xref: /netbsd-src/sys/arch/mips/ralink/ralink_eth.c (revision aec6f0cf2ee0e8ce1a23f9d46109cdee745ca66f)
1 /*	$NetBSD: ralink_eth.c,v 1.26 2022/09/29 07:00:47 skrll Exp $	*/
2 /*-
3  * Copyright (c) 2011 CradlePoint Technology, Inc.
4  * All rights reserved.
5  *
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY CRADLEPOINT TECHNOLOGY, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /* ralink_eth.c -- Ralink Ethernet Driver */
30 
31 #include <sys/cdefs.h>
32 __KERNEL_RCSID(0, "$NetBSD: ralink_eth.c,v 1.26 2022/09/29 07:00:47 skrll Exp $");
33 
34 #include <sys/param.h>
35 #include <sys/bus.h>
36 #include <sys/callout.h>
37 #include <sys/device.h>
38 #include <sys/endian.h>
39 #include <sys/errno.h>
40 #include <sys/ioctl.h>
41 #include <sys/intr.h>
42 #include <sys/kernel.h>
43 #include <sys/mbuf.h>
44 #include <sys/socket.h>
45 #include <sys/systm.h>
46 
47 #include <uvm/uvm_extern.h>
48 
49 #include <net/if.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 #include <net/if_ether.h>
53 #include <net/if_vlanvar.h>
54 
55 #include <net/bpf.h>
56 
57 #include <dev/mii/mii.h>
58 #include <dev/mii/miivar.h>
59 #include <dev/mii/mii_bitbang.h>
60 
61 #include <mips/ralink/ralink_var.h>
62 #include <mips/ralink/ralink_reg.h>
63 #if 0
64 #define CPDEBUG				/* XXX TMP DEBUG FIXME */
65 #define RALINK_ETH_DEBUG		/* XXX TMP DEBUG FIXME */
66 #define ENABLE_RALINK_DEBUG_ERROR 1
67 #define ENABLE_RALINK_DEBUG_MISC  1
68 #define ENABLE_RALINK_DEBUG_INFO  1
69 #define ENABLE_RALINK_DEBUG_FORCE 1
70 #define ENABLE_RALINK_DEBUG_REG   1
71 #endif
72 #include <mips/ralink/ralink_debug.h>
73 
74 
75 /* PDMA RX Descriptor Format */
76 struct ralink_rx_desc {
77 	uint32_t data_ptr;
78 	uint32_t rxd_info1;
79 #define RXD_LEN1(x)	(((x) >> 0) & 0x3fff)
80 #define RXD_LAST1	(1 << 14)
81 #define RXD_LEN0(x)	(((x) >> 16) & 0x3fff)
82 #define RXD_LAST0	(1 << 30)
83 #define RXD_DDONE	(1 << 31)
84 	uint32_t unused;
85 	uint32_t rxd_info2;
86 #define RXD_FOE(x)	(((x) >> 0) & 0x3fff)
87 #define RXD_FVLD	(1 << 14)
88 #define RXD_INFO(x)	(((x) >> 16) & 0xff)
89 #define RXD_PORT(x)	(((x) >> 24) & 0x7)
90 #define RXD_INFO_CPU	(1 << 27)
91 #define RXD_L4_FAIL	(1 << 28)
92 #define RXD_IP_FAIL	(1 << 29)
93 #define RXD_L4_VLD	(1 << 30)
94 #define RXD_IP_VLD	(1 << 31)
95 };
96 
97 /* PDMA TX Descriptor Format */
98 struct ralink_tx_desc {
99 	uint32_t data_ptr0;
100 	uint32_t txd_info1;
101 #define TXD_LEN1(x)	(((x) & 0x3fff) << 0)
102 #define TXD_LAST1	(1 << 14)
103 #define TXD_BURST	(1 << 15)
104 #define TXD_LEN0(x)	(((x) & 0x3fff) << 16)
105 #define TXD_LAST0	(1 << 30)
106 #define TXD_DDONE	(1 << 31)
107 	uint32_t data_ptr1;
108 	uint32_t txd_info2;
109 #define TXD_VIDX(x)	(((x) & 0xf) << 0)
110 #define TXD_VPRI(x)	(((x) & 0x7) << 4)
111 #define TXD_VEN		(1 << 7)
112 #define TXD_SIDX(x)	(((x) & 0xf) << 8)
113 #define TXD_SEN(x)	(1 << 13)
114 #define TXD_QN(x)	(((x) & 0x7) << 16)
115 #define TXD_PN(x)	(((x) & 0x7) << 24)
116 #define  TXD_PN_CPU	0
117 #define  TXD_PN_GDMA1	1
118 #define  TXD_PN_GDMA2	2
119 #define TXD_TCP_EN	(1 << 29)
120 #define TXD_UDP_EN	(1 << 30)
121 #define TXD_IP_EN	(1 << 31)
122 };
123 
124 /* TODO:
125  * try to scale number of descriptors swith size of memory
126  * these numbers may have a significant impact on performance/memory/mbuf usage
127  */
128 #if RTMEMSIZE >= 64
129 #define RALINK_ETH_NUM_RX_DESC 256
130 #define RALINK_ETH_NUM_TX_DESC 256
131 #else
132 #define RALINK_ETH_NUM_RX_DESC 64
133 #define RALINK_ETH_NUM_TX_DESC 64
134 #endif
135 /* maximum segments per packet */
136 #define RALINK_ETH_MAX_TX_SEGS 1
137 
138 /* define a struct for ease of dma memory allocation */
139 struct ralink_descs {
140 	struct ralink_rx_desc rxdesc[RALINK_ETH_NUM_RX_DESC];
141 	struct ralink_tx_desc txdesc[RALINK_ETH_NUM_TX_DESC];
142 };
143 
144 /* Software state for transmit jobs. */
145 struct ralink_eth_txstate {
146 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
147 	bus_dmamap_t txs_dmamap;	/* our DMA map */
148 	int txs_idx;			/* the index in txdesc ring that */
149 					/*  this state is tracking */
150 	SIMPLEQ_ENTRY(ralink_eth_txstate) txs_q;
151 };
152 
153 SIMPLEQ_HEAD(ralink_eth_txsq, ralink_eth_txstate);
154 
155 /*
156  * Software state for receive jobs.
157  */
158 struct ralink_eth_rxstate {
159 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
160 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
161 };
162 
163 typedef struct ralink_eth_softc {
164 	device_t sc_dev;		/* generic device information */
165 	bus_space_tag_t sc_memt;	/* bus space tag */
166 	bus_space_handle_t sc_sy_memh;	/* handle at SYSCTL_BASE */
167 	bus_space_handle_t sc_fe_memh;	/* handle at FRAME_ENGINE_BASE */
168 	bus_space_handle_t sc_sw_memh;	/* handle at ETH_SW_BASE */
169 	int sc_sy_size;			/* size of Sysctl regs space */
170 	int sc_fe_size;			/* size of Frame Engine regs space */
171 	int sc_sw_size;			/* size of Ether Switch regs space */
172 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
173 	void *sc_ih;			/* interrupt handle */
174 
175 	/* tx/rx dma mapping */
176 	bus_dma_segment_t sc_dseg;
177 	int sc_ndseg;
178 	bus_dmamap_t sc_pdmamap;	/* PDMA DMA map */
179 #define sc_pdma sc_pdmamap->dm_segs[0].ds_addr
180 
181 	struct ralink_descs *sc_descs;
182 #define sc_rxdesc sc_descs->rxdesc
183 #define sc_txdesc sc_descs->txdesc
184 
185 #define RALINK_MIN_BUF 64
186 	char ralink_zero_buf[RALINK_MIN_BUF];
187 
188 	struct ralink_eth_txstate sc_txstate[RALINK_ETH_NUM_TX_DESC];
189 	struct ralink_eth_rxstate sc_rxstate[RALINK_ETH_NUM_RX_DESC];
190 
191 	struct ralink_eth_txsq sc_txfreeq;	/* free Tx descsofts */
192 	struct ralink_eth_txsq sc_txdirtyq;	/* dirty Tx descsofts */
193 
194 	struct ethercom sc_ethercom;		/* ethernet common data */
195 	u_int sc_pending_tx;
196 
197 	/* mii */
198 	struct mii_data sc_mii;
199 	struct callout sc_tick_callout;
200 
201 	struct evcnt sc_evcnt_spurious_intr;
202 	struct evcnt sc_evcnt_rxintr;
203 	struct evcnt sc_evcnt_rxintr_skip_len;
204 	struct evcnt sc_evcnt_rxintr_skip_tag_none;
205 	struct evcnt sc_evcnt_rxintr_skip_tag_inval;
206 	struct evcnt sc_evcnt_rxintr_skip_inact;
207 	struct evcnt sc_evcnt_txintr;
208 	struct evcnt sc_evcnt_input;
209 	struct evcnt sc_evcnt_output;
210 	struct evcnt sc_evcnt_watchdog;
211 	struct evcnt sc_evcnt_wd_reactivate;
212 	struct evcnt sc_evcnt_wd_tx;
213 	struct evcnt sc_evcnt_wd_spurious;
214 	struct evcnt sc_evcnt_add_rxbuf_hdr_fail;
215 	struct evcnt sc_evcnt_add_rxbuf_mcl_fail;
216 } ralink_eth_softc_t;
217 
218 /* alignment so the IP header is aligned */
219 #define RALINK_ETHER_ALIGN 2
220 
221 /* device functions */
222 static int  ralink_eth_match(device_t, cfdata_t, void *);
223 static void ralink_eth_attach(device_t, device_t, void *);
224 static int  ralink_eth_detach(device_t, int);
225 static int  ralink_eth_activate(device_t, enum devact);
226 
227 /* local driver functions */
228 static void ralink_eth_hw_init(ralink_eth_softc_t *);
229 static int  ralink_eth_intr(void *);
230 static void ralink_eth_reset(ralink_eth_softc_t *);
231 static void ralink_eth_rxintr(ralink_eth_softc_t *);
232 static void ralink_eth_txintr(ralink_eth_softc_t *);
233 
234 /* partition functions */
235 static int  ralink_eth_enable(ralink_eth_softc_t *);
236 static void ralink_eth_disable(ralink_eth_softc_t *);
237 
238 /* ifnet functions */
239 static int  ralink_eth_init(struct ifnet *);
240 static void ralink_eth_rxdrain(ralink_eth_softc_t *);
241 static void ralink_eth_stop(struct ifnet *, int);
242 static int  ralink_eth_add_rxbuf(ralink_eth_softc_t *, int);
243 static void ralink_eth_start(struct ifnet *);
244 static void ralink_eth_watchdog(struct ifnet *);
245 static int  ralink_eth_ioctl(struct ifnet *, u_long, void *);
246 
247 /* mii functions */
248 #if defined(RT3050) || defined(RT3052)
249 static void ralink_eth_mdio_enable(ralink_eth_softc_t *, bool);
250 #endif
251 static void ralink_eth_mii_statchg(struct ifnet *);
252 static void ralink_eth_mii_tick(void *);
253 static int  ralink_eth_mii_read(device_t, int, int, uint16_t *);
254 static int  ralink_eth_mii_write(device_t, int, int, uint16_t);
255 
256 CFATTACH_DECL_NEW(reth, sizeof(struct ralink_eth_softc),
257     ralink_eth_match, ralink_eth_attach, ralink_eth_detach,
258     ralink_eth_activate);
259 
260 static inline uint32_t
sy_read(const ralink_eth_softc_t * sc,const bus_size_t off)261 sy_read(const ralink_eth_softc_t *sc, const bus_size_t off)
262 {
263 	return bus_space_read_4(sc->sc_memt, sc->sc_sy_memh, off);
264 }
265 
266 static inline void
sy_write(const ralink_eth_softc_t * sc,const bus_size_t off,const uint32_t val)267 sy_write(const ralink_eth_softc_t *sc, const bus_size_t off, const uint32_t val)
268 {
269 	bus_space_write_4(sc->sc_memt, sc->sc_sy_memh, off, val);
270 }
271 
272 static inline uint32_t
fe_read(const ralink_eth_softc_t * sc,const bus_size_t off)273 fe_read(const ralink_eth_softc_t *sc, const bus_size_t off)
274 {
275 	return bus_space_read_4(sc->sc_memt, sc->sc_fe_memh, off);
276 }
277 
278 static inline void
fe_write(const ralink_eth_softc_t * sc,const bus_size_t off,const uint32_t val)279 fe_write(const ralink_eth_softc_t *sc, const bus_size_t off, const uint32_t val)
280 {
281 	bus_space_write_4(sc->sc_memt, sc->sc_fe_memh, off, val);
282 }
283 
284 static inline uint32_t
sw_read(const ralink_eth_softc_t * sc,const bus_size_t off)285 sw_read(const ralink_eth_softc_t *sc, const bus_size_t off)
286 {
287 	return bus_space_read_4(sc->sc_memt, sc->sc_sw_memh, off);
288 }
289 
290 static inline void
sw_write(const ralink_eth_softc_t * sc,const bus_size_t off,const uint32_t val)291 sw_write(const ralink_eth_softc_t *sc, const bus_size_t off, const uint32_t val)
292 {
293 	bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, off, val);
294 }
295 
296 /*
297  * ralink_eth_match
298  */
299 int
ralink_eth_match(device_t parent,cfdata_t cf,void * aux)300 ralink_eth_match(device_t parent, cfdata_t cf, void *aux)
301 {
302 	return 1;
303 }
304 
305 /*
306  * ralink_eth_attach
307  */
308 void
ralink_eth_attach(device_t parent,device_t self,void * aux)309 ralink_eth_attach(device_t parent, device_t self, void *aux)
310 {
311 	ralink_eth_softc_t * const sc = device_private(self);
312 	const struct mainbus_attach_args *ma = aux;
313 	struct mii_data *mii = &sc->sc_mii;
314 	int error;
315 	int i;
316 
317 	aprint_naive(": Ralink Ethernet\n");
318 	aprint_normal(": Ralink Ethernet\n");
319 
320 	evcnt_attach_dynamic(&sc->sc_evcnt_spurious_intr, EVCNT_TYPE_INTR, NULL,
321 	    device_xname(self), "spurious intr");
322 	evcnt_attach_dynamic(&sc->sc_evcnt_rxintr, EVCNT_TYPE_INTR, NULL,
323 	    device_xname(self), "rxintr");
324 	evcnt_attach_dynamic(&sc->sc_evcnt_rxintr_skip_len,
325 	    EVCNT_TYPE_INTR, &sc->sc_evcnt_rxintr,
326 	    device_xname(self), "rxintr skip: no room for VLAN header");
327 	evcnt_attach_dynamic(&sc->sc_evcnt_rxintr_skip_tag_none,
328 	    EVCNT_TYPE_INTR, &sc->sc_evcnt_rxintr,
329 	    device_xname(self), "rxintr skip: no VLAN tag");
330 	evcnt_attach_dynamic(&sc->sc_evcnt_rxintr_skip_tag_inval,
331 	    EVCNT_TYPE_INTR, &sc->sc_evcnt_rxintr,
332 	    device_xname(self), "rxintr skip: invalid VLAN tag");
333 	evcnt_attach_dynamic(&sc->sc_evcnt_rxintr_skip_inact,
334 	    EVCNT_TYPE_INTR, &sc->sc_evcnt_rxintr,
335 	    device_xname(self), "rxintr skip: partition inactive");
336 	evcnt_attach_dynamic(&sc->sc_evcnt_txintr, EVCNT_TYPE_INTR, NULL,
337 	    device_xname(self), "txintr");
338 	evcnt_attach_dynamic(&sc->sc_evcnt_input, EVCNT_TYPE_INTR, NULL,
339 	    device_xname(self), "input");
340 	evcnt_attach_dynamic(&sc->sc_evcnt_output, EVCNT_TYPE_INTR, NULL,
341 	    device_xname(self), "output");
342 	evcnt_attach_dynamic(&sc->sc_evcnt_watchdog, EVCNT_TYPE_INTR, NULL,
343 	    device_xname(self), "watchdog");
344 	evcnt_attach_dynamic(&sc->sc_evcnt_wd_tx,
345 	    EVCNT_TYPE_INTR, &sc->sc_evcnt_watchdog,
346 	    device_xname(self), "watchdog TX timeout");
347 	evcnt_attach_dynamic(&sc->sc_evcnt_wd_spurious,
348 	    EVCNT_TYPE_INTR, &sc->sc_evcnt_watchdog,
349 	    device_xname(self), "watchdog spurious");
350 	evcnt_attach_dynamic(&sc->sc_evcnt_wd_reactivate,
351 	    EVCNT_TYPE_INTR, &sc->sc_evcnt_watchdog,
352 	    device_xname(self), "watchdog reactivate");
353 	evcnt_attach_dynamic(&sc->sc_evcnt_add_rxbuf_hdr_fail,
354 	    EVCNT_TYPE_INTR, NULL,
355 	    device_xname(self), "add rxbuf hdr fail");
356 	evcnt_attach_dynamic(&sc->sc_evcnt_add_rxbuf_mcl_fail,
357 	    EVCNT_TYPE_INTR, NULL,
358 	    device_xname(self), "add rxbuf mcl fail");
359 
360 	/*
361 	 * In order to obtain unique initial Ethernet address on a host,
362 	 * do some randomisation using the current uptime.  It's not meant
363 	 * for anything but avoiding hard-coding an address.
364 	 */
365 #ifdef RALINK_ETH_MACADDR
366 	uint8_t enaddr[ETHER_ADDR_LEN];
367 	ether_aton_r(enaddr, sizeof(enaddr), ___STRING(RALINK_ETH_MACADDR));
368 #else
369 	uint8_t enaddr[ETHER_ADDR_LEN] = { 0x00, 0x30, 0x44, 0x00, 0x00, 0x00 };
370 #endif
371 
372 	sc->sc_dev = self;
373 	sc->sc_dmat = ma->ma_dmat;
374 	sc->sc_memt = ma->ma_memt;
375 	sc->sc_sy_size = 0x10000;
376 	sc->sc_fe_size = 0x10000;
377 	sc->sc_sw_size = 0x08000;
378 
379 	/*
380 	 * map the registers
381 	 *
382 	 * we map the Sysctl, Frame Engine and Ether Switch registers
383 	 * separately so we can use the defined register offsets sanely
384 	 */
385 	if ((error = bus_space_map(sc->sc_memt, RA_SYSCTL_BASE,
386 	    sc->sc_sy_size, 0, &sc->sc_sy_memh)) != 0) {
387 		aprint_error_dev(self, "unable to map Sysctl registers, "
388 		    "error=%d\n", error);
389 		goto fail_0a;
390 	}
391 	if ((error = bus_space_map(sc->sc_memt, RA_FRAME_ENGINE_BASE,
392 	    sc->sc_fe_size, 0, &sc->sc_fe_memh)) != 0) {
393 		aprint_error_dev(self, "unable to map Frame Engine registers, "
394 		    "error=%d\n", error);
395 		goto fail_0b;
396 	}
397 	if ((error = bus_space_map(sc->sc_memt, RA_ETH_SW_BASE,
398 	    sc->sc_sw_size, 0, &sc->sc_sw_memh)) != 0) {
399 		aprint_error_dev(self, "unable to map Ether Switch registers, "
400 		    "error=%d\n", error);
401 		goto fail_0c;
402 	}
403 
404 	/* Allocate desc structures, and create & load the DMA map for them */
405 	if ((error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct ralink_descs),
406 	    PAGE_SIZE, 0, &sc->sc_dseg, 1, &sc->sc_ndseg, 0)) != 0) {
407 		aprint_error_dev(self, "unable to allocate transmit descs, "
408 		    "error=%d\n", error);
409 		goto fail_1;
410 	}
411 
412 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_ndseg,
413 	    sizeof(struct ralink_descs), (void **)&sc->sc_descs,
414 	    BUS_DMA_COHERENT)) != 0) {
415 		aprint_error_dev(self, "unable to map control data, "
416 		    "error=%d\n", error);
417 		goto fail_2;
418 	}
419 
420 	if ((error = bus_dmamap_create(sc->sc_dmat, sizeof(struct ralink_descs),
421 	    1, sizeof(struct ralink_descs), 0, 0, &sc->sc_pdmamap)) != 0) {
422 		aprint_error_dev(self, "unable to create control data DMA map, "
423 		    "error=%d\n", error);
424 		goto fail_3;
425 	}
426 
427 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_pdmamap, sc->sc_descs,
428 	    sizeof(struct ralink_descs), NULL, 0)) != 0) {
429 		aprint_error_dev(self, "unable to load control data DMA map, "
430 		    "error=%d\n", error);
431 		goto fail_4;
432 	}
433 
434 	/* Create the transmit buffer DMA maps.  */
435 	for (i = 0; i < RALINK_ETH_NUM_TX_DESC; i++) {
436 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
437 		    RALINK_ETH_MAX_TX_SEGS, MCLBYTES, 0, 0,
438 		    &sc->sc_txstate[i].txs_dmamap)) != 0) {
439 			aprint_error_dev(self,
440 			    "unable to create tx DMA map %d, error=%d\n",
441 			    i, error);
442 			goto fail_5;
443 		}
444 	}
445 
446 	/* Create the receive buffer DMA maps.  */
447 	for (i = 0; i < RALINK_ETH_NUM_RX_DESC; i++) {
448 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
449 		    MCLBYTES, 0, 0, &sc->sc_rxstate[i].rxs_dmamap)) != 0) {
450 			aprint_error_dev(self,
451 			    "unable to create rx DMA map %d, error=%d\n",
452 			    i, error);
453 			goto fail_6;
454 		}
455 		sc->sc_rxstate[i].rxs_mbuf = NULL;
456 	}
457 
458 	/* this is a zero buffer used for zero'ing out short packets */
459 	memset(sc->ralink_zero_buf, 0, RALINK_MIN_BUF);
460 
461 	/* setup some address in hardware */
462 	fe_write(sc, RA_FE_GDMA1_MAC_LSB,
463 	    (enaddr[5] | (enaddr[4] << 8) |
464 	    (enaddr[3] << 16) | (enaddr[2] << 24)));
465 	fe_write(sc, RA_FE_GDMA1_MAC_MSB,
466 	    (enaddr[1] | (enaddr[0] << 8)));
467 
468 	/*
469 	 * iterate through ports
470 	 *  slickrock must use specific non-linear sequence
471 	 *  others are linear
472 	 */
473 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
474 
475 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
476 
477 	/*
478 	 * Initialize our media structures.
479 	 * This may probe the PHY, if present.
480 	 */
481 	mii->mii_ifp = ifp;
482 	mii->mii_readreg = ralink_eth_mii_read;
483 	mii->mii_writereg = ralink_eth_mii_write;
484 	mii->mii_statchg = ralink_eth_mii_statchg;
485 	sc->sc_ethercom.ec_mii = mii;
486 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
487 	mii_attach(sc->sc_dev, mii, ~0, MII_PHY_ANY, MII_OFFSET_ANY,
488 	    MIIF_FORCEANEG | MIIF_DOPAUSE | MIIF_NOISOLATE);
489 
490 	if (LIST_EMPTY(&mii->mii_phys)) {
491 #if 1
492 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_1000_T |
493 		    IFM_FDX | IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE, 0, NULL);
494 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_1000_T |
495 		    IFM_FDX | IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE);
496 #else
497 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
498 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
499 #endif
500 	} else {
501 		/* Ensure we mask ok for the switch multiple phy's */
502 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
503 	}
504 
505 	ifp->if_softc = sc;
506 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
507 	ifp->if_init = ralink_eth_init;
508 	ifp->if_start = ralink_eth_start;
509 	ifp->if_ioctl = ralink_eth_ioctl;
510 	ifp->if_stop = ralink_eth_stop;
511 	ifp->if_watchdog = ralink_eth_watchdog;
512 	IFQ_SET_READY(&ifp->if_snd);
513 
514 	/* We can support 802.1Q VLAN-sized frames. */
515 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
516 
517 	/* We support IPV4 CRC Offload */
518 	ifp->if_capabilities |=
519 	    (IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
520 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
521 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx);
522 
523 	/* Attach the interface. */
524 	if_attach(ifp);
525 	if_deferred_start_init(ifp, NULL);
526 	ether_ifattach(ifp, enaddr);
527 
528 	/* init our mii ticker */
529 	callout_init(&sc->sc_tick_callout, 0);
530 	callout_reset(&sc->sc_tick_callout, hz, ralink_eth_mii_tick, sc);
531 
532 	return;
533 
534 	/*
535 	 * Free any resources we've allocated during the failed attach
536 	 * attempt.  Do this in reverse order and fall through.
537 	 */
538  fail_6:
539 	for (i = 0; i < RALINK_ETH_NUM_RX_DESC; i++) {
540 		if (sc->sc_rxstate[i].rxs_dmamap != NULL)
541 			bus_dmamap_destroy(sc->sc_dmat,
542 			    sc->sc_rxstate[i].rxs_dmamap);
543 	}
544  fail_5:
545 	for (i = 0; i < RALINK_ETH_NUM_TX_DESC; i++) {
546 		if (sc->sc_txstate[i].txs_dmamap != NULL)
547 			bus_dmamap_destroy(sc->sc_dmat,
548 			    sc->sc_txstate[i].txs_dmamap);
549 	}
550 	bus_dmamap_unload(sc->sc_dmat, sc->sc_pdmamap);
551  fail_4:
552 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_pdmamap);
553  fail_3:
554 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs,
555 	    sizeof(struct ralink_descs));
556  fail_2:
557 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_ndseg);
558  fail_1:
559 	bus_space_unmap(sc->sc_memt, sc->sc_sw_memh, sc->sc_sw_size);
560  fail_0c:
561 	bus_space_unmap(sc->sc_memt, sc->sc_fe_memh, sc->sc_fe_size);
562  fail_0b:
563 	bus_space_unmap(sc->sc_memt, sc->sc_sy_memh, sc->sc_fe_size);
564  fail_0a:
565 	return;
566 }
567 
568 /*
569  * ralink_eth_activate:
570  *
571  *	Handle device activation/deactivation requests.
572  */
573 int
ralink_eth_activate(device_t self,enum devact act)574 ralink_eth_activate(device_t self, enum devact act)
575 {
576 	ralink_eth_softc_t * const sc = device_private(self);
577 	int error = 0;
578 	int s;
579 
580 	s = splnet();
581 	switch (act) {
582 	case DVACT_DEACTIVATE:
583 		if_deactivate(&sc->sc_ethercom.ec_if);
584 		break;
585 	}
586 	splx(s);
587 
588 	return error;
589 }
590 
591 /*
592  * ralink_eth_partition_enable
593  */
594 static int
ralink_eth_enable(ralink_eth_softc_t * sc)595 ralink_eth_enable(ralink_eth_softc_t *sc)
596 {
597 	RALINK_DEBUG_FUNC_ENTRY();
598 
599 	if (sc->sc_ih != NULL) {
600 		RALINK_DEBUG(RALINK_DEBUG_MISC, "%s() already active",
601 			__func__);
602 		return EALREADY;
603 	}
604 
605 	sc->sc_pending_tx = 0;
606 
607 	int s = splnet();
608 	ralink_eth_hw_init(sc);
609 	sc->sc_ih = ra_intr_establish(RA_IRQ_FENGINE,
610 	    ralink_eth_intr, sc, 1);
611 	splx(s);
612 	if (sc->sc_ih == NULL) {
613 		RALINK_DEBUG(RALINK_DEBUG_ERROR,
614 		    "%s: unable to establish interrupt\n",
615 		    device_xname(sc->sc_dev));
616 		return EIO;
617 	}
618 
619 	return 0;
620 }
621 
622 /*
623  * ralink_eth_partition_disable
624  */
625 static void
ralink_eth_disable(ralink_eth_softc_t * sc)626 ralink_eth_disable(ralink_eth_softc_t *sc)
627 {
628 	RALINK_DEBUG_FUNC_ENTRY();
629 
630 	int s = splnet();
631 	ralink_eth_rxdrain(sc);
632 	ra_intr_disestablish(sc->sc_ih);
633 	sc->sc_ih = NULL;
634 
635 	/* stop the mii ticker */
636 	callout_stop(&sc->sc_tick_callout);
637 
638 	/* quiesce the block */
639 	ralink_eth_reset(sc);
640 	splx(s);
641 }
642 
643 /*
644  * ralink_eth_detach
645  */
646 static int
ralink_eth_detach(device_t self,int flags)647 ralink_eth_detach(device_t self, int flags)
648 {
649 	RALINK_DEBUG_FUNC_ENTRY();
650 	ralink_eth_softc_t * const sc = device_private(self);
651 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
652 	struct ralink_eth_rxstate *rxs;
653 	struct ralink_eth_txstate *txs;
654 	int i;
655 
656 	ralink_eth_disable(sc);
657 	mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
658 	ether_ifdetach(ifp);
659 	if_detach(ifp);
660 	ifmedia_fini(&sc->sc_mii.mii_media);
661 
662 	for (i = 0; i < RALINK_ETH_NUM_RX_DESC; i++) {
663 		rxs = &sc->sc_rxstate[i];
664 		if (rxs->rxs_mbuf != NULL) {
665 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
666 			m_freem(rxs->rxs_mbuf);
667 			rxs->rxs_mbuf = NULL;
668 		}
669 		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
670 	}
671 
672 	for (i = 0; i < RALINK_ETH_NUM_TX_DESC; i++) {
673 		txs = &sc->sc_txstate[i];
674 		if (txs->txs_mbuf != NULL) {
675 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
676 			m_freem(txs->txs_mbuf);
677 			txs->txs_mbuf = NULL;
678 		}
679 		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
680 	}
681 
682 	bus_dmamap_unload(sc->sc_dmat, sc->sc_pdmamap);
683 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_pdmamap);
684 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs,
685 	    sizeof(struct ralink_descs));
686 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_ndseg);
687 
688 	bus_space_unmap(sc->sc_memt, sc->sc_sw_memh, sc->sc_sw_size);
689 	bus_space_unmap(sc->sc_memt, sc->sc_fe_memh, sc->sc_fe_size);
690 
691 	return 0;
692 }
693 
694 /*
695  * ralink_eth_reset
696  */
697 static void
ralink_eth_reset(ralink_eth_softc_t * sc)698 ralink_eth_reset(ralink_eth_softc_t *sc)
699 {
700 	RALINK_DEBUG_FUNC_ENTRY();
701 	uint32_t r;
702 
703 	/* Reset the frame engine */
704 	r = sy_read(sc, RA_SYSCTL_RST);
705 	r |= RST_FE;
706 	sy_write(sc, RA_SYSCTL_RST, r);
707 	r ^= RST_FE;
708 	sy_write(sc, RA_SYSCTL_RST, r);
709 
710 	/* Wait until the PDMA is quiescent */
711 	for (;;) {
712 		r = fe_read(sc, RA_FE_PDMA_GLOBAL_CFG);
713 		if (r & FE_PDMA_GLOBAL_CFG_RX_DMA_BUSY) {
714 			aprint_normal_dev(sc->sc_dev, "RX DMA BUSY\n");
715 			continue;
716 		}
717 		if (r & FE_PDMA_GLOBAL_CFG_TX_DMA_BUSY) {
718 			aprint_normal_dev(sc->sc_dev, "TX DMA BUSY\n");
719 			continue;
720 		}
721 		break;
722 	}
723 }
724 
725 /*
726  * ralink_eth_hw_init
727  */
728 static void
ralink_eth_hw_init(ralink_eth_softc_t * sc)729 ralink_eth_hw_init(ralink_eth_softc_t *sc)
730 {
731 	RALINK_DEBUG_FUNC_ENTRY();
732 	struct ralink_eth_txstate *txs;
733 	uint32_t r;
734 	int i;
735 
736 	/* reset to a known good state */
737 	ralink_eth_reset(sc);
738 
739 #if defined(RT3050) || defined(RT3052) || defined(MT7628)
740 	/* Bring the switch to a sane default state (from linux driver) */
741 	bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_SGC2,
742 	    0x00000000);
743 	bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_PFC1,
744 	    0x00405555);	/* check VLAN tag on port forward */
745 	bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_VLANI0,
746 	    0x00002001);
747 	bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_PVIDC0,
748 	    0x00001002);
749 	bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_PVIDC1,
750 	    0x00001001);
751 	bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_PVIDC2,
752 	    0x00001001);
753 #if defined(MT7628)
754 	bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_VMSC0,
755 	    0xffffffff);
756 	bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_POC0,
757 	    0x10007f7f);
758 	bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_POC2,
759 	    0x00007f7f);
760 	bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_FTC2,
761 	    0x0002500c);
762 #else
763 	bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_VMSC0,
764 	    0xffff417e);
765 	bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_POC0,
766 	    0x00007f7f);
767 	bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_POC2,
768 	    0x00007f3f);
769 	bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_FTC2,
770 	    0x00d6500c);
771 #endif
772 	bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_SWGC,
773 	    0x0008a301);	/* hashing algorithm=XOR48 */
774 				/*  aging interval=300sec  */
775 	bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_SOCPC,
776 	    0x02404040);
777 	bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_FPORT,
778 	    0x3f502b28);	/* Change polling Ext PHY Addr=0x0 */
779 	bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_FPA,
780 	    0x00000000);
781 
782 	/* do some mii magic  TODO: define these registers/bits */
783 	/* lower down PHY 10Mbps mode power */
784 	/* select local register */
785 	ralink_eth_mii_write(sc->sc_dev, 0, 31, 0x8000);
786 
787 	for (i=0; i < 5; i++) {
788 		/* set TX10 waveform coefficient */
789 		ralink_eth_mii_write(sc->sc_dev, i, 26, 0x1601);
790 
791 		/* set TX100/TX10 AD/DA current bias */
792 		ralink_eth_mii_write(sc->sc_dev, i, 29, 0x7058);
793 
794 		/* set TX100 slew rate control */
795 		ralink_eth_mii_write(sc->sc_dev, i, 30, 0x0018);
796 	}
797 
798 	/* PHY IOT */
799 
800 	/* select global register */
801 	ralink_eth_mii_write(sc->sc_dev, 0, 31, 0x0);
802 
803 	/* tune TP_IDL tail and head waveform */
804 	ralink_eth_mii_write(sc->sc_dev, 0, 22, 0x052f);
805 
806 	/* set TX10 signal amplitude threshold to minimum */
807 	ralink_eth_mii_write(sc->sc_dev, 0, 17, 0x0fe0);
808 
809 	/* set squelch amplitude to higher threshold */
810 	ralink_eth_mii_write(sc->sc_dev, 0, 18, 0x40ba);
811 
812 	/* longer TP_IDL tail length */
813 	ralink_eth_mii_write(sc->sc_dev, 0, 14, 0x65);
814 
815 	/* select local register */
816 	ralink_eth_mii_write(sc->sc_dev, 0, 31, 0x8000);
817 #else
818 	/* GE1 + GigSW */
819 	fe_write(sc, RA_FE_MDIO_CFG1,
820 	    MDIO_CFG_PHY_ADDR(0x1f) |
821 	    MDIO_CFG_BP_EN |
822 	    MDIO_CFG_FORCE_CFG |
823 	    MDIO_CFG_SPEED(MDIO_CFG_SPEED_1000M) |
824 	    MDIO_CFG_FULL_DUPLEX |
825 	    MDIO_CFG_FC_TX |
826 	    MDIO_CFG_FC_RX |
827 	    MDIO_CFG_TX_CLK_MODE(MDIO_CFG_TX_CLK_MODE_3COM));
828 #endif
829 
830 	/*
831 	 * TODO: QOS - RT3052 has 4 TX queues for QOS,
832 	 * forgoing for 1 for simplicity
833 	 */
834 
835 	/*
836 	 * Allocate DMA accessible memory for TX/RX descriptor rings
837 	 */
838 
839 	/* Initialize the TX queues. */
840 	SIMPLEQ_INIT(&sc->sc_txfreeq);
841 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
842 
843 	/* Initialize the TX descriptor ring. */
844 	memset(sc->sc_txdesc, 0, sizeof(sc->sc_txdesc));
845 	for (i = 0; i < RALINK_ETH_NUM_TX_DESC; i++) {
846 
847 		sc->sc_txdesc[i].txd_info1 = TXD_LAST0 | TXD_DDONE;
848 
849 		/* setup the freeq as well */
850 		txs = &sc->sc_txstate[i];
851 		txs->txs_mbuf = NULL;
852 		txs->txs_idx = i;
853 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
854 	}
855 
856 	/*
857 	 * Flush the TX descriptors
858 	 *  - TODO: can we just access descriptors via KSEG1
859 	 *    to avoid the flush?
860 	 */
861 	bus_dmamap_sync(sc->sc_dmat, sc->sc_pdmamap,
862 	    (int)&sc->sc_txdesc - (int)sc->sc_descs, sizeof(sc->sc_txdesc),
863 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
864 
865 	/* Initialize the RX descriptor ring */
866 	memset(sc->sc_rxdesc, 0, sizeof(sc->sc_rxdesc));
867 	for (i = 0; i < RALINK_ETH_NUM_RX_DESC; i++) {
868 		if (ralink_eth_add_rxbuf(sc, i)) {
869 			panic("Can't allocate rx mbuf\n");
870 		}
871 	}
872 
873 	/*
874 	 * Flush the RX descriptors
875 	 * - TODO: can we just access descriptors via KSEG1
876 	 *   to avoid the flush?
877 	 */
878 	bus_dmamap_sync(sc->sc_dmat, sc->sc_pdmamap,
879 	    (int)&sc->sc_rxdesc - (int)sc->sc_descs, sizeof(sc->sc_rxdesc),
880 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
881 
882 	/* Clear the PDMA state */
883 	r = fe_read(sc, RA_FE_PDMA_GLOBAL_CFG);
884 	r &= 0xff;
885 	fe_write(sc, RA_FE_PDMA_GLOBAL_CFG, r);
886 	(void) fe_read(sc, RA_FE_PDMA_GLOBAL_CFG);
887 
888 #if !defined(MT7628)
889 	/* Setup the PDMA VLAN ID's */
890 	fe_write(sc, RA_FE_VLAN_ID_0001, 0x00010000);
891 	fe_write(sc, RA_FE_VLAN_ID_0203, 0x00030002);
892 	fe_write(sc, RA_FE_VLAN_ID_0405, 0x00050004);
893 	fe_write(sc, RA_FE_VLAN_ID_0607, 0x00070006);
894 	fe_write(sc, RA_FE_VLAN_ID_0809, 0x00090008);
895 	fe_write(sc, RA_FE_VLAN_ID_1011, 0x000b000a);
896 	fe_write(sc, RA_FE_VLAN_ID_1213, 0x000d000c);
897 	fe_write(sc, RA_FE_VLAN_ID_1415, 0x000f000e);
898 #endif
899 
900 	/* Give the TX and TX rings to the chip. */
901 	fe_write(sc, RA_FE_PDMA_TX0_PTR,
902 	    htole32(MIPS_KSEG0_TO_PHYS(&sc->sc_txdesc)));
903 	fe_write(sc, RA_FE_PDMA_TX0_COUNT, htole32(RALINK_ETH_NUM_TX_DESC));
904 	fe_write(sc, RA_FE_PDMA_TX0_CPU_IDX, 0);
905 #if !defined(MT7628)
906 	fe_write(sc, RA_FE_PDMA_RESET_IDX, PDMA_RST_TX0);
907 #endif
908 
909 	fe_write(sc, RA_FE_PDMA_RX0_PTR,
910 	    htole32(MIPS_KSEG0_TO_PHYS(&sc->sc_rxdesc)));
911 	fe_write(sc, RA_FE_PDMA_RX0_COUNT, htole32(RALINK_ETH_NUM_RX_DESC));
912 	fe_write(sc, RA_FE_PDMA_RX0_CPU_IDX,
913 	    htole32(RALINK_ETH_NUM_RX_DESC - 1));
914 #if !defined(MT7628)
915 	fe_write(sc, RA_FE_PDMA_RESET_IDX, PDMA_RST_RX0);
916 #endif
917 	fe_write(sc, RA_FE_PDMA_RX0_CPU_IDX,
918 	    htole32(RALINK_ETH_NUM_RX_DESC - 1));
919 
920 	/* Start PDMA */
921 	fe_write(sc, RA_FE_PDMA_GLOBAL_CFG,
922 	    FE_PDMA_GLOBAL_CFG_TX_WB_DDONE |
923 	    FE_PDMA_GLOBAL_CFG_RX_DMA_EN |
924 	    FE_PDMA_GLOBAL_CFG_TX_DMA_EN |
925 	    FE_PDMA_GLOBAL_CFG_BURST_SZ_4);
926 
927 	/* Setup the clock for the Frame Engine */
928 #if defined(MT7628)
929 	fe_write(sc, RA_FE_SDM_CON, 0x8100);
930 #else
931 	fe_write(sc, RA_FE_GLOBAL_CFG,
932 	    FE_GLOBAL_CFG_EXT_VLAN(0x8100) |
933 	    FE_GLOBAL_CFG_US_CLK(RA_BUS_FREQ / 1000000) |
934 	    FE_GLOBAL_CFG_L2_SPACE(0x8));
935 #endif
936 
937 	/* Turn on all interrupts */
938 #if defined(MT7628)
939 	fe_write(sc, RA_FE_INT_MASK,
940 	    RA_FE_INT_RX_DONE_INT1 |
941 	    RA_FE_INT_RX_DONE_INT0 |
942 	    RA_FE_INT_TX_DONE_INT3 |
943 	    RA_FE_INT_TX_DONE_INT2 |
944 	    RA_FE_INT_TX_DONE_INT1 |
945 	    RA_FE_INT_TX_DONE_INT0);
946 #else
947 	fe_write(sc, RA_FE_INT_ENABLE,
948 	    FE_INT_RX | FE_INT_TX3 | FE_INT_TX2 | FE_INT_TX1 | FE_INT_TX0);
949 #endif
950 
951 	/*
952 	 * Configure GDMA forwarding
953 	 * - default all packets to CPU
954 	 * - Turn on auto-CRC
955 	 */
956 #if 0
957 	fe_write(sc, RA_FE_GDMA1_FWD_CFG,
958 	    (FE_GDMA_FWD_CFG_DIS_TX_CRC | FE_GDMA_FWD_CFG_DIS_TX_PAD));
959 #endif
960 
961 #if !defined(MT7628)
962 	fe_write(sc, RA_FE_GDMA1_FWD_CFG,
963 	    FE_GDMA_FWD_CFG_JUMBO_LEN(MCLBYTES/1024) |
964 	    FE_GDMA_FWD_CFG_STRIP_RX_CRC |
965 	    FE_GDMA_FWD_CFG_IP4_CRC_EN |
966 	    FE_GDMA_FWD_CFG_TCP_CRC_EN |
967 	    FE_GDMA_FWD_CFG_UDP_CRC_EN);
968 #endif
969 
970 	/* CDMA also needs CRCs turned on */
971 #if !defined(MT7628)
972 	r = fe_read(sc, RA_FE_CDMA_CSG_CFG);
973 	r |= (FE_CDMA_CSG_CFG_IP4_CRC_EN | FE_CDMA_CSG_CFG_UDP_CRC_EN |
974 	    FE_CDMA_CSG_CFG_TCP_CRC_EN);
975 	fe_write(sc, RA_FE_CDMA_CSG_CFG, r);
976 #endif
977 
978 	/* Configure Flow Control Thresholds */
979 #if defined(MT7628)
980 	sw_write(sc, RA_ETH_SW_FCT0,
981 	    RA_ETH_SW_FCT0_FC_RLS_TH(0xc8) |
982 	    RA_ETH_SW_FCT0_FC_SET_TH(0xa0) |
983 	    RA_ETH_SW_FCT0_DROP_RLS_TH(0x78) |
984 	    RA_ETH_SW_FCT0_DROP_SET_TH(0x50));
985 	sw_write(sc, RA_ETH_SW_FCT1,
986 	    RA_ETH_SW_FCT1_PORT_TH(0x14));
987 #elif defined(RT3883)
988 	fe_write(sc, RA_FE_PSE_FQ_CFG,
989 	    FE_PSE_FQ_MAX_COUNT(0xff) |
990 	    FE_PSE_FQ_FC_RELEASE(0x90) |
991 	    FE_PSE_FQ_FC_ASSERT(0x80));
992 #else
993 	fe_write(sc, RA_FE_PSE_FQ_CFG,
994 	    FE_PSE_FQ_MAX_COUNT(0x80) |
995 	    FE_PSE_FQ_FC_RELEASE(0x50) |
996 	    FE_PSE_FQ_FC_ASSERT(0x40));
997 #endif
998 
999 #ifdef RALINK_ETH_DEBUG
1000 #ifdef RA_FE_MDIO_CFG1
1001 	printf("FE_MDIO_CFG1: 0x%08x\n", fe_read(sc, RA_FE_MDIO_CFG1));
1002 #endif
1003 #ifdef RA_FE_MDIO_CFG2
1004 	printf("FE_MDIO_CFG2: 0x%08x\n", fe_read(sc, RA_FE_MDIO_CFG2));
1005 #endif
1006 	printf("FE_PDMA_TX0_PTR: %08x\n", fe_read(sc, RA_FE_PDMA_TX0_PTR));
1007 	printf("FE_PDMA_TX0_COUNT: %08x\n",
1008 	    fe_read(sc, RA_FE_PDMA_TX0_COUNT));
1009 	printf("FE_PDMA_TX0_CPU_IDX: %08x\n",
1010 	    fe_read(sc, RA_FE_PDMA_TX0_CPU_IDX));
1011 	printf("FE_PDMA_TX0_DMA_IDX: %08x\n",
1012 	    fe_read(sc, RA_FE_PDMA_TX0_DMA_IDX));
1013 	printf("FE_PDMA_RX0_PTR: %08x\n", fe_read(sc, RA_FE_PDMA_RX0_PTR));
1014 	printf("FE_PDMA_RX0_COUNT: %08x\n",
1015 	    fe_read(sc, RA_FE_PDMA_RX0_COUNT));
1016 	printf("FE_PDMA_RX0_CPU_IDX: %08x\n",
1017 	    fe_read(sc, RA_FE_PDMA_RX0_CPU_IDX));
1018 	printf("FE_PDMA_RX0_DMA_IDX: %08x\n",
1019 	    fe_read(sc, RA_FE_PDMA_RX0_DMA_IDX));
1020 	printf("FE_PDMA_GLOBAL_CFG: %08x\n",
1021 	    fe_read(sc, RA_FE_PDMA_GLOBAL_CFG));
1022 #ifdef RA_FE_GLOBAL_CFG
1023 	printf("FE_GLOBAL_CFG: %08x\n", fe_read(sc, RA_FE_GLOBAL_CFG));
1024 #endif
1025 #ifdef RA_FE_GDMA1_FWD_CFG
1026 	printf("FE_GDMA1_FWD_CFG: %08x\n",
1027 	    fe_read(sc, RA_FE_GDMA1_FWD_CFG));
1028 #endif
1029 #ifdef RA_FE_CDMA_CSG_CFG
1030 	printf("FE_CDMA_CSG_CFG: %08x\n", fe_read(sc, RA_FE_CDMA_CSG_CFG));
1031 #endif
1032 #ifdef RA_FE_PSE_FQ_CFG
1033 	printf("FE_PSE_FQ_CFG: %08x\n", fe_read(sc, RA_FE_PSE_FQ_CFG));
1034 #endif
1035 #endif
1036 
1037 	/* Force PSE Reset to get everything finalized */
1038 #if defined(MT7628)
1039 #else
1040 	fe_write(sc, RA_FE_GLOBAL_RESET, FE_GLOBAL_RESET_PSE);
1041 	fe_write(sc, RA_FE_GLOBAL_RESET, 0);
1042 #endif
1043 }
1044 
1045 /*
1046  * ralink_eth_init
1047  */
1048 static int
ralink_eth_init(struct ifnet * ifp)1049 ralink_eth_init(struct ifnet *ifp)
1050 {
1051 	RALINK_DEBUG_FUNC_ENTRY();
1052 	ralink_eth_softc_t * const sc = ifp->if_softc;
1053 	int error;
1054 
1055 	error = ralink_eth_enable(sc);
1056 	if (!error) {
1057 		/* Note that the interface is now running. */
1058 		ifp->if_flags |= IFF_RUNNING;
1059 	}
1060 
1061 	return error;
1062 }
1063 
1064 /*
1065  * ralink_eth_rxdrain
1066  *
1067  *  Drain the receive queue.
1068  */
1069 static void
ralink_eth_rxdrain(ralink_eth_softc_t * sc)1070 ralink_eth_rxdrain(ralink_eth_softc_t *sc)
1071 {
1072 	RALINK_DEBUG_FUNC_ENTRY();
1073 
1074 	for (int i = 0; i < RALINK_ETH_NUM_RX_DESC; i++) {
1075 		struct ralink_eth_rxstate *rxs = &sc->sc_rxstate[i];
1076 		if (rxs->rxs_mbuf != NULL) {
1077 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1078 			m_freem(rxs->rxs_mbuf);
1079 			rxs->rxs_mbuf = NULL;
1080 		}
1081 	}
1082 }
1083 
1084 /*
1085  * ralink_eth_stop
1086  */
1087 static void
ralink_eth_stop(struct ifnet * ifp,int disable)1088 ralink_eth_stop(struct ifnet *ifp, int disable)
1089 {
1090 	RALINK_DEBUG_FUNC_ENTRY();
1091 	ralink_eth_softc_t * const sc = ifp->if_softc;
1092 
1093 	ralink_eth_disable(sc);
1094 
1095 	/* Mark the interface down and cancel the watchdog timer.  */
1096 	ifp->if_flags &= ~IFF_RUNNING;
1097 	ifp->if_timer = 0;
1098 }
1099 
1100 /*
1101  * ralink_eth_add_rxbuf
1102  */
1103 static int
ralink_eth_add_rxbuf(ralink_eth_softc_t * sc,int idx)1104 ralink_eth_add_rxbuf(ralink_eth_softc_t *sc, int idx)
1105 {
1106 	RALINK_DEBUG_FUNC_ENTRY();
1107 	struct ralink_eth_rxstate * const rxs = &sc->sc_rxstate[idx];
1108 	struct mbuf *m;
1109 	int error;
1110 
1111 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1112 	if (m == NULL) {
1113 		printf("MGETHDR failed\n");
1114 		sc->sc_evcnt_add_rxbuf_hdr_fail.ev_count++;
1115 		return ENOBUFS;
1116 	}
1117 
1118 	MCLGET(m, M_DONTWAIT);
1119 	if ((m->m_flags & M_EXT) == 0) {
1120 		m_freem(m);
1121 		printf("MCLGET failed\n");
1122 		sc->sc_evcnt_add_rxbuf_mcl_fail.ev_count++;
1123 		return ENOBUFS;
1124 	}
1125 
1126 	m->m_data = m->m_ext.ext_buf;
1127 	rxs->rxs_mbuf = m;
1128 
1129 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, m->m_ext.ext_buf,
1130 	    m->m_ext.ext_size, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
1131 	if (error) {
1132 		aprint_error_dev(sc->sc_dev, "can't load rx DMA map %d, "
1133 		    "error=%d\n", idx, error);
1134 		panic(__func__);  /* XXX */
1135 	}
1136 
1137 	sc->sc_rxdesc[idx].data_ptr = MIPS_KSEG0_TO_PHYS(
1138 	    rxs->rxs_dmamap->dm_segs[0].ds_addr + RALINK_ETHER_ALIGN);
1139 	sc->sc_rxdesc[idx].rxd_info1 = RXD_LAST0;
1140 
1141 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1142 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1143 
1144 	return 0;
1145 }
1146 
1147 
1148 /*
1149  * ralink_eth_start
1150  */
1151 static void
ralink_eth_start(struct ifnet * ifp)1152 ralink_eth_start(struct ifnet *ifp)
1153 {
1154 	RALINK_DEBUG_FUNC_ENTRY();
1155 	ralink_eth_softc_t * const sc = ifp->if_softc;
1156 	struct mbuf *m0, *m = NULL;
1157 	struct ralink_eth_txstate *txs;
1158 	bus_dmamap_t dmamap;
1159 	int tx_cpu_idx;
1160 	int error;
1161 	int s;
1162 
1163 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1164 		return;
1165 
1166 	s = splnet();
1167 
1168 	tx_cpu_idx = fe_read(sc, RA_FE_PDMA_TX0_CPU_IDX);
1169 
1170 	/*
1171 	 * Loop through the send queue, setting up transmit descriptors
1172 	 * until we drain the queue, or use up all available
1173 	 * transmit descriptors.
1174 	 */
1175 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL) {
1176 		/* Grab a packet off the queue.  */
1177 		IFQ_POLL(&ifp->if_snd, m0);
1178 		if (m0 == NULL)
1179 			break;
1180 
1181 		dmamap = txs->txs_dmamap;
1182 
1183 		if (m0->m_pkthdr.len < RALINK_MIN_BUF) {
1184 			int padlen = 64 - m0->m_pkthdr.len;
1185 			m_copyback(m0, m0->m_pkthdr.len, padlen,
1186 			    sc->ralink_zero_buf);
1187 			/* TODO : need some checking here */
1188 		}
1189 
1190 		/*
1191 		 * Do we need to align the buffer
1192 		 * or does the DMA map load fail?
1193 		 */
1194 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1195 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
1196 
1197 			/* Allocate a new mbuf for re-alignment */
1198 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1199 			if (m == NULL) {
1200 				aprint_error_dev(sc->sc_dev,
1201 				    "unable to allocate aligned Tx mbuf\n");
1202 				break;
1203 			}
1204 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1205 			if (m0->m_pkthdr.len > MHLEN) {
1206 				MCLGET(m, M_DONTWAIT);
1207 				if ((m->m_flags & M_EXT) == 0) {
1208 					aprint_error_dev(sc->sc_dev,
1209 					    "unable to allocate Tx cluster\n");
1210 					m_freem(m);
1211 					break;
1212 				}
1213 			}
1214 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1215 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1216 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m,
1217 			    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1218 			if (error) {
1219 				aprint_error_dev(sc->sc_dev,
1220 				    "unable to load Tx buffer error=%d\n",
1221 				    error);
1222 				m_freem(m);
1223 				break;
1224 			}
1225 		}
1226 
1227 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1228 		/* did we copy the buffer out already? */
1229 		if (m != NULL) {
1230 			m_freem(m0);
1231 			m0 = m;
1232 		}
1233 
1234 		/* Sync the DMA map. */
1235 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1236 		    BUS_DMASYNC_PREWRITE);
1237 
1238 		/* Initialize the transmit descriptor */
1239 		sc->sc_txdesc[tx_cpu_idx].data_ptr0 =
1240 		    MIPS_KSEG0_TO_PHYS(dmamap->dm_segs[0].ds_addr);
1241 		sc->sc_txdesc[tx_cpu_idx].txd_info1 =
1242 		    TXD_LEN0(dmamap->dm_segs[0].ds_len) | TXD_LAST0;
1243 		sc->sc_txdesc[tx_cpu_idx].txd_info2 =
1244 		    TXD_QN(3) | TXD_PN(TXD_PN_GDMA1);
1245 		sc->sc_txdesc[tx_cpu_idx].txd_info2 = TXD_QN(3) |
1246 		    TXD_PN(TXD_PN_GDMA1) | TXD_VEN |
1247 		    // TXD_VIDX(pt->vlan_id) |
1248 		    TXD_TCP_EN | TXD_UDP_EN | TXD_IP_EN;
1249 
1250 		RALINK_DEBUG(RALINK_DEBUG_REG,"+tx(%d) 0x%08x: 0x%08x\n",
1251 		    tx_cpu_idx, (int)&sc->sc_txdesc[tx_cpu_idx].data_ptr0,
1252 		    sc->sc_txdesc[tx_cpu_idx].data_ptr0);
1253 		RALINK_DEBUG(RALINK_DEBUG_REG,"+tx(%d) 0x%08x: 0x%08x\n",
1254 		    tx_cpu_idx, (int)&sc->sc_txdesc[tx_cpu_idx].txd_info1,
1255 		    sc->sc_txdesc[tx_cpu_idx].txd_info1);
1256 		RALINK_DEBUG(RALINK_DEBUG_REG,"+tx(%d) 0x%08x: 0x%08x\n",
1257 		    tx_cpu_idx, (int)&sc->sc_txdesc[tx_cpu_idx].data_ptr1,
1258 		    sc->sc_txdesc[tx_cpu_idx].data_ptr1);
1259 		RALINK_DEBUG(RALINK_DEBUG_REG,"+tx(%d) 0x%08x: 0x%08x\n",
1260 		    tx_cpu_idx, (int)&sc->sc_txdesc[tx_cpu_idx].txd_info2,
1261 		    sc->sc_txdesc[tx_cpu_idx].txd_info2);
1262 
1263 		/* sync the descriptor we're using. */
1264 		bus_dmamap_sync(sc->sc_dmat, sc->sc_pdmamap,
1265 		    (int)&sc->sc_txdesc[tx_cpu_idx] - (int)sc->sc_descs,
1266 		    sizeof(struct ralink_tx_desc),
1267 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1268 
1269 		/*
1270 		 * Store a pointer to the packet so we can free it later,
1271 		 * and remember what txdirty will be once the packet is
1272 		 * done.
1273 		 */
1274 		txs->txs_mbuf = m0;
1275 		sc->sc_pending_tx++;
1276 		if (txs->txs_idx != tx_cpu_idx) {
1277 			panic("txs_idx doesn't match %d != %d\n",
1278 			    txs->txs_idx, tx_cpu_idx);
1279 		}
1280 
1281 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1282 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1283 
1284 		/* Pass the packet to any BPF listeners. */
1285 		bpf_mtap(ifp, m0, BPF_D_OUT);
1286 
1287 		/* Set a watchdog timer in case the chip flakes out. */
1288 		ifp->if_timer = 5;
1289 
1290 		tx_cpu_idx = (tx_cpu_idx + 1) % RALINK_ETH_NUM_TX_DESC;
1291 
1292 		/* Write back the tx_cpu_idx */
1293 		fe_write(sc, RA_FE_PDMA_TX0_CPU_IDX, tx_cpu_idx);
1294 	}
1295 
1296 	splx(s);
1297 }
1298 
1299 /*
1300  * ralink_eth_watchdog
1301  *
1302  *	Watchdog timer handler.
1303  */
1304 static void
ralink_eth_watchdog(struct ifnet * ifp)1305 ralink_eth_watchdog(struct ifnet *ifp)
1306 {
1307 	RALINK_DEBUG_FUNC_ENTRY();
1308 	ralink_eth_softc_t * const sc = ifp->if_softc;
1309 	bool doing_transmit;
1310 
1311 	sc->sc_evcnt_watchdog.ev_count++;
1312 	doing_transmit = !SIMPLEQ_EMPTY(&sc->sc_txdirtyq);
1313 
1314 	if (doing_transmit) {
1315 		RALINK_DEBUG(RALINK_DEBUG_ERROR, "%s: transmit timeout\n",
1316 		    ifp->if_xname);
1317 		if_statinc(ifp, if_oerrors);
1318 		sc->sc_evcnt_wd_tx.ev_count++;
1319 	} else {
1320 		RALINK_DEBUG(RALINK_DEBUG_ERROR,
1321 		    "%s: spurious watchdog timeout\n", ifp->if_xname);
1322 		sc->sc_evcnt_wd_spurious.ev_count++;
1323 		return;
1324 	}
1325 
1326 	sc->sc_evcnt_wd_reactivate.ev_count++;
1327 	const int s = splnet();
1328 	/* deactivate the active partitions, retaining the active information */
1329 	ralink_eth_disable(sc);
1330 	ralink_eth_enable(sc);
1331 	splx(s);
1332 
1333 	/* Try to get more packets going. */
1334 	ralink_eth_start(ifp);
1335 }
1336 
1337 /*
1338  * ralink_eth_ioctl
1339  *
1340  *	Handle control requests from the operator.
1341  */
1342 static int
ralink_eth_ioctl(struct ifnet * ifp,u_long cmd,void * data)1343 ralink_eth_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1344 {
1345 	RALINK_DEBUG_FUNC_ENTRY();
1346 	struct ifdrv * const ifd = (struct ifdrv *) data;
1347 	ralink_eth_softc_t * const sc = ifp->if_softc;
1348 	int s, error = 0;
1349 
1350 	RALINK_DEBUG(RALINK_DEBUG_INFO, "ifp: %p  cmd: %lu  data: %p\n",
1351 		ifp, cmd, data);
1352 
1353 	s = splnet();
1354 
1355 	switch (cmd) {
1356 	case SIOCSDRVSPEC:
1357 		switch (ifd->ifd_cmd) {
1358 #if 0
1359 		case ETH_SWITCH_CMD_PORT_MODE:
1360 			/* len parameter is the mode */
1361 			pt->mode = (int) ifd->ifd_len;
1362 			ralink_eth_configure_switch(pt->sc_reth);
1363 			break;
1364 #endif
1365 		default:
1366 			error = EINVAL;
1367 		}
1368 		break;
1369 	default:
1370 		error = ether_ioctl(ifp, cmd, data);
1371 		if (error == ENETRESET) {
1372 			if (ifp->if_flags & IFF_RUNNING) {
1373 				/*
1374 				 * Multicast list has changed.  Set the
1375 				 * hardware filter accordingly.
1376 				 */
1377 				RALINK_DEBUG(RALINK_DEBUG_INFO, "TODO!!!");
1378 #if 0
1379 				ralink_eth_filter_setup(sc);
1380 #endif
1381 			}
1382 			error = 0;
1383 		}
1384 		break;
1385 	}
1386 
1387 	splx(s);
1388 
1389 	/* Try to get more packets going. */
1390 	if (sc->sc_ih != NULL)
1391 		ralink_eth_start(ifp);
1392 
1393 	return error;
1394 }
1395 
1396 /*
1397  * ralink_eth_intr
1398  *
1399  */
1400 static int
ralink_eth_intr(void * arg)1401 ralink_eth_intr(void *arg)
1402 {
1403 	RALINK_DEBUG_FUNC_ENTRY();
1404 	ralink_eth_softc_t * const sc = arg;
1405 
1406 	for (u_int n = 0;; n = 1) {
1407 		u_int32_t status = fe_read(sc, RA_FE_INT_STATUS);
1408 		fe_write(sc, RA_FE_INT_STATUS, ~0);
1409 		RALINK_DEBUG(RALINK_DEBUG_REG,"%s() status: 0x%08x\n",
1410 		    __func__, status);
1411 #if defined(MT7628)
1412 		if ((status & (RA_FE_INT_RX_DONE_INT1 | RA_FE_INT_RX_DONE_INT0 |
1413 		    RA_FE_INT_TX_DONE_INT3 | RA_FE_INT_TX_DONE_INT2 |
1414 		    RA_FE_INT_TX_DONE_INT1 | RA_FE_INT_TX_DONE_INT0)) == 0) {
1415 			if (n == 0)
1416 				sc->sc_evcnt_spurious_intr.ev_count++;
1417 			return (n != 0);
1418 		}
1419 
1420 		if (status & (RA_FE_INT_RX_DONE_INT1 | RA_FE_INT_RX_DONE_INT0))
1421 			ralink_eth_rxintr(sc);
1422 
1423 		if (status & (RA_FE_INT_TX_DONE_INT3 | RA_FE_INT_TX_DONE_INT2 |
1424 		    RA_FE_INT_TX_DONE_INT1 | RA_FE_INT_TX_DONE_INT0))
1425 			ralink_eth_txintr(sc);
1426 #else
1427 		if ((status & (FE_INT_RX | FE_INT_TX0)) == 0) {
1428 			if (n == 0)
1429 				sc->sc_evcnt_spurious_intr.ev_count++;
1430 			return (n != 0);
1431 		}
1432 
1433 		if (status & FE_INT_RX)
1434 			ralink_eth_rxintr(sc);
1435 
1436 		if (status & FE_INT_TX0)
1437 			ralink_eth_txintr(sc);
1438 #endif
1439 	}
1440 
1441 	/* Try to get more packets going. */
1442 	if_schedule_deferred_start(&sc->sc_ethercom.ec_if);
1443 
1444 	return 1;
1445 }
1446 
1447 /*
1448  * ralink_eth_rxintr
1449  */
1450 static void
ralink_eth_rxintr(ralink_eth_softc_t * sc)1451 ralink_eth_rxintr(ralink_eth_softc_t *sc)
1452 {
1453 	RALINK_DEBUG_FUNC_ENTRY();
1454 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
1455 	struct ralink_eth_rxstate *rxs;
1456 	struct mbuf *m;
1457 	int len;
1458 	int rx_cpu_idx;
1459 
1460 	KASSERT(curcpu()->ci_cpl >= IPL_NET);
1461 	sc->sc_evcnt_rxintr.ev_count++;
1462 	rx_cpu_idx = fe_read(sc, RA_FE_PDMA_RX0_CPU_IDX);
1463 
1464 	for (;;) {
1465 		rx_cpu_idx = (rx_cpu_idx + 1) % RALINK_ETH_NUM_RX_DESC;
1466 
1467 		rxs = &sc->sc_rxstate[rx_cpu_idx];
1468 
1469 		bus_dmamap_sync(sc->sc_dmat, sc->sc_pdmamap,
1470 		    (int)&sc->sc_rxdesc[rx_cpu_idx] - (int)sc->sc_descs,
1471 		    sizeof(struct ralink_rx_desc),
1472 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1473 
1474 		RALINK_DEBUG(RALINK_DEBUG_REG,"rx(%d) 0x%08x: 0x%08x\n",
1475 		    rx_cpu_idx, (int)&sc->sc_rxdesc[rx_cpu_idx].data_ptr,
1476 		    sc->sc_rxdesc[rx_cpu_idx].data_ptr);
1477 		RALINK_DEBUG(RALINK_DEBUG_REG,"rx(%d) 0x%08x: 0x%08x\n",
1478 		    rx_cpu_idx, (int)&sc->sc_rxdesc[rx_cpu_idx].rxd_info1,
1479 		    sc->sc_rxdesc[rx_cpu_idx].rxd_info1);
1480 		RALINK_DEBUG(RALINK_DEBUG_REG,"rx(%d) 0x%08x: 0x%08x\n",
1481 		    rx_cpu_idx, (int)&sc->sc_rxdesc[rx_cpu_idx].unused,
1482 		    sc->sc_rxdesc[rx_cpu_idx].unused);
1483 		RALINK_DEBUG(RALINK_DEBUG_REG,"rx(%d) 0x%08x: 0x%08x\n",
1484 		    rx_cpu_idx, (int)&sc->sc_rxdesc[rx_cpu_idx].rxd_info2,
1485 		    sc->sc_rxdesc[rx_cpu_idx].rxd_info2);
1486 
1487 		if (!(sc->sc_rxdesc[rx_cpu_idx].rxd_info1 & RXD_DDONE))
1488 			break;
1489 
1490 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1491 			rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1492 
1493 		/*
1494 		 * No errors; receive the packet.
1495 		 * Note the chip includes the CRC with every packet.
1496 		 */
1497 		len = RXD_LEN0(sc->sc_rxdesc[rx_cpu_idx].rxd_info1);
1498 
1499 		RALINK_DEBUG(RALINK_DEBUG_REG,"rx(%d) packet rx %d bytes\n",
1500 		    rx_cpu_idx, len);
1501 
1502 		/*
1503 		 * Allocate a new mbuf cluster.  If that fails, we are
1504 		 * out of memory, and must drop the packet and recycle
1505 		 * the buffer that's already attached to this descriptor.
1506 		 */
1507 		m = rxs->rxs_mbuf;
1508 		if (ralink_eth_add_rxbuf(sc, rx_cpu_idx) != 0)
1509 			break;
1510 		m->m_data += RALINK_ETHER_ALIGN;
1511 		m->m_pkthdr.len = m->m_len = len;
1512 
1513 #ifdef RALINK_ETH_DEBUG
1514  {
1515 		struct ether_header *eh = mtod(m, struct ether_header *);
1516 		printf("rx: eth_dst: %s ", ether_sprintf(eh->ether_dhost));
1517 		printf("rx: eth_src: %s type: 0x%04x \n",
1518 		    ether_sprintf(eh->ether_shost), ntohs(eh->ether_type));
1519 		printf("0x14: %08x\n", *(volatile unsigned int *)(0xb0110014));
1520 		printf("0x98: %08x\n", *(volatile unsigned int *)(0xb0110098));
1521 
1522 		unsigned char * s = mtod(m, unsigned char *);
1523 		for (int j = 0; j < 32; j++)
1524 			printf("%02x%c", *(s + j),
1525 				(j == 15 || j == 31) ? '\n' : ' ');
1526  }
1527 #endif
1528 
1529 		/*
1530 		 * claim the buffer here since we can't do it at
1531 		 * allocation time due to the SW partitions
1532 		 */
1533 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1534 
1535 		/* push it up the interface */
1536 		m_set_rcvif(m, ifp);
1537 
1538 #ifdef RALINK_ETH_DEBUG
1539  {
1540 		struct ether_header *eh = mtod(m, struct ether_header *);
1541 		printf("rx: eth_dst: %s ", ether_sprintf(eh->ether_dhost));
1542 		printf("rx: eth_src: %s type: 0x%04x\n",
1543 		    ether_sprintf(eh->ether_shost), ntohs(eh->ether_type));
1544 		printf("0x14: %08x\n", *(volatile unsigned int *)(0xb0110014));
1545 		printf("0x98: %08x\n", *(volatile unsigned int *)(0xb0110098));
1546 
1547 		unsigned char * s = mtod(m, unsigned char *);
1548 		for (int j = 0; j < 32; j++)
1549 			printf("%02x%c", *(s + j),
1550 			    (j == 15 || j == 31) ? '\n' : ' ');
1551  }
1552 #endif
1553 
1554 		/*
1555 		 * XXX: M_CSUM_TCPv4 and M_CSUM_UDPv4 do not currently work when
1556 		 * using PF's ROUTETO option for load balancing.
1557 		 */
1558 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1559 
1560 		/* Pass it on. */
1561 		sc->sc_evcnt_input.ev_count++;
1562 		if_percpuq_enqueue(ifp->if_percpuq, m);
1563 
1564 		fe_write(sc, RA_FE_PDMA_RX0_CPU_IDX, rx_cpu_idx);
1565 	}
1566 }
1567 
1568 /*
1569  * ralink_eth_txintr
1570  */
1571 static void
ralink_eth_txintr(ralink_eth_softc_t * sc)1572 ralink_eth_txintr(ralink_eth_softc_t *sc)
1573 {
1574 	RALINK_DEBUG_FUNC_ENTRY();
1575 	struct ralink_eth_txstate *txs;
1576 
1577 	KASSERT(curcpu()->ci_cpl >= IPL_NET);
1578 	sc->sc_evcnt_txintr.ev_count++;
1579 
1580 	/*
1581 	 * Go through our Tx list and free mbufs for those
1582 	 * frames that have been transmitted.
1583 	 */
1584 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1585 		bus_dmamap_sync(sc->sc_dmat, sc->sc_pdmamap,
1586 		    (int)&sc->sc_txdesc[txs->txs_idx] - (int)sc->sc_descs,
1587 		    sizeof(struct ralink_tx_desc),
1588 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1589 
1590 		RALINK_DEBUG(RALINK_DEBUG_REG,"-tx(%d) 0x%08x: 0x%08x\n",
1591 		    txs->txs_idx, (int)&sc->sc_txdesc[txs->txs_idx].data_ptr0,
1592 		    sc->sc_txdesc[txs->txs_idx].data_ptr0);
1593 		RALINK_DEBUG(RALINK_DEBUG_REG,"-tx(%d) 0x%08x: 0x%08x\n",
1594 		    txs->txs_idx, (int)&sc->sc_txdesc[txs->txs_idx].txd_info1,
1595 		    sc->sc_txdesc[txs->txs_idx].txd_info1);
1596 		RALINK_DEBUG(RALINK_DEBUG_REG,"-tx(%d) 0x%08x: 0x%08x\n",
1597 		    txs->txs_idx, (int)&sc->sc_txdesc[txs->txs_idx].data_ptr1,
1598 		    sc->sc_txdesc[txs->txs_idx].data_ptr1);
1599 		RALINK_DEBUG(RALINK_DEBUG_REG,"-tx(%d) 0x%08x: 0x%08x\n",
1600 		    txs->txs_idx, (int)&sc->sc_txdesc[txs->txs_idx].txd_info2,
1601 		    sc->sc_txdesc[txs->txs_idx].txd_info2);
1602 
1603 		/* we're finished if the current tx isn't done */
1604 		if (!(sc->sc_txdesc[txs->txs_idx].txd_info1 & TXD_DDONE))
1605 			break;
1606 
1607 		RALINK_DEBUG(RALINK_DEBUG_REG,"-tx(%d) transmitted\n",
1608 		   txs->txs_idx);
1609 
1610 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1611 
1612 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 0,
1613 		    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1614 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1615 		m_freem(txs->txs_mbuf);
1616 		txs->txs_mbuf = NULL;
1617 
1618 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1619 
1620 		struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1621 		if_statinc(ifp, if_opackets);
1622 		sc->sc_evcnt_output.ev_count++;
1623 
1624 		if (--sc->sc_pending_tx == 0)
1625 			ifp->if_timer = 0;
1626 	}
1627 }
1628 
1629 /*
1630  * ralink_eth_mdio_enable
1631  */
1632 #if defined(RT3050) || defined(RT3052)
1633 static void
ralink_eth_mdio_enable(ralink_eth_softc_t * sc,bool enable)1634 ralink_eth_mdio_enable(ralink_eth_softc_t *sc, bool enable)
1635 {
1636 	uint32_t data = sy_read(sc, RA_SYSCTL_GPIOMODE);
1637 
1638 	if (enable)
1639 		data &= ~GPIOMODE_MDIO;
1640 	else
1641 		data |= GPIOMODE_MDIO;
1642 
1643 	sy_write(sc, RA_SYSCTL_GPIOMODE, data);
1644 }
1645 #else
1646 #define ralink_eth_mdio_enable(sc, enable)
1647 #endif
1648 
1649 /*
1650  * ralink_eth_mii_statchg
1651  */
1652 static void
ralink_eth_mii_statchg(struct ifnet * ifp)1653 ralink_eth_mii_statchg(struct ifnet *ifp)
1654 {
1655 #if 0
1656 	ralink_eth_softc_t * const sc = ifp->if_softc;
1657 
1658 #endif
1659 }
1660 
1661 /*
1662  * ralink_eth_mii_tick
1663  *
1664  *	One second timer, used to tick the MIIs.
1665  */
1666 static void
ralink_eth_mii_tick(void * arg)1667 ralink_eth_mii_tick(void *arg)
1668 {
1669 	ralink_eth_softc_t * const sc = arg;
1670 
1671 	const int s = splnet();
1672 	mii_tick(&sc->sc_mii);
1673 	splx(s);
1674 
1675 	callout_reset(&sc->sc_tick_callout, hz, ralink_eth_mii_tick, sc);
1676 }
1677 
1678 /*
1679  * ralink_eth_mii_read
1680  */
1681 static int
ralink_eth_mii_read(device_t self,int phy_addr,int phy_reg,uint16_t * val)1682 ralink_eth_mii_read(device_t self, int phy_addr, int phy_reg, uint16_t *val)
1683 {
1684 	ralink_eth_softc_t *sc = device_private(self);
1685 	KASSERT(sc != NULL);
1686 #if 0
1687 	printf("%s() phy_addr: %d  phy_reg: %d\n", __func__, phy_addr, phy_reg);
1688 #endif
1689 #if defined(RT3050) || defined(RT3052) || defined(MT7628)
1690 	if (phy_addr > 5)
1691 		return -1;
1692 #endif
1693 
1694 	/* We enable mdio gpio purpose register, and disable it when exit. */
1695 	ralink_eth_mdio_enable(sc, true);
1696 
1697 	/*
1698 	 * make sure previous read operation is complete
1699 	 * TODO: timeout (linux uses jiffies to measure 5 seconds)
1700 	 */
1701 	for (;;) {
1702 		/* rd_rdy: read operation is complete */
1703 #if defined(RT3050) || defined(RT3052) || defined(MT7628)
1704 		if ((sw_read(sc, RA_ETH_SW_PCTL1) & PCTL1_RD_DONE) == 0)
1705 			break;
1706 #else
1707 		if ((fe_read(sc, RA_FE_MDIO_ACCESS) & MDIO_ACCESS_TRG) == 0)
1708 			break;
1709 #endif
1710 	}
1711 
1712 #if defined(RT3050) || defined(RT3052) || defined(MT7628)
1713 	sw_write(sc, RA_ETH_SW_PCTL0,
1714 	    PCTL0_RD_CMD | PCTL0_REG(phy_reg) | PCTL0_ADDR(phy_addr));
1715 #else
1716 	fe_write(sc, RA_FE_MDIO_ACCESS,
1717 	    MDIO_ACCESS_PHY_ADDR(phy_addr) | MDIO_ACCESS_REG(phy_reg));
1718 	fe_write(sc, RA_FE_MDIO_ACCESS,
1719 	    MDIO_ACCESS_PHY_ADDR(phy_addr) | MDIO_ACCESS_REG(phy_reg) |
1720 	    MDIO_ACCESS_TRG);
1721 #endif
1722 
1723 	/*
1724 	 * make sure read operation is complete
1725 	 * TODO: timeout (linux uses jiffies to measure 5 seconds)
1726 	 */
1727 	for (;;) {
1728 #if defined(RT3050) || defined(RT3052) || defined(MT7628)
1729 		if ((sw_read(sc, RA_ETH_SW_PCTL1) & PCTL1_RD_DONE) != 0) {
1730 			*val = PCTL1_RD_VAL(
1731 			    sw_read(sc, RA_ETH_SW_PCTL1));
1732 			ralink_eth_mdio_enable(sc, false);
1733 			return 0;
1734 		}
1735 #else
1736 		if ((fe_read(sc, RA_FE_MDIO_ACCESS) & MDIO_ACCESS_TRG) == 0) {
1737 			*val = MDIO_ACCESS_DATA(
1738 			    fe_read(sc, RA_FE_MDIO_ACCESS));
1739 			ralink_eth_mdio_enable(sc, false);
1740 			return 0;
1741 		}
1742 #endif
1743 	}
1744 }
1745 
1746 /*
1747  * ralink_eth_mii_write
1748  */
1749 static int
ralink_eth_mii_write(device_t self,int phy_addr,int phy_reg,uint16_t val)1750 ralink_eth_mii_write(device_t self, int phy_addr, int phy_reg, uint16_t val)
1751 {
1752 	ralink_eth_softc_t *sc = device_private(self);
1753 	KASSERT(sc != NULL);
1754 #if 0
1755 	printf("%s() phy_addr: %d  phy_reg: %d  val: 0x%04x\n",
1756 	    __func__, phy_addr, phy_reg, val);
1757 #endif
1758 	ralink_eth_mdio_enable(sc, true);
1759 
1760 	/*
1761 	 * make sure previous write operation is complete
1762 	 * TODO: timeout (linux uses jiffies to measure 5 seconds)
1763 	 */
1764 	for (;;) {
1765 #if defined(RT3050) || defined(RT3052) || defined(MT7628)
1766 		if ((sw_read(sc, RA_ETH_SW_PCTL1) & PCTL1_RD_DONE) == 0)
1767 			break;
1768 #else
1769 		if ((fe_read(sc, RA_FE_MDIO_ACCESS) & MDIO_ACCESS_TRG) == 0)
1770 			break;
1771 #endif
1772 	}
1773 
1774 #if defined(RT3050) || defined(RT3052) || defined(MT7628)
1775 	sw_write(sc, RA_ETH_SW_PCTL0,
1776 	    PCTL0_WR_CMD | PCTL0_WR_VAL(val) | PCTL0_REG(phy_reg) |
1777 	    PCTL0_ADDR(phy_addr));
1778 #else
1779 	fe_write(sc, RA_FE_MDIO_ACCESS,
1780 	    MDIO_ACCESS_WR | MDIO_ACCESS_PHY_ADDR(phy_addr) |
1781 	    MDIO_ACCESS_REG(phy_reg) | MDIO_ACCESS_DATA(val));
1782 	fe_write(sc, RA_FE_MDIO_ACCESS,
1783 	    MDIO_ACCESS_WR | MDIO_ACCESS_PHY_ADDR(phy_addr) |
1784 	    MDIO_ACCESS_REG(phy_reg) | MDIO_ACCESS_DATA(val) |
1785 	    MDIO_ACCESS_TRG);
1786 #endif
1787 
1788 
1789 	/* make sure write operation is complete */
1790 	for (;;) {
1791 #if defined(RT3050) || defined(RT3052) || defined(MT7628)
1792 		if ((sw_read(sc, RA_ETH_SW_PCTL1) & PCTL1_WR_DONE) != 0) {
1793 			ralink_eth_mdio_enable(sc, false);
1794 			return 0;
1795 		}
1796 #else
1797 		if ((fe_read(sc, RA_FE_MDIO_ACCESS) & MDIO_ACCESS_TRG) == 0) {
1798 			ralink_eth_mdio_enable(sc, false);
1799 			return 0;
1800 		}
1801 #endif
1802 	}
1803 }
1804