xref: /netbsd-src/sys/arch/mips/atheros/dev/if_ae.c (revision 481d3881954fd794ca5f2d880b68c53a5db8620e)
1 /* $NetBSD: if_ae.c,v 1.45 2024/07/05 04:31:49 rin Exp $ */
2 /*-
3  * Copyright (c) 2006 Urbana-Champaign Independent Media Center.
4  * Copyright (c) 2006 Garrett D'Amore.
5  * All rights reserved.
6  *
7  * This code was written by Garrett D'Amore for the Champaign-Urbana
8  * Community Wireless Network Project.
9  *
10  * Redistribution and use in source and binary forms, with or
11  * without modification, are permitted provided that the following
12  * conditions are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above
16  *    copyright notice, this list of conditions and the following
17  *    disclaimer in the documentation and/or other materials provided
18  *    with the distribution.
19  * 3. All advertising materials mentioning features or use of this
20  *    software must display the following acknowledgements:
21  *      This product includes software developed by the Urbana-Champaign
22  *      Independent Media Center.
23  *	This product includes software developed by Garrett D'Amore.
24  * 4. Urbana-Champaign Independent Media Center's name and Garrett
25  *    D'Amore's name may not be used to endorse or promote products
26  *    derived from this software without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
29  * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
30  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
31  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
33  * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
34  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
35  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
36  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
37  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
38  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
40  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41  */
42 /*-
43  * Copyright (c) 1998, 1999, 2000, 2002 The NetBSD Foundation, Inc.
44  * All rights reserved.
45  *
46  * This code is derived from software contributed to The NetBSD Foundation
47  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
48  * NASA Ames Research Center; and by Charles M. Hannum.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
60  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69  * POSSIBILITY OF SUCH DAMAGE.
70  */
71 
72 /*
73  * Device driver for the onboard ethernet MAC found on the AR5312
74  * chip's AHB bus.
75  *
76  * This device is very simliar to the tulip in most regards, and
77  * the code is directly derived from NetBSD's tulip.c.  However, it
78  * is different enough that it did not seem to be a good idea to
79  * add further complexity to the tulip driver, so we have our own.
80  *
81  * Also tulip has a lot of complexity in it for various parts/options
82  * that we don't need, and on these little boxes with only ~8MB RAM, we
83  * don't want any extra bloat.
84  */
85 
86 /*
87  * TODO:
88  *
89  * 1) Find out about BUS_MODE_ALIGN16B.  This chip can apparently align
90  *    inbound packets on a half-word boundary, which would make life easier
91  *    for TCP/IP.  (Aligning IP headers on a word.)
92  *
93  * 2) There is stuff in original tulip to shut down the device when reacting
94  *    to a change in link status.  Is that needed.
95  *
96  * 3) Test with variety of 10/100 HDX/FDX scenarios.
97  *
98  */
99 
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: if_ae.c,v 1.45 2024/07/05 04:31:49 rin Exp $");
102 
103 
104 #include <sys/param.h>
105 #include <sys/bus.h>
106 #include <sys/callout.h>
107 #include <sys/device.h>
108 #include <sys/endian.h>
109 #include <sys/errno.h>
110 #include <sys/intr.h>
111 #include <sys/ioctl.h>
112 #include <sys/kernel.h>
113 #include <sys/mbuf.h>
114 #include <sys/socket.h>
115 
116 #include <uvm/uvm_extern.h>
117 
118 #include <net/if.h>
119 #include <net/if_dl.h>
120 #include <net/if_media.h>
121 #include <net/if_ether.h>
122 
123 #include <net/bpf.h>
124 
125 #include <dev/mii/mii.h>
126 #include <dev/mii/miivar.h>
127 #include <dev/mii/mii_bitbang.h>
128 
129 #include <mips/atheros/include/arbusvar.h>
130 #include <mips/atheros/dev/aereg.h>
131 #include <mips/atheros/dev/aevar.h>
132 
133 static const struct {
134 	uint32_t txth_opmode;		/* OPMODE bits */
135 	const char *txth_name;		/* name of mode */
136 } ae_txthresh[] = {
137 	{ OPMODE_TR_32,		"32 words" },
138 	{ OPMODE_TR_64,		"64 words" },
139 	{ OPMODE_TR_128,	"128 words" },
140 	{ OPMODE_TR_256,	"256 words" },
141 	{ OPMODE_SF,		"store and forward mode" },
142 	{ 0,			NULL },
143 };
144 
145 static int	ae_match(device_t, struct cfdata *, void *);
146 static void	ae_attach(device_t, device_t, void *);
147 static int	ae_detach(device_t, int);
148 static int	ae_activate(device_t, enum devact);
149 
150 static int	ae_ifflags_cb(struct ethercom *);
151 static void	ae_reset(struct ae_softc *);
152 static void	ae_idle(struct ae_softc *, uint32_t);
153 
154 static void	ae_start(struct ifnet *);
155 static void	ae_watchdog(struct ifnet *);
156 static int	ae_ioctl(struct ifnet *, u_long, void *);
157 static int	ae_init(struct ifnet *);
158 static void	ae_stop(struct ifnet *, int);
159 
160 static void	ae_shutdown(void *);
161 
162 static void	ae_rxdrain(struct ae_softc *);
163 static int	ae_add_rxbuf(struct ae_softc *, int);
164 
165 static int	ae_enable(struct ae_softc *);
166 static void	ae_disable(struct ae_softc *);
167 static void	ae_power(int, void *);
168 
169 static void	ae_filter_setup(struct ae_softc *);
170 
171 static int	ae_intr(void *);
172 static void	ae_rxintr(struct ae_softc *);
173 static void	ae_txintr(struct ae_softc *);
174 
175 static void	ae_mii_tick(void *);
176 static void	ae_mii_statchg(struct ifnet *);
177 
178 static int	ae_mii_readreg(device_t, int, int, uint16_t *);
179 static int	ae_mii_writereg(device_t, int, int, uint16_t);
180 
181 #ifdef AE_DEBUG
182 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
183 				printf x
184 #else
185 #define	DPRINTF(sc, x)	/* nothing */
186 #endif
187 
188 #ifdef AE_STATS
189 static void	ae_print_stats(struct ae_softc *);
190 #endif
191 
192 CFATTACH_DECL_NEW(ae, sizeof(struct ae_softc),
193     ae_match, ae_attach, ae_detach, ae_activate);
194 
195 /*
196  * ae_match:
197  *
198  *	Check for a device match.
199  */
200 int
ae_match(device_t parent,struct cfdata * cf,void * aux)201 ae_match(device_t parent, struct cfdata *cf, void *aux)
202 {
203 	struct arbus_attach_args *aa = aux;
204 
205 	if (strcmp(aa->aa_name, cf->cf_name) == 0)
206 		return 1;
207 
208 	return 0;
209 
210 }
211 
212 /*
213  * ae_attach:
214  *
215  *	Attach an ae interface to the system.
216  */
217 void
ae_attach(device_t parent,device_t self,void * aux)218 ae_attach(device_t parent, device_t self, void *aux)
219 {
220 	const uint8_t *enaddr;
221 	prop_data_t ea;
222 	struct ae_softc *sc = device_private(self);
223 	struct arbus_attach_args *aa = aux;
224 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
225 	struct mii_data * const mii = &sc->sc_mii;
226 	int i, error;
227 
228 	sc->sc_dev = self;
229 
230 	callout_init(&sc->sc_tick_callout, 0);
231 
232 	printf(": Atheros AR531X 10/100 Ethernet\n");
233 
234 	/*
235 	 * Try to get MAC address.
236 	 */
237 	ea = prop_dictionary_get(device_properties(sc->sc_dev), "mac-address");
238 	if (ea == NULL) {
239 		printf("%s: unable to get mac-addr property\n",
240 		    device_xname(sc->sc_dev));
241 		return;
242 	}
243 	KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
244 	KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
245 	enaddr = prop_data_data_nocopy(ea);
246 
247 	/* Announce ourselves. */
248 	printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
249 	    ether_sprintf(enaddr));
250 
251 	sc->sc_cirq = aa->aa_cirq;
252 	sc->sc_mirq = aa->aa_mirq;
253 	sc->sc_st = aa->aa_bst;
254 	sc->sc_dmat = aa->aa_dmat;
255 
256 	SIMPLEQ_INIT(&sc->sc_txfreeq);
257 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
258 
259 	/*
260 	 * Map registers.
261 	 */
262 	sc->sc_size = aa->aa_size;
263 	if ((error = bus_space_map(sc->sc_st, aa->aa_addr, sc->sc_size, 0,
264 	    &sc->sc_sh)) != 0) {
265 		printf("%s: unable to map registers, error = %d\n",
266 		    device_xname(sc->sc_dev), error);
267 		goto fail_0;
268 	}
269 
270 	/*
271 	 * Allocate the control data structures, and create and load the
272 	 * DMA map for it.
273 	 */
274 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
275 	    sizeof(struct ae_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
276 	    1, &sc->sc_cdnseg, 0)) != 0) {
277 		printf("%s: unable to allocate control data, error = %d\n",
278 		    device_xname(sc->sc_dev), error);
279 		goto fail_1;
280 	}
281 
282 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
283 	    sizeof(struct ae_control_data), (void **)&sc->sc_control_data,
284 	    BUS_DMA_COHERENT)) != 0) {
285 		printf("%s: unable to map control data, error = %d\n",
286 		    device_xname(sc->sc_dev), error);
287 		goto fail_2;
288 	}
289 
290 	if ((error = bus_dmamap_create(sc->sc_dmat,
291 	    sizeof(struct ae_control_data), 1,
292 	    sizeof(struct ae_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
293 		printf("%s: unable to create control data DMA map, "
294 		    "error = %d\n", device_xname(sc->sc_dev), error);
295 		goto fail_3;
296 	}
297 
298 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
299 	    sc->sc_control_data, sizeof(struct ae_control_data), NULL,
300 	    0)) != 0) {
301 		printf("%s: unable to load control data DMA map, error = %d\n",
302 		    device_xname(sc->sc_dev), error);
303 		goto fail_4;
304 	}
305 
306 	/*
307 	 * Create the transmit buffer DMA maps.
308 	 */
309 	for (i = 0; i < AE_TXQUEUELEN; i++) {
310 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
311 		    AE_NTXSEGS, MCLBYTES, 0, 0,
312 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
313 			printf("%s: unable to create tx DMA map %d, "
314 			    "error = %d\n", device_xname(sc->sc_dev), i, error);
315 			goto fail_5;
316 		}
317 	}
318 
319 	/*
320 	 * Create the receive buffer DMA maps.
321 	 */
322 	for (i = 0; i < AE_NRXDESC; i++) {
323 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
324 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
325 			printf("%s: unable to create rx DMA map %d, "
326 			    "error = %d\n", device_xname(sc->sc_dev), i, error);
327 			goto fail_6;
328 		}
329 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
330 	}
331 
332 	/*
333 	 * Reset the chip to a known state.
334 	 */
335 	ae_reset(sc);
336 
337 	/*
338 	 * From this point forward, the attachment cannot fail.  A failure
339 	 * before this point releases all resources that may have been
340 	 * allocated.
341 	 */
342 	sc->sc_flags |= AE_ATTACHED;
343 
344 	/*
345 	 * Initialize our media structures.  This may probe the MII, if
346 	 * present.
347 	 */
348 	mii->mii_ifp = ifp;
349 	mii->mii_readreg = ae_mii_readreg;
350 	mii->mii_writereg = ae_mii_writereg;
351 	mii->mii_statchg = ae_mii_statchg;
352 	sc->sc_ethercom.ec_mii = mii;
353 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
354 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
355 	    MII_OFFSET_ANY, 0);
356 
357 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
358 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
359 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
360 	} else
361 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
362 
363 	sc->sc_tick = ae_mii_tick;
364 
365 	strcpy(ifp->if_xname, device_xname(sc->sc_dev));
366 	ifp->if_softc = sc;
367 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
368 	sc->sc_if_flags = ifp->if_flags;
369 	ifp->if_ioctl = ae_ioctl;
370 	ifp->if_start = ae_start;
371 	ifp->if_watchdog = ae_watchdog;
372 	ifp->if_init = ae_init;
373 	ifp->if_stop = ae_stop;
374 	IFQ_SET_READY(&ifp->if_snd);
375 
376 	/*
377 	 * We can support 802.1Q VLAN-sized frames.
378 	 */
379 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
380 
381 	/*
382 	 * Attach the interface.
383 	 */
384 	if_attach(ifp);
385 	if_deferred_start_init(ifp, NULL);
386 	ether_ifattach(ifp, enaddr);
387 	ether_set_ifflags_cb(&sc->sc_ethercom, ae_ifflags_cb);
388 
389 	rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
390 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
391 
392 	/*
393 	 * Make sure the interface is shutdown during reboot.
394 	 */
395 	sc->sc_sdhook = shutdownhook_establish(ae_shutdown, sc);
396 	if (sc->sc_sdhook == NULL)
397 		printf("%s: WARNING: unable to establish shutdown hook\n",
398 		    device_xname(sc->sc_dev));
399 
400 	/*
401 	 * Add a suspend hook to make sure we come back up after a
402 	 * resume.
403 	 */
404 	sc->sc_powerhook = powerhook_establish(device_xname(sc->sc_dev),
405 	    ae_power, sc);
406 	if (sc->sc_powerhook == NULL)
407 		printf("%s: WARNING: unable to establish power hook\n",
408 		    device_xname(sc->sc_dev));
409 	return;
410 
411 	/*
412 	 * Free any resources we've allocated during the failed attach
413 	 * attempt.  Do this in reverse order and fall through.
414 	 */
415  fail_6:
416 	for (i = 0; i < AE_NRXDESC; i++) {
417 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
418 			bus_dmamap_destroy(sc->sc_dmat,
419 			    sc->sc_rxsoft[i].rxs_dmamap);
420 	}
421  fail_5:
422 	for (i = 0; i < AE_TXQUEUELEN; i++) {
423 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
424 			bus_dmamap_destroy(sc->sc_dmat,
425 			    sc->sc_txsoft[i].txs_dmamap);
426 	}
427 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
428  fail_4:
429 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
430  fail_3:
431 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
432 	    sizeof(struct ae_control_data));
433  fail_2:
434 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
435  fail_1:
436 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
437  fail_0:
438 	return;
439 }
440 
441 /*
442  * ae_activate:
443  *
444  *	Handle device activation/deactivation requests.
445  */
446 int
ae_activate(device_t self,enum devact act)447 ae_activate(device_t self, enum devact act)
448 {
449 	struct ae_softc *sc = device_private(self);
450 
451 	switch (act) {
452 	case DVACT_DEACTIVATE:
453 		if_deactivate(&sc->sc_ethercom.ec_if);
454 		return 0;
455 	default:
456 		return EOPNOTSUPP;
457 	}
458 }
459 
460 /*
461  * ae_detach:
462  *
463  *	Detach a device interface.
464  */
465 int
ae_detach(device_t self,int flags)466 ae_detach(device_t self, int flags)
467 {
468 	struct ae_softc *sc = device_private(self);
469 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
470 	struct ae_rxsoft *rxs;
471 	struct ae_txsoft *txs;
472 	int i;
473 
474 	/*
475 	 * Succeed now if there isn't any work to do.
476 	 */
477 	if ((sc->sc_flags & AE_ATTACHED) == 0)
478 		return (0);
479 
480 	/* Unhook our tick handler. */
481 	if (sc->sc_tick)
482 		callout_stop(&sc->sc_tick_callout);
483 
484 	/* Detach all PHYs */
485 	mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
486 
487 	rnd_detach_source(&sc->sc_rnd_source);
488 	ether_ifdetach(ifp);
489 	if_detach(ifp);
490 
491 	/* Delete all remaining media. */
492 	ifmedia_fini(&sc->sc_mii.mii_media);
493 
494 	for (i = 0; i < AE_NRXDESC; i++) {
495 		rxs = &sc->sc_rxsoft[i];
496 		if (rxs->rxs_mbuf != NULL) {
497 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
498 			m_freem(rxs->rxs_mbuf);
499 			rxs->rxs_mbuf = NULL;
500 		}
501 		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
502 	}
503 	for (i = 0; i < AE_TXQUEUELEN; i++) {
504 		txs = &sc->sc_txsoft[i];
505 		if (txs->txs_mbuf != NULL) {
506 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
507 			m_freem(txs->txs_mbuf);
508 			txs->txs_mbuf = NULL;
509 		}
510 		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
511 	}
512 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
513 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
514 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
515 	    sizeof(struct ae_control_data));
516 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
517 
518 	shutdownhook_disestablish(sc->sc_sdhook);
519 	powerhook_disestablish(sc->sc_powerhook);
520 
521 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
522 
523 
524 	return (0);
525 }
526 
527 /*
528  * ae_shutdown:
529  *
530  *	Make sure the interface is stopped at reboot time.
531  */
532 static void
ae_shutdown(void * arg)533 ae_shutdown(void *arg)
534 {
535 	struct ae_softc *sc = arg;
536 
537 	ae_stop(&sc->sc_ethercom.ec_if, 1);
538 }
539 
540 /*
541  * ae_start:		[ifnet interface function]
542  *
543  *	Start packet transmission on the interface.
544  */
545 static void
ae_start(struct ifnet * ifp)546 ae_start(struct ifnet *ifp)
547 {
548 	struct ae_softc *sc = ifp->if_softc;
549 	struct mbuf *m0, *m;
550 	struct ae_txsoft *txs;
551 	bus_dmamap_t dmamap;
552 	int error, firsttx, nexttx, lasttx = 1, ofree, seg;
553 
554 	DPRINTF(sc, ("%s: ae_start: sc_flags 0x%08x, if_flags 0x%08x\n",
555 	    device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags));
556 
557 
558 	if ((ifp->if_flags & IFF_RUNNING) == 0)
559 		return;
560 
561 	/*
562 	 * Remember the previous number of free descriptors and
563 	 * the first descriptor we'll use.
564 	 */
565 	ofree = sc->sc_txfree;
566 	firsttx = sc->sc_txnext;
567 
568 	DPRINTF(sc, ("%s: ae_start: txfree %d, txnext %d\n",
569 	    device_xname(sc->sc_dev), ofree, firsttx));
570 
571 	/*
572 	 * Loop through the send queue, setting up transmit descriptors
573 	 * until we drain the queue, or use up all available transmit
574 	 * descriptors.
575 	 */
576 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
577 	       sc->sc_txfree != 0) {
578 		/*
579 		 * Grab a packet off the queue.
580 		 */
581 		IFQ_POLL(&ifp->if_snd, m0);
582 		if (m0 == NULL)
583 			break;
584 		m = NULL;
585 
586 		dmamap = txs->txs_dmamap;
587 
588 		/*
589 		 * Load the DMA map.  If this fails, the packet either
590 		 * didn't fit in the allotted number of segments, or we were
591 		 * short on resources.  In this case, we'll copy and try
592 		 * again.
593 		 */
594 		if (((mtod(m0, uintptr_t) & 3) != 0) ||
595 		    bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
596 		      BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
597 			MGETHDR(m, M_DONTWAIT, MT_DATA);
598 			if (m == NULL) {
599 				printf("%s: unable to allocate Tx mbuf\n",
600 				    device_xname(sc->sc_dev));
601 				break;
602 			}
603 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
604 			if (m0->m_pkthdr.len > MHLEN) {
605 				MCLGET(m, M_DONTWAIT);
606 				if ((m->m_flags & M_EXT) == 0) {
607 					printf("%s: unable to allocate Tx "
608 					    "cluster\n", device_xname(sc->sc_dev));
609 					m_freem(m);
610 					break;
611 				}
612 			}
613 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
614 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
615 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
616 			    m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
617 			if (error) {
618 				printf("%s: unable to load Tx buffer, "
619 				    "error = %d\n", device_xname(sc->sc_dev),
620 				    error);
621 				break;
622 			}
623 		}
624 
625 		/*
626 		 * Ensure we have enough descriptors free to describe
627 		 * the packet.
628 		 */
629 		if (dmamap->dm_nsegs > sc->sc_txfree) {
630 			/*
631 			 * Not enough free descriptors to transmit this
632 			 * packet.  We haven't committed to anything yet,
633 			 * so just unload the DMA map, put the packet
634 			 * back on the queue, and punt.  Notify the upper
635 			 * layer that there are no more slots left.
636 			 *
637 			 * XXX We could allocate an mbuf and copy, but
638 			 * XXX it is worth it?
639 			 */
640 			bus_dmamap_unload(sc->sc_dmat, dmamap);
641 			m_freem(m);
642 			break;
643 		}
644 
645 		IFQ_DEQUEUE(&ifp->if_snd, m0);
646 		if (m != NULL) {
647 			m_freem(m0);
648 			m0 = m;
649 		}
650 
651 		/*
652 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
653 		 */
654 
655 		/* Sync the DMA map. */
656 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
657 		    BUS_DMASYNC_PREWRITE);
658 
659 		/*
660 		 * Initialize the transmit descriptors.
661 		 */
662 		for (nexttx = sc->sc_txnext, seg = 0;
663 		     seg < dmamap->dm_nsegs;
664 		     seg++, nexttx = AE_NEXTTX(nexttx)) {
665 			/*
666 			 * If this is the first descriptor we're
667 			 * enqueueing, don't set the OWN bit just
668 			 * yet.  That could cause a race condition.
669 			 * We'll do it below.
670 			 */
671 			sc->sc_txdescs[nexttx].ad_status =
672 			    (nexttx == firsttx) ? 0 : ADSTAT_OWN;
673 			sc->sc_txdescs[nexttx].ad_bufaddr1 =
674 			    dmamap->dm_segs[seg].ds_addr;
675 			sc->sc_txdescs[nexttx].ad_ctl =
676 			    (dmamap->dm_segs[seg].ds_len <<
677 				ADCTL_SIZE1_SHIFT) |
678 				(nexttx == (AE_NTXDESC - 1) ?
679 				    ADCTL_ER : 0);
680 			lasttx = nexttx;
681 		}
682 
683 		KASSERT(lasttx != -1);
684 
685 		/* Set `first segment' and `last segment' appropriately. */
686 		sc->sc_txdescs[sc->sc_txnext].ad_ctl |= ADCTL_Tx_FS;
687 		sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_LS;
688 
689 #ifdef AE_DEBUG
690 		if (ifp->if_flags & IFF_DEBUG) {
691 			printf("     txsoft %p transmit chain:\n", txs);
692 			for (seg = sc->sc_txnext;; seg = AE_NEXTTX(seg)) {
693 				printf("     descriptor %d:\n", seg);
694 				printf("       ad_status:   0x%08x\n",
695 				    sc->sc_txdescs[seg].ad_status);
696 				printf("       ad_ctl:      0x%08x\n",
697 				    sc->sc_txdescs[seg].ad_ctl);
698 				printf("       ad_bufaddr1: 0x%08x\n",
699 				    sc->sc_txdescs[seg].ad_bufaddr1);
700 				printf("       ad_bufaddr2: 0x%08x\n",
701 				    sc->sc_txdescs[seg].ad_bufaddr2);
702 				if (seg == lasttx)
703 					break;
704 			}
705 		}
706 #endif
707 
708 		/* Sync the descriptors we're using. */
709 		AE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
710 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
711 
712 		/*
713 		 * Store a pointer to the packet so we can free it later,
714 		 * and remember what txdirty will be once the packet is
715 		 * done.
716 		 */
717 		txs->txs_mbuf = m0;
718 		txs->txs_firstdesc = sc->sc_txnext;
719 		txs->txs_lastdesc = lasttx;
720 		txs->txs_ndescs = dmamap->dm_nsegs;
721 
722 		/* Advance the tx pointer. */
723 		sc->sc_txfree -= dmamap->dm_nsegs;
724 		sc->sc_txnext = nexttx;
725 
726 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
727 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
728 
729 		/*
730 		 * Pass the packet to any BPF listeners.
731 		 */
732 		bpf_mtap(ifp, m0, BPF_D_OUT);
733 	}
734 
735 	if (sc->sc_txfree != ofree) {
736 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
737 		    device_xname(sc->sc_dev), lasttx, firsttx));
738 		/*
739 		 * Cause a transmit interrupt to happen on the
740 		 * last packet we enqueued.
741 		 */
742 		sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_IC;
743 		AE_CDTXSYNC(sc, lasttx, 1,
744 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
745 
746 		/*
747 		 * The entire packet chain is set up.  Give the
748 		 * first descriptor to the chip now.
749 		 */
750 		sc->sc_txdescs[firsttx].ad_status |= ADSTAT_OWN;
751 		AE_CDTXSYNC(sc, firsttx, 1,
752 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
753 
754 		/* Wake up the transmitter. */
755 		/* XXX USE AUTOPOLLING? */
756 		AE_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD);
757 		AE_BARRIER(sc);
758 
759 		/* Set a watchdog timer in case the chip flakes out. */
760 		ifp->if_timer = 5;
761 	}
762 }
763 
764 /*
765  * ae_watchdog:	[ifnet interface function]
766  *
767  *	Watchdog timer handler.
768  */
769 static void
ae_watchdog(struct ifnet * ifp)770 ae_watchdog(struct ifnet *ifp)
771 {
772 	struct ae_softc *sc = ifp->if_softc;
773 	int doing_transmit;
774 
775 	doing_transmit = (! SIMPLEQ_EMPTY(&sc->sc_txdirtyq));
776 
777 	if (doing_transmit) {
778 		printf("%s: transmit timeout\n", device_xname(sc->sc_dev));
779 		if_statinc(ifp, if_oerrors);
780 	}
781 	else
782 		printf("%s: spurious watchdog timeout\n", device_xname(sc->sc_dev));
783 
784 	(void) ae_init(ifp);
785 
786 	/* Try to get more packets going. */
787 	ae_start(ifp);
788 }
789 
790 /* If the interface is up and running, only modify the receive
791  * filter when changing to/from promiscuous mode.  Otherwise return
792  * ENETRESET so that ether_ioctl will reset the chip.
793  */
794 static int
ae_ifflags_cb(struct ethercom * ec)795 ae_ifflags_cb(struct ethercom *ec)
796 {
797 	struct ifnet *ifp = &ec->ec_if;
798 	struct ae_softc *sc = ifp->if_softc;
799 	u_short change = ifp->if_flags ^ sc->sc_if_flags;
800 
801 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
802 		return ENETRESET;
803 	else if ((change & IFF_PROMISC) != 0)
804 		ae_filter_setup(sc);
805 	return 0;
806 }
807 
808 /*
809  * ae_ioctl:		[ifnet interface function]
810  *
811  *	Handle control requests from the operator.
812  */
813 static int
ae_ioctl(struct ifnet * ifp,u_long cmd,void * data)814 ae_ioctl(struct ifnet *ifp, u_long cmd, void *data)
815 {
816 	struct ae_softc *sc = ifp->if_softc;
817 	int s, error;
818 
819 	s = splnet();
820 
821 	error = ether_ioctl(ifp, cmd, data);
822 	if (error == ENETRESET) {
823 		if (ifp->if_flags & IFF_RUNNING) {
824 			/*
825 			 * Multicast list has changed.  Set the
826 			 * hardware filter accordingly.
827 			 */
828 			ae_filter_setup(sc);
829 		}
830 		error = 0;
831 	}
832 
833 	/* Try to get more packets going. */
834 	if (AE_IS_ENABLED(sc))
835 		ae_start(ifp);
836 
837 	sc->sc_if_flags = ifp->if_flags;
838 	splx(s);
839 	return (error);
840 }
841 
842 /*
843  * ae_intr:
844  *
845  *	Interrupt service routine.
846  */
847 int
ae_intr(void * arg)848 ae_intr(void *arg)
849 {
850 	struct ae_softc *sc = arg;
851 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
852 	uint32_t status, rxstatus, txstatus;
853 	int handled = 0, txthresh;
854 
855 	DPRINTF(sc, ("%s: ae_intr\n", device_xname(sc->sc_dev)));
856 
857 #ifdef DEBUG
858 	if (AE_IS_ENABLED(sc) == 0)
859 		panic("%s: ae_intr: not enabled", device_xname(sc->sc_dev));
860 #endif
861 
862 	/*
863 	 * If the interface isn't running, the interrupt couldn't
864 	 * possibly have come from us.
865 	 */
866 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
867 	    !device_is_active(sc->sc_dev)) {
868 		printf("spurious?!?\n");
869 		return (0);
870 	}
871 
872 	for (;;) {
873 		status = AE_READ(sc, CSR_STATUS);
874 		if (status) {
875 			AE_WRITE(sc, CSR_STATUS, status);
876 			AE_BARRIER(sc);
877 		}
878 
879 		if ((status & sc->sc_inten) == 0)
880 			break;
881 
882 		handled = 1;
883 
884 		rxstatus = status & sc->sc_rxint_mask;
885 		txstatus = status & sc->sc_txint_mask;
886 
887 		if (rxstatus) {
888 			/* Grab new any new packets. */
889 			ae_rxintr(sc);
890 
891 			if (rxstatus & STATUS_RU) {
892 				printf("%s: receive ring overrun\n",
893 				    device_xname(sc->sc_dev));
894 				/* Get the receive process going again. */
895 				AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
896 				AE_BARRIER(sc);
897 				break;
898 			}
899 		}
900 
901 		if (txstatus) {
902 			/* Sweep up transmit descriptors. */
903 			ae_txintr(sc);
904 
905 			if (txstatus & STATUS_TJT)
906 				printf("%s: transmit jabber timeout\n",
907 				    device_xname(sc->sc_dev));
908 
909 			if (txstatus & STATUS_UNF) {
910 				/*
911 				 * Increase our transmit threshold if
912 				 * another is available.
913 				 */
914 				txthresh = sc->sc_txthresh + 1;
915 				if (ae_txthresh[txthresh].txth_name != NULL) {
916 					uint32_t opmode;
917 					/* Idle the transmit process. */
918 					opmode = AE_READ(sc, CSR_OPMODE);
919 					ae_idle(sc, OPMODE_ST);
920 
921 					sc->sc_txthresh = txthresh;
922 					opmode &= ~(OPMODE_TR | OPMODE_SF);
923 					opmode |=
924 					    ae_txthresh[txthresh].txth_opmode;
925 					printf("%s: transmit underrun; new "
926 					    "threshold: %s\n",
927 					    device_xname(sc->sc_dev),
928 					    ae_txthresh[txthresh].txth_name);
929 
930 					/*
931 					 * Set the new threshold and restart
932 					 * the transmit process.
933 					 */
934 					AE_WRITE(sc, CSR_OPMODE, opmode);
935 					AE_BARRIER(sc);
936 				}
937 					/*
938 					 * XXX Log every Nth underrun from
939 					 * XXX now on?
940 					 */
941 			}
942 		}
943 
944 		if (status & (STATUS_TPS | STATUS_RPS)) {
945 			if (status & STATUS_TPS)
946 				printf("%s: transmit process stopped\n",
947 				    device_xname(sc->sc_dev));
948 			if (status & STATUS_RPS)
949 				printf("%s: receive process stopped\n",
950 				    device_xname(sc->sc_dev));
951 			(void) ae_init(ifp);
952 			break;
953 		}
954 
955 		if (status & STATUS_SE) {
956 			const char *str;
957 
958 			if (status & STATUS_TX_ABORT)
959 				str = "tx abort";
960 			else if (status & STATUS_RX_ABORT)
961 				str = "rx abort";
962 			else
963 				str = "unknown error";
964 
965 			printf("%s: fatal system error: %s\n",
966 			    device_xname(sc->sc_dev), str);
967 			(void) ae_init(ifp);
968 			break;
969 		}
970 
971 		/*
972 		 * Not handled:
973 		 *
974 		 *	Transmit buffer unavailable -- normal
975 		 *	condition, nothing to do, really.
976 		 *
977 		 *	General purpose timer experied -- we don't
978 		 *	use the general purpose timer.
979 		 *
980 		 *	Early receive interrupt -- not available on
981 		 *	all chips, we just use RI.  We also only
982 		 *	use single-segment receive DMA, so this
983 		 *	is mostly useless.
984 		 */
985 	}
986 
987 	/* Try to get more packets going. */
988 	if_schedule_deferred_start(ifp);
989 
990 	if (handled)
991 		rnd_add_uint32(&sc->sc_rnd_source, status);
992 	return (handled);
993 }
994 
995 /*
996  * ae_rxintr:
997  *
998  *	Helper; handle receive interrupts.
999  */
1000 static void
ae_rxintr(struct ae_softc * sc)1001 ae_rxintr(struct ae_softc *sc)
1002 {
1003 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1004 	struct ae_rxsoft *rxs;
1005 	struct mbuf *m;
1006 	uint32_t rxstat;
1007 	int i, len;
1008 
1009 	for (i = sc->sc_rxptr;; i = AE_NEXTRX(i)) {
1010 		rxs = &sc->sc_rxsoft[i];
1011 
1012 		AE_CDRXSYNC(sc, i,
1013 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1014 
1015 		rxstat = sc->sc_rxdescs[i].ad_status;
1016 
1017 		if (rxstat & ADSTAT_OWN) {
1018 			/*
1019 			 * We have processed all of the receive buffers.
1020 			 */
1021 			break;
1022 		}
1023 
1024 		/*
1025 		 * If any collisions were seen on the wire, count one.
1026 		 */
1027 		if (rxstat & ADSTAT_Rx_CS)
1028 			if_statinc(ifp, if_collisions);
1029 
1030 		/*
1031 		 * If an error occurred, update stats, clear the status
1032 		 * word, and leave the packet buffer in place.  It will
1033 		 * simply be reused the next time the ring comes around.
1034 	 	 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
1035 		 * error.
1036 		 */
1037 		if (rxstat & ADSTAT_ES &&
1038 		    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
1039 		     (rxstat & (ADSTAT_Rx_DE | ADSTAT_Rx_RF |
1040 				ADSTAT_Rx_DB | ADSTAT_Rx_CE)) != 0)) {
1041 #define	PRINTERR(bit, str)						\
1042 			if (rxstat & (bit))				\
1043 				printf("%s: receive error: %s\n",	\
1044 				    device_xname(sc->sc_dev), str)
1045 			if_statinc(ifp, if_ierrors);
1046 			PRINTERR(ADSTAT_Rx_DE, "descriptor error");
1047 			PRINTERR(ADSTAT_Rx_RF, "runt frame");
1048 			PRINTERR(ADSTAT_Rx_TL, "frame too long");
1049 			PRINTERR(ADSTAT_Rx_RE, "MII error");
1050 			PRINTERR(ADSTAT_Rx_DB, "dribbling bit");
1051 			PRINTERR(ADSTAT_Rx_CE, "CRC error");
1052 #undef PRINTERR
1053 			AE_INIT_RXDESC(sc, i);
1054 			continue;
1055 		}
1056 
1057 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1058 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1059 
1060 		/*
1061 		 * No errors; receive the packet.  Note the chip
1062 		 * includes the CRC with every packet.
1063 		 */
1064 		len = ADSTAT_Rx_LENGTH(rxstat) - ETHER_CRC_LEN;
1065 
1066 		/*
1067 		 * XXX: the Atheros part can align on half words.  what
1068 		 * is the performance implication of this?  Probably
1069 		 * minimal, and we should use it...
1070 		 */
1071 #ifdef __NO_STRICT_ALIGNMENT
1072 		/*
1073 		 * Allocate a new mbuf cluster.  If that fails, we are
1074 		 * out of memory, and must drop the packet and recycle
1075 		 * the buffer that's already attached to this descriptor.
1076 		 */
1077 		m = rxs->rxs_mbuf;
1078 		if (ae_add_rxbuf(sc, i) != 0) {
1079 			if_statinc(ifp, if_ierrors);
1080 			AE_INIT_RXDESC(sc, i);
1081 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1082 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1083 			continue;
1084 		}
1085 #else
1086 		/*
1087 		 * The chip's receive buffers must be 4-byte aligned.
1088 		 * But this means that the data after the Ethernet header
1089 		 * is misaligned.  We must allocate a new buffer and
1090 		 * copy the data, shifted forward 2 bytes.
1091 		 */
1092 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1093 		if (m == NULL) {
1094  dropit:
1095 			if_statinc(ifp, if_ierrors);
1096 			AE_INIT_RXDESC(sc, i);
1097 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1098 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1099 			continue;
1100 		}
1101 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1102 		if (len > (MHLEN - 2)) {
1103 			MCLGET(m, M_DONTWAIT);
1104 			if ((m->m_flags & M_EXT) == 0) {
1105 				m_freem(m);
1106 				goto dropit;
1107 			}
1108 		}
1109 		m->m_data += 2;
1110 
1111 		/*
1112 		 * Note that we use clusters for incoming frames, so the
1113 		 * buffer is virtually contiguous.
1114 		 */
1115 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
1116 
1117 		/* Allow the receive descriptor to continue using its mbuf. */
1118 		AE_INIT_RXDESC(sc, i);
1119 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1120 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1121 #endif /* __NO_STRICT_ALIGNMENT */
1122 
1123 		m_set_rcvif(m, ifp);
1124 		m->m_pkthdr.len = m->m_len = len;
1125 
1126 		/* Pass it on. */
1127 		if_percpuq_enqueue(ifp->if_percpuq, m);
1128 	}
1129 
1130 	/* Update the receive pointer. */
1131 	sc->sc_rxptr = i;
1132 }
1133 
1134 /*
1135  * ae_txintr:
1136  *
1137  *	Helper; handle transmit interrupts.
1138  */
1139 static void
ae_txintr(struct ae_softc * sc)1140 ae_txintr(struct ae_softc *sc)
1141 {
1142 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1143 	struct ae_txsoft *txs;
1144 	uint32_t txstat;
1145 
1146 	DPRINTF(sc, ("%s: ae_txintr: sc_flags 0x%08x\n",
1147 	    device_xname(sc->sc_dev), sc->sc_flags));
1148 
1149 	/*
1150 	 * Go through our Tx list and free mbufs for those
1151 	 * frames that have been transmitted.
1152 	 */
1153 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1154 		AE_CDTXSYNC(sc, txs->txs_lastdesc,
1155 		    txs->txs_ndescs,
1156 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1157 
1158 #ifdef AE_DEBUG
1159 		if (ifp->if_flags & IFF_DEBUG) {
1160 			int i;
1161 			printf("    txsoft %p transmit chain:\n", txs);
1162 			for (i = txs->txs_firstdesc;; i = AE_NEXTTX(i)) {
1163 				printf("     descriptor %d:\n", i);
1164 				printf("       ad_status:   0x%08x\n",
1165 				    sc->sc_txdescs[i].ad_status);
1166 				printf("       ad_ctl:      0x%08x\n",
1167 				    sc->sc_txdescs[i].ad_ctl);
1168 				printf("       ad_bufaddr1: 0x%08x\n",
1169 				    sc->sc_txdescs[i].ad_bufaddr1);
1170 				printf("       ad_bufaddr2: 0x%08x\n",
1171 				    sc->sc_txdescs[i].ad_bufaddr2);
1172 				if (i == txs->txs_lastdesc)
1173 					break;
1174 			}
1175 		}
1176 #endif
1177 
1178 		txstat = sc->sc_txdescs[txs->txs_lastdesc].ad_status;
1179 		if (txstat & ADSTAT_OWN)
1180 			break;
1181 
1182 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1183 
1184 		sc->sc_txfree += txs->txs_ndescs;
1185 
1186 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1187 		    0, txs->txs_dmamap->dm_mapsize,
1188 		    BUS_DMASYNC_POSTWRITE);
1189 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1190 		m_freem(txs->txs_mbuf);
1191 		txs->txs_mbuf = NULL;
1192 
1193 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1194 
1195 		/*
1196 		 * Check for errors and collisions.
1197 		 */
1198 #ifdef AE_STATS
1199 		if (txstat & ADSTAT_Tx_UF)
1200 			sc->sc_stats.ts_tx_uf++;
1201 		if (txstat & ADSTAT_Tx_TO)
1202 			sc->sc_stats.ts_tx_to++;
1203 		if (txstat & ADSTAT_Tx_EC)
1204 			sc->sc_stats.ts_tx_ec++;
1205 		if (txstat & ADSTAT_Tx_LC)
1206 			sc->sc_stats.ts_tx_lc++;
1207 #endif
1208 
1209 		net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1210 		if (txstat & (ADSTAT_Tx_UF | ADSTAT_Tx_TO))
1211 			if_statinc_ref(ifp, nsr, if_oerrors);
1212 
1213 		if (txstat & ADSTAT_Tx_EC)
1214 			if_statadd_ref(ifp, nsr, if_collisions, 16);
1215 		else if (ADSTAT_Tx_COLLISIONS(txstat))
1216 			if_statadd_ref(ifp, nsr, if_collisions,
1217 			    ADSTAT_Tx_COLLISIONS(txstat));
1218 		if (txstat & ADSTAT_Tx_LC)
1219 			if_statinc_ref(ifp, nsr, if_collisions);
1220 
1221 		if_statinc_ref(ifp, nsr, if_opackets);
1222 		IF_STAT_PUTREF(ifp);
1223 	}
1224 
1225 	/*
1226 	 * If there are no more pending transmissions, cancel the watchdog
1227 	 * timer.
1228 	 */
1229 	if (txs == NULL)
1230 		ifp->if_timer = 0;
1231 }
1232 
1233 #ifdef AE_STATS
1234 void
ae_print_stats(struct ae_softc * sc)1235 ae_print_stats(struct ae_softc *sc)
1236 {
1237 
1238 	printf("%s: tx_uf %lu, tx_to %lu, tx_ec %lu, tx_lc %lu\n",
1239 	    device_xname(sc->sc_dev),
1240 	    sc->sc_stats.ts_tx_uf, sc->sc_stats.ts_tx_to,
1241 	    sc->sc_stats.ts_tx_ec, sc->sc_stats.ts_tx_lc);
1242 }
1243 #endif
1244 
1245 /*
1246  * ae_reset:
1247  *
1248  *	Perform a soft reset on the chip.
1249  */
1250 void
ae_reset(struct ae_softc * sc)1251 ae_reset(struct ae_softc *sc)
1252 {
1253 	int i;
1254 
1255 	AE_WRITE(sc, CSR_BUSMODE, BUSMODE_SWR);
1256 	AE_BARRIER(sc);
1257 
1258 	/*
1259 	 * The chip doesn't take itself out of reset automatically.
1260 	 * We need to do so after 2us.
1261 	 */
1262 	delay(10);
1263 	AE_WRITE(sc, CSR_BUSMODE, 0);
1264 	AE_BARRIER(sc);
1265 
1266 	for (i = 0; i < 1000; i++) {
1267 		/*
1268 		 * Wait a bit for the reset to complete before peeking
1269 		 * at the chip again.
1270 		 */
1271 		delay(10);
1272 		if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR) == 0)
1273 			break;
1274 	}
1275 
1276 	if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR))
1277 		printf("%s: reset failed to complete\n", device_xname(sc->sc_dev));
1278 
1279 	delay(1000);
1280 }
1281 
1282 /*
1283  * ae_init:		[ ifnet interface function ]
1284  *
1285  *	Initialize the interface.  Must be called at splnet().
1286  */
1287 static int
ae_init(struct ifnet * ifp)1288 ae_init(struct ifnet *ifp)
1289 {
1290 	struct ae_softc *sc = ifp->if_softc;
1291 	struct ae_txsoft *txs;
1292 	struct ae_rxsoft *rxs;
1293 	const uint8_t *enaddr;
1294 	int i, error = 0;
1295 
1296 	if ((error = ae_enable(sc)) != 0)
1297 		goto out;
1298 
1299 	/*
1300 	 * Cancel any pending I/O.
1301 	 */
1302 	ae_stop(ifp, 0);
1303 
1304 	/*
1305 	 * Reset the chip to a known state.
1306 	 */
1307 	ae_reset(sc);
1308 
1309 	/*
1310 	 * Initialize the BUSMODE register.
1311 	 */
1312 	AE_WRITE(sc, CSR_BUSMODE,
1313 	    /* XXX: not sure if this is a good thing or not... */
1314 	    //BUSMODE_ALIGN_16B |
1315 	    BUSMODE_BAR | BUSMODE_BLE | BUSMODE_PBL_4LW);
1316 	AE_BARRIER(sc);
1317 
1318 	/*
1319 	 * Initialize the transmit descriptor ring.
1320 	 */
1321 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1322 	for (i = 0; i < AE_NTXDESC; i++) {
1323 		sc->sc_txdescs[i].ad_ctl = 0;
1324 		sc->sc_txdescs[i].ad_bufaddr2 =
1325 		    AE_CDTXADDR(sc, AE_NEXTTX(i));
1326 	}
1327 	sc->sc_txdescs[AE_NTXDESC - 1].ad_ctl |= ADCTL_ER;
1328 	AE_CDTXSYNC(sc, 0, AE_NTXDESC,
1329 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1330 	sc->sc_txfree = AE_NTXDESC;
1331 	sc->sc_txnext = 0;
1332 
1333 	/*
1334 	 * Initialize the transmit job descriptors.
1335 	 */
1336 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1337 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1338 	for (i = 0; i < AE_TXQUEUELEN; i++) {
1339 		txs = &sc->sc_txsoft[i];
1340 		txs->txs_mbuf = NULL;
1341 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1342 	}
1343 
1344 	/*
1345 	 * Initialize the receive descriptor and receive job
1346 	 * descriptor rings.
1347 	 */
1348 	for (i = 0; i < AE_NRXDESC; i++) {
1349 		rxs = &sc->sc_rxsoft[i];
1350 		if (rxs->rxs_mbuf == NULL) {
1351 			if ((error = ae_add_rxbuf(sc, i)) != 0) {
1352 				printf("%s: unable to allocate or map rx "
1353 				    "buffer %d, error = %d\n",
1354 				    device_xname(sc->sc_dev), i, error);
1355 				/*
1356 				 * XXX Should attempt to run with fewer receive
1357 				 * XXX buffers instead of just failing.
1358 				 */
1359 				ae_rxdrain(sc);
1360 				goto out;
1361 			}
1362 		} else
1363 			AE_INIT_RXDESC(sc, i);
1364 	}
1365 	sc->sc_rxptr = 0;
1366 
1367 	/*
1368 	 * Initialize the interrupt mask and enable interrupts.
1369 	 */
1370 	/* normal interrupts */
1371 	sc->sc_inten = STATUS_TI | STATUS_TU | STATUS_RI | STATUS_NIS;
1372 
1373 	/* abnormal interrupts */
1374 	sc->sc_inten |= STATUS_TPS | STATUS_TJT | STATUS_UNF |
1375 	    STATUS_RU | STATUS_RPS | STATUS_SE | STATUS_AIS;
1376 
1377 	sc->sc_rxint_mask = STATUS_RI | STATUS_RU;
1378 	sc->sc_txint_mask = STATUS_TI | STATUS_UNF | STATUS_TJT;
1379 
1380 	sc->sc_rxint_mask &= sc->sc_inten;
1381 	sc->sc_txint_mask &= sc->sc_inten;
1382 
1383 	AE_WRITE(sc, CSR_INTEN, sc->sc_inten);
1384 	AE_WRITE(sc, CSR_STATUS, 0xffffffff);
1385 
1386 	/*
1387 	 * Give the transmit and receive rings to the chip.
1388 	 */
1389 	AE_WRITE(sc, CSR_TXLIST, AE_CDTXADDR(sc, sc->sc_txnext));
1390 	AE_WRITE(sc, CSR_RXLIST, AE_CDRXADDR(sc, sc->sc_rxptr));
1391 	AE_BARRIER(sc);
1392 
1393 	/*
1394 	 * Set the station address.
1395 	 */
1396 	enaddr = CLLADDR(ifp->if_sadl);
1397 	AE_WRITE(sc, CSR_MACHI, enaddr[5] << 16 | enaddr[4]);
1398 	AE_WRITE(sc, CSR_MACLO, enaddr[3] << 24 | enaddr[2] << 16 |
1399 		enaddr[1] << 8 | enaddr[0]);
1400 	AE_BARRIER(sc);
1401 
1402 	/*
1403 	 * Set the receive filter.  This will start the transmit and
1404 	 * receive processes.
1405 	 */
1406 	ae_filter_setup(sc);
1407 
1408 	/*
1409 	 * Set the current media.
1410 	 */
1411 	if ((error = ether_mediachange(ifp)) != 0)
1412 		goto out;
1413 
1414 	/*
1415 	 * Start the mac.
1416 	 */
1417 	AE_SET(sc, CSR_MACCTL, MACCTL_RE | MACCTL_TE);
1418 	AE_BARRIER(sc);
1419 
1420 	/*
1421 	 * Write out the opmode.
1422 	 */
1423 	AE_WRITE(sc, CSR_OPMODE, OPMODE_SR | OPMODE_ST |
1424 	    ae_txthresh[sc->sc_txthresh].txth_opmode);
1425 	/*
1426 	 * Start the receive process.
1427 	 */
1428 	AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
1429 	AE_BARRIER(sc);
1430 
1431 	if (sc->sc_tick != NULL) {
1432 		/* Start the one second clock. */
1433 		callout_reset(&sc->sc_tick_callout, hz >> 3, sc->sc_tick, sc);
1434 	}
1435 
1436 	/*
1437 	 * Note that the interface is now running.
1438 	 */
1439 	ifp->if_flags |= IFF_RUNNING;
1440 	sc->sc_if_flags = ifp->if_flags;
1441 
1442  out:
1443 	if (error) {
1444 		ifp->if_flags &= ~IFF_RUNNING;
1445 		ifp->if_timer = 0;
1446 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
1447 	}
1448 	return (error);
1449 }
1450 
1451 /*
1452  * ae_enable:
1453  *
1454  *	Enable the chip.
1455  */
1456 static int
ae_enable(struct ae_softc * sc)1457 ae_enable(struct ae_softc *sc)
1458 {
1459 
1460 	if (AE_IS_ENABLED(sc) == 0) {
1461 		sc->sc_ih = arbus_intr_establish(sc->sc_cirq, sc->sc_mirq,
1462 		    ae_intr, sc);
1463 		if (sc->sc_ih == NULL) {
1464 			printf("%s: unable to establish interrupt\n",
1465 			    device_xname(sc->sc_dev));
1466 			return (EIO);
1467 		}
1468 		sc->sc_flags |= AE_ENABLED;
1469 	}
1470 	return (0);
1471 }
1472 
1473 /*
1474  * ae_disable:
1475  *
1476  *	Disable the chip.
1477  */
1478 static void
ae_disable(struct ae_softc * sc)1479 ae_disable(struct ae_softc *sc)
1480 {
1481 
1482 	if (AE_IS_ENABLED(sc)) {
1483 		arbus_intr_disestablish(sc->sc_ih);
1484 		sc->sc_flags &= ~AE_ENABLED;
1485 	}
1486 }
1487 
1488 /*
1489  * ae_power:
1490  *
1491  *	Power management (suspend/resume) hook.
1492  */
1493 static void
ae_power(int why,void * arg)1494 ae_power(int why, void *arg)
1495 {
1496 	struct ae_softc *sc = arg;
1497 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1498 	int s;
1499 
1500 	printf("power called: %d, %x\n", why, (uint32_t)arg);
1501 	s = splnet();
1502 	switch (why) {
1503 	case PWR_STANDBY:
1504 		/* do nothing! */
1505 		break;
1506 	case PWR_SUSPEND:
1507 		ae_stop(ifp, 0);
1508 		ae_disable(sc);
1509 		break;
1510 	case PWR_RESUME:
1511 		if (ifp->if_flags & IFF_UP) {
1512 			ae_enable(sc);
1513 			ae_init(ifp);
1514 		}
1515 		break;
1516 	case PWR_SOFTSUSPEND:
1517 	case PWR_SOFTSTANDBY:
1518 	case PWR_SOFTRESUME:
1519 		break;
1520 	}
1521 	splx(s);
1522 }
1523 
1524 /*
1525  * ae_rxdrain:
1526  *
1527  *	Drain the receive queue.
1528  */
1529 static void
ae_rxdrain(struct ae_softc * sc)1530 ae_rxdrain(struct ae_softc *sc)
1531 {
1532 	struct ae_rxsoft *rxs;
1533 	int i;
1534 
1535 	for (i = 0; i < AE_NRXDESC; i++) {
1536 		rxs = &sc->sc_rxsoft[i];
1537 		if (rxs->rxs_mbuf != NULL) {
1538 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1539 			m_freem(rxs->rxs_mbuf);
1540 			rxs->rxs_mbuf = NULL;
1541 		}
1542 	}
1543 }
1544 
1545 /*
1546  * ae_stop:		[ ifnet interface function ]
1547  *
1548  *	Stop transmission on the interface.
1549  */
1550 static void
ae_stop(struct ifnet * ifp,int disable)1551 ae_stop(struct ifnet *ifp, int disable)
1552 {
1553 	struct ae_softc *sc = ifp->if_softc;
1554 	struct ae_txsoft *txs;
1555 
1556 	if (sc->sc_tick != NULL) {
1557 		/* Stop the one second clock. */
1558 		callout_stop(&sc->sc_tick_callout);
1559 	}
1560 
1561 	/* Down the MII. */
1562 	mii_down(&sc->sc_mii);
1563 
1564 	/* Disable interrupts. */
1565 	AE_WRITE(sc, CSR_INTEN, 0);
1566 
1567 	/* Stop the transmit and receive processes. */
1568 	AE_WRITE(sc, CSR_OPMODE, 0);
1569 	AE_WRITE(sc, CSR_RXLIST, 0);
1570 	AE_WRITE(sc, CSR_TXLIST, 0);
1571 	AE_CLR(sc, CSR_MACCTL, MACCTL_TE | MACCTL_RE);
1572 	AE_BARRIER(sc);
1573 
1574 	/*
1575 	 * Release any queued transmit buffers.
1576 	 */
1577 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1578 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1579 		if (txs->txs_mbuf != NULL) {
1580 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1581 			m_freem(txs->txs_mbuf);
1582 			txs->txs_mbuf = NULL;
1583 		}
1584 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1585 	}
1586 
1587 	/*
1588 	 * Mark the interface down and cancel the watchdog timer.
1589 	 */
1590 	ifp->if_flags &= ~IFF_RUNNING;
1591 	sc->sc_if_flags = ifp->if_flags;
1592 	ifp->if_timer = 0;
1593 
1594 	if (disable) {
1595 		ae_rxdrain(sc);
1596 		ae_disable(sc);
1597 	}
1598 
1599 	/*
1600 	 * Reset the chip (needed on some flavors to actually disable it).
1601 	 */
1602 	ae_reset(sc);
1603 }
1604 
1605 /*
1606  * ae_add_rxbuf:
1607  *
1608  *	Add a receive buffer to the indicated descriptor.
1609  */
1610 static int
ae_add_rxbuf(struct ae_softc * sc,int idx)1611 ae_add_rxbuf(struct ae_softc *sc, int idx)
1612 {
1613 	struct ae_rxsoft *rxs = &sc->sc_rxsoft[idx];
1614 	struct mbuf *m;
1615 	int error;
1616 
1617 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1618 	if (m == NULL)
1619 		return (ENOBUFS);
1620 
1621 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1622 	MCLGET(m, M_DONTWAIT);
1623 	if ((m->m_flags & M_EXT) == 0) {
1624 		m_freem(m);
1625 		return (ENOBUFS);
1626 	}
1627 
1628 	if (rxs->rxs_mbuf != NULL)
1629 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1630 
1631 	rxs->rxs_mbuf = m;
1632 
1633 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1634 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1635 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
1636 	if (error) {
1637 		printf("%s: can't load rx DMA map %d, error = %d\n",
1638 		    device_xname(sc->sc_dev), idx, error);
1639 		panic("ae_add_rxbuf");	/* XXX */
1640 	}
1641 
1642 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1643 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1644 
1645 	AE_INIT_RXDESC(sc, idx);
1646 
1647 	return (0);
1648 }
1649 
1650 /*
1651  * ae_filter_setup:
1652  *
1653  *	Set the chip's receive filter.
1654  */
1655 static void
ae_filter_setup(struct ae_softc * sc)1656 ae_filter_setup(struct ae_softc *sc)
1657 {
1658 	struct ethercom *ec = &sc->sc_ethercom;
1659 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1660 	struct ether_multi *enm;
1661 	struct ether_multistep step;
1662 	uint32_t hash, mchash[2];
1663 	uint32_t macctl = 0;
1664 
1665 	/*
1666 	 * If the chip is running, we need to reset the interface,
1667 	 * and will revisit here (with IFF_RUNNING) clear.  The
1668 	 * chip seems to really not like to have its multicast
1669 	 * filter programmed without a reset.
1670 	 */
1671 	if (ifp->if_flags & IFF_RUNNING) {
1672 		(void) ae_init(ifp);
1673 		return;
1674 	}
1675 
1676 	DPRINTF(sc, ("%s: ae_filter_setup: sc_flags 0x%08x\n",
1677 	    device_xname(sc->sc_dev), sc->sc_flags));
1678 
1679 	macctl = AE_READ(sc, CSR_MACCTL);
1680 	macctl &= ~(MACCTL_PR | MACCTL_PM);
1681 	macctl |= MACCTL_HASH;
1682 	macctl |= MACCTL_HBD;
1683 	macctl |= MACCTL_PR;
1684 
1685 	if (ifp->if_flags & IFF_PROMISC) {
1686 		macctl |= MACCTL_PR;
1687 		goto allmulti;
1688 	}
1689 
1690 	mchash[0] = mchash[1] = 0;
1691 
1692 	ETHER_LOCK(ec);
1693 	ETHER_FIRST_MULTI(step, ec, enm);
1694 	while (enm != NULL) {
1695 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1696 			/*
1697 			 * We must listen to a range of multicast addresses.
1698 			 * For now, just accept all multicasts, rather than
1699 			 * trying to set only those filter bits needed to match
1700 			 * the range.  (At this time, the only use of address
1701 			 * ranges is for IP multicast routing, for which the
1702 			 * range is big enough to require all bits set.)
1703 			 */
1704 			ETHER_UNLOCK(ec);
1705 			goto allmulti;
1706 		}
1707 
1708 		/* Verify whether we use big or little endian hashes */
1709 		hash = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3f;
1710 		mchash[hash >> 5] |= 1 << (hash & 0x1f);
1711 		ETHER_NEXT_MULTI(step, enm);
1712 	}
1713 	ETHER_UNLOCK(ec);
1714 	ifp->if_flags &= ~IFF_ALLMULTI;
1715 	goto setit;
1716 
1717  allmulti:
1718 	ifp->if_flags |= IFF_ALLMULTI;
1719 	mchash[0] = mchash[1] = 0xffffffff;
1720 	macctl |= MACCTL_PM;
1721 
1722  setit:
1723 	AE_WRITE(sc, CSR_HTHI, mchash[0]);
1724 	AE_WRITE(sc, CSR_HTHI, mchash[1]);
1725 
1726 	AE_WRITE(sc, CSR_MACCTL, macctl);
1727 	AE_BARRIER(sc);
1728 
1729 	DPRINTF(sc, ("%s: ae_filter_setup: returning %x\n",
1730 		    device_xname(sc->sc_dev), macctl));
1731 }
1732 
1733 /*
1734  * ae_idle:
1735  *
1736  *	Cause the transmit and/or receive processes to go idle.
1737  */
1738 void
ae_idle(struct ae_softc * sc,uint32_t bits)1739 ae_idle(struct ae_softc *sc, uint32_t bits)
1740 {
1741 	static const char * const txstate_names[] = {
1742 		"STOPPED",
1743 		"RUNNING - FETCH",
1744 		"RUNNING - WAIT",
1745 		"RUNNING - READING",
1746 		"-- RESERVED --",
1747 		"RUNNING - SETUP",
1748 		"SUSPENDED",
1749 		"RUNNING - CLOSE",
1750 	};
1751 	static const char * const rxstate_names[] = {
1752 		"STOPPED",
1753 		"RUNNING - FETCH",
1754 		"RUNNING - CHECK",
1755 		"RUNNING - WAIT",
1756 		"SUSPENDED",
1757 		"RUNNING - CLOSE",
1758 		"RUNNING - FLUSH",
1759 		"RUNNING - QUEUE",
1760 	};
1761 
1762 	uint32_t csr, ackmask = 0;
1763 	int i;
1764 
1765 	if (bits & OPMODE_ST)
1766 		ackmask |= STATUS_TPS;
1767 
1768 	if (bits & OPMODE_SR)
1769 		ackmask |= STATUS_RPS;
1770 
1771 	AE_CLR(sc, CSR_OPMODE, bits);
1772 
1773 	for (i = 0; i < 1000; i++) {
1774 		if (AE_ISSET(sc, CSR_STATUS, ackmask) == ackmask)
1775 			break;
1776 		delay(10);
1777 	}
1778 
1779 	csr = AE_READ(sc, CSR_STATUS);
1780 	if ((csr & ackmask) != ackmask) {
1781 		if ((bits & OPMODE_ST) != 0 && (csr & STATUS_TPS) == 0 &&
1782 		    (csr & STATUS_TS) != STATUS_TS_STOPPED) {
1783 			printf("%s: transmit process failed to idle: "
1784 			    "state %s\n", device_xname(sc->sc_dev),
1785 			    txstate_names[(csr & STATUS_TS) >> 20]);
1786 		}
1787 		if ((bits & OPMODE_SR) != 0 && (csr & STATUS_RPS) == 0 &&
1788 		    (csr & STATUS_RS) != STATUS_RS_STOPPED) {
1789 			printf("%s: receive process failed to idle: "
1790 			    "state %s\n", device_xname(sc->sc_dev),
1791 			    rxstate_names[(csr & STATUS_RS) >> 17]);
1792 		}
1793 	}
1794 }
1795 
1796 /*****************************************************************************
1797  * Support functions for MII-attached media.
1798  *****************************************************************************/
1799 
1800 /*
1801  * ae_mii_tick:
1802  *
1803  *	One second timer, used to tick the MII.
1804  */
1805 static void
ae_mii_tick(void * arg)1806 ae_mii_tick(void *arg)
1807 {
1808 	struct ae_softc *sc = arg;
1809 	int s;
1810 
1811 	if (!device_is_active(sc->sc_dev))
1812 		return;
1813 
1814 	s = splnet();
1815 	mii_tick(&sc->sc_mii);
1816 	splx(s);
1817 
1818 	callout_reset(&sc->sc_tick_callout, hz, sc->sc_tick, sc);
1819 }
1820 
1821 /*
1822  * ae_mii_statchg:	[mii interface function]
1823  *
1824  *	Callback from PHY when media changes.
1825  */
1826 static void
ae_mii_statchg(struct ifnet * ifp)1827 ae_mii_statchg(struct ifnet *ifp)
1828 {
1829 	struct ae_softc *sc = ifp->if_softc;
1830 	uint32_t	macctl, flowc;
1831 
1832 	//opmode = AE_READ(sc, CSR_OPMODE);
1833 	macctl = AE_READ(sc, CSR_MACCTL);
1834 
1835 	/* XXX: do we need to do this? */
1836 	/* Idle the transmit and receive processes. */
1837 	//ae_idle(sc, OPMODE_ST | OPMODE_SR);
1838 
1839 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
1840 		flowc = FLOWC_FCE;
1841 		macctl &= ~MACCTL_DRO;
1842 		macctl |= MACCTL_FDX;
1843 	} else {
1844 		flowc = 0;	/* cannot do flow control in HDX */
1845 		macctl |= MACCTL_DRO;
1846 		macctl &= ~MACCTL_FDX;
1847 	}
1848 
1849 	AE_WRITE(sc, CSR_FLOWC, flowc);
1850 	AE_WRITE(sc, CSR_MACCTL, macctl);
1851 
1852 	/* restore operational mode */
1853 	//AE_WRITE(sc, CSR_OPMODE, opmode);
1854 	AE_BARRIER(sc);
1855 }
1856 
1857 /*
1858  * ae_mii_readreg:
1859  *
1860  *	Read a PHY register.
1861  */
1862 static int
ae_mii_readreg(device_t self,int phy,int reg,uint16_t * val)1863 ae_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1864 {
1865 	struct ae_softc	*sc = device_private(self);
1866 	uint32_t	addr;
1867 	int		i;
1868 
1869 	addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT);
1870 	AE_WRITE(sc, CSR_MIIADDR, addr);
1871 	AE_BARRIER(sc);
1872 	for (i = 0; i < 100000000; i++) {
1873 		if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1874 			break;
1875 	}
1876 
1877 	if (i >= 100000000)
1878 		return ETIMEDOUT;
1879 
1880 	*val = AE_READ(sc, CSR_MIIDATA) & 0xffff;
1881 	return 0;
1882 }
1883 
1884 /*
1885  * ae_mii_writereg:
1886  *
1887  *	Write a PHY register.
1888  */
1889 static int
ae_mii_writereg(device_t self,int phy,int reg,uint16_t val)1890 ae_mii_writereg(device_t self, int phy, int reg, uint16_t val)
1891 {
1892 	struct ae_softc *sc = device_private(self);
1893 	uint32_t	addr;
1894 	int		i;
1895 
1896 	/* write the data register */
1897 	AE_WRITE(sc, CSR_MIIDATA, val);
1898 
1899 	/* write the address to latch it in */
1900 	addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT) |
1901 	    MIIADDR_WRITE;
1902 	AE_WRITE(sc, CSR_MIIADDR, addr);
1903 	AE_BARRIER(sc);
1904 
1905 	for (i = 0; i < 100000000; i++) {
1906 		if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1907 			break;
1908 	}
1909 
1910 	if (i >= 100000000)
1911 		return ETIMEDOUT;
1912 
1913 	return 0;
1914 }
1915