_reactivate,
350 		EVCNT_TYPE_INTR, &sc->sc_evcnt_watchdog,
351 		device_xname(self), "watchdog reactivate");
352 	evcnt_attach_dynamic(&sc->sc_evcnt_add_rxbuf_hdr_fail,
353 		EVCNT_TYPE_INTR, NULL,
354 		device_xname(self), "add rxbuf hdr fail");
355 	evcnt_attach_dynamic(&sc->sc_evcnt_add_rxbuf_mcl_fail,
356 		EVCNT_TYPE_INTR, NULL,
357 		device_xname(self), "add rxbuf mcl fail");
358 
359 	/*
360 	 * In order to obtain unique initial Ethernet address on a host,
361 	 * do some randomisation using the current uptime.  It's not meant
362 	 * for anything but avoiding hard-coding an address.
363 	 */
364 	uint8_t enaddr[ETHER_ADDR_LEN] = { 0x00, 0x30, 0x44, 0x00, 0x00, 0x00 };
365 
366 	sc->sc_dev = self;
367 	sc->sc_dmat = ma->ma_dmat;
368 	sc->sc_memt = ma->ma_memt;
369 	sc->sc_sy_size = 0x10000;
370 	sc->sc_fe_size = 0x10000;
371 	sc->sc_sw_size = 0x08000;
372 
373 	/*
374 	 * map the registers
375 	 *
376 	 * we map the Sysctl, Frame Engine and Ether Switch registers
377 	 * seperately so we can use the defined register offsets sanely
378 	 */
379 	if ((error = bus_space_map(sc->sc_memt, RA_SYSCTL_BASE,
380 	    sc->sc_sy_size, 0, &sc->sc_sy_memh)) != 0) {
381 		aprint_error_dev(self, "unable to map Sysctl registers, "
382 			"error=%d\n", error);
383 		goto fail_0a;
384 	}
385 	if ((error = bus_space_map(sc->sc_memt, RA_FRAME_ENGINE_BASE,
386 	    sc->sc_fe_size, 0, &sc->sc_fe_memh)) != 0) {
387 		aprint_error_dev(self, "unable to map Frame Engine registers, "
388 			"error=%d\n", error);
389 		goto fail_0b;
390 	}
391 	if ((error = bus_space_map(sc->sc_memt, RA_ETH_SW_BASE,
392 	    sc->sc_sw_size, 0, &sc->sc_sw_memh)) != 0) {
393 		aprint_error_dev(self, "unable to map Ether Switch registers, "
394 			"error=%d\n", error);
395 		goto fail_0c;
396 	}
397 
398 	/* Allocate desc structures, and create & load the DMA map for them */
399 	if ((error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct ralink_descs),
400 	    PAGE_SIZE, 0, &sc->sc_dseg, 1, &sc->sc_ndseg, 0)) != 0) {
401 		aprint_error_dev(self, "unable to allocate transmit descs, "
402 			"error=%d\n", error);
403 		goto fail_1;
404 	}
405 
406 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_ndseg,
407 	    sizeof(struct ralink_descs), (void **)&sc->sc_descs, BUS_DMA_COHERENT))
408 	    != 0) {
409 		aprint_error_dev(self, "unable to map control data, "
410 			"error=%d\n", error);
411 		goto fail_2;
412 	}
413 
414 	if ((error = bus_dmamap_create(sc->sc_dmat, sizeof(struct ralink_descs), 1,
415 	    sizeof(struct ralink_descs), 0, 0, &sc->sc_pdmamap)) != 0) {
416 		aprint_error_dev(self, "unable to create control data DMA map, "
417 			"error=%d\n", error);
418 		goto fail_3;
419 	}
420 
421 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_pdmamap, sc->sc_descs,
422 	    sizeof(struct ralink_descs), NULL, 0)) != 0) {
423 		aprint_error_dev(self, "unable to load control data DMA map, "
424 			"error=%d\n", error);
425 		goto fail_4;
426 	}
427 
428 	/* Create the transmit buffer DMA maps.  */
429 	for (i = 0; i < RALINK_ETH_NUM_TX_DESC; i++) {
430 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
431 		    RALINK_ETH_MAX_TX_SEGS, MCLBYTES, 0, 0,
432 		    &sc->sc_txstate[i].txs_dmamap)) != 0) {
433 			aprint_error_dev(self, "unable to create tx DMA map %d, "
434 				"error=%d\n", i, error);
435 			goto fail_5;
436 		}
437 	}
438 
439 	/* Create the receive buffer DMA maps.  */
440 	for (i = 0; i < RALINK_ETH_NUM_RX_DESC; i++) {
441 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
442 		    MCLBYTES, 0, 0, &sc->sc_rxstate[i].rxs_dmamap)) != 0) {
443 			aprint_error_dev(self, "unable to create rx DMA map %d, "
444 				"error=%d\n", i, error);
445 			goto fail_6;
446 		}
447 		sc->sc_rxstate[i].rxs_mbuf = NULL;
448 	}
449 
450 	/* this is a zero buffer used for zero'ing out short packets */
451 	memset(sc->ralink_zero_buf, 0, RALINK_MIN_BUF);
452 
453 	/* setup some address in hardware */
454 	fe_write(sc, RA_FE_GDMA1_MAC_LSB,
455 		(enaddr[5] | (enaddr[4] << 8) |
456 		(enaddr[3] << 16) | (enaddr[2] << 24)));
457 	fe_write(sc, RA_FE_GDMA1_MAC_MSB,
458 		(enaddr[1] | (enaddr[0] << 8)));
459 
460 	/*
461 	 * iterate through ports
462 	 *  slickrock must use specific non-linear sequence
463 	 *  others are linear
464 	 */
465 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
466 
467 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
468 
469 	/*
470 	 * Initialize our media structures.
471 	 * This may probe the PHY, if present.
472 	 */
473 	sc->sc_mii.mii_ifp = ifp;
474 	sc->sc_mii.mii_readreg = ralink_eth_mii_read;
475 	sc->sc_mii.mii_writereg = ralink_eth_mii_write;
476 	sc->sc_mii.mii_statchg = ralink_eth_mii_statchg;
477 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
478 	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
479 		ether_mediastatus);
480 	mii_attach(sc->sc_dev, &sc->sc_mii, ~0, i, MII_OFFSET_ANY,
481 		MIIF_FORCEANEG|MIIF_DOPAUSE|MIIF_NOISOLATE);
482 
483 	if (LIST_EMPTY(&sc->sc_mii.mii_phys)) {
484 #if 1
485 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_1000_T|
486 			IFM_FDX|IFM_ETH_RXPAUSE|IFM_ETH_TXPAUSE, 0, NULL);
487 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_1000_T|
488 			IFM_FDX|IFM_ETH_RXPAUSE|IFM_ETH_TXPAUSE);
489 #else
490 		ifmedia_add(&sc->sc_mii.mii_media,
491 			IFM_ETHER|IFM_MANUAL, 0, NULL);
492 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
493 #endif
494 	} else {
495 			/* Ensure we mask ok for the switch multiple phy's */
496 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
497 	}
498 
499 	ifp->if_softc = sc;
500 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
501 	ifp->if_init = ralink_eth_init;
502 	ifp->if_start = ralink_eth_start;
503 	ifp->if_ioctl = ralink_eth_ioctl;
504 	ifp->if_stop = ralink_eth_stop;
505 	ifp->if_watchdog = ralink_eth_watchdog;
506 	IFQ_SET_READY(&ifp->if_snd);
507 
508 	/* We can support 802.1Q VLAN-sized frames. */
509 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
510 
511 	/* We support IPV4 CRC Offload */
512 	ifp->if_capabilities |=
513 		(IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
514 		 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
515 		 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx);
516 
517 	/* Attach the interface. */
518 	if_attach(ifp);
519 	ether_ifattach(ifp, enaddr);
520 
521 	/* init our mii ticker */
522 	callout_init(&sc->sc_tick_callout, 0);
523 	callout_reset(&sc->sc_tick_callout, hz, ralink_eth_mii_tick, sc);
524 
525 	return;
526 
527 	/*
528 	 * Free any resources we've allocated during the failed attach
529 	 * attempt.  Do this in reverse order and fall through.
530 	 */
531  fail_6:
532 	for (i = 0; i < RALINK_ETH_NUM_RX_DESC; i++) {
533 		if (sc->sc_rxstate[i].rxs_dmamap != NULL)
534 			bus_dmamap_destroy(sc->sc_dmat,
535 				sc->sc_rxstate[i].rxs_dmamap);
536 	}
537  fail_5:
538 	for (i = 0; i < RALINK_ETH_NUM_TX_DESC; i++) {
539 		if (sc->sc_txstate[i].txs_dmamap != NULL)
540 			bus_dmamap_destroy(sc->sc_dmat,
541 				sc->sc_txstate[i].txs_dmamap);
542 	}
543 	bus_dmamap_unload(sc->sc_dmat, sc->sc_pdmamap);
544  fail_4:
545 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_pdmamap);
546  fail_3:
547 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs,
548 		sizeof(struct ralink_descs));
549  fail_2:
550 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_ndseg);
551  fail_1:
552 	bus_space_unmap(sc->sc_memt, sc->sc_sw_memh, sc->sc_sw_size);
553  fail_0c:
554 	bus_space_unmap(sc->sc_memt, sc->sc_fe_memh, sc->sc_fe_size);
555  fail_0b:
556 	bus_space_unmap(sc->sc_memt, sc->sc_sy_memh, sc->sc_fe_size);
557  fail_0a:
558 	return;
559 }
560 
561 /*
562  * ralink_eth_activate:
563  *
564  *	Handle device activation/deactivation requests.
565  */
566 int
567 ralink_eth_activate(device_t self, enum devact act)
568 {
569 	ralink_eth_softc_t * const sc = device_private(self);
570 	int error = 0;
571 	int s;
572 
573 	s = splnet();
574 	switch (act) {
575 	case DVACT_DEACTIVATE:
576 		if_deactivate(&sc->sc_ethercom.ec_if);
577 		break;
578 	}
579 	splx(s);
580 
581 	return error;
582 }
583 
584 /*
585  * ralink_eth_partition_enable
586  */
587 static int
588 ralink_eth_enable(ralink_eth_softc_t *sc)
589 {
590 	RALINK_DEBUG_FUNC_ENTRY();
591 
592 	if (sc->sc_ih != NULL) {
593 		RALINK_DEBUG(RALINK_DEBUG_MISC, "%s() already active",
594 			__func__);
595 		return EALREADY;
596 	}
597 
598 	sc->sc_pending_tx = 0;
599 
600 	int s = splnet();
601 	ralink_eth_hw_init(sc);
602 	sc->sc_ih = ra_intr_establish(RA_IRQ_FENGINE,
603 		ralink_eth_intr, sc, 1);
604 	splx(s);
605 	if (sc->sc_ih == NULL) {
606 		RALINK_DEBUG(RALINK_DEBUG_ERROR,
607 			"%s: unable to establish interrupt\n",
608 			device_xname(sc->sc_dev));
609 		return EIO;
610 	}
611 
612 	return 0;
613 }
614 
615 /*
616  * ralink_eth_partition_disable
617  */
618 static void
619 ralink_eth_disable(ralink_eth_softc_t *sc)
620 {
621 	RALINK_DEBUG_FUNC_ENTRY();
622 
623 	int s = splnet();
624 	ralink_eth_rxdrain(sc);
625 	ra_intr_disestablish(sc->sc_ih);
626 	sc->sc_ih = NULL;
627 
628 	/* stop the mii ticker */
629 	callout_stop(&sc->sc_tick_callout);
630 
631 	/* quiesce the block */
632 	ralink_eth_reset(sc);
633 	splx(s);
634 }
635 
636 /*
637  * ralink_eth_detach
638  */
639 static int
640 ralink_eth_detach(device_t self, int flags)
641 {
642 	RALINK_DEBUG_FUNC_ENTRY();
643 	ralink_eth_softc_t * const sc = device_private(self);
644 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
645 	struct ralink_eth_rxstate *rxs;
646 	struct ralink_eth_txstate *txs;
647 	int i;
648 
649 	ralink_eth_disable(sc);
650 	mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
651 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
652 	ether_ifdetach(ifp);
653 	if_detach(ifp);
654 
655 	for (i = 0; i < RALINK_ETH_NUM_RX_DESC; i++) {
656 		rxs = &sc->sc_rxstate[i];
657 		if (rxs->rxs_mbuf != NULL) {
658 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
659 			m_freem(rxs->rxs_mbuf);
660 			rxs->rxs_mbuf = NULL;
661 		}
662 		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
663 	}
664 
665 	for (i = 0; i < RALINK_ETH_NUM_TX_DESC; i++) {
666 		txs = &sc->sc_txstate[i];
667 		if (txs->txs_mbuf != NULL) {
668 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
669 			m_freem(txs->txs_mbuf);
670 			txs->txs_mbuf = NULL;
671 		}
672 		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
673 	}
674 
675 	bus_dmamap_unload(sc->sc_dmat, sc->sc_pdmamap);
676 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_pdmamap);
677 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs,
678 		sizeof(struct ralink_descs));
679 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_ndseg);
680 
681 	bus_space_unmap(sc->sc_memt, sc->sc_sw_memh, sc->sc_sw_size);
682 	bus_space_unmap(sc->sc_memt, sc->sc_fe_memh, sc->sc_fe_size);
683 
684 	return 0;
685 }
686 
687 /*
688  * ralink_eth_reset
689  */
690 static void
691 ralink_eth_reset(ralink_eth_softc_t *sc)
692 {
693 	RALINK_DEBUG_FUNC_ENTRY();
694 	uint32_t r;
695 
696 	/* Reset the frame engine */
697 	r = sy_read(sc, RA_SYSCTL_RST);
698 	r |= RST_FE;
699 	sy_write(sc, RA_SYSCTL_RST, r);
700 	r ^= RST_FE;
701 	sy_write(sc, RA_SYSCTL_RST, r);
702 
703 	/* Wait until the PDMA is quiscent */
704 	for (;;) {
705 		r = fe_read(sc, RA_FE_PDMA_GLOBAL_CFG);
706 		if (r & FE_PDMA_GLOBAL_CFG_RX_DMA_BUSY) {
707 			aprint_normal_dev(sc->sc_dev, "RX DMA BUSY\n");
708 			continue;
709 		}
710 		if (r & FE_PDMA_GLOBAL_CFG_TX_DMA_BUSY) {
711 			aprint_normal_dev(sc->sc_dev, "TX DMA BUSY\n");
712 			continue;
713 		}
714 		break;
715 	}
716 }
717 
718 /*
719  * ralink_eth_hw_init
720  */
721 static void
722 ralink_eth_hw_init(ralink_eth_softc_t *sc)
723 {
724 	RALINK_DEBUG_FUNC_ENTRY();
725 	struct ralink_eth_txstate *txs;
726 	uint32_t r;
727 	int i;
728 
729 	/* reset to a known good state */
730 	ralink_eth_reset(sc);
731 
732 #if defined(RT3050) || defined(RT3052)
733 	/* Bring the switch to a sane default state (from linux driver) */
734 	bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_SGC2,
735 		0x00000000);
736 	bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_PFC1,
737 		0x00405555);	/* check VLAN tag on port forward */
738 	bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_VLANI0,
739 		0x00002001);
740 	bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_PVIDC0,
741 		0x00001002);
742 	bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_PVIDC1,
743 		0x00001001);
744 	bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_PVIDC2,
745 		0x00001001);
746 	bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_VMSC0,
747 		0xffff417e);
748 	bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_POC0,
749 		0x00007f7f);
750 	bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_POC2,
751 		0x00007f3f);
752 	bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_FTC2,
753 		0x00d6500c);
754 	bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_SWGC,
755 		0x0008a301);	/* hashing algorithm=XOR48 */
756 				/*  aging interval=300sec  */
757 	bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_SOCPC,
758 		0x02404040);
759 	bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_FPORT,
760 		0x3f502b28);	/* Change polling Ext PHY Addr=0x0 */
761 	bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_FPA,
762 		0x00000000);
763 
764 	/* do some mii magic  TODO: define these registers/bits */
765 	/* lower down PHY 10Mbps mode power */
766 	/* select local register */
767 	ralink_eth_mii_write(sc->sc_dev, 0, 31, 0x8000);
768 
769 	for (i=0;i<5;i++){
770 		/* set TX10 waveform coefficient */
771 		ralink_eth_mii_write(sc->sc_dev, i, 26, 0x1601);
772 
773 		/* set TX100/TX10 AD/DA current bias */
774 		ralink_eth_mii_write(sc->sc_dev, i, 29, 0x7058);
775 
776 		/* set TX100 slew rate control */
777 		ralink_eth_mii_write(sc->sc_dev, i, 30, 0x0018);
778 	}
779 
780 	/* PHY IOT */
781 
782 	/* select global register */
783 	ralink_eth_mii_write(sc->sc_dev, 0, 31, 0x0);
784 
785 	/* tune TP_IDL tail and head waveform */
786 	ralink_eth_mii_write(sc->sc_dev, 0, 22, 0x052f);
787 
788 	/* set TX10 signal amplitude threshold to minimum */
789 	ralink_eth_mii_write(sc->sc_dev, 0, 17, 0x0fe0);
790 
791 	/* set squelch amplitude to higher threshold */
792 	ralink_eth_mii_write(sc->sc_dev, 0, 18, 0x40ba);
793 
794 	/* longer TP_IDL tail length */
795 	ralink_eth_mii_write(sc->sc_dev, 0, 14, 0x65);
796 
797 	/* select local register */
798 	ralink_eth_mii_write(sc->sc_dev, 0, 31, 0x8000);
799 #else
800 	/* GE1 + GigSW */
801 	fe_write(sc, RA_FE_MDIO_CFG1,
802 		MDIO_CFG_PHY_ADDR(0x1f) |
803 		MDIO_CFG_BP_EN |
804 		MDIO_CFG_FORCE_CFG |
805 		MDIO_CFG_SPEED(MDIO_CFG_SPEED_1000M) |
806 		MDIO_CFG_FULL_DUPLEX |
807 		MDIO_CFG_FC_TX |
808 		MDIO_CFG_FC_RX |
809 		MDIO_CFG_TX_CLK_MODE(MDIO_CFG_TX_CLK_MODE_3COM));
810 #endif
811 
812 	/*
813 	 * TODO: QOS - RT3052 has 4 TX queues for QOS,
814 	 * forgoing for 1 for simplicity
815 	 */
816 
817 	/*
818 	 * Allocate DMA accessible memory for TX/RX descriptor rings
819 	 */
820 
821 	/* Initialize the TX queues. */
822 	SIMPLEQ_INIT(&sc->sc_txfreeq);
823 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
824 
825 	/* Initialize the TX descriptor ring. */
826 	memset(sc->sc_txdesc, 0, sizeof(sc->sc_txdesc));
827 	for (i = 0; i < RALINK_ETH_NUM_TX_DESC; i++) {
828 
829 		sc->sc_txdesc[i].txd_info1 = TXD_LAST0 | TXD_DDONE;
830 
831 		/* setup the freeq as well */
832 		txs = &sc->sc_txstate[i];
833 		txs->txs_mbuf = NULL;
834 		txs->txs_idx = i;
835 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
836 	}
837 
838 	/*
839 	 * Flush the TX descriptors
840 	 *  - TODO: can we just access descriptors via KSEG1
841 	 *    to avoid the flush?
842 	 */
843 	bus_dmamap_sync(sc->sc_dmat, sc->sc_pdmamap,
844 		(int)&sc->sc_txdesc - (int)sc->sc_descs, sizeof(sc->sc_txdesc),
845 		BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
846 
847 	/* Initialize the RX descriptor ring */
848 	memset(sc->sc_rxdesc, 0, sizeof(sc->sc_rxdesc));
849 	for (i = 0; i < RALINK_ETH_NUM_RX_DESC; i++) {
850 		if (ralink_eth_add_rxbuf(sc, i)) {
851 			panic("Can't allocate rx mbuf\n");
852 		}
853 	}
854 
855 	/*
856 	 * Flush the RX descriptors
857 	 * - TODO: can we just access descriptors via KSEG1
858 	 *   to avoid the flush?
859 	 */
860 	bus_dmamap_sync(sc->sc_dmat, sc->sc_pdmamap,
861 		(int)&sc->sc_rxdesc - (int)sc->sc_descs, sizeof(sc->sc_rxdesc),
862 		BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
863 
864 	/* Clear the PDMA state */
865 	r = fe_read(sc, RA_FE_PDMA_GLOBAL_CFG);
866 	r &= 0xff;
867 	fe_write(sc, RA_FE_PDMA_GLOBAL_CFG, r);
868 	(void) fe_read(sc, RA_FE_PDMA_GLOBAL_CFG);
869 
870 	/* Setup the PDMA VLAN ID's */
871 	fe_write(sc, RA_FE_VLAN_ID_0001, 0x00010000);
872 	fe_write(sc, RA_FE_VLAN_ID_0203, 0x00030002);
873 	fe_write(sc, RA_FE_VLAN_ID_0405, 0x00050004);
874 	fe_write(sc, RA_FE_VLAN_ID_0607, 0x00070006);
875 	fe_write(sc, RA_FE_VLAN_ID_0809, 0x00090008);
876 	fe_write(sc, RA_FE_VLAN_ID_1011, 0x000b000a);
877 	fe_write(sc, RA_FE_VLAN_ID_1213, 0x000d000c);
878 	fe_write(sc, RA_FE_VLAN_ID_1415, 0x000f000e);
879 
880 	/* Give the TX and TX rings to the chip. */
881 	fe_write(sc, RA_FE_PDMA_TX0_PTR,
882 		htole32(MIPS_KSEG0_TO_PHYS(&sc->sc_txdesc)));
883 	fe_write(sc, RA_FE_PDMA_TX0_COUNT, htole32(RALINK_ETH_NUM_TX_DESC));
884 	fe_write(sc, RA_FE_PDMA_TX0_CPU_IDX, 0);
885 	fe_write(sc, RA_FE_PDMA_RESET_IDX, PDMA_RST_TX0);
886 
887 	fe_write(sc, RA_FE_PDMA_RX0_PTR,
888 		htole32(MIPS_KSEG0_TO_PHYS(&sc->sc_rxdesc)));
889 	fe_write(sc, RA_FE_PDMA_RX0_COUNT, htole32(RALINK_ETH_NUM_RX_DESC));
890 	fe_write(sc, RA_FE_PDMA_RX0_CPU_IDX,
891 		htole32(RALINK_ETH_NUM_RX_DESC - 1));
892 	fe_write(sc, RA_FE_PDMA_RESET_IDX, PDMA_RST_RX0);
893 	fe_write(sc, RA_FE_PDMA_RX0_CPU_IDX,
894 		htole32(RALINK_ETH_NUM_RX_DESC - 1));
895 
896 	/* Start PDMA */
897 	fe_write(sc, RA_FE_PDMA_GLOBAL_CFG,
898 		FE_PDMA_GLOBAL_CFG_TX_WB_DDONE |
899 		FE_PDMA_GLOBAL_CFG_RX_DMA_EN |
900 		FE_PDMA_GLOBAL_CFG_TX_DMA_EN |
901 		FE_PDMA_GLOBAL_CFG_BURST_SZ_4);
902 
903 	/* Setup the clock for the Frame Engine */
904 	fe_write(sc, RA_FE_GLOBAL_CFG,
905 		FE_GLOBAL_CFG_EXT_VLAN(0x8100) |
906 		FE_GLOBAL_CFG_US_CLK(RA_BUS_FREQ / 1000000) |
907 		FE_GLOBAL_CFG_L2_SPACE(0x8));
908 
909 	/* Turn on all interrupts */
910 	fe_write(sc, RA_FE_INT_ENABLE,
911 		FE_INT_RX | FE_INT_TX3 | FE_INT_TX2 | FE_INT_TX1 | FE_INT_TX0);
912 
913 	/*
914 	 * Configure GDMA forwarding
915 	 * - default all packets to CPU
916 	 * - Turn on auto-CRC
917 	 */
918 #if 0
919 	fe_write(sc, RA_FE_GDMA1_FWD_CFG,
920 		(FE_GDMA_FWD_CFG_DIS_TX_CRC | FE_GDMA_FWD_CFG_DIS_TX_PAD));
921 #endif
922 	fe_write(sc, RA_FE_GDMA1_FWD_CFG,
923 		FE_GDMA_FWD_CFG_JUMBO_LEN(MCLBYTES/1024) |
924 		FE_GDMA_FWD_CFG_STRIP_RX_CRC |
925 		FE_GDMA_FWD_CFG_IP4_CRC_EN |
926 		FE_GDMA_FWD_CFG_TCP_CRC_EN |
927 		FE_GDMA_FWD_CFG_UDP_CRC_EN);
928 
929 	/* CDMA also needs CRCs turned on */
930 	r = fe_read(sc, RA_FE_CDMA_CSG_CFG);
931 	r |= (FE_CDMA_CSG_CFG_IP4_CRC_EN | FE_CDMA_CSG_CFG_UDP_CRC_EN |
932 		FE_CDMA_CSG_CFG_TCP_CRC_EN);
933 	fe_write(sc, RA_FE_CDMA_CSG_CFG, r);
934 
935 	/* Configure Flow Control Thresholds */
936 #ifdef RT3883
937 	fe_write(sc, RA_FE_PSE_FQ_CFG,
938 		FE_PSE_FQ_MAX_COUNT(0xff) |
939 		FE_PSE_FQ_FC_RELEASE(0x90) |
940 		FE_PSE_FQ_FC_ASSERT(0x80));
941 #else
942 	fe_write(sc, RA_FE_PSE_FQ_CFG,
943 		FE_PSE_FQ_MAX_COUNT(0x80) |
944 		FE_PSE_FQ_FC_RELEASE(0x50) |
945 		FE_PSE_FQ_FC_ASSERT(0x40));
946 #endif
947 
948 #ifdef RALINK_ETH_DEBUG
949 	printf("FE_MDIO_CFG1: 0x%08x\n", fe_read(sc, RA_FE_MDIO_CFG1));
950 	printf("FE_MDIO_CFG2: 0x%08x\n", fe_read(sc, RA_FE_MDIO_CFG2));
951 	printf("FE_PDMA_TX0_PTR: %08x\n", fe_read(sc, RA_FE_PDMA_TX0_PTR));
952 	printf("FE_PDMA_TX0_COUNT: %08x\n",
953 		fe_read(sc, RA_FE_PDMA_TX0_COUNT));
954 	printf("FE_PDMA_TX0_CPU_IDX: %08x\n",
955 		fe_read(sc, RA_FE_PDMA_TX0_CPU_IDX));
956 	printf("FE_PDMA_TX0_DMA_IDX: %08x\n",
957 		fe_read(sc, RA_FE_PDMA_TX0_DMA_IDX));
958 	printf("FE_PDMA_RX0_PTR: %08x\n", fe_read(sc, RA_FE_PDMA_RX0_PTR));
959 	printf("FE_PDMA_RX0_COUNT: %08x\n",
960 		fe_read(sc, RA_FE_PDMA_RX0_COUNT));
961 	printf("FE_PDMA_RX0_CPU_IDX: %08x\n",
962 		fe_read(sc, RA_FE_PDMA_RX0_CPU_IDX));
963 	printf("FE_PDMA_RX0_DMA_IDX: %08x\n",
964 		fe_read(sc, RA_FE_PDMA_RX0_DMA_IDX));
965 	printf("FE_PDMA_GLOBAL_CFG: %08x\n",
966 		fe_read(sc, RA_FE_PDMA_GLOBAL_CFG));
967 	printf("FE_GLOBAL_CFG: %08x\n", fe_read(sc, RA_FE_GLOBAL_CFG));
968 	printf("FE_GDMA1_FWD_CFG: %08x\n",
969 		fe_read(sc, RA_FE_GDMA1_FWD_CFG));
970 	printf("FE_CDMA_CSG_CFG: %08x\n", fe_read(sc, RA_FE_CDMA_CSG_CFG));
971 	printf("FE_PSE_FQ_CFG: %08x\n", fe_read(sc, RA_FE_PSE_FQ_CFG));
972 #endif
973 
974 	/* Force PSE Reset to get everything finalized */
975 	fe_write(sc, RA_FE_GLOBAL_RESET, FE_GLOBAL_RESET_PSE);
976 	fe_write(sc, RA_FE_GLOBAL_RESET, 0);
977 }
978 
979 /*
980  * ralink_eth_init
981  */
982 static int
983 ralink_eth_init(struct ifnet *ifp)
984 {
985 	RALINK_DEBUG_FUNC_ENTRY();
986 	ralink_eth_softc_t * const sc = ifp->if_softc;
987 	int error;
988 
989 	error = ralink_eth_enable(sc);
990 	if (!error) {
991 		/* Note that the interface is now running. */
992 		ifp->if_flags |= IFF_RUNNING;
993 		ifp->if_flags &= ~IFF_OACTIVE;
994 	}
995 
996 	return error;
997 }
998 
999 /*
1000  * ralink_eth_rxdrain
1001  *
1002  *  Drain the receive queue.
1003  */
1004 static void
1005 ralink_eth_rxdrain(ralink_eth_softc_t *sc)
1006 {
1007 	RALINK_DEBUG_FUNC_ENTRY();
1008 
1009 	for (int i = 0; i < RALINK_ETH_NUM_RX_DESC; i++) {
1010 		struct ralink_eth_rxstate *rxs = &sc->sc_rxstate[i];
1011 		if (rxs->rxs_mbuf != NULL) {
1012 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1013 			m_freem(rxs->rxs_mbuf);
1014 			rxs->rxs_mbuf = NULL;
1015 		}
1016 	}
1017 }
1018 
1019 /*
1020  * ralink_eth_stop
1021  */
1022 static void
1023 ralink_eth_stop(struct ifnet *ifp, int disable)
1024 {
1025 	RALINK_DEBUG_FUNC_ENTRY();
1026 	ralink_eth_softc_t * const sc = ifp->if_softc;
1027 
1028 	ralink_eth_disable(sc);
1029 
1030 	/* Mark the interface down and cancel the watchdog timer.  */
1031 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1032 	ifp->if_timer = 0;
1033 }
1034 
1035 /*
1036  * ralink_eth_add_rxbuf
1037  */
1038 static int
1039 ralink_eth_add_rxbuf(ralink_eth_softc_t *sc, int idx)
1040 {
1041 	RALINK_DEBUG_FUNC_ENTRY();
1042 	struct ralink_eth_rxstate * const rxs = &sc->sc_rxstate[idx];
1043 	struct mbuf *m;
1044 	int error;
1045 
1046 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1047 	if (m == NULL) {
1048 		printf("MGETHDR failed\n");
1049 		sc->sc_evcnt_add_rxbuf_hdr_fail.ev_count++;
1050 		return ENOBUFS;
1051 	}
1052 
1053 	MCLGET(m, M_DONTWAIT);
1054 	if ((m->m_flags & M_EXT) == 0) {
1055 		m_freem(m);
1056 		printf("MCLGET failed\n");
1057 		sc->sc_evcnt_add_rxbuf_mcl_fail.ev_count++;
1058 		return ENOBUFS;
1059 	}
1060 
1061 	m->m_data = m->m_ext.ext_buf;
1062 	rxs->rxs_mbuf = m;
1063 
1064 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, m->m_ext.ext_buf,
1065 	    m->m_ext.ext_size, NULL, BUS_DMA_READ|BUS_DMA_NOWAIT);
1066 	if (error) {
1067 		aprint_error_dev(sc->sc_dev, "can't load rx DMA map %d, "
1068 			"error=%d\n", idx, error);
1069 		panic(__func__);  /* XXX */
1070 	}
1071 
1072 	sc->sc_rxdesc[idx].data_ptr = MIPS_KSEG0_TO_PHYS(
1073 		rxs->rxs_dmamap->dm_segs[0].ds_addr + RALINK_ETHER_ALIGN);
1074 	sc->sc_rxdesc[idx].rxd_info1 = RXD_LAST0;
1075 
1076 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1077 		rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1078 
1079 	return 0;
1080 }
1081 
1082 
1083 /*
1084  * ralink_eth_start
1085  */
1086 static void
1087 ralink_eth_start(struct ifnet *ifp)
1088 {
1089 	RALINK_DEBUG_FUNC_ENTRY();
1090 	ralink_eth_softc_t * const sc = ifp->if_softc;
1091 	struct mbuf *m0, *m = NULL;
1092 	struct ralink_eth_txstate *txs;
1093 	bus_dmamap_t dmamap;
1094 	int tx_cpu_idx;
1095 	int error;
1096 	int s;
1097 
1098 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1099 		return;
1100 
1101 	s = splnet();
1102 
1103 	tx_cpu_idx = fe_read(sc, RA_FE_PDMA_TX0_CPU_IDX);
1104 
1105 	/*
1106 	 * Loop through the send queue, setting up transmit descriptors
1107 	 * until we drain the queue, or use up all available
1108 	 * transmit descriptors.
1109 	 */
1110 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL) {
1111 		/* Grab a packet off the queue.  */
1112 		IFQ_POLL(&ifp->if_snd, m0);
1113 		if (m0 == NULL)
1114 			break;
1115 
1116 		dmamap = txs->txs_dmamap;
1117 
1118 		if (m0->m_pkthdr.len < RALINK_MIN_BUF) {
1119 			int padlen = 64 - m0->m_pkthdr.len;
1120 			m_copyback(m0, m0->m_pkthdr.len, padlen,
1121 				sc->ralink_zero_buf);
1122 			/* TODO : need some checking here */
1123 		}
1124 
1125 		/*
1126 		 * Do we need to align the buffer
1127 		 * or does the DMA map load fail?
1128 		 */
1129 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1130 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1131 
1132 			/* Allocate a new mbuf for re-alignment */
1133 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1134 			if (m == NULL) {
1135 				aprint_error_dev(sc->sc_dev,
1136 					"unable to allocate aligned Tx mbuf\n");
1137 				break;
1138 			}
1139 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1140 			if (m0->m_pkthdr.len > MHLEN) {
1141 				MCLGET(m, M_DONTWAIT);
1142 				if ((m->m_flags & M_EXT) == 0) {
1143 					aprint_error_dev(sc->sc_dev,
1144 				 	    "unable to allocate Tx cluster\n");
1145 					m_freem(m);
1146 					break;
1147 				}
1148 			}
1149 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1150 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1151 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m,
1152 			    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1153 			if (error) {
1154 				aprint_error_dev(sc->sc_dev,
1155 					"unable to load Tx buffer error=%d\n",
1156 					error);
1157 				m_freem(m);
1158 				break;
1159 			}
1160 		}
1161 
1162 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1163 		/* did we copy the buffer out already? */
1164 		if (m != NULL) {
1165 			m_freem(m0);
1166 			m0 = m;
1167 		}
1168 
1169 		/* Sync the DMA map. */
1170 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1171 			BUS_DMASYNC_PREWRITE);
1172 
1173 		/* Initialize the transmit descriptor */
1174 		sc->sc_txdesc[tx_cpu_idx].data_ptr0 =
1175 			MIPS_KSEG0_TO_PHYS(dmamap->dm_segs[0].ds_addr);
1176 		sc->sc_txdesc[tx_cpu_idx].txd_info1 =
1177 			TXD_LEN0(dmamap->dm_segs[0].ds_len) | TXD_LAST0;
1178 		sc->sc_txdesc[tx_cpu_idx].txd_info2 =
1179 			TXD_QN(3) | TXD_PN(TXD_PN_GDMA1);
1180 		sc->sc_txdesc[tx_cpu_idx].txd_info2 = TXD_QN(3) |
1181 			TXD_PN(TXD_PN_GDMA1) | TXD_VEN |
1182 			// TXD_VIDX(pt->vlan_id) |
1183 			TXD_TCP_EN | TXD_UDP_EN | TXD_IP_EN;
1184 
1185 		RALINK_DEBUG(RALINK_DEBUG_REG,"+tx(%d) 0x%08x: 0x%08x\n",
1186 			tx_cpu_idx, (int)&sc->sc_txdesc[tx_cpu_idx].data_ptr0,
1187 			sc->sc_txdesc[tx_cpu_idx].data_ptr0);
1188 		RALINK_DEBUG(RALINK_DEBUG_REG,"+tx(%d) 0x%08x: 0x%08x\n",
1189 			tx_cpu_idx, (int)&sc->sc_txdesc[tx_cpu_idx].txd_info1,
1190 			sc->sc_txdesc[tx_cpu_idx].txd_info1);
1191 		RALINK_DEBUG(RALINK_DEBUG_REG,"+tx(%d) 0x%08x: 0x%08x\n",
1192 			tx_cpu_idx, (int)&sc->sc_txdesc[tx_cpu_idx].data_ptr1,
1193 			sc->sc_txdesc[tx_cpu_idx].data_ptr1);
1194 		RALINK_DEBUG(RALINK_DEBUG_REG,"+tx(%d) 0x%08x: 0x%08x\n", tx_cpu_idx,
1195 			(int)&sc->sc_txdesc[tx_cpu_idx].txd_info2,
1196 			sc->sc_txdesc[tx_cpu_idx].txd_info2);
1197 
1198 		/* sync the descriptor we're using. */
1199 		bus_dmamap_sync(sc->sc_dmat, sc->sc_pdmamap,
1200 			(int)&sc->sc_txdesc[tx_cpu_idx] - (int)sc->sc_descs,
1201 			sizeof(struct ralink_tx_desc),
1202 			BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1203 
1204 		/*
1205 		 * Store a pointer to the packet so we can free it later,
1206 		 * and remember what txdirty will be once the packet is
1207 		 * done.
1208 		 */
1209 		txs->txs_mbuf = m0;
1210 		sc->sc_pending_tx++;
1211 		if (txs->txs_idx != tx_cpu_idx) {
1212 			panic("txs_idx doesn't match %d != %d\n",
1213 				txs->txs_idx, tx_cpu_idx);
1214 		}
1215 
1216 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1217 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1218 
1219 		/* Pass the packet to any BPF listeners. */
1220 		bpf_mtap(ifp, m0);
1221 
1222 		/* Set a watchdog timer in case the chip flakes out. */
1223 		ifp->if_timer = 5;
1224 
1225 		tx_cpu_idx = (tx_cpu_idx + 1) % RALINK_ETH_NUM_TX_DESC;
1226 
1227 		/* Write back the tx_cpu_idx */
1228 		fe_write(sc, RA_FE_PDMA_TX0_CPU_IDX, tx_cpu_idx);
1229 	}
1230 
1231 	if (txs == NULL) {
1232 		/* No more slots left; notify upper layer. */
1233 		ifp->if_flags |= IFF_OACTIVE;
1234 	}
1235 
1236 	splx(s);
1237 }
1238 
1239 /*
1240  * ralink_eth_watchdog
1241  *
1242  *	Watchdog timer handler.
1243  */
1244 static void
1245 ralink_eth_watchdog(struct ifnet *ifp)
1246 {
1247 	RALINK_DEBUG_FUNC_ENTRY();
1248 	ralink_eth_softc_t * const sc = ifp->if_softc;
1249 	bool doing_transmit;
1250 
1251 	sc->sc_evcnt_watchdog.ev_count++;
1252 	doing_transmit = !SIMPLEQ_EMPTY(&sc->sc_txdirtyq);
1253 
1254 	if (doing_transmit) {
1255 		RALINK_DEBUG(RALINK_DEBUG_ERROR, "%s: transmit timeout\n",
1256 			ifp->if_xname);
1257 		ifp->if_oerrors++;
1258 		sc->sc_evcnt_wd_tx.ev_count++;
1259 	} else {
1260 		RALINK_DEBUG(RALINK_DEBUG_ERROR, "%s: spurious watchog timeout\n",
1261 			ifp->if_xname);
1262 		sc->sc_evcnt_wd_spurious.ev_count++;
1263 		return;
1264 	}
1265 
1266 	sc->sc_evcnt_wd_reactivate.ev_count++;
1267 	const int s = splnet();
1268 	/* deactive the active partitions, retaining the active information */
1269 	ralink_eth_disable(sc);
1270 	ralink_eth_enable(sc);
1271 	splx(s);
1272 
1273 	/* Try to get more packets going. */
1274 	ralink_eth_start(ifp);
1275 }
1276 
1277 /*
1278  * ralink_eth_ioctl
1279  *
1280  *	Handle control requests from the operator.
1281  */
1282 static int
1283 ralink_eth_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1284 {
1285 	RALINK_DEBUG_FUNC_ENTRY();
1286 	struct ifdrv * const ifd = (struct ifdrv *) data;
1287 	ralink_eth_softc_t * const sc = ifp->if_softc;
1288 	int s, error = 0;
1289 
1290 	RALINK_DEBUG(RALINK_DEBUG_INFO, "ifp: %p  cmd: %lu  data: %p\n",
1291 		ifp, cmd, data);
1292 
1293 	s = splnet();
1294 
1295 	switch (cmd) {
1296 	case SIOCSDRVSPEC:
1297 		switch (ifd->ifd_cmd) {
1298 #if 0
1299 		case ETH_SWITCH_CMD_PORT_MODE:
1300 			/* len parameter is the mode */
1301 			pt->mode = (int) ifd->ifd_len;
1302 			ralink_eth_configure_switch(pt->sc_reth);
1303 			break;
1304 #endif
1305 		default:
1306 			error = EINVAL;
1307 		}
1308 		break;
1309 	default:
1310 		error = ether_ioctl(ifp, cmd, data);
1311 		if (error == ENETRESET) {
1312 			if (ifp->if_flags & IFF_RUNNING) {
1313 				/*
1314 				 * Multicast list has changed.  Set the
1315 				 * hardware filter accordingly.
1316 				 */
1317 				RALINK_DEBUG(RALINK_DEBUG_INFO, "TODO!!!");
1318 #if 0
1319 				ralink_eth_filter_setup(sc);
1320 #endif
1321 			}
1322 			error = 0;
1323 		}
1324 		break;
1325 	}
1326 
1327 	splx(s);
1328 
1329 	/* Try to get more packets going. */
1330 	if (sc->sc_ih != NULL)
1331 		ralink_eth_start(ifp);
1332 
1333 	return error;
1334 }
1335 
1336 /*
1337  * ralink_eth_intr
1338  *
1339  */
1340 static int
1341 ralink_eth_intr(void *arg)
1342 {
1343 	RALINK_DEBUG_FUNC_ENTRY();
1344 	ralink_eth_softc_t * const sc = arg;
1345 
1346 	for (u_int n=0;; n = 1) {
1347 		u_int32_t status = fe_read(sc, RA_FE_INT_STATUS);
1348 		fe_write(sc, RA_FE_INT_STATUS, ~0);
1349 		RALINK_DEBUG(RALINK_DEBUG_REG,"%s() status: 0x%08x\n",
1350 			__func__, status);
1351 
1352 		if ((status & (FE_INT_RX | FE_INT_TX0)) == 0) {
1353 			if (n == 0)
1354 				sc->sc_evcnt_spurious_intr.ev_count++;
1355 			return (n != 0);
1356 		}
1357 
1358 		if (status & FE_INT_RX)
1359 			ralink_eth_rxintr(sc);
1360 
1361 		if (status & FE_INT_TX0)
1362 			ralink_eth_txintr(sc);
1363 	}
1364 
1365 	/* Try to get more packets going. */
1366 	ralink_eth_start(&sc->sc_ethercom.ec_if);
1367 
1368 	return 1;
1369 }
1370 
1371 /*
1372  * ralink_eth_rxintr
1373  */
1374 static void
1375 ralink_eth_rxintr(ralink_eth_softc_t *sc)
1376 {
1377 	RALINK_DEBUG_FUNC_ENTRY();
1378 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
1379 	struct ralink_eth_rxstate *rxs;
1380 	struct mbuf *m;
1381 	int len;
1382 	int rx_cpu_idx;
1383 
1384 	KASSERT(curcpu()->ci_cpl >= IPL_NET);
1385 	sc->sc_evcnt_rxintr.ev_count++;
1386 	rx_cpu_idx = fe_read(sc, RA_FE_PDMA_RX0_CPU_IDX);
1387 
1388 	for (;;)  {
1389 		rx_cpu_idx = (rx_cpu_idx + 1) % RALINK_ETH_NUM_RX_DESC;
1390 
1391 		rxs = &sc->sc_rxstate[rx_cpu_idx];
1392 
1393 		bus_dmamap_sync(sc->sc_dmat, sc->sc_pdmamap,
1394 			(int)&sc->sc_rxdesc[rx_cpu_idx] - (int)sc->sc_descs,
1395 			sizeof(struct ralink_rx_desc),
1396 			BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1397 
1398 		RALINK_DEBUG(RALINK_DEBUG_REG,"rx(%d) 0x%08x: 0x%08x\n",
1399 			rx_cpu_idx, (int)&sc->sc_rxdesc[rx_cpu_idx].data_ptr,
1400 			sc->sc_rxdesc[rx_cpu_idx].data_ptr);
1401 		RALINK_DEBUG(RALINK_DEBUG_REG,"rx(%d) 0x%08x: 0x%08x\n",
1402 			rx_cpu_idx, (int)&sc->sc_rxdesc[rx_cpu_idx].rxd_info1,
1403 			sc->sc_rxdesc[rx_cpu_idx].rxd_info1);
1404 		RALINK_DEBUG(RALINK_DEBUG_REG,"rx(%d) 0x%08x: 0x%08x\n", rx_cpu_idx,
1405 			(int)&sc->sc_rxdesc[rx_cpu_idx].unused,
1406 			sc->sc_rxdesc[rx_cpu_idx].unused);
1407 		RALINK_DEBUG(RALINK_DEBUG_REG,"rx(%d) 0x%08x: 0x%08x\n",
1408 			rx_cpu_idx, (int)&sc->sc_rxdesc[rx_cpu_idx].rxd_info2,
1409 			sc->sc_rxdesc[rx_cpu_idx].rxd_info2);
1410 
1411 		if (!(sc->sc_rxdesc[rx_cpu_idx].rxd_info1 & RXD_DDONE))
1412 			break;
1413 
1414 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1415 			rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1416 
1417 		/*
1418 		 * No errors; receive the packet.
1419 		 * Note the chip includes the CRC with every packet.
1420 		 */
1421 		len = RXD_LEN0(sc->sc_rxdesc[rx_cpu_idx].rxd_info1);
1422 
1423 		RALINK_DEBUG(RALINK_DEBUG_REG,"rx(%d) packet rx %d bytes\n",
1424 			rx_cpu_idx, len);
1425 
1426 		/*
1427 		 * Allocate a new mbuf cluster.  If that fails, we are
1428 		 * out of memory, and must drop the packet and recycle
1429 		 * the buffer that's already attached to this descriptor.
1430 		 */
1431 		m = rxs->rxs_mbuf;
1432 		if (ralink_eth_add_rxbuf(sc, rx_cpu_idx) != 0)
1433 			break;
1434 		m->m_data += RALINK_ETHER_ALIGN;
1435 		m->m_pkthdr.len = m->m_len = len;
1436 
1437 #ifdef RALINK_ETH_DEBUG
1438  {
1439 		struct ether_header *eh = mtod(m, struct ether_header *);
1440 		printf("rx: eth_dst: %s ", ether_sprintf(eh->ether_dhost));
1441 		printf("rx: eth_src: %s type: 0x%04x \n",
1442 			ether_sprintf(eh->ether_shost), ntohs(eh->ether_type));
1443 		printf("0x14: %08x\n", *(volatile unsigned int *)(0xb0110014));
1444 		printf("0x98: %08x\n", *(volatile unsigned int *)(0xb0110098));
1445 
1446 		unsigned char * s = mtod(m, unsigned char *);
1447 		for (int j = 0; j < 32; j++)
1448 			printf("%02x%c", *(s + j),
1449 				(j == 15 || j == 31) ? '\n' : ' ');
1450  }
1451 #endif
1452 
1453 		/*
1454 		 * claim the buffer here since we can't do it at
1455 		 * allocation time due to the SW partitions
1456 		 */
1457 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1458 
1459 		/* push it up the inteface */
1460 		ifp->if_ipackets++;
1461 		m->m_pkthdr.rcvif = ifp;
1462 
1463 #ifdef RALINK_ETH_DEBUG
1464  {
1465 		struct ether_header *eh = mtod(m, struct ether_header *);
1466 		printf("rx: eth_dst: %s ", ether_sprintf(eh->ether_dhost));
1467 		printf("rx: eth_src: %s type: 0x%04x\n",
1468 			ether_sprintf(eh->ether_shost), ntohs(eh->ether_type));
1469 		printf("0x14: %08x\n", *(volatile unsigned int *)(0xb0110014));
1470 		printf("0x98: %08x\n", *(volatile unsigned int *)(0xb0110098));
1471 
1472 		unsigned char * s = mtod(m, unsigned char *);
1473 		for (int j = 0; j < 32; j++)
1474 			printf("%02x%c", *(s + j),
1475 				(j == 15 || j == 31) ? '\n' : ' ');
1476  }
1477 #endif
1478 
1479 		/*
1480 		 * XXX: M_CSUM_TCPv4 and M_CSUM_UDPv4 do not currently work when
1481 		 * using PF's ROUTETO option for load balancing.
1482 		 */
1483 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1484 
1485 		/*
1486 		 * Pass this up to any BPF listeners, but only
1487 		 * pass it up the stack if its for us.
1488 		 */
1489 		bpf_mtap(ifp, m);
1490 
1491 		/* Pass it on. */
1492 		sc->sc_evcnt_input.ev_count++;
1493 		(*ifp->if_input)(ifp, m);
1494 
1495 		fe_write(sc, RA_FE_PDMA_RX0_CPU_IDX, rx_cpu_idx);
1496 	}
1497 }
1498 
1499 /*
1500  * ralink_eth_txintr
1501  */
1502 static void
1503 ralink_eth_txintr(ralink_eth_softc_t *sc)
1504 {
1505 	RALINK_DEBUG_FUNC_ENTRY();
1506 	struct ralink_eth_txstate *txs;
1507 
1508 	KASSERT(curcpu()->ci_cpl >= IPL_NET);
1509 	sc->sc_evcnt_txintr.ev_count++;
1510 
1511 	/*
1512 	 * Go through our Tx list and free mbufs for those
1513 	 * frames that have been transmitted.
1514 	 */
1515 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1516 		bus_dmamap_sync(sc->sc_dmat, sc->sc_pdmamap,
1517 			(int)&sc->sc_txdesc[txs->txs_idx] - (int)sc->sc_descs,
1518 			sizeof(struct ralink_tx_desc),
1519 			BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1520 
1521 		RALINK_DEBUG(RALINK_DEBUG_REG,"-tx(%d) 0x%08x: 0x%08x\n", txs->txs_idx,
1522 			(int)&sc->sc_txdesc[txs->txs_idx].data_ptr0,
1523 			sc->sc_txdesc[txs->txs_idx].data_ptr0);
1524 		RALINK_DEBUG(RALINK_DEBUG_REG,"-tx(%d) 0x%08x: 0x%08x\n", txs->txs_idx,
1525 			(int)&sc->sc_txdesc[txs->txs_idx].txd_info1,
1526 			sc->sc_txdesc[txs->txs_idx].txd_info1);
1527 		RALINK_DEBUG(RALINK_DEBUG_REG,"-tx(%d) 0x%08x: 0x%08x\n", txs->txs_idx,
1528 			(int)&sc->sc_txdesc[txs->txs_idx].data_ptr1,
1529 			sc->sc_txdesc[txs->txs_idx].data_ptr1);
1530 		RALINK_DEBUG(RALINK_DEBUG_REG,"-tx(%d) 0x%08x: 0x%08x\n", txs->txs_idx,
1531 			(int)&sc->sc_txdesc[txs->txs_idx].txd_info2,
1532 			sc->sc_txdesc[txs->txs_idx].txd_info2);
1533 
1534 		/* we're finished if the current tx isn't done */
1535 		if (!(sc->sc_txdesc[txs->txs_idx].txd_info1 & TXD_DDONE))
1536 			break;
1537 
1538 		RALINK_DEBUG(RALINK_DEBUG_REG,"-tx(%d) transmitted\n", txs->txs_idx);
1539 
1540 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1541 
1542 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 0,
1543 			txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1544 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1545 		m_freem(txs->txs_mbuf);
1546 		txs->txs_mbuf = NULL;
1547 
1548 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1549 
1550 		struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1551 		ifp->if_flags &= ~IFF_OACTIVE;
1552 		ifp->if_opackets++;
1553 		sc->sc_evcnt_output.ev_count++;
1554 
1555 		if (--sc->sc_pending_tx == 0)
1556 			ifp->if_timer = 0;
1557 	}
1558 }
1559 
1560 /*
1561  * ralink_eth_mdio_enable
1562  */
1563 #if defined (RT3050) || defined(RT3052)
1564 static void
1565 ralink_eth_mdio_enable(ralink_eth_softc_t *sc, bool enable)
1566 {
1567 	uint32_t data = sy_read(sc, RA_SYSCTL_GPIOMODE);
1568 
1569 	if (enable)
1570 		data &= ~GPIOMODE_MDIO;
1571 	else
1572 		data |= GPIOMODE_MDIO;
1573 
1574 	sy_write(sc, RA_SYSCTL_GPIOMODE, data);
1575 }
1576 #else
1577 #define ralink_eth_mdio_enable(sc, enable)
1578 #endif
1579 
1580 /*
1581  * ralink_eth_mii_statchg
1582  */
1583 static void
1584 ralink_eth_mii_statchg(struct ifnet *ifp)
1585 {
1586 #if 0
1587 	ralink_eth_softc_t * const sc = ifp->if_softc;
1588 
1589 #endif
1590 }
1591 
1592 /*
1593  * ralink_eth_mii_tick
1594  *
1595  *	One second timer, used to tick the MIIs.
1596  */
1597 static void
1598 ralink_eth_mii_tick(void *arg)
1599 {
1600 	ralink_eth_softc_t * const sc = arg;
1601 
1602 	const int s = splnet();
1603 	mii_tick(&sc->sc_mii);
1604 	splx(s);
1605 
1606 	callout_reset(&sc->sc_tick_callout, hz, ralink_eth_mii_tick, sc);
1607 }
1608 
1609 /*
1610  * ralink_eth_mii_read
1611  */
1612 static int
1613 ralink_eth_mii_read(device_t self, int phy_addr, int phy_reg)
1614 {
1615 	ralink_eth_softc_t *sc = device_private(self);
1616 	KASSERT(sc != NULL);
1617 #if 0
1618 	printf("%s() phy_addr: %d  phy_reg: %d\n", __func__, phy_addr, phy_reg);
1619 #endif
1620 #if defined(RT3050) || defined(RT3052)
1621 	if (phy_addr > 5)
1622 		return 0;
1623 #endif
1624 
1625 	/* We enable mdio gpio purpose register, and disable it when exit. */
1626 	ralink_eth_mdio_enable(sc, true);
1627 
1628 	/*
1629 	 * make sure previous read operation is complete
1630 	 * TODO: timeout (linux uses jiffies to measure 5 seconds)
1631 	 */
1632 	for (;;) {
1633 		/* rd_rdy: read operation is complete */
1634 #if defined(RT3050) || defined(RT3052)
1635 		if ((sw_read(sc, RA_ETH_SW_PCTL1) & PCTL1_RD_DONE) == 0)
1636 			break;
1637 #else
1638 		if ((fe_read(sc, RA_FE_MDIO_ACCESS) & MDIO_ACCESS_TRG) == 0)
1639 			break;
1640 #endif
1641 	}
1642 
1643 #if defined(RT3050) || defined(RT3052)
1644 	sw_write(sc, RA_ETH_SW_PCTL0,
1645 		PCTL0_RD_CMD | PCTL0_REG(phy_reg) | PCTL0_ADDR(phy_addr));
1646 #else
1647 	fe_write(sc, RA_FE_MDIO_ACCESS,
1648 		MDIO_ACCESS_PHY_ADDR(phy_addr) | MDIO_ACCESS_REG(phy_reg));
1649 	fe_write(sc, RA_FE_MDIO_ACCESS,
1650 		MDIO_ACCESS_PHY_ADDR(phy_addr) | MDIO_ACCESS_REG(phy_reg) |
1651 		MDIO_ACCESS_TRG);
1652 #endif
1653 
1654 	/*
1655 	 * make sure read operation is complete
1656 	 * TODO: timeout (linux uses jiffies to measure 5 seconds)
1657 	 */
1658 	for (;;) {
1659 #if defined(RT3050) || defined(RT3052)
1660 		if ((sw_read(sc, RA_ETH_SW_PCTL1) & PCTL1_RD_DONE) != 0) {
1661 			int data = PCTL1_RD_VAL(
1662 				sw_read(sc, RA_ETH_SW_PCTL1));
1663 			ralink_eth_mdio_enable(sc, false);
1664 			return data;
1665 		}
1666 #else
1667 		if ((fe_read(sc, RA_FE_MDIO_ACCESS) & MDIO_ACCESS_TRG) == 0) {
1668 			int data = MDIO_ACCESS_DATA(
1669 				fe_read(sc, RA_FE_MDIO_ACCESS));
1670 			ralink_eth_mdio_enable(sc, false);
1671 			return data;
1672 		}
1673 #endif
1674 	}
1675 }
1676 
1677 /*
1678  * ralink_eth_mii_write
1679  */
1680 static void
1681 ralink_eth_mii_write(device_t self, int phy_addr, int phy_reg, int val)
1682 {
1683 	ralink_eth_softc_t *sc = device_private(self);
1684 	KASSERT(sc != NULL);
1685 #if 0
1686 	printf("%s() phy_addr: %d  phy_reg: %d  val: 0x%04x\n",
1687 		__func__, phy_addr, phy_reg, val);
1688 #endif
1689 	ralink_eth_mdio_enable(sc, true);
1690 
1691 	/*
1692 	 * make sure previous write operation is complete
1693 	 * TODO: timeout (linux uses jiffies to measure 5 seconds)
1694 	 */
1695 	for (;;) {
1696 #if defined(RT3050) || defined(RT3052)
1697 		if ((sw_read(sc, RA_ETH_SW_PCTL1) & PCTL1_RD_DONE) == 0)
1698 			break;
1699 #else
1700 		if ((fe_read(sc, RA_FE_MDIO_ACCESS) & MDIO_ACCESS_TRG) == 0)
1701 			break;
1702 #endif
1703 	}
1704 
1705 #if defined(RT3050) || defined(RT3052)
1706 	sw_write(sc, RA_ETH_SW_PCTL0,
1707 		PCTL0_WR_CMD | PCTL0_WR_VAL(val) | PCTL0_REG(phy_reg) |
1708 		PCTL0_ADDR(phy_addr));
1709 #else
1710 	fe_write(sc, RA_FE_MDIO_ACCESS,
1711 		MDIO_ACCESS_WR | MDIO_ACCESS_PHY_ADDR(phy_addr) |
1712 		MDIO_ACCESS_REG(phy_reg) | MDIO_ACCESS_DATA(val));
1713 	fe_write(sc, RA_FE_MDIO_ACCESS,
1714 		MDIO_ACCESS_WR | MDIO_ACCESS_PHY_ADDR(phy_addr) |
1715 		MDIO_ACCESS_REG(phy_reg) | MDIO_ACCESS_DATA(val) |
1716 		MDIO_ACCESS_TRG);
1717 #endif
1718 
1719 
1720 	/* make sure write operation is complete */
1721 	for (;;) {
1722 #if defined(RT3050) || defined(RT3052)
1723 		if ((sw_read(sc, RA_ETH_SW_PCTL1) & PCTL1_WR_DONE) != 0) {
1724 			ralink_eth_mdio_enable(sc, false);
1725 			return;
1726 		}
1727 #else
1728 		if ((fe_read(sc, RA_FE_MDIO_ACCESS) & MDIO_ACCESS_TRG) == 0){
1729 			ralink_eth_mdio_enable(sc, false);
1730 			return;
1731 		}
1732 #endif
1733 	}
1734 }
1735