xref: /netbsd-src/sys/arch/mips/atheros/dev/if_ae.c (revision d909946ca08dceb44d7d0f22ec9488679695d976)
1 /* $Id: if_ae.c,v 1.28 2016/06/10 13:27:12 ozaki-r Exp $ */
2 /*-
3  * Copyright (c) 2006 Urbana-Champaign Independent Media Center.
4  * Copyright (c) 2006 Garrett D'Amore.
5  * All rights reserved.
6  *
7  * This code was written by Garrett D'Amore for the Champaign-Urbana
8  * Community Wireless Network Project.
9  *
10  * Redistribution and use in source and binary forms, with or
11  * without modification, are permitted provided that the following
12  * conditions are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above
16  *    copyright notice, this list of conditions and the following
17  *    disclaimer in the documentation and/or other materials provided
18  *    with the distribution.
19  * 3. All advertising materials mentioning features or use of this
20  *    software must display the following acknowledgements:
21  *      This product includes software developed by the Urbana-Champaign
22  *      Independent Media Center.
23  *	This product includes software developed by Garrett D'Amore.
24  * 4. Urbana-Champaign Independent Media Center's name and Garrett
25  *    D'Amore's name may not be used to endorse or promote products
26  *    derived from this software without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
29  * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
30  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
31  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
33  * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
34  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
35  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
36  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
37  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
38  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
40  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41  */
42 /*-
43  * Copyright (c) 1998, 1999, 2000, 2002 The NetBSD Foundation, Inc.
44  * All rights reserved.
45  *
46  * This code is derived from software contributed to The NetBSD Foundation
47  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
48  * NASA Ames Research Center; and by Charles M. Hannum.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
60  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69  * POSSIBILITY OF SUCH DAMAGE.
70  */
71 
72 /*
73  * Device driver for the onboard ethernet MAC found on the AR5312
74  * chip's AHB bus.
75  *
76  * This device is very simliar to the tulip in most regards, and
77  * the code is directly derived from NetBSD's tulip.c.  However, it
78  * is different enough that it did not seem to be a good idea to
79  * add further complexity to the tulip driver, so we have our own.
80  *
81  * Also tulip has a lot of complexity in it for various parts/options
82  * that we don't need, and on these little boxes with only ~8MB RAM, we
83  * don't want any extra bloat.
84  */
85 
86 /*
87  * TODO:
88  *
89  * 1) Find out about BUS_MODE_ALIGN16B.  This chip can apparently align
90  *    inbound packets on a half-word boundary, which would make life easier
91  *    for TCP/IP.  (Aligning IP headers on a word.)
92  *
93  * 2) There is stuff in original tulip to shut down the device when reacting
94  *    to a a change in link status.  Is that needed.
95  *
96  * 3) Test with variety of 10/100 HDX/FDX scenarios.
97  *
98  */
99 
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: if_ae.c,v 1.28 2016/06/10 13:27:12 ozaki-r Exp $");
102 
103 
104 #include <sys/param.h>
105 #include <sys/bus.h>
106 #include <sys/callout.h>
107 #include <sys/device.h>
108 #include <sys/endian.h>
109 #include <sys/errno.h>
110 #include <sys/intr.h>
111 #include <sys/ioctl.h>
112 #include <sys/kernel.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/socket.h>
116 
117 #include <uvm/uvm_extern.h>
118 
119 #include <net/if.h>
120 #include <net/if_dl.h>
121 #include <net/if_media.h>
122 #include <net/if_ether.h>
123 
124 #include <net/bpf.h>
125 
126 #include <dev/mii/mii.h>
127 #include <dev/mii/miivar.h>
128 #include <dev/mii/mii_bitbang.h>
129 
130 #include <mips/atheros/include/arbusvar.h>
131 #include <mips/atheros/dev/aereg.h>
132 #include <mips/atheros/dev/aevar.h>
133 
134 static const struct {
135 	u_int32_t txth_opmode;		/* OPMODE bits */
136 	const char *txth_name;		/* name of mode */
137 } ae_txthresh[] = {
138 	{ OPMODE_TR_32,		"32 words" },
139 	{ OPMODE_TR_64,		"64 words" },
140 	{ OPMODE_TR_128,	"128 words" },
141 	{ OPMODE_TR_256,	"256 words" },
142 	{ OPMODE_SF,		"store and forward mode" },
143 	{ 0,			NULL },
144 };
145 
146 static int 	ae_match(device_t, struct cfdata *, void *);
147 static void	ae_attach(device_t, device_t, void *);
148 static int	ae_detach(device_t, int);
149 static int	ae_activate(device_t, enum devact);
150 
151 static int	ae_ifflags_cb(struct ethercom *);
152 static void	ae_reset(struct ae_softc *);
153 static void	ae_idle(struct ae_softc *, u_int32_t);
154 
155 static void	ae_start(struct ifnet *);
156 static void	ae_watchdog(struct ifnet *);
157 static int	ae_ioctl(struct ifnet *, u_long, void *);
158 static int	ae_init(struct ifnet *);
159 static void	ae_stop(struct ifnet *, int);
160 
161 static void	ae_shutdown(void *);
162 
163 static void	ae_rxdrain(struct ae_softc *);
164 static int	ae_add_rxbuf(struct ae_softc *, int);
165 
166 static int	ae_enable(struct ae_softc *);
167 static void	ae_disable(struct ae_softc *);
168 static void	ae_power(int, void *);
169 
170 static void	ae_filter_setup(struct ae_softc *);
171 
172 static int	ae_intr(void *);
173 static void	ae_rxintr(struct ae_softc *);
174 static void	ae_txintr(struct ae_softc *);
175 
176 static void	ae_mii_tick(void *);
177 static void	ae_mii_statchg(struct ifnet *);
178 
179 static int	ae_mii_readreg(device_t, int, int);
180 static void	ae_mii_writereg(device_t, int, int, int);
181 
182 #ifdef AE_DEBUG
183 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
184 				printf x
185 #else
186 #define	DPRINTF(sc, x)	/* nothing */
187 #endif
188 
189 #ifdef AE_STATS
190 static void	ae_print_stats(struct ae_softc *);
191 #endif
192 
193 CFATTACH_DECL_NEW(ae, sizeof(struct ae_softc),
194     ae_match, ae_attach, ae_detach, ae_activate);
195 
196 /*
197  * ae_match:
198  *
199  *	Check for a device match.
200  */
201 int
202 ae_match(device_t parent, struct cfdata *cf, void *aux)
203 {
204 	struct arbus_attach_args *aa = aux;
205 
206 	if (strcmp(aa->aa_name, cf->cf_name) == 0)
207 		return 1;
208 
209 	return 0;
210 
211 }
212 
213 /*
214  * ae_attach:
215  *
216  *	Attach an ae interface to the system.
217  */
218 void
219 ae_attach(device_t parent, device_t self, void *aux)
220 {
221 	const uint8_t *enaddr;
222 	prop_data_t ea;
223 	struct ae_softc *sc = device_private(self);
224 	struct arbus_attach_args *aa = aux;
225 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
226 	int i, error;
227 
228 	sc->sc_dev = self;
229 
230 	callout_init(&sc->sc_tick_callout, 0);
231 
232 	printf(": Atheros AR531X 10/100 Ethernet\n");
233 
234 	/*
235 	 * Try to get MAC address.
236 	 */
237 	ea = prop_dictionary_get(device_properties(sc->sc_dev), "mac-address");
238 	if (ea == NULL) {
239 		printf("%s: unable to get mac-addr property\n",
240 		    device_xname(sc->sc_dev));
241 		return;
242 	}
243 	KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
244 	KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
245 	enaddr = prop_data_data_nocopy(ea);
246 
247 	/* Announce ourselves. */
248 	printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
249 	    ether_sprintf(enaddr));
250 
251 	sc->sc_cirq = aa->aa_cirq;
252 	sc->sc_mirq = aa->aa_mirq;
253 	sc->sc_st = aa->aa_bst;
254 	sc->sc_dmat = aa->aa_dmat;
255 
256 	SIMPLEQ_INIT(&sc->sc_txfreeq);
257 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
258 
259 	/*
260 	 * Map registers.
261 	 */
262 	sc->sc_size = aa->aa_size;
263 	if ((error = bus_space_map(sc->sc_st, aa->aa_addr, sc->sc_size, 0,
264 	    &sc->sc_sh)) != 0) {
265 		printf("%s: unable to map registers, error = %d\n",
266 		    device_xname(sc->sc_dev), error);
267 		goto fail_0;
268 	}
269 
270 	/*
271 	 * Allocate the control data structures, and create and load the
272 	 * DMA map for it.
273 	 */
274 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
275 	    sizeof(struct ae_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
276 	    1, &sc->sc_cdnseg, 0)) != 0) {
277 		printf("%s: unable to allocate control data, error = %d\n",
278 		    device_xname(sc->sc_dev), error);
279 		goto fail_1;
280 	}
281 
282 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
283 	    sizeof(struct ae_control_data), (void **)&sc->sc_control_data,
284 	    BUS_DMA_COHERENT)) != 0) {
285 		printf("%s: unable to map control data, error = %d\n",
286 		    device_xname(sc->sc_dev), error);
287 		goto fail_2;
288 	}
289 
290 	if ((error = bus_dmamap_create(sc->sc_dmat,
291 	    sizeof(struct ae_control_data), 1,
292 	    sizeof(struct ae_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
293 		printf("%s: unable to create control data DMA map, "
294 		    "error = %d\n", device_xname(sc->sc_dev), error);
295 		goto fail_3;
296 	}
297 
298 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
299 	    sc->sc_control_data, sizeof(struct ae_control_data), NULL,
300 	    0)) != 0) {
301 		printf("%s: unable to load control data DMA map, error = %d\n",
302 		    device_xname(sc->sc_dev), error);
303 		goto fail_4;
304 	}
305 
306 	/*
307 	 * Create the transmit buffer DMA maps.
308 	 */
309 	for (i = 0; i < AE_TXQUEUELEN; i++) {
310 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
311 		    AE_NTXSEGS, MCLBYTES, 0, 0,
312 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
313 			printf("%s: unable to create tx DMA map %d, "
314 			    "error = %d\n", device_xname(sc->sc_dev), i, error);
315 			goto fail_5;
316 		}
317 	}
318 
319 	/*
320 	 * Create the receive buffer DMA maps.
321 	 */
322 	for (i = 0; i < AE_NRXDESC; i++) {
323 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
324 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
325 			printf("%s: unable to create rx DMA map %d, "
326 			    "error = %d\n", device_xname(sc->sc_dev), i, error);
327 			goto fail_6;
328 		}
329 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
330 	}
331 
332 	/*
333 	 * Reset the chip to a known state.
334 	 */
335 	ae_reset(sc);
336 
337 	/*
338 	 * From this point forward, the attachment cannot fail.  A failure
339 	 * before this point releases all resources that may have been
340 	 * allocated.
341 	 */
342 	sc->sc_flags |= AE_ATTACHED;
343 
344 	/*
345 	 * Initialize our media structures.  This may probe the MII, if
346 	 * present.
347 	 */
348 	sc->sc_mii.mii_ifp = ifp;
349 	sc->sc_mii.mii_readreg = ae_mii_readreg;
350 	sc->sc_mii.mii_writereg = ae_mii_writereg;
351 	sc->sc_mii.mii_statchg = ae_mii_statchg;
352 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
353 	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
354 	    ether_mediastatus);
355 	mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
356 	    MII_OFFSET_ANY, 0);
357 
358 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
359 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
360 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
361 	} else
362 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
363 
364 	sc->sc_tick = ae_mii_tick;
365 
366 	strcpy(ifp->if_xname, device_xname(sc->sc_dev));
367 	ifp->if_softc = sc;
368 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
369 	sc->sc_if_flags = ifp->if_flags;
370 	ifp->if_ioctl = ae_ioctl;
371 	ifp->if_start = ae_start;
372 	ifp->if_watchdog = ae_watchdog;
373 	ifp->if_init = ae_init;
374 	ifp->if_stop = ae_stop;
375 	IFQ_SET_READY(&ifp->if_snd);
376 
377 	/*
378 	 * We can support 802.1Q VLAN-sized frames.
379 	 */
380 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
381 
382 	/*
383 	 * Attach the interface.
384 	 */
385 	if_attach(ifp);
386 	ether_ifattach(ifp, enaddr);
387 	ether_set_ifflags_cb(&sc->sc_ethercom, ae_ifflags_cb);
388 
389 	rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
390 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
391 
392 	/*
393 	 * Make sure the interface is shutdown during reboot.
394 	 */
395 	sc->sc_sdhook = shutdownhook_establish(ae_shutdown, sc);
396 	if (sc->sc_sdhook == NULL)
397 		printf("%s: WARNING: unable to establish shutdown hook\n",
398 		    device_xname(sc->sc_dev));
399 
400 	/*
401 	 * Add a suspend hook to make sure we come back up after a
402 	 * resume.
403 	 */
404 	sc->sc_powerhook = powerhook_establish(device_xname(sc->sc_dev),
405 	    ae_power, sc);
406 	if (sc->sc_powerhook == NULL)
407 		printf("%s: WARNING: unable to establish power hook\n",
408 		    device_xname(sc->sc_dev));
409 	return;
410 
411 	/*
412 	 * Free any resources we've allocated during the failed attach
413 	 * attempt.  Do this in reverse order and fall through.
414 	 */
415  fail_6:
416 	for (i = 0; i < AE_NRXDESC; i++) {
417 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
418 			bus_dmamap_destroy(sc->sc_dmat,
419 			    sc->sc_rxsoft[i].rxs_dmamap);
420 	}
421  fail_5:
422 	for (i = 0; i < AE_TXQUEUELEN; i++) {
423 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
424 			bus_dmamap_destroy(sc->sc_dmat,
425 			    sc->sc_txsoft[i].txs_dmamap);
426 	}
427 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
428  fail_4:
429 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
430  fail_3:
431 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
432 	    sizeof(struct ae_control_data));
433  fail_2:
434 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
435  fail_1:
436 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
437  fail_0:
438 	return;
439 }
440 
441 /*
442  * ae_activate:
443  *
444  *	Handle device activation/deactivation requests.
445  */
446 int
447 ae_activate(device_t self, enum devact act)
448 {
449 	struct ae_softc *sc = device_private(self);
450 
451 	switch (act) {
452 	case DVACT_DEACTIVATE:
453 		if_deactivate(&sc->sc_ethercom.ec_if);
454 		return 0;
455 	default:
456 		return EOPNOTSUPP;
457 	}
458 }
459 
460 /*
461  * ae_detach:
462  *
463  *	Detach a device interface.
464  */
465 int
466 ae_detach(device_t self, int flags)
467 {
468 	struct ae_softc *sc = device_private(self);
469 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
470 	struct ae_rxsoft *rxs;
471 	struct ae_txsoft *txs;
472 	int i;
473 
474 	/*
475 	 * Succeed now if there isn't any work to do.
476 	 */
477 	if ((sc->sc_flags & AE_ATTACHED) == 0)
478 		return (0);
479 
480 	/* Unhook our tick handler. */
481 	if (sc->sc_tick)
482 		callout_stop(&sc->sc_tick_callout);
483 
484 	/* Detach all PHYs */
485 	mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
486 
487 	/* Delete all remaining media. */
488 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
489 
490 	rnd_detach_source(&sc->sc_rnd_source);
491 	ether_ifdetach(ifp);
492 	if_detach(ifp);
493 
494 	for (i = 0; i < AE_NRXDESC; i++) {
495 		rxs = &sc->sc_rxsoft[i];
496 		if (rxs->rxs_mbuf != NULL) {
497 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
498 			m_freem(rxs->rxs_mbuf);
499 			rxs->rxs_mbuf = NULL;
500 		}
501 		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
502 	}
503 	for (i = 0; i < AE_TXQUEUELEN; i++) {
504 		txs = &sc->sc_txsoft[i];
505 		if (txs->txs_mbuf != NULL) {
506 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
507 			m_freem(txs->txs_mbuf);
508 			txs->txs_mbuf = NULL;
509 		}
510 		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
511 	}
512 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
513 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
514 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
515 	    sizeof(struct ae_control_data));
516 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
517 
518 	shutdownhook_disestablish(sc->sc_sdhook);
519 	powerhook_disestablish(sc->sc_powerhook);
520 
521 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
522 
523 
524 	return (0);
525 }
526 
527 /*
528  * ae_shutdown:
529  *
530  *	Make sure the interface is stopped at reboot time.
531  */
532 static void
533 ae_shutdown(void *arg)
534 {
535 	struct ae_softc *sc = arg;
536 
537 	ae_stop(&sc->sc_ethercom.ec_if, 1);
538 }
539 
540 /*
541  * ae_start:		[ifnet interface function]
542  *
543  *	Start packet transmission on the interface.
544  */
545 static void
546 ae_start(struct ifnet *ifp)
547 {
548 	struct ae_softc *sc = ifp->if_softc;
549 	struct mbuf *m0, *m;
550 	struct ae_txsoft *txs;
551 	bus_dmamap_t dmamap;
552 	int error, firsttx, nexttx, lasttx = 1, ofree, seg;
553 
554 	DPRINTF(sc, ("%s: ae_start: sc_flags 0x%08x, if_flags 0x%08x\n",
555 	    device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags));
556 
557 
558 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
559 		return;
560 
561 	/*
562 	 * Remember the previous number of free descriptors and
563 	 * the first descriptor we'll use.
564 	 */
565 	ofree = sc->sc_txfree;
566 	firsttx = sc->sc_txnext;
567 
568 	DPRINTF(sc, ("%s: ae_start: txfree %d, txnext %d\n",
569 	    device_xname(sc->sc_dev), ofree, firsttx));
570 
571 	/*
572 	 * Loop through the send queue, setting up transmit descriptors
573 	 * until we drain the queue, or use up all available transmit
574 	 * descriptors.
575 	 */
576 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
577 	       sc->sc_txfree != 0) {
578 		/*
579 		 * Grab a packet off the queue.
580 		 */
581 		IFQ_POLL(&ifp->if_snd, m0);
582 		if (m0 == NULL)
583 			break;
584 		m = NULL;
585 
586 		dmamap = txs->txs_dmamap;
587 
588 		/*
589 		 * Load the DMA map.  If this fails, the packet either
590 		 * didn't fit in the alloted number of segments, or we were
591 		 * short on resources.  In this case, we'll copy and try
592 		 * again.
593 		 */
594 		if (((mtod(m0, uintptr_t) & 3) != 0) ||
595 		    bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
596 		      BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
597 			MGETHDR(m, M_DONTWAIT, MT_DATA);
598 			if (m == NULL) {
599 				printf("%s: unable to allocate Tx mbuf\n",
600 				    device_xname(sc->sc_dev));
601 				break;
602 			}
603 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
604 			if (m0->m_pkthdr.len > MHLEN) {
605 				MCLGET(m, M_DONTWAIT);
606 				if ((m->m_flags & M_EXT) == 0) {
607 					printf("%s: unable to allocate Tx "
608 					    "cluster\n", device_xname(sc->sc_dev));
609 					m_freem(m);
610 					break;
611 				}
612 			}
613 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
614 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
615 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
616 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
617 			if (error) {
618 				printf("%s: unable to load Tx buffer, "
619 				    "error = %d\n", device_xname(sc->sc_dev),
620 				    error);
621 				break;
622 			}
623 		}
624 
625 		/*
626 		 * Ensure we have enough descriptors free to describe
627 		 * the packet.
628 		 */
629 		if (dmamap->dm_nsegs > sc->sc_txfree) {
630 			/*
631 			 * Not enough free descriptors to transmit this
632 			 * packet.  We haven't committed to anything yet,
633 			 * so just unload the DMA map, put the packet
634 			 * back on the queue, and punt.  Notify the upper
635 			 * layer that there are no more slots left.
636 			 *
637 			 * XXX We could allocate an mbuf and copy, but
638 			 * XXX it is worth it?
639 			 */
640 			ifp->if_flags |= IFF_OACTIVE;
641 			bus_dmamap_unload(sc->sc_dmat, dmamap);
642 			if (m != NULL)
643 				m_freem(m);
644 			break;
645 		}
646 
647 		IFQ_DEQUEUE(&ifp->if_snd, m0);
648 		if (m != NULL) {
649 			m_freem(m0);
650 			m0 = m;
651 		}
652 
653 		/*
654 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
655 		 */
656 
657 		/* Sync the DMA map. */
658 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
659 		    BUS_DMASYNC_PREWRITE);
660 
661 		/*
662 		 * Initialize the transmit descriptors.
663 		 */
664 		for (nexttx = sc->sc_txnext, seg = 0;
665 		     seg < dmamap->dm_nsegs;
666 		     seg++, nexttx = AE_NEXTTX(nexttx)) {
667 			/*
668 			 * If this is the first descriptor we're
669 			 * enqueueing, don't set the OWN bit just
670 			 * yet.  That could cause a race condition.
671 			 * We'll do it below.
672 			 */
673 			sc->sc_txdescs[nexttx].ad_status =
674 			    (nexttx == firsttx) ? 0 : ADSTAT_OWN;
675 			sc->sc_txdescs[nexttx].ad_bufaddr1 =
676 			    dmamap->dm_segs[seg].ds_addr;
677 			sc->sc_txdescs[nexttx].ad_ctl =
678 			    (dmamap->dm_segs[seg].ds_len <<
679 				ADCTL_SIZE1_SHIFT) |
680 				(nexttx == (AE_NTXDESC - 1) ?
681 				    ADCTL_ER : 0);
682 			lasttx = nexttx;
683 		}
684 
685 		KASSERT(lasttx != -1);
686 
687 		/* Set `first segment' and `last segment' appropriately. */
688 		sc->sc_txdescs[sc->sc_txnext].ad_ctl |= ADCTL_Tx_FS;
689 		sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_LS;
690 
691 #ifdef AE_DEBUG
692 		if (ifp->if_flags & IFF_DEBUG) {
693 			printf("     txsoft %p transmit chain:\n", txs);
694 			for (seg = sc->sc_txnext;; seg = AE_NEXTTX(seg)) {
695 				printf("     descriptor %d:\n", seg);
696 				printf("       ad_status:   0x%08x\n",
697 				    sc->sc_txdescs[seg].ad_status);
698 				printf("       ad_ctl:      0x%08x\n",
699 				    sc->sc_txdescs[seg].ad_ctl);
700 				printf("       ad_bufaddr1: 0x%08x\n",
701 				    sc->sc_txdescs[seg].ad_bufaddr1);
702 				printf("       ad_bufaddr2: 0x%08x\n",
703 				    sc->sc_txdescs[seg].ad_bufaddr2);
704 				if (seg == lasttx)
705 					break;
706 			}
707 		}
708 #endif
709 
710 		/* Sync the descriptors we're using. */
711 		AE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
712 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
713 
714 		/*
715 		 * Store a pointer to the packet so we can free it later,
716 		 * and remember what txdirty will be once the packet is
717 		 * done.
718 		 */
719 		txs->txs_mbuf = m0;
720 		txs->txs_firstdesc = sc->sc_txnext;
721 		txs->txs_lastdesc = lasttx;
722 		txs->txs_ndescs = dmamap->dm_nsegs;
723 
724 		/* Advance the tx pointer. */
725 		sc->sc_txfree -= dmamap->dm_nsegs;
726 		sc->sc_txnext = nexttx;
727 
728 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
729 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
730 
731 		/*
732 		 * Pass the packet to any BPF listeners.
733 		 */
734 		bpf_mtap(ifp, m0);
735 	}
736 
737 	if (txs == NULL || sc->sc_txfree == 0) {
738 		/* No more slots left; notify upper layer. */
739 		ifp->if_flags |= IFF_OACTIVE;
740 	}
741 
742 	if (sc->sc_txfree != ofree) {
743 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
744 		    device_xname(sc->sc_dev), lasttx, firsttx));
745 		/*
746 		 * Cause a transmit interrupt to happen on the
747 		 * last packet we enqueued.
748 		 */
749 		sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_IC;
750 		AE_CDTXSYNC(sc, lasttx, 1,
751 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
752 
753 		/*
754 		 * The entire packet chain is set up.  Give the
755 		 * first descriptor to the chip now.
756 		 */
757 		sc->sc_txdescs[firsttx].ad_status |= ADSTAT_OWN;
758 		AE_CDTXSYNC(sc, firsttx, 1,
759 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
760 
761 		/* Wake up the transmitter. */
762 		/* XXX USE AUTOPOLLING? */
763 		AE_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD);
764 		AE_BARRIER(sc);
765 
766 		/* Set a watchdog timer in case the chip flakes out. */
767 		ifp->if_timer = 5;
768 	}
769 }
770 
771 /*
772  * ae_watchdog:	[ifnet interface function]
773  *
774  *	Watchdog timer handler.
775  */
776 static void
777 ae_watchdog(struct ifnet *ifp)
778 {
779 	struct ae_softc *sc = ifp->if_softc;
780 	int doing_transmit;
781 
782 	doing_transmit = (! SIMPLEQ_EMPTY(&sc->sc_txdirtyq));
783 
784 	if (doing_transmit) {
785 		printf("%s: transmit timeout\n", device_xname(sc->sc_dev));
786 		ifp->if_oerrors++;
787 	}
788 	else
789 		printf("%s: spurious watchdog timeout\n", device_xname(sc->sc_dev));
790 
791 	(void) ae_init(ifp);
792 
793 	/* Try to get more packets going. */
794 	ae_start(ifp);
795 }
796 
797 /* If the interface is up and running, only modify the receive
798  * filter when changing to/from promiscuous mode.  Otherwise return
799  * ENETRESET so that ether_ioctl will reset the chip.
800  */
801 static int
802 ae_ifflags_cb(struct ethercom *ec)
803 {
804 	struct ifnet *ifp = &ec->ec_if;
805 	struct ae_softc *sc = ifp->if_softc;
806 	int change = ifp->if_flags ^ sc->sc_if_flags;
807 
808 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
809 		return ENETRESET;
810 	else if ((change & IFF_PROMISC) != 0)
811 		ae_filter_setup(sc);
812 	return 0;
813 }
814 
815 /*
816  * ae_ioctl:		[ifnet interface function]
817  *
818  *	Handle control requests from the operator.
819  */
820 static int
821 ae_ioctl(struct ifnet *ifp, u_long cmd, void *data)
822 {
823 	struct ae_softc *sc = ifp->if_softc;
824 	int s, error;
825 
826 	s = splnet();
827 
828 	error = ether_ioctl(ifp, cmd, data);
829 	if (error == ENETRESET) {
830 		if (ifp->if_flags & IFF_RUNNING) {
831 			/*
832 			 * Multicast list has changed.  Set the
833 			 * hardware filter accordingly.
834 			 */
835 			ae_filter_setup(sc);
836 		}
837 		error = 0;
838 	}
839 
840 	/* Try to get more packets going. */
841 	if (AE_IS_ENABLED(sc))
842 		ae_start(ifp);
843 
844 	sc->sc_if_flags = ifp->if_flags;
845 	splx(s);
846 	return (error);
847 }
848 
849 /*
850  * ae_intr:
851  *
852  *	Interrupt service routine.
853  */
854 int
855 ae_intr(void *arg)
856 {
857 	struct ae_softc *sc = arg;
858 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
859 	u_int32_t status, rxstatus, txstatus;
860 	int handled = 0, txthresh;
861 
862 	DPRINTF(sc, ("%s: ae_intr\n", device_xname(sc->sc_dev)));
863 
864 #ifdef DEBUG
865 	if (AE_IS_ENABLED(sc) == 0)
866 		panic("%s: ae_intr: not enabled", device_xname(sc->sc_dev));
867 #endif
868 
869 	/*
870 	 * If the interface isn't running, the interrupt couldn't
871 	 * possibly have come from us.
872 	 */
873 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
874 	    !device_is_active(sc->sc_dev)) {
875 		printf("spurious?!?\n");
876 		return (0);
877 	}
878 
879 	for (;;) {
880 		status = AE_READ(sc, CSR_STATUS);
881 		if (status) {
882 			AE_WRITE(sc, CSR_STATUS, status);
883 			AE_BARRIER(sc);
884 		}
885 
886 		if ((status & sc->sc_inten) == 0)
887 			break;
888 
889 		handled = 1;
890 
891 		rxstatus = status & sc->sc_rxint_mask;
892 		txstatus = status & sc->sc_txint_mask;
893 
894 		if (rxstatus) {
895 			/* Grab new any new packets. */
896 			ae_rxintr(sc);
897 
898 			if (rxstatus & STATUS_RU) {
899 				printf("%s: receive ring overrun\n",
900 				    device_xname(sc->sc_dev));
901 				/* Get the receive process going again. */
902 				AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
903 				AE_BARRIER(sc);
904 				break;
905 			}
906 		}
907 
908 		if (txstatus) {
909 			/* Sweep up transmit descriptors. */
910 			ae_txintr(sc);
911 
912 			if (txstatus & STATUS_TJT)
913 				printf("%s: transmit jabber timeout\n",
914 				    device_xname(sc->sc_dev));
915 
916 			if (txstatus & STATUS_UNF) {
917 				/*
918 				 * Increase our transmit threshold if
919 				 * another is available.
920 				 */
921 				txthresh = sc->sc_txthresh + 1;
922 				if (ae_txthresh[txthresh].txth_name != NULL) {
923 					uint32_t opmode;
924 					/* Idle the transmit process. */
925 					opmode = AE_READ(sc, CSR_OPMODE);
926 					ae_idle(sc, OPMODE_ST);
927 
928 					sc->sc_txthresh = txthresh;
929 					opmode &=
930 					    ~(OPMODE_TR|OPMODE_SF);
931 					opmode |=
932 					    ae_txthresh[txthresh].txth_opmode;
933 					printf("%s: transmit underrun; new "
934 					    "threshold: %s\n",
935 					    device_xname(sc->sc_dev),
936 					    ae_txthresh[txthresh].txth_name);
937 
938 					/*
939 					 * Set the new threshold and restart
940 					 * the transmit process.
941 					 */
942 					AE_WRITE(sc, CSR_OPMODE, opmode);
943 					AE_BARRIER(sc);
944 				}
945 					/*
946 					 * XXX Log every Nth underrun from
947 					 * XXX now on?
948 					 */
949 			}
950 		}
951 
952 		if (status & (STATUS_TPS|STATUS_RPS)) {
953 			if (status & STATUS_TPS)
954 				printf("%s: transmit process stopped\n",
955 				    device_xname(sc->sc_dev));
956 			if (status & STATUS_RPS)
957 				printf("%s: receive process stopped\n",
958 				    device_xname(sc->sc_dev));
959 			(void) ae_init(ifp);
960 			break;
961 		}
962 
963 		if (status & STATUS_SE) {
964 			const char *str;
965 
966 			if (status & STATUS_TX_ABORT)
967 				str = "tx abort";
968 			else if (status & STATUS_RX_ABORT)
969 				str = "rx abort";
970 			else
971 				str = "unknown error";
972 
973 			printf("%s: fatal system error: %s\n",
974 			    device_xname(sc->sc_dev), str);
975 			(void) ae_init(ifp);
976 			break;
977 		}
978 
979 		/*
980 		 * Not handled:
981 		 *
982 		 *	Transmit buffer unavailable -- normal
983 		 *	condition, nothing to do, really.
984 		 *
985 		 *	General purpose timer experied -- we don't
986 		 *	use the general purpose timer.
987 		 *
988 		 *	Early receive interrupt -- not available on
989 		 *	all chips, we just use RI.  We also only
990 		 *	use single-segment receive DMA, so this
991 		 *	is mostly useless.
992 		 */
993 	}
994 
995 	/* Try to get more packets going. */
996 	ae_start(ifp);
997 
998 	if (handled)
999 		rnd_add_uint32(&sc->sc_rnd_source, status);
1000 	return (handled);
1001 }
1002 
1003 /*
1004  * ae_rxintr:
1005  *
1006  *	Helper; handle receive interrupts.
1007  */
1008 static void
1009 ae_rxintr(struct ae_softc *sc)
1010 {
1011 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1012 	struct ae_rxsoft *rxs;
1013 	struct mbuf *m;
1014 	u_int32_t rxstat;
1015 	int i, len;
1016 
1017 	for (i = sc->sc_rxptr;; i = AE_NEXTRX(i)) {
1018 		rxs = &sc->sc_rxsoft[i];
1019 
1020 		AE_CDRXSYNC(sc, i,
1021 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1022 
1023 		rxstat = sc->sc_rxdescs[i].ad_status;
1024 
1025 		if (rxstat & ADSTAT_OWN) {
1026 			/*
1027 			 * We have processed all of the receive buffers.
1028 			 */
1029 			break;
1030 		}
1031 
1032 		/*
1033 		 * If any collisions were seen on the wire, count one.
1034 		 */
1035 		if (rxstat & ADSTAT_Rx_CS)
1036 			ifp->if_collisions++;
1037 
1038 		/*
1039 		 * If an error occurred, update stats, clear the status
1040 		 * word, and leave the packet buffer in place.  It will
1041 		 * simply be reused the next time the ring comes around.
1042 	 	 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
1043 		 * error.
1044 		 */
1045 		if (rxstat & ADSTAT_ES &&
1046 		    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
1047 		     (rxstat & (ADSTAT_Rx_DE | ADSTAT_Rx_RF |
1048 				ADSTAT_Rx_DB | ADSTAT_Rx_CE)) != 0)) {
1049 #define	PRINTERR(bit, str)						\
1050 			if (rxstat & (bit))				\
1051 				printf("%s: receive error: %s\n",	\
1052 				    device_xname(sc->sc_dev), str)
1053 			ifp->if_ierrors++;
1054 			PRINTERR(ADSTAT_Rx_DE, "descriptor error");
1055 			PRINTERR(ADSTAT_Rx_RF, "runt frame");
1056 			PRINTERR(ADSTAT_Rx_TL, "frame too long");
1057 			PRINTERR(ADSTAT_Rx_RE, "MII error");
1058 			PRINTERR(ADSTAT_Rx_DB, "dribbling bit");
1059 			PRINTERR(ADSTAT_Rx_CE, "CRC error");
1060 #undef PRINTERR
1061 			AE_INIT_RXDESC(sc, i);
1062 			continue;
1063 		}
1064 
1065 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1066 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1067 
1068 		/*
1069 		 * No errors; receive the packet.  Note the chip
1070 		 * includes the CRC with every packet.
1071 		 */
1072 		len = ADSTAT_Rx_LENGTH(rxstat) - ETHER_CRC_LEN;
1073 
1074 		/*
1075 		 * XXX: the Atheros part can align on half words.  what
1076 		 * is the performance implication of this?  Probably
1077 		 * minimal, and we should use it...
1078 		 */
1079 #ifdef __NO_STRICT_ALIGNMENT
1080 		/*
1081 		 * Allocate a new mbuf cluster.  If that fails, we are
1082 		 * out of memory, and must drop the packet and recycle
1083 		 * the buffer that's already attached to this descriptor.
1084 		 */
1085 		m = rxs->rxs_mbuf;
1086 		if (ae_add_rxbuf(sc, i) != 0) {
1087 			ifp->if_ierrors++;
1088 			AE_INIT_RXDESC(sc, i);
1089 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1090 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1091 			continue;
1092 		}
1093 #else
1094 		/*
1095 		 * The chip's receive buffers must be 4-byte aligned.
1096 		 * But this means that the data after the Ethernet header
1097 		 * is misaligned.  We must allocate a new buffer and
1098 		 * copy the data, shifted forward 2 bytes.
1099 		 */
1100 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1101 		if (m == NULL) {
1102  dropit:
1103 			ifp->if_ierrors++;
1104 			AE_INIT_RXDESC(sc, i);
1105 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1106 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1107 			continue;
1108 		}
1109 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1110 		if (len > (MHLEN - 2)) {
1111 			MCLGET(m, M_DONTWAIT);
1112 			if ((m->m_flags & M_EXT) == 0) {
1113 				m_freem(m);
1114 				goto dropit;
1115 			}
1116 		}
1117 		m->m_data += 2;
1118 
1119 		/*
1120 		 * Note that we use clusters for incoming frames, so the
1121 		 * buffer is virtually contiguous.
1122 		 */
1123 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
1124 
1125 		/* Allow the receive descriptor to continue using its mbuf. */
1126 		AE_INIT_RXDESC(sc, i);
1127 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1128 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1129 #endif /* __NO_STRICT_ALIGNMENT */
1130 
1131 		ifp->if_ipackets++;
1132 		m_set_rcvif(m, ifp);
1133 		m->m_pkthdr.len = m->m_len = len;
1134 
1135 		/*
1136 		 * Pass this up to any BPF listeners, but only
1137 		 * pass it up the stack if its for us.
1138 		 */
1139 		bpf_mtap(ifp, m);
1140 
1141 		/* Pass it on. */
1142 		if_percpuq_enqueue(ifp->if_percpuq, m);
1143 	}
1144 
1145 	/* Update the receive pointer. */
1146 	sc->sc_rxptr = i;
1147 }
1148 
1149 /*
1150  * ae_txintr:
1151  *
1152  *	Helper; handle transmit interrupts.
1153  */
1154 static void
1155 ae_txintr(struct ae_softc *sc)
1156 {
1157 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1158 	struct ae_txsoft *txs;
1159 	u_int32_t txstat;
1160 
1161 	DPRINTF(sc, ("%s: ae_txintr: sc_flags 0x%08x\n",
1162 	    device_xname(sc->sc_dev), sc->sc_flags));
1163 
1164 	ifp->if_flags &= ~IFF_OACTIVE;
1165 
1166 	/*
1167 	 * Go through our Tx list and free mbufs for those
1168 	 * frames that have been transmitted.
1169 	 */
1170 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1171 		AE_CDTXSYNC(sc, txs->txs_lastdesc,
1172 		    txs->txs_ndescs,
1173 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1174 
1175 #ifdef AE_DEBUG
1176 		if (ifp->if_flags & IFF_DEBUG) {
1177 			int i;
1178 			printf("    txsoft %p transmit chain:\n", txs);
1179 			for (i = txs->txs_firstdesc;; i = AE_NEXTTX(i)) {
1180 				printf("     descriptor %d:\n", i);
1181 				printf("       ad_status:   0x%08x\n",
1182 				    sc->sc_txdescs[i].ad_status);
1183 				printf("       ad_ctl:      0x%08x\n",
1184 				    sc->sc_txdescs[i].ad_ctl);
1185 				printf("       ad_bufaddr1: 0x%08x\n",
1186 				    sc->sc_txdescs[i].ad_bufaddr1);
1187 				printf("       ad_bufaddr2: 0x%08x\n",
1188 				    sc->sc_txdescs[i].ad_bufaddr2);
1189 				if (i == txs->txs_lastdesc)
1190 					break;
1191 			}
1192 		}
1193 #endif
1194 
1195 		txstat = sc->sc_txdescs[txs->txs_lastdesc].ad_status;
1196 		if (txstat & ADSTAT_OWN)
1197 			break;
1198 
1199 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1200 
1201 		sc->sc_txfree += txs->txs_ndescs;
1202 
1203 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1204 		    0, txs->txs_dmamap->dm_mapsize,
1205 		    BUS_DMASYNC_POSTWRITE);
1206 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1207 		m_freem(txs->txs_mbuf);
1208 		txs->txs_mbuf = NULL;
1209 
1210 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1211 
1212 		/*
1213 		 * Check for errors and collisions.
1214 		 */
1215 #ifdef AE_STATS
1216 		if (txstat & ADSTAT_Tx_UF)
1217 			sc->sc_stats.ts_tx_uf++;
1218 		if (txstat & ADSTAT_Tx_TO)
1219 			sc->sc_stats.ts_tx_to++;
1220 		if (txstat & ADSTAT_Tx_EC)
1221 			sc->sc_stats.ts_tx_ec++;
1222 		if (txstat & ADSTAT_Tx_LC)
1223 			sc->sc_stats.ts_tx_lc++;
1224 #endif
1225 
1226 		if (txstat & (ADSTAT_Tx_UF|ADSTAT_Tx_TO))
1227 			ifp->if_oerrors++;
1228 
1229 		if (txstat & ADSTAT_Tx_EC)
1230 			ifp->if_collisions += 16;
1231 		else
1232 			ifp->if_collisions += ADSTAT_Tx_COLLISIONS(txstat);
1233 		if (txstat & ADSTAT_Tx_LC)
1234 			ifp->if_collisions++;
1235 
1236 		ifp->if_opackets++;
1237 	}
1238 
1239 	/*
1240 	 * If there are no more pending transmissions, cancel the watchdog
1241 	 * timer.
1242 	 */
1243 	if (txs == NULL)
1244 		ifp->if_timer = 0;
1245 }
1246 
1247 #ifdef AE_STATS
1248 void
1249 ae_print_stats(struct ae_softc *sc)
1250 {
1251 
1252 	printf("%s: tx_uf %lu, tx_to %lu, tx_ec %lu, tx_lc %lu\n",
1253 	    device_xname(sc->sc_dev),
1254 	    sc->sc_stats.ts_tx_uf, sc->sc_stats.ts_tx_to,
1255 	    sc->sc_stats.ts_tx_ec, sc->sc_stats.ts_tx_lc);
1256 }
1257 #endif
1258 
1259 /*
1260  * ae_reset:
1261  *
1262  *	Perform a soft reset on the chip.
1263  */
1264 void
1265 ae_reset(struct ae_softc *sc)
1266 {
1267 	int i;
1268 
1269 	AE_WRITE(sc, CSR_BUSMODE, BUSMODE_SWR);
1270 	AE_BARRIER(sc);
1271 
1272 	/*
1273 	 * The chip doesn't take itself out of reset automatically.
1274 	 * We need to do so after 2us.
1275 	 */
1276 	delay(10);
1277 	AE_WRITE(sc, CSR_BUSMODE, 0);
1278 	AE_BARRIER(sc);
1279 
1280 	for (i = 0; i < 1000; i++) {
1281 		/*
1282 		 * Wait a bit for the reset to complete before peeking
1283 		 * at the chip again.
1284 		 */
1285 		delay(10);
1286 		if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR) == 0)
1287 			break;
1288 	}
1289 
1290 	if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR))
1291 		printf("%s: reset failed to complete\n", device_xname(sc->sc_dev));
1292 
1293 	delay(1000);
1294 }
1295 
1296 /*
1297  * ae_init:		[ ifnet interface function ]
1298  *
1299  *	Initialize the interface.  Must be called at splnet().
1300  */
1301 static int
1302 ae_init(struct ifnet *ifp)
1303 {
1304 	struct ae_softc *sc = ifp->if_softc;
1305 	struct ae_txsoft *txs;
1306 	struct ae_rxsoft *rxs;
1307 	const uint8_t *enaddr;
1308 	int i, error = 0;
1309 
1310 	if ((error = ae_enable(sc)) != 0)
1311 		goto out;
1312 
1313 	/*
1314 	 * Cancel any pending I/O.
1315 	 */
1316 	ae_stop(ifp, 0);
1317 
1318 	/*
1319 	 * Reset the chip to a known state.
1320 	 */
1321 	ae_reset(sc);
1322 
1323 	/*
1324 	 * Initialize the BUSMODE register.
1325 	 */
1326 	AE_WRITE(sc, CSR_BUSMODE,
1327 	    /* XXX: not sure if this is a good thing or not... */
1328 	    //BUSMODE_ALIGN_16B |
1329 	    BUSMODE_BAR | BUSMODE_BLE | BUSMODE_PBL_4LW);
1330 	AE_BARRIER(sc);
1331 
1332 	/*
1333 	 * Initialize the transmit descriptor ring.
1334 	 */
1335 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1336 	for (i = 0; i < AE_NTXDESC; i++) {
1337 		sc->sc_txdescs[i].ad_ctl = 0;
1338 		sc->sc_txdescs[i].ad_bufaddr2 =
1339 		    AE_CDTXADDR(sc, AE_NEXTTX(i));
1340 	}
1341 	sc->sc_txdescs[AE_NTXDESC - 1].ad_ctl |= ADCTL_ER;
1342 	AE_CDTXSYNC(sc, 0, AE_NTXDESC,
1343 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1344 	sc->sc_txfree = AE_NTXDESC;
1345 	sc->sc_txnext = 0;
1346 
1347 	/*
1348 	 * Initialize the transmit job descriptors.
1349 	 */
1350 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1351 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1352 	for (i = 0; i < AE_TXQUEUELEN; i++) {
1353 		txs = &sc->sc_txsoft[i];
1354 		txs->txs_mbuf = NULL;
1355 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1356 	}
1357 
1358 	/*
1359 	 * Initialize the receive descriptor and receive job
1360 	 * descriptor rings.
1361 	 */
1362 	for (i = 0; i < AE_NRXDESC; i++) {
1363 		rxs = &sc->sc_rxsoft[i];
1364 		if (rxs->rxs_mbuf == NULL) {
1365 			if ((error = ae_add_rxbuf(sc, i)) != 0) {
1366 				printf("%s: unable to allocate or map rx "
1367 				    "buffer %d, error = %d\n",
1368 				    device_xname(sc->sc_dev), i, error);
1369 				/*
1370 				 * XXX Should attempt to run with fewer receive
1371 				 * XXX buffers instead of just failing.
1372 				 */
1373 				ae_rxdrain(sc);
1374 				goto out;
1375 			}
1376 		} else
1377 			AE_INIT_RXDESC(sc, i);
1378 	}
1379 	sc->sc_rxptr = 0;
1380 
1381 	/*
1382 	 * Initialize the interrupt mask and enable interrupts.
1383 	 */
1384 	/* normal interrupts */
1385 	sc->sc_inten =  STATUS_TI | STATUS_TU | STATUS_RI | STATUS_NIS;
1386 
1387 	/* abnormal interrupts */
1388 	sc->sc_inten |= STATUS_TPS | STATUS_TJT | STATUS_UNF |
1389 	    STATUS_RU | STATUS_RPS | STATUS_SE | STATUS_AIS;
1390 
1391 	sc->sc_rxint_mask = STATUS_RI|STATUS_RU;
1392 	sc->sc_txint_mask = STATUS_TI|STATUS_UNF|STATUS_TJT;
1393 
1394 	sc->sc_rxint_mask &= sc->sc_inten;
1395 	sc->sc_txint_mask &= sc->sc_inten;
1396 
1397 	AE_WRITE(sc, CSR_INTEN, sc->sc_inten);
1398 	AE_WRITE(sc, CSR_STATUS, 0xffffffff);
1399 
1400 	/*
1401 	 * Give the transmit and receive rings to the chip.
1402 	 */
1403 	AE_WRITE(sc, CSR_TXLIST, AE_CDTXADDR(sc, sc->sc_txnext));
1404 	AE_WRITE(sc, CSR_RXLIST, AE_CDRXADDR(sc, sc->sc_rxptr));
1405 	AE_BARRIER(sc);
1406 
1407 	/*
1408 	 * Set the station address.
1409 	 */
1410 	enaddr = CLLADDR(ifp->if_sadl);
1411 	AE_WRITE(sc, CSR_MACHI, enaddr[5] << 16 | enaddr[4]);
1412 	AE_WRITE(sc, CSR_MACLO, enaddr[3] << 24 | enaddr[2] << 16 |
1413 		enaddr[1] << 8 | enaddr[0]);
1414 	AE_BARRIER(sc);
1415 
1416 	/*
1417 	 * Set the receive filter.  This will start the transmit and
1418 	 * receive processes.
1419 	 */
1420 	ae_filter_setup(sc);
1421 
1422 	/*
1423 	 * Set the current media.
1424 	 */
1425 	if ((error = ether_mediachange(ifp)) != 0)
1426 		goto out;
1427 
1428 	/*
1429 	 * Start the mac.
1430 	 */
1431 	AE_SET(sc, CSR_MACCTL, MACCTL_RE | MACCTL_TE);
1432 	AE_BARRIER(sc);
1433 
1434 	/*
1435 	 * Write out the opmode.
1436 	 */
1437 	AE_WRITE(sc, CSR_OPMODE, OPMODE_SR | OPMODE_ST |
1438 	    ae_txthresh[sc->sc_txthresh].txth_opmode);
1439 	/*
1440 	 * Start the receive process.
1441 	 */
1442 	AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
1443 	AE_BARRIER(sc);
1444 
1445 	if (sc->sc_tick != NULL) {
1446 		/* Start the one second clock. */
1447 		callout_reset(&sc->sc_tick_callout, hz >> 3, sc->sc_tick, sc);
1448 	}
1449 
1450 	/*
1451 	 * Note that the interface is now running.
1452 	 */
1453 	ifp->if_flags |= IFF_RUNNING;
1454 	ifp->if_flags &= ~IFF_OACTIVE;
1455 	sc->sc_if_flags = ifp->if_flags;
1456 
1457  out:
1458 	if (error) {
1459 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1460 		ifp->if_timer = 0;
1461 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
1462 	}
1463 	return (error);
1464 }
1465 
1466 /*
1467  * ae_enable:
1468  *
1469  *	Enable the chip.
1470  */
1471 static int
1472 ae_enable(struct ae_softc *sc)
1473 {
1474 
1475 	if (AE_IS_ENABLED(sc) == 0) {
1476 		sc->sc_ih = arbus_intr_establish(sc->sc_cirq, sc->sc_mirq,
1477 		    ae_intr, sc);
1478 		if (sc->sc_ih == NULL) {
1479 			printf("%s: unable to establish interrupt\n",
1480 			    device_xname(sc->sc_dev));
1481 			return (EIO);
1482 		}
1483 		sc->sc_flags |= AE_ENABLED;
1484 	}
1485 	return (0);
1486 }
1487 
1488 /*
1489  * ae_disable:
1490  *
1491  *	Disable the chip.
1492  */
1493 static void
1494 ae_disable(struct ae_softc *sc)
1495 {
1496 
1497 	if (AE_IS_ENABLED(sc)) {
1498 		arbus_intr_disestablish(sc->sc_ih);
1499 		sc->sc_flags &= ~AE_ENABLED;
1500 	}
1501 }
1502 
1503 /*
1504  * ae_power:
1505  *
1506  *	Power management (suspend/resume) hook.
1507  */
1508 static void
1509 ae_power(int why, void *arg)
1510 {
1511 	struct ae_softc *sc = arg;
1512 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1513 	int s;
1514 
1515 	printf("power called: %d, %x\n", why, (uint32_t)arg);
1516 	s = splnet();
1517 	switch (why) {
1518 	case PWR_STANDBY:
1519 		/* do nothing! */
1520 		break;
1521 	case PWR_SUSPEND:
1522 		ae_stop(ifp, 0);
1523 		ae_disable(sc);
1524 		break;
1525 	case PWR_RESUME:
1526 		if (ifp->if_flags & IFF_UP) {
1527 			ae_enable(sc);
1528 			ae_init(ifp);
1529 		}
1530 		break;
1531 	case PWR_SOFTSUSPEND:
1532 	case PWR_SOFTSTANDBY:
1533 	case PWR_SOFTRESUME:
1534 		break;
1535 	}
1536 	splx(s);
1537 }
1538 
1539 /*
1540  * ae_rxdrain:
1541  *
1542  *	Drain the receive queue.
1543  */
1544 static void
1545 ae_rxdrain(struct ae_softc *sc)
1546 {
1547 	struct ae_rxsoft *rxs;
1548 	int i;
1549 
1550 	for (i = 0; i < AE_NRXDESC; i++) {
1551 		rxs = &sc->sc_rxsoft[i];
1552 		if (rxs->rxs_mbuf != NULL) {
1553 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1554 			m_freem(rxs->rxs_mbuf);
1555 			rxs->rxs_mbuf = NULL;
1556 		}
1557 	}
1558 }
1559 
1560 /*
1561  * ae_stop:		[ ifnet interface function ]
1562  *
1563  *	Stop transmission on the interface.
1564  */
1565 static void
1566 ae_stop(struct ifnet *ifp, int disable)
1567 {
1568 	struct ae_softc *sc = ifp->if_softc;
1569 	struct ae_txsoft *txs;
1570 
1571 	if (sc->sc_tick != NULL) {
1572 		/* Stop the one second clock. */
1573 		callout_stop(&sc->sc_tick_callout);
1574 	}
1575 
1576 	/* Down the MII. */
1577 	mii_down(&sc->sc_mii);
1578 
1579 	/* Disable interrupts. */
1580 	AE_WRITE(sc, CSR_INTEN, 0);
1581 
1582 	/* Stop the transmit and receive processes. */
1583 	AE_WRITE(sc, CSR_OPMODE, 0);
1584 	AE_WRITE(sc, CSR_RXLIST, 0);
1585 	AE_WRITE(sc, CSR_TXLIST, 0);
1586 	AE_CLR(sc, CSR_MACCTL, MACCTL_TE | MACCTL_RE);
1587 	AE_BARRIER(sc);
1588 
1589 	/*
1590 	 * Release any queued transmit buffers.
1591 	 */
1592 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1593 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1594 		if (txs->txs_mbuf != NULL) {
1595 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1596 			m_freem(txs->txs_mbuf);
1597 			txs->txs_mbuf = NULL;
1598 		}
1599 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1600 	}
1601 
1602 	/*
1603 	 * Mark the interface down and cancel the watchdog timer.
1604 	 */
1605 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1606 	sc->sc_if_flags = ifp->if_flags;
1607 	ifp->if_timer = 0;
1608 
1609 	if (disable) {
1610 		ae_rxdrain(sc);
1611 		ae_disable(sc);
1612 	}
1613 
1614 	/*
1615 	 * Reset the chip (needed on some flavors to actually disable it).
1616 	 */
1617 	ae_reset(sc);
1618 }
1619 
1620 /*
1621  * ae_add_rxbuf:
1622  *
1623  *	Add a receive buffer to the indicated descriptor.
1624  */
1625 static int
1626 ae_add_rxbuf(struct ae_softc *sc, int idx)
1627 {
1628 	struct ae_rxsoft *rxs = &sc->sc_rxsoft[idx];
1629 	struct mbuf *m;
1630 	int error;
1631 
1632 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1633 	if (m == NULL)
1634 		return (ENOBUFS);
1635 
1636 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1637 	MCLGET(m, M_DONTWAIT);
1638 	if ((m->m_flags & M_EXT) == 0) {
1639 		m_freem(m);
1640 		return (ENOBUFS);
1641 	}
1642 
1643 	if (rxs->rxs_mbuf != NULL)
1644 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1645 
1646 	rxs->rxs_mbuf = m;
1647 
1648 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1649 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1650 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1651 	if (error) {
1652 		printf("%s: can't load rx DMA map %d, error = %d\n",
1653 		    device_xname(sc->sc_dev), idx, error);
1654 		panic("ae_add_rxbuf");	/* XXX */
1655 	}
1656 
1657 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1658 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1659 
1660 	AE_INIT_RXDESC(sc, idx);
1661 
1662 	return (0);
1663 }
1664 
1665 /*
1666  * ae_filter_setup:
1667  *
1668  *	Set the chip's receive filter.
1669  */
1670 static void
1671 ae_filter_setup(struct ae_softc *sc)
1672 {
1673 	struct ethercom *ec = &sc->sc_ethercom;
1674 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1675 	struct ether_multi *enm;
1676 	struct ether_multistep step;
1677 	uint32_t hash, mchash[2];
1678 	uint32_t macctl = 0;
1679 
1680 	/*
1681 	 * If the chip is running, we need to reset the interface,
1682 	 * and will revisit here (with IFF_RUNNING) clear.  The
1683 	 * chip seems to really not like to have its multicast
1684 	 * filter programmed without a reset.
1685 	 */
1686 	if (ifp->if_flags & IFF_RUNNING) {
1687 		(void) ae_init(ifp);
1688 		return;
1689 	}
1690 
1691 	DPRINTF(sc, ("%s: ae_filter_setup: sc_flags 0x%08x\n",
1692 	    device_xname(sc->sc_dev), sc->sc_flags));
1693 
1694 	macctl = AE_READ(sc, CSR_MACCTL);
1695 	macctl &= ~(MACCTL_PR | MACCTL_PM);
1696 	macctl |= MACCTL_HASH;
1697 	macctl |= MACCTL_HBD;
1698 	macctl |= MACCTL_PR;
1699 
1700 	if (ifp->if_flags & IFF_PROMISC) {
1701 		macctl |= MACCTL_PR;
1702 		goto allmulti;
1703 	}
1704 
1705 	mchash[0] = mchash[1] = 0;
1706 
1707 	ETHER_FIRST_MULTI(step, ec, enm);
1708 	while (enm != NULL) {
1709 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1710 			/*
1711 			 * We must listen to a range of multicast addresses.
1712 			 * For now, just accept all multicasts, rather than
1713 			 * trying to set only those filter bits needed to match
1714 			 * the range.  (At this time, the only use of address
1715 			 * ranges is for IP multicast routing, for which the
1716 			 * range is big enough to require all bits set.)
1717 			 */
1718 			goto allmulti;
1719 		}
1720 
1721 		/* Verify whether we use big or little endian hashes */
1722 		hash = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3f;
1723 		mchash[hash >> 5] |= 1 << (hash & 0x1f);
1724 		ETHER_NEXT_MULTI(step, enm);
1725 	}
1726 	ifp->if_flags &= ~IFF_ALLMULTI;
1727 	goto setit;
1728 
1729  allmulti:
1730 	ifp->if_flags |= IFF_ALLMULTI;
1731 	mchash[0] = mchash[1] = 0xffffffff;
1732 	macctl |= MACCTL_PM;
1733 
1734  setit:
1735 	AE_WRITE(sc, CSR_HTHI, mchash[0]);
1736 	AE_WRITE(sc, CSR_HTHI, mchash[1]);
1737 
1738 	AE_WRITE(sc, CSR_MACCTL, macctl);
1739 	AE_BARRIER(sc);
1740 
1741 	DPRINTF(sc, ("%s: ae_filter_setup: returning %x\n",
1742 		    device_xname(sc->sc_dev), macctl));
1743 }
1744 
1745 /*
1746  * ae_idle:
1747  *
1748  *	Cause the transmit and/or receive processes to go idle.
1749  */
1750 void
1751 ae_idle(struct ae_softc *sc, u_int32_t bits)
1752 {
1753 	static const char * const txstate_names[] = {
1754 		"STOPPED",
1755 		"RUNNING - FETCH",
1756 		"RUNNING - WAIT",
1757 		"RUNNING - READING",
1758 		"-- RESERVED --",
1759 		"RUNNING - SETUP",
1760 		"SUSPENDED",
1761 		"RUNNING - CLOSE",
1762 	};
1763 	static const char * const rxstate_names[] = {
1764 		"STOPPED",
1765 		"RUNNING - FETCH",
1766 		"RUNNING - CHECK",
1767 		"RUNNING - WAIT",
1768 		"SUSPENDED",
1769 		"RUNNING - CLOSE",
1770 		"RUNNING - FLUSH",
1771 		"RUNNING - QUEUE",
1772 	};
1773 
1774 	u_int32_t csr, ackmask = 0;
1775 	int i;
1776 
1777 	if (bits & OPMODE_ST)
1778 		ackmask |= STATUS_TPS;
1779 
1780 	if (bits & OPMODE_SR)
1781 		ackmask |= STATUS_RPS;
1782 
1783 	AE_CLR(sc, CSR_OPMODE, bits);
1784 
1785 	for (i = 0; i < 1000; i++) {
1786 		if (AE_ISSET(sc, CSR_STATUS, ackmask) == ackmask)
1787 			break;
1788 		delay(10);
1789 	}
1790 
1791 	csr = AE_READ(sc, CSR_STATUS);
1792 	if ((csr & ackmask) != ackmask) {
1793 		if ((bits & OPMODE_ST) != 0 && (csr & STATUS_TPS) == 0 &&
1794 		    (csr & STATUS_TS) != STATUS_TS_STOPPED) {
1795 			printf("%s: transmit process failed to idle: "
1796 			    "state %s\n", device_xname(sc->sc_dev),
1797 			    txstate_names[(csr & STATUS_TS) >> 20]);
1798 		}
1799 		if ((bits & OPMODE_SR) != 0 && (csr & STATUS_RPS) == 0 &&
1800 		    (csr & STATUS_RS) != STATUS_RS_STOPPED) {
1801 			printf("%s: receive process failed to idle: "
1802 			    "state %s\n", device_xname(sc->sc_dev),
1803 			    rxstate_names[(csr & STATUS_RS) >> 17]);
1804 		}
1805 	}
1806 }
1807 
1808 /*****************************************************************************
1809  * Support functions for MII-attached media.
1810  *****************************************************************************/
1811 
1812 /*
1813  * ae_mii_tick:
1814  *
1815  *	One second timer, used to tick the MII.
1816  */
1817 static void
1818 ae_mii_tick(void *arg)
1819 {
1820 	struct ae_softc *sc = arg;
1821 	int s;
1822 
1823 	if (!device_is_active(sc->sc_dev))
1824 		return;
1825 
1826 	s = splnet();
1827 	mii_tick(&sc->sc_mii);
1828 	splx(s);
1829 
1830 	callout_reset(&sc->sc_tick_callout, hz, sc->sc_tick, sc);
1831 }
1832 
1833 /*
1834  * ae_mii_statchg:	[mii interface function]
1835  *
1836  *	Callback from PHY when media changes.
1837  */
1838 static void
1839 ae_mii_statchg(struct ifnet *ifp)
1840 {
1841 	struct ae_softc *sc = ifp->if_softc;
1842 	uint32_t	macctl, flowc;
1843 
1844 	//opmode = AE_READ(sc, CSR_OPMODE);
1845 	macctl = AE_READ(sc, CSR_MACCTL);
1846 
1847 	/* XXX: do we need to do this? */
1848 	/* Idle the transmit and receive processes. */
1849 	//ae_idle(sc, OPMODE_ST|OPMODE_SR);
1850 
1851 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
1852 		flowc = FLOWC_FCE;
1853 		macctl &= ~MACCTL_DRO;
1854 		macctl |= MACCTL_FDX;
1855 	} else {
1856 		flowc = 0;	/* cannot do flow control in HDX */
1857 		macctl |= MACCTL_DRO;
1858 		macctl &= ~MACCTL_FDX;
1859 	}
1860 
1861 	AE_WRITE(sc, CSR_FLOWC, flowc);
1862 	AE_WRITE(sc, CSR_MACCTL, macctl);
1863 
1864 	/* restore operational mode */
1865 	//AE_WRITE(sc, CSR_OPMODE, opmode);
1866 	AE_BARRIER(sc);
1867 }
1868 
1869 /*
1870  * ae_mii_readreg:
1871  *
1872  *	Read a PHY register.
1873  */
1874 static int
1875 ae_mii_readreg(device_t self, int phy, int reg)
1876 {
1877 	struct ae_softc	*sc = device_private(self);
1878 	uint32_t	addr;
1879 	int		i;
1880 
1881 	addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT);
1882 	AE_WRITE(sc, CSR_MIIADDR, addr);
1883 	AE_BARRIER(sc);
1884 	for (i = 0; i < 100000000; i++) {
1885 		if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1886 			break;
1887 	}
1888 
1889 	return (AE_READ(sc, CSR_MIIDATA) & 0xffff);
1890 }
1891 
1892 /*
1893  * ae_mii_writereg:
1894  *
1895  *	Write a PHY register.
1896  */
1897 static void
1898 ae_mii_writereg(device_t self, int phy, int reg, int val)
1899 {
1900 	struct ae_softc *sc = device_private(self);
1901 	uint32_t	addr;
1902 	int		i;
1903 
1904 	/* write the data register */
1905 	AE_WRITE(sc, CSR_MIIDATA, val);
1906 
1907 	/* write the address to latch it in */
1908 	addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT) |
1909 	    MIIADDR_WRITE;
1910 	AE_WRITE(sc, CSR_MIIADDR, addr);
1911 	AE_BARRIER(sc);
1912 
1913 	for (i = 0; i < 100000000; i++) {
1914 		if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1915 			break;
1916 	}
1917 }
1918