xref: /netbsd-src/sys/arch/mips/atheros/dev/if_ae.c (revision c42dbd0ed2e61fe6eda8590caa852ccf34719964)
1 /* $NetBSD: if_ae.c,v 1.44 2024/06/29 12:11:11 riastradh Exp $ */
2 /*-
3  * Copyright (c) 2006 Urbana-Champaign Independent Media Center.
4  * Copyright (c) 2006 Garrett D'Amore.
5  * All rights reserved.
6  *
7  * This code was written by Garrett D'Amore for the Champaign-Urbana
8  * Community Wireless Network Project.
9  *
10  * Redistribution and use in source and binary forms, with or
11  * without modification, are permitted provided that the following
12  * conditions are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above
16  *    copyright notice, this list of conditions and the following
17  *    disclaimer in the documentation and/or other materials provided
18  *    with the distribution.
19  * 3. All advertising materials mentioning features or use of this
20  *    software must display the following acknowledgements:
21  *      This product includes software developed by the Urbana-Champaign
22  *      Independent Media Center.
23  *	This product includes software developed by Garrett D'Amore.
24  * 4. Urbana-Champaign Independent Media Center's name and Garrett
25  *    D'Amore's name may not be used to endorse or promote products
26  *    derived from this software without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
29  * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
30  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
31  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
33  * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
34  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
35  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
36  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
37  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
38  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
40  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41  */
42 /*-
43  * Copyright (c) 1998, 1999, 2000, 2002 The NetBSD Foundation, Inc.
44  * All rights reserved.
45  *
46  * This code is derived from software contributed to The NetBSD Foundation
47  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
48  * NASA Ames Research Center; and by Charles M. Hannum.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
60  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69  * POSSIBILITY OF SUCH DAMAGE.
70  */
71 
72 /*
73  * Device driver for the onboard ethernet MAC found on the AR5312
74  * chip's AHB bus.
75  *
76  * This device is very simliar to the tulip in most regards, and
77  * the code is directly derived from NetBSD's tulip.c.  However, it
78  * is different enough that it did not seem to be a good idea to
79  * add further complexity to the tulip driver, so we have our own.
80  *
81  * Also tulip has a lot of complexity in it for various parts/options
82  * that we don't need, and on these little boxes with only ~8MB RAM, we
83  * don't want any extra bloat.
84  */
85 
86 /*
87  * TODO:
88  *
89  * 1) Find out about BUS_MODE_ALIGN16B.  This chip can apparently align
90  *    inbound packets on a half-word boundary, which would make life easier
91  *    for TCP/IP.  (Aligning IP headers on a word.)
92  *
93  * 2) There is stuff in original tulip to shut down the device when reacting
94  *    to a change in link status.  Is that needed.
95  *
96  * 3) Test with variety of 10/100 HDX/FDX scenarios.
97  *
98  */
99 
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: if_ae.c,v 1.44 2024/06/29 12:11:11 riastradh Exp $");
102 
103 
104 #include <sys/param.h>
105 #include <sys/bus.h>
106 #include <sys/callout.h>
107 #include <sys/device.h>
108 #include <sys/endian.h>
109 #include <sys/errno.h>
110 #include <sys/intr.h>
111 #include <sys/ioctl.h>
112 #include <sys/kernel.h>
113 #include <sys/mbuf.h>
114 #include <sys/socket.h>
115 
116 #include <uvm/uvm_extern.h>
117 
118 #include <net/if.h>
119 #include <net/if_dl.h>
120 #include <net/if_media.h>
121 #include <net/if_ether.h>
122 
123 #include <net/bpf.h>
124 
125 #include <dev/mii/mii.h>
126 #include <dev/mii/miivar.h>
127 #include <dev/mii/mii_bitbang.h>
128 
129 #include <mips/atheros/include/arbusvar.h>
130 #include <mips/atheros/dev/aereg.h>
131 #include <mips/atheros/dev/aevar.h>
132 
133 static const struct {
134 	uint32_t txth_opmode;		/* OPMODE bits */
135 	const char *txth_name;		/* name of mode */
136 } ae_txthresh[] = {
137 	{ OPMODE_TR_32,		"32 words" },
138 	{ OPMODE_TR_64,		"64 words" },
139 	{ OPMODE_TR_128,	"128 words" },
140 	{ OPMODE_TR_256,	"256 words" },
141 	{ OPMODE_SF,		"store and forward mode" },
142 	{ 0,			NULL },
143 };
144 
145 static int	ae_match(device_t, struct cfdata *, void *);
146 static void	ae_attach(device_t, device_t, void *);
147 static int	ae_detach(device_t, int);
148 static int	ae_activate(device_t, enum devact);
149 
150 static int	ae_ifflags_cb(struct ethercom *);
151 static void	ae_reset(struct ae_softc *);
152 static void	ae_idle(struct ae_softc *, uint32_t);
153 
154 static void	ae_start(struct ifnet *);
155 static void	ae_watchdog(struct ifnet *);
156 static int	ae_ioctl(struct ifnet *, u_long, void *);
157 static int	ae_init(struct ifnet *);
158 static void	ae_stop(struct ifnet *, int);
159 
160 static void	ae_shutdown(void *);
161 
162 static void	ae_rxdrain(struct ae_softc *);
163 static int	ae_add_rxbuf(struct ae_softc *, int);
164 
165 static int	ae_enable(struct ae_softc *);
166 static void	ae_disable(struct ae_softc *);
167 static void	ae_power(int, void *);
168 
169 static void	ae_filter_setup(struct ae_softc *);
170 
171 static int	ae_intr(void *);
172 static void	ae_rxintr(struct ae_softc *);
173 static void	ae_txintr(struct ae_softc *);
174 
175 static void	ae_mii_tick(void *);
176 static void	ae_mii_statchg(struct ifnet *);
177 
178 static int	ae_mii_readreg(device_t, int, int, uint16_t *);
179 static int	ae_mii_writereg(device_t, int, int, uint16_t);
180 
181 #ifdef AE_DEBUG
182 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
183 				printf x
184 #else
185 #define	DPRINTF(sc, x)	/* nothing */
186 #endif
187 
188 #ifdef AE_STATS
189 static void	ae_print_stats(struct ae_softc *);
190 #endif
191 
192 CFATTACH_DECL_NEW(ae, sizeof(struct ae_softc),
193     ae_match, ae_attach, ae_detach, ae_activate);
194 
195 /*
196  * ae_match:
197  *
198  *	Check for a device match.
199  */
200 int
201 ae_match(device_t parent, struct cfdata *cf, void *aux)
202 {
203 	struct arbus_attach_args *aa = aux;
204 
205 	if (strcmp(aa->aa_name, cf->cf_name) == 0)
206 		return 1;
207 
208 	return 0;
209 
210 }
211 
212 /*
213  * ae_attach:
214  *
215  *	Attach an ae interface to the system.
216  */
217 void
218 ae_attach(device_t parent, device_t self, void *aux)
219 {
220 	const uint8_t *enaddr;
221 	prop_data_t ea;
222 	struct ae_softc *sc = device_private(self);
223 	struct arbus_attach_args *aa = aux;
224 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
225 	struct mii_data * const mii = &sc->sc_mii;
226 	int i, error;
227 
228 	sc->sc_dev = self;
229 
230 	callout_init(&sc->sc_tick_callout, 0);
231 
232 	printf(": Atheros AR531X 10/100 Ethernet\n");
233 
234 	/*
235 	 * Try to get MAC address.
236 	 */
237 	ea = prop_dictionary_get(device_properties(sc->sc_dev), "mac-address");
238 	if (ea == NULL) {
239 		printf("%s: unable to get mac-addr property\n",
240 		    device_xname(sc->sc_dev));
241 		return;
242 	}
243 	KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
244 	KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
245 	enaddr = prop_data_data_nocopy(ea);
246 
247 	/* Announce ourselves. */
248 	printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
249 	    ether_sprintf(enaddr));
250 
251 	sc->sc_cirq = aa->aa_cirq;
252 	sc->sc_mirq = aa->aa_mirq;
253 	sc->sc_st = aa->aa_bst;
254 	sc->sc_dmat = aa->aa_dmat;
255 
256 	SIMPLEQ_INIT(&sc->sc_txfreeq);
257 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
258 
259 	/*
260 	 * Map registers.
261 	 */
262 	sc->sc_size = aa->aa_size;
263 	if ((error = bus_space_map(sc->sc_st, aa->aa_addr, sc->sc_size, 0,
264 	    &sc->sc_sh)) != 0) {
265 		printf("%s: unable to map registers, error = %d\n",
266 		    device_xname(sc->sc_dev), error);
267 		goto fail_0;
268 	}
269 
270 	/*
271 	 * Allocate the control data structures, and create and load the
272 	 * DMA map for it.
273 	 */
274 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
275 	    sizeof(struct ae_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
276 	    1, &sc->sc_cdnseg, 0)) != 0) {
277 		printf("%s: unable to allocate control data, error = %d\n",
278 		    device_xname(sc->sc_dev), error);
279 		goto fail_1;
280 	}
281 
282 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
283 	    sizeof(struct ae_control_data), (void **)&sc->sc_control_data,
284 	    BUS_DMA_COHERENT)) != 0) {
285 		printf("%s: unable to map control data, error = %d\n",
286 		    device_xname(sc->sc_dev), error);
287 		goto fail_2;
288 	}
289 
290 	if ((error = bus_dmamap_create(sc->sc_dmat,
291 	    sizeof(struct ae_control_data), 1,
292 	    sizeof(struct ae_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
293 		printf("%s: unable to create control data DMA map, "
294 		    "error = %d\n", device_xname(sc->sc_dev), error);
295 		goto fail_3;
296 	}
297 
298 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
299 	    sc->sc_control_data, sizeof(struct ae_control_data), NULL,
300 	    0)) != 0) {
301 		printf("%s: unable to load control data DMA map, error = %d\n",
302 		    device_xname(sc->sc_dev), error);
303 		goto fail_4;
304 	}
305 
306 	/*
307 	 * Create the transmit buffer DMA maps.
308 	 */
309 	for (i = 0; i < AE_TXQUEUELEN; i++) {
310 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
311 		    AE_NTXSEGS, MCLBYTES, 0, 0,
312 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
313 			printf("%s: unable to create tx DMA map %d, "
314 			    "error = %d\n", device_xname(sc->sc_dev), i, error);
315 			goto fail_5;
316 		}
317 	}
318 
319 	/*
320 	 * Create the receive buffer DMA maps.
321 	 */
322 	for (i = 0; i < AE_NRXDESC; i++) {
323 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
324 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
325 			printf("%s: unable to create rx DMA map %d, "
326 			    "error = %d\n", device_xname(sc->sc_dev), i, error);
327 			goto fail_6;
328 		}
329 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
330 	}
331 
332 	/*
333 	 * Reset the chip to a known state.
334 	 */
335 	ae_reset(sc);
336 
337 	/*
338 	 * From this point forward, the attachment cannot fail.  A failure
339 	 * before this point releases all resources that may have been
340 	 * allocated.
341 	 */
342 	sc->sc_flags |= AE_ATTACHED;
343 
344 	/*
345 	 * Initialize our media structures.  This may probe the MII, if
346 	 * present.
347 	 */
348 	mii->mii_ifp = ifp;
349 	mii->mii_readreg = ae_mii_readreg;
350 	mii->mii_writereg = ae_mii_writereg;
351 	mii->mii_statchg = ae_mii_statchg;
352 	sc->sc_ethercom.ec_mii = mii;
353 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
354 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
355 	    MII_OFFSET_ANY, 0);
356 
357 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
358 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
359 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
360 	} else
361 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
362 
363 	sc->sc_tick = ae_mii_tick;
364 
365 	strcpy(ifp->if_xname, device_xname(sc->sc_dev));
366 	ifp->if_softc = sc;
367 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
368 	sc->sc_if_flags = ifp->if_flags;
369 	ifp->if_ioctl = ae_ioctl;
370 	ifp->if_start = ae_start;
371 	ifp->if_watchdog = ae_watchdog;
372 	ifp->if_init = ae_init;
373 	ifp->if_stop = ae_stop;
374 	IFQ_SET_READY(&ifp->if_snd);
375 
376 	/*
377 	 * We can support 802.1Q VLAN-sized frames.
378 	 */
379 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
380 
381 	/*
382 	 * Attach the interface.
383 	 */
384 	if_attach(ifp);
385 	if_deferred_start_init(ifp, NULL);
386 	ether_ifattach(ifp, enaddr);
387 	ether_set_ifflags_cb(&sc->sc_ethercom, ae_ifflags_cb);
388 
389 	rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
390 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
391 
392 	/*
393 	 * Make sure the interface is shutdown during reboot.
394 	 */
395 	sc->sc_sdhook = shutdownhook_establish(ae_shutdown, sc);
396 	if (sc->sc_sdhook == NULL)
397 		printf("%s: WARNING: unable to establish shutdown hook\n",
398 		    device_xname(sc->sc_dev));
399 
400 	/*
401 	 * Add a suspend hook to make sure we come back up after a
402 	 * resume.
403 	 */
404 	sc->sc_powerhook = powerhook_establish(device_xname(sc->sc_dev),
405 	    ae_power, sc);
406 	if (sc->sc_powerhook == NULL)
407 		printf("%s: WARNING: unable to establish power hook\n",
408 		    device_xname(sc->sc_dev));
409 	return;
410 
411 	/*
412 	 * Free any resources we've allocated during the failed attach
413 	 * attempt.  Do this in reverse order and fall through.
414 	 */
415  fail_6:
416 	for (i = 0; i < AE_NRXDESC; i++) {
417 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
418 			bus_dmamap_destroy(sc->sc_dmat,
419 			    sc->sc_rxsoft[i].rxs_dmamap);
420 	}
421  fail_5:
422 	for (i = 0; i < AE_TXQUEUELEN; i++) {
423 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
424 			bus_dmamap_destroy(sc->sc_dmat,
425 			    sc->sc_txsoft[i].txs_dmamap);
426 	}
427 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
428  fail_4:
429 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
430  fail_3:
431 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
432 	    sizeof(struct ae_control_data));
433  fail_2:
434 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
435  fail_1:
436 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
437  fail_0:
438 	return;
439 }
440 
441 /*
442  * ae_activate:
443  *
444  *	Handle device activation/deactivation requests.
445  */
446 int
447 ae_activate(device_t self, enum devact act)
448 {
449 	struct ae_softc *sc = device_private(self);
450 
451 	switch (act) {
452 	case DVACT_DEACTIVATE:
453 		if_deactivate(&sc->sc_ethercom.ec_if);
454 		return 0;
455 	default:
456 		return EOPNOTSUPP;
457 	}
458 }
459 
460 /*
461  * ae_detach:
462  *
463  *	Detach a device interface.
464  */
465 int
466 ae_detach(device_t self, int flags)
467 {
468 	struct ae_softc *sc = device_private(self);
469 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
470 	struct ae_rxsoft *rxs;
471 	struct ae_txsoft *txs;
472 	int i;
473 
474 	/*
475 	 * Succeed now if there isn't any work to do.
476 	 */
477 	if ((sc->sc_flags & AE_ATTACHED) == 0)
478 		return (0);
479 
480 	/* Unhook our tick handler. */
481 	if (sc->sc_tick)
482 		callout_stop(&sc->sc_tick_callout);
483 
484 	/* Detach all PHYs */
485 	mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
486 
487 	rnd_detach_source(&sc->sc_rnd_source);
488 	ether_ifdetach(ifp);
489 	if_detach(ifp);
490 
491 	/* Delete all remaining media. */
492 	ifmedia_fini(&sc->sc_mii.mii_media);
493 
494 	for (i = 0; i < AE_NRXDESC; i++) {
495 		rxs = &sc->sc_rxsoft[i];
496 		if (rxs->rxs_mbuf != NULL) {
497 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
498 			m_freem(rxs->rxs_mbuf);
499 			rxs->rxs_mbuf = NULL;
500 		}
501 		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
502 	}
503 	for (i = 0; i < AE_TXQUEUELEN; i++) {
504 		txs = &sc->sc_txsoft[i];
505 		if (txs->txs_mbuf != NULL) {
506 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
507 			m_freem(txs->txs_mbuf);
508 			txs->txs_mbuf = NULL;
509 		}
510 		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
511 	}
512 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
513 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
514 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
515 	    sizeof(struct ae_control_data));
516 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
517 
518 	shutdownhook_disestablish(sc->sc_sdhook);
519 	powerhook_disestablish(sc->sc_powerhook);
520 
521 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
522 
523 
524 	return (0);
525 }
526 
527 /*
528  * ae_shutdown:
529  *
530  *	Make sure the interface is stopped at reboot time.
531  */
532 static void
533 ae_shutdown(void *arg)
534 {
535 	struct ae_softc *sc = arg;
536 
537 	ae_stop(&sc->sc_ethercom.ec_if, 1);
538 }
539 
540 /*
541  * ae_start:		[ifnet interface function]
542  *
543  *	Start packet transmission on the interface.
544  */
545 static void
546 ae_start(struct ifnet *ifp)
547 {
548 	struct ae_softc *sc = ifp->if_softc;
549 	struct mbuf *m0, *m;
550 	struct ae_txsoft *txs;
551 	bus_dmamap_t dmamap;
552 	int error, firsttx, nexttx, lasttx = 1, ofree, seg;
553 
554 	DPRINTF(sc, ("%s: ae_start: sc_flags 0x%08x, if_flags 0x%08x\n",
555 	    device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags));
556 
557 
558 	if ((ifp->if_flags & IFF_RUNNING) == 0)
559 		return;
560 
561 	/*
562 	 * Remember the previous number of free descriptors and
563 	 * the first descriptor we'll use.
564 	 */
565 	ofree = sc->sc_txfree;
566 	firsttx = sc->sc_txnext;
567 
568 	DPRINTF(sc, ("%s: ae_start: txfree %d, txnext %d\n",
569 	    device_xname(sc->sc_dev), ofree, firsttx));
570 
571 	/*
572 	 * Loop through the send queue, setting up transmit descriptors
573 	 * until we drain the queue, or use up all available transmit
574 	 * descriptors.
575 	 */
576 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
577 	       sc->sc_txfree != 0) {
578 		/*
579 		 * Grab a packet off the queue.
580 		 */
581 		IFQ_POLL(&ifp->if_snd, m0);
582 		if (m0 == NULL)
583 			break;
584 		m = NULL;
585 
586 		dmamap = txs->txs_dmamap;
587 
588 		/*
589 		 * Load the DMA map.  If this fails, the packet either
590 		 * didn't fit in the allotted number of segments, or we were
591 		 * short on resources.  In this case, we'll copy and try
592 		 * again.
593 		 */
594 		if (((mtod(m0, uintptr_t) & 3) != 0) ||
595 		    bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
596 		      BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
597 			MGETHDR(m, M_DONTWAIT, MT_DATA);
598 			if (m == NULL) {
599 				printf("%s: unable to allocate Tx mbuf\n",
600 				    device_xname(sc->sc_dev));
601 				break;
602 			}
603 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
604 			if (m0->m_pkthdr.len > MHLEN) {
605 				MCLGET(m, M_DONTWAIT);
606 				if ((m->m_flags & M_EXT) == 0) {
607 					printf("%s: unable to allocate Tx "
608 					    "cluster\n", device_xname(sc->sc_dev));
609 					m_freem(m);
610 					break;
611 				}
612 			}
613 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
614 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
615 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
616 			    m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
617 			if (error) {
618 				printf("%s: unable to load Tx buffer, "
619 				    "error = %d\n", device_xname(sc->sc_dev),
620 				    error);
621 				break;
622 			}
623 		}
624 
625 		/*
626 		 * Ensure we have enough descriptors free to describe
627 		 * the packet.
628 		 */
629 		if (dmamap->dm_nsegs > sc->sc_txfree) {
630 			/*
631 			 * Not enough free descriptors to transmit this
632 			 * packet.  We haven't committed to anything yet,
633 			 * so just unload the DMA map, put the packet
634 			 * back on the queue, and punt.  Notify the upper
635 			 * layer that there are no more slots left.
636 			 *
637 			 * XXX We could allocate an mbuf and copy, but
638 			 * XXX it is worth it?
639 			 */
640 			bus_dmamap_unload(sc->sc_dmat, dmamap);
641 			if (m != NULL)
642 				m_freem(m);
643 			break;
644 		}
645 
646 		IFQ_DEQUEUE(&ifp->if_snd, m0);
647 		if (m != NULL) {
648 			m_freem(m0);
649 			m0 = m;
650 		}
651 
652 		/*
653 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
654 		 */
655 
656 		/* Sync the DMA map. */
657 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
658 		    BUS_DMASYNC_PREWRITE);
659 
660 		/*
661 		 * Initialize the transmit descriptors.
662 		 */
663 		for (nexttx = sc->sc_txnext, seg = 0;
664 		     seg < dmamap->dm_nsegs;
665 		     seg++, nexttx = AE_NEXTTX(nexttx)) {
666 			/*
667 			 * If this is the first descriptor we're
668 			 * enqueueing, don't set the OWN bit just
669 			 * yet.  That could cause a race condition.
670 			 * We'll do it below.
671 			 */
672 			sc->sc_txdescs[nexttx].ad_status =
673 			    (nexttx == firsttx) ? 0 : ADSTAT_OWN;
674 			sc->sc_txdescs[nexttx].ad_bufaddr1 =
675 			    dmamap->dm_segs[seg].ds_addr;
676 			sc->sc_txdescs[nexttx].ad_ctl =
677 			    (dmamap->dm_segs[seg].ds_len <<
678 				ADCTL_SIZE1_SHIFT) |
679 				(nexttx == (AE_NTXDESC - 1) ?
680 				    ADCTL_ER : 0);
681 			lasttx = nexttx;
682 		}
683 
684 		KASSERT(lasttx != -1);
685 
686 		/* Set `first segment' and `last segment' appropriately. */
687 		sc->sc_txdescs[sc->sc_txnext].ad_ctl |= ADCTL_Tx_FS;
688 		sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_LS;
689 
690 #ifdef AE_DEBUG
691 		if (ifp->if_flags & IFF_DEBUG) {
692 			printf("     txsoft %p transmit chain:\n", txs);
693 			for (seg = sc->sc_txnext;; seg = AE_NEXTTX(seg)) {
694 				printf("     descriptor %d:\n", seg);
695 				printf("       ad_status:   0x%08x\n",
696 				    sc->sc_txdescs[seg].ad_status);
697 				printf("       ad_ctl:      0x%08x\n",
698 				    sc->sc_txdescs[seg].ad_ctl);
699 				printf("       ad_bufaddr1: 0x%08x\n",
700 				    sc->sc_txdescs[seg].ad_bufaddr1);
701 				printf("       ad_bufaddr2: 0x%08x\n",
702 				    sc->sc_txdescs[seg].ad_bufaddr2);
703 				if (seg == lasttx)
704 					break;
705 			}
706 		}
707 #endif
708 
709 		/* Sync the descriptors we're using. */
710 		AE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
711 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
712 
713 		/*
714 		 * Store a pointer to the packet so we can free it later,
715 		 * and remember what txdirty will be once the packet is
716 		 * done.
717 		 */
718 		txs->txs_mbuf = m0;
719 		txs->txs_firstdesc = sc->sc_txnext;
720 		txs->txs_lastdesc = lasttx;
721 		txs->txs_ndescs = dmamap->dm_nsegs;
722 
723 		/* Advance the tx pointer. */
724 		sc->sc_txfree -= dmamap->dm_nsegs;
725 		sc->sc_txnext = nexttx;
726 
727 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
728 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
729 
730 		/*
731 		 * Pass the packet to any BPF listeners.
732 		 */
733 		bpf_mtap(ifp, m0, BPF_D_OUT);
734 	}
735 
736 	if (sc->sc_txfree != ofree) {
737 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
738 		    device_xname(sc->sc_dev), lasttx, firsttx));
739 		/*
740 		 * Cause a transmit interrupt to happen on the
741 		 * last packet we enqueued.
742 		 */
743 		sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_IC;
744 		AE_CDTXSYNC(sc, lasttx, 1,
745 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
746 
747 		/*
748 		 * The entire packet chain is set up.  Give the
749 		 * first descriptor to the chip now.
750 		 */
751 		sc->sc_txdescs[firsttx].ad_status |= ADSTAT_OWN;
752 		AE_CDTXSYNC(sc, firsttx, 1,
753 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
754 
755 		/* Wake up the transmitter. */
756 		/* XXX USE AUTOPOLLING? */
757 		AE_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD);
758 		AE_BARRIER(sc);
759 
760 		/* Set a watchdog timer in case the chip flakes out. */
761 		ifp->if_timer = 5;
762 	}
763 }
764 
765 /*
766  * ae_watchdog:	[ifnet interface function]
767  *
768  *	Watchdog timer handler.
769  */
770 static void
771 ae_watchdog(struct ifnet *ifp)
772 {
773 	struct ae_softc *sc = ifp->if_softc;
774 	int doing_transmit;
775 
776 	doing_transmit = (! SIMPLEQ_EMPTY(&sc->sc_txdirtyq));
777 
778 	if (doing_transmit) {
779 		printf("%s: transmit timeout\n", device_xname(sc->sc_dev));
780 		if_statinc(ifp, if_oerrors);
781 	}
782 	else
783 		printf("%s: spurious watchdog timeout\n", device_xname(sc->sc_dev));
784 
785 	(void) ae_init(ifp);
786 
787 	/* Try to get more packets going. */
788 	ae_start(ifp);
789 }
790 
791 /* If the interface is up and running, only modify the receive
792  * filter when changing to/from promiscuous mode.  Otherwise return
793  * ENETRESET so that ether_ioctl will reset the chip.
794  */
795 static int
796 ae_ifflags_cb(struct ethercom *ec)
797 {
798 	struct ifnet *ifp = &ec->ec_if;
799 	struct ae_softc *sc = ifp->if_softc;
800 	u_short change = ifp->if_flags ^ sc->sc_if_flags;
801 
802 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
803 		return ENETRESET;
804 	else if ((change & IFF_PROMISC) != 0)
805 		ae_filter_setup(sc);
806 	return 0;
807 }
808 
809 /*
810  * ae_ioctl:		[ifnet interface function]
811  *
812  *	Handle control requests from the operator.
813  */
814 static int
815 ae_ioctl(struct ifnet *ifp, u_long cmd, void *data)
816 {
817 	struct ae_softc *sc = ifp->if_softc;
818 	int s, error;
819 
820 	s = splnet();
821 
822 	error = ether_ioctl(ifp, cmd, data);
823 	if (error == ENETRESET) {
824 		if (ifp->if_flags & IFF_RUNNING) {
825 			/*
826 			 * Multicast list has changed.  Set the
827 			 * hardware filter accordingly.
828 			 */
829 			ae_filter_setup(sc);
830 		}
831 		error = 0;
832 	}
833 
834 	/* Try to get more packets going. */
835 	if (AE_IS_ENABLED(sc))
836 		ae_start(ifp);
837 
838 	sc->sc_if_flags = ifp->if_flags;
839 	splx(s);
840 	return (error);
841 }
842 
843 /*
844  * ae_intr:
845  *
846  *	Interrupt service routine.
847  */
848 int
849 ae_intr(void *arg)
850 {
851 	struct ae_softc *sc = arg;
852 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
853 	uint32_t status, rxstatus, txstatus;
854 	int handled = 0, txthresh;
855 
856 	DPRINTF(sc, ("%s: ae_intr\n", device_xname(sc->sc_dev)));
857 
858 #ifdef DEBUG
859 	if (AE_IS_ENABLED(sc) == 0)
860 		panic("%s: ae_intr: not enabled", device_xname(sc->sc_dev));
861 #endif
862 
863 	/*
864 	 * If the interface isn't running, the interrupt couldn't
865 	 * possibly have come from us.
866 	 */
867 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
868 	    !device_is_active(sc->sc_dev)) {
869 		printf("spurious?!?\n");
870 		return (0);
871 	}
872 
873 	for (;;) {
874 		status = AE_READ(sc, CSR_STATUS);
875 		if (status) {
876 			AE_WRITE(sc, CSR_STATUS, status);
877 			AE_BARRIER(sc);
878 		}
879 
880 		if ((status & sc->sc_inten) == 0)
881 			break;
882 
883 		handled = 1;
884 
885 		rxstatus = status & sc->sc_rxint_mask;
886 		txstatus = status & sc->sc_txint_mask;
887 
888 		if (rxstatus) {
889 			/* Grab new any new packets. */
890 			ae_rxintr(sc);
891 
892 			if (rxstatus & STATUS_RU) {
893 				printf("%s: receive ring overrun\n",
894 				    device_xname(sc->sc_dev));
895 				/* Get the receive process going again. */
896 				AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
897 				AE_BARRIER(sc);
898 				break;
899 			}
900 		}
901 
902 		if (txstatus) {
903 			/* Sweep up transmit descriptors. */
904 			ae_txintr(sc);
905 
906 			if (txstatus & STATUS_TJT)
907 				printf("%s: transmit jabber timeout\n",
908 				    device_xname(sc->sc_dev));
909 
910 			if (txstatus & STATUS_UNF) {
911 				/*
912 				 * Increase our transmit threshold if
913 				 * another is available.
914 				 */
915 				txthresh = sc->sc_txthresh + 1;
916 				if (ae_txthresh[txthresh].txth_name != NULL) {
917 					uint32_t opmode;
918 					/* Idle the transmit process. */
919 					opmode = AE_READ(sc, CSR_OPMODE);
920 					ae_idle(sc, OPMODE_ST);
921 
922 					sc->sc_txthresh = txthresh;
923 					opmode &= ~(OPMODE_TR | OPMODE_SF);
924 					opmode |=
925 					    ae_txthresh[txthresh].txth_opmode;
926 					printf("%s: transmit underrun; new "
927 					    "threshold: %s\n",
928 					    device_xname(sc->sc_dev),
929 					    ae_txthresh[txthresh].txth_name);
930 
931 					/*
932 					 * Set the new threshold and restart
933 					 * the transmit process.
934 					 */
935 					AE_WRITE(sc, CSR_OPMODE, opmode);
936 					AE_BARRIER(sc);
937 				}
938 					/*
939 					 * XXX Log every Nth underrun from
940 					 * XXX now on?
941 					 */
942 			}
943 		}
944 
945 		if (status & (STATUS_TPS | STATUS_RPS)) {
946 			if (status & STATUS_TPS)
947 				printf("%s: transmit process stopped\n",
948 				    device_xname(sc->sc_dev));
949 			if (status & STATUS_RPS)
950 				printf("%s: receive process stopped\n",
951 				    device_xname(sc->sc_dev));
952 			(void) ae_init(ifp);
953 			break;
954 		}
955 
956 		if (status & STATUS_SE) {
957 			const char *str;
958 
959 			if (status & STATUS_TX_ABORT)
960 				str = "tx abort";
961 			else if (status & STATUS_RX_ABORT)
962 				str = "rx abort";
963 			else
964 				str = "unknown error";
965 
966 			printf("%s: fatal system error: %s\n",
967 			    device_xname(sc->sc_dev), str);
968 			(void) ae_init(ifp);
969 			break;
970 		}
971 
972 		/*
973 		 * Not handled:
974 		 *
975 		 *	Transmit buffer unavailable -- normal
976 		 *	condition, nothing to do, really.
977 		 *
978 		 *	General purpose timer experied -- we don't
979 		 *	use the general purpose timer.
980 		 *
981 		 *	Early receive interrupt -- not available on
982 		 *	all chips, we just use RI.  We also only
983 		 *	use single-segment receive DMA, so this
984 		 *	is mostly useless.
985 		 */
986 	}
987 
988 	/* Try to get more packets going. */
989 	if_schedule_deferred_start(ifp);
990 
991 	if (handled)
992 		rnd_add_uint32(&sc->sc_rnd_source, status);
993 	return (handled);
994 }
995 
996 /*
997  * ae_rxintr:
998  *
999  *	Helper; handle receive interrupts.
1000  */
1001 static void
1002 ae_rxintr(struct ae_softc *sc)
1003 {
1004 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1005 	struct ae_rxsoft *rxs;
1006 	struct mbuf *m;
1007 	uint32_t rxstat;
1008 	int i, len;
1009 
1010 	for (i = sc->sc_rxptr;; i = AE_NEXTRX(i)) {
1011 		rxs = &sc->sc_rxsoft[i];
1012 
1013 		AE_CDRXSYNC(sc, i,
1014 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1015 
1016 		rxstat = sc->sc_rxdescs[i].ad_status;
1017 
1018 		if (rxstat & ADSTAT_OWN) {
1019 			/*
1020 			 * We have processed all of the receive buffers.
1021 			 */
1022 			break;
1023 		}
1024 
1025 		/*
1026 		 * If any collisions were seen on the wire, count one.
1027 		 */
1028 		if (rxstat & ADSTAT_Rx_CS)
1029 			if_statinc(ifp, if_collisions);
1030 
1031 		/*
1032 		 * If an error occurred, update stats, clear the status
1033 		 * word, and leave the packet buffer in place.  It will
1034 		 * simply be reused the next time the ring comes around.
1035 	 	 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
1036 		 * error.
1037 		 */
1038 		if (rxstat & ADSTAT_ES &&
1039 		    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
1040 		     (rxstat & (ADSTAT_Rx_DE | ADSTAT_Rx_RF |
1041 				ADSTAT_Rx_DB | ADSTAT_Rx_CE)) != 0)) {
1042 #define	PRINTERR(bit, str)						\
1043 			if (rxstat & (bit))				\
1044 				printf("%s: receive error: %s\n",	\
1045 				    device_xname(sc->sc_dev), str)
1046 			if_statinc(ifp, if_ierrors);
1047 			PRINTERR(ADSTAT_Rx_DE, "descriptor error");
1048 			PRINTERR(ADSTAT_Rx_RF, "runt frame");
1049 			PRINTERR(ADSTAT_Rx_TL, "frame too long");
1050 			PRINTERR(ADSTAT_Rx_RE, "MII error");
1051 			PRINTERR(ADSTAT_Rx_DB, "dribbling bit");
1052 			PRINTERR(ADSTAT_Rx_CE, "CRC error");
1053 #undef PRINTERR
1054 			AE_INIT_RXDESC(sc, i);
1055 			continue;
1056 		}
1057 
1058 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1059 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1060 
1061 		/*
1062 		 * No errors; receive the packet.  Note the chip
1063 		 * includes the CRC with every packet.
1064 		 */
1065 		len = ADSTAT_Rx_LENGTH(rxstat) - ETHER_CRC_LEN;
1066 
1067 		/*
1068 		 * XXX: the Atheros part can align on half words.  what
1069 		 * is the performance implication of this?  Probably
1070 		 * minimal, and we should use it...
1071 		 */
1072 #ifdef __NO_STRICT_ALIGNMENT
1073 		/*
1074 		 * Allocate a new mbuf cluster.  If that fails, we are
1075 		 * out of memory, and must drop the packet and recycle
1076 		 * the buffer that's already attached to this descriptor.
1077 		 */
1078 		m = rxs->rxs_mbuf;
1079 		if (ae_add_rxbuf(sc, i) != 0) {
1080 			if_statinc(ifp, if_ierrors);
1081 			AE_INIT_RXDESC(sc, i);
1082 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1083 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1084 			continue;
1085 		}
1086 #else
1087 		/*
1088 		 * The chip's receive buffers must be 4-byte aligned.
1089 		 * But this means that the data after the Ethernet header
1090 		 * is misaligned.  We must allocate a new buffer and
1091 		 * copy the data, shifted forward 2 bytes.
1092 		 */
1093 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1094 		if (m == NULL) {
1095  dropit:
1096 			if_statinc(ifp, if_ierrors);
1097 			AE_INIT_RXDESC(sc, i);
1098 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1099 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1100 			continue;
1101 		}
1102 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1103 		if (len > (MHLEN - 2)) {
1104 			MCLGET(m, M_DONTWAIT);
1105 			if ((m->m_flags & M_EXT) == 0) {
1106 				m_freem(m);
1107 				goto dropit;
1108 			}
1109 		}
1110 		m->m_data += 2;
1111 
1112 		/*
1113 		 * Note that we use clusters for incoming frames, so the
1114 		 * buffer is virtually contiguous.
1115 		 */
1116 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
1117 
1118 		/* Allow the receive descriptor to continue using its mbuf. */
1119 		AE_INIT_RXDESC(sc, i);
1120 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1121 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1122 #endif /* __NO_STRICT_ALIGNMENT */
1123 
1124 		m_set_rcvif(m, ifp);
1125 		m->m_pkthdr.len = m->m_len = len;
1126 
1127 		/* Pass it on. */
1128 		if_percpuq_enqueue(ifp->if_percpuq, m);
1129 	}
1130 
1131 	/* Update the receive pointer. */
1132 	sc->sc_rxptr = i;
1133 }
1134 
1135 /*
1136  * ae_txintr:
1137  *
1138  *	Helper; handle transmit interrupts.
1139  */
1140 static void
1141 ae_txintr(struct ae_softc *sc)
1142 {
1143 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1144 	struct ae_txsoft *txs;
1145 	uint32_t txstat;
1146 
1147 	DPRINTF(sc, ("%s: ae_txintr: sc_flags 0x%08x\n",
1148 	    device_xname(sc->sc_dev), sc->sc_flags));
1149 
1150 	/*
1151 	 * Go through our Tx list and free mbufs for those
1152 	 * frames that have been transmitted.
1153 	 */
1154 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1155 		AE_CDTXSYNC(sc, txs->txs_lastdesc,
1156 		    txs->txs_ndescs,
1157 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1158 
1159 #ifdef AE_DEBUG
1160 		if (ifp->if_flags & IFF_DEBUG) {
1161 			int i;
1162 			printf("    txsoft %p transmit chain:\n", txs);
1163 			for (i = txs->txs_firstdesc;; i = AE_NEXTTX(i)) {
1164 				printf("     descriptor %d:\n", i);
1165 				printf("       ad_status:   0x%08x\n",
1166 				    sc->sc_txdescs[i].ad_status);
1167 				printf("       ad_ctl:      0x%08x\n",
1168 				    sc->sc_txdescs[i].ad_ctl);
1169 				printf("       ad_bufaddr1: 0x%08x\n",
1170 				    sc->sc_txdescs[i].ad_bufaddr1);
1171 				printf("       ad_bufaddr2: 0x%08x\n",
1172 				    sc->sc_txdescs[i].ad_bufaddr2);
1173 				if (i == txs->txs_lastdesc)
1174 					break;
1175 			}
1176 		}
1177 #endif
1178 
1179 		txstat = sc->sc_txdescs[txs->txs_lastdesc].ad_status;
1180 		if (txstat & ADSTAT_OWN)
1181 			break;
1182 
1183 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1184 
1185 		sc->sc_txfree += txs->txs_ndescs;
1186 
1187 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1188 		    0, txs->txs_dmamap->dm_mapsize,
1189 		    BUS_DMASYNC_POSTWRITE);
1190 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1191 		m_freem(txs->txs_mbuf);
1192 		txs->txs_mbuf = NULL;
1193 
1194 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1195 
1196 		/*
1197 		 * Check for errors and collisions.
1198 		 */
1199 #ifdef AE_STATS
1200 		if (txstat & ADSTAT_Tx_UF)
1201 			sc->sc_stats.ts_tx_uf++;
1202 		if (txstat & ADSTAT_Tx_TO)
1203 			sc->sc_stats.ts_tx_to++;
1204 		if (txstat & ADSTAT_Tx_EC)
1205 			sc->sc_stats.ts_tx_ec++;
1206 		if (txstat & ADSTAT_Tx_LC)
1207 			sc->sc_stats.ts_tx_lc++;
1208 #endif
1209 
1210 		net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1211 		if (txstat & (ADSTAT_Tx_UF | ADSTAT_Tx_TO))
1212 			if_statinc_ref(ifp, nsr, if_oerrors);
1213 
1214 		if (txstat & ADSTAT_Tx_EC)
1215 			if_statadd_ref(ifp, nsr, if_collisions, 16);
1216 		else if (ADSTAT_Tx_COLLISIONS(txstat))
1217 			if_statadd_ref(ifp, nsr, if_collisions,
1218 			    ADSTAT_Tx_COLLISIONS(txstat));
1219 		if (txstat & ADSTAT_Tx_LC)
1220 			if_statinc_ref(ifp, nsr, if_collisions);
1221 
1222 		if_statinc_ref(ifp, nsr, if_opackets);
1223 		IF_STAT_PUTREF(ifp);
1224 	}
1225 
1226 	/*
1227 	 * If there are no more pending transmissions, cancel the watchdog
1228 	 * timer.
1229 	 */
1230 	if (txs == NULL)
1231 		ifp->if_timer = 0;
1232 }
1233 
1234 #ifdef AE_STATS
1235 void
1236 ae_print_stats(struct ae_softc *sc)
1237 {
1238 
1239 	printf("%s: tx_uf %lu, tx_to %lu, tx_ec %lu, tx_lc %lu\n",
1240 	    device_xname(sc->sc_dev),
1241 	    sc->sc_stats.ts_tx_uf, sc->sc_stats.ts_tx_to,
1242 	    sc->sc_stats.ts_tx_ec, sc->sc_stats.ts_tx_lc);
1243 }
1244 #endif
1245 
1246 /*
1247  * ae_reset:
1248  *
1249  *	Perform a soft reset on the chip.
1250  */
1251 void
1252 ae_reset(struct ae_softc *sc)
1253 {
1254 	int i;
1255 
1256 	AE_WRITE(sc, CSR_BUSMODE, BUSMODE_SWR);
1257 	AE_BARRIER(sc);
1258 
1259 	/*
1260 	 * The chip doesn't take itself out of reset automatically.
1261 	 * We need to do so after 2us.
1262 	 */
1263 	delay(10);
1264 	AE_WRITE(sc, CSR_BUSMODE, 0);
1265 	AE_BARRIER(sc);
1266 
1267 	for (i = 0; i < 1000; i++) {
1268 		/*
1269 		 * Wait a bit for the reset to complete before peeking
1270 		 * at the chip again.
1271 		 */
1272 		delay(10);
1273 		if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR) == 0)
1274 			break;
1275 	}
1276 
1277 	if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR))
1278 		printf("%s: reset failed to complete\n", device_xname(sc->sc_dev));
1279 
1280 	delay(1000);
1281 }
1282 
1283 /*
1284  * ae_init:		[ ifnet interface function ]
1285  *
1286  *	Initialize the interface.  Must be called at splnet().
1287  */
1288 static int
1289 ae_init(struct ifnet *ifp)
1290 {
1291 	struct ae_softc *sc = ifp->if_softc;
1292 	struct ae_txsoft *txs;
1293 	struct ae_rxsoft *rxs;
1294 	const uint8_t *enaddr;
1295 	int i, error = 0;
1296 
1297 	if ((error = ae_enable(sc)) != 0)
1298 		goto out;
1299 
1300 	/*
1301 	 * Cancel any pending I/O.
1302 	 */
1303 	ae_stop(ifp, 0);
1304 
1305 	/*
1306 	 * Reset the chip to a known state.
1307 	 */
1308 	ae_reset(sc);
1309 
1310 	/*
1311 	 * Initialize the BUSMODE register.
1312 	 */
1313 	AE_WRITE(sc, CSR_BUSMODE,
1314 	    /* XXX: not sure if this is a good thing or not... */
1315 	    //BUSMODE_ALIGN_16B |
1316 	    BUSMODE_BAR | BUSMODE_BLE | BUSMODE_PBL_4LW);
1317 	AE_BARRIER(sc);
1318 
1319 	/*
1320 	 * Initialize the transmit descriptor ring.
1321 	 */
1322 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1323 	for (i = 0; i < AE_NTXDESC; i++) {
1324 		sc->sc_txdescs[i].ad_ctl = 0;
1325 		sc->sc_txdescs[i].ad_bufaddr2 =
1326 		    AE_CDTXADDR(sc, AE_NEXTTX(i));
1327 	}
1328 	sc->sc_txdescs[AE_NTXDESC - 1].ad_ctl |= ADCTL_ER;
1329 	AE_CDTXSYNC(sc, 0, AE_NTXDESC,
1330 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1331 	sc->sc_txfree = AE_NTXDESC;
1332 	sc->sc_txnext = 0;
1333 
1334 	/*
1335 	 * Initialize the transmit job descriptors.
1336 	 */
1337 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1338 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1339 	for (i = 0; i < AE_TXQUEUELEN; i++) {
1340 		txs = &sc->sc_txsoft[i];
1341 		txs->txs_mbuf = NULL;
1342 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1343 	}
1344 
1345 	/*
1346 	 * Initialize the receive descriptor and receive job
1347 	 * descriptor rings.
1348 	 */
1349 	for (i = 0; i < AE_NRXDESC; i++) {
1350 		rxs = &sc->sc_rxsoft[i];
1351 		if (rxs->rxs_mbuf == NULL) {
1352 			if ((error = ae_add_rxbuf(sc, i)) != 0) {
1353 				printf("%s: unable to allocate or map rx "
1354 				    "buffer %d, error = %d\n",
1355 				    device_xname(sc->sc_dev), i, error);
1356 				/*
1357 				 * XXX Should attempt to run with fewer receive
1358 				 * XXX buffers instead of just failing.
1359 				 */
1360 				ae_rxdrain(sc);
1361 				goto out;
1362 			}
1363 		} else
1364 			AE_INIT_RXDESC(sc, i);
1365 	}
1366 	sc->sc_rxptr = 0;
1367 
1368 	/*
1369 	 * Initialize the interrupt mask and enable interrupts.
1370 	 */
1371 	/* normal interrupts */
1372 	sc->sc_inten = STATUS_TI | STATUS_TU | STATUS_RI | STATUS_NIS;
1373 
1374 	/* abnormal interrupts */
1375 	sc->sc_inten |= STATUS_TPS | STATUS_TJT | STATUS_UNF |
1376 	    STATUS_RU | STATUS_RPS | STATUS_SE | STATUS_AIS;
1377 
1378 	sc->sc_rxint_mask = STATUS_RI | STATUS_RU;
1379 	sc->sc_txint_mask = STATUS_TI | STATUS_UNF | STATUS_TJT;
1380 
1381 	sc->sc_rxint_mask &= sc->sc_inten;
1382 	sc->sc_txint_mask &= sc->sc_inten;
1383 
1384 	AE_WRITE(sc, CSR_INTEN, sc->sc_inten);
1385 	AE_WRITE(sc, CSR_STATUS, 0xffffffff);
1386 
1387 	/*
1388 	 * Give the transmit and receive rings to the chip.
1389 	 */
1390 	AE_WRITE(sc, CSR_TXLIST, AE_CDTXADDR(sc, sc->sc_txnext));
1391 	AE_WRITE(sc, CSR_RXLIST, AE_CDRXADDR(sc, sc->sc_rxptr));
1392 	AE_BARRIER(sc);
1393 
1394 	/*
1395 	 * Set the station address.
1396 	 */
1397 	enaddr = CLLADDR(ifp->if_sadl);
1398 	AE_WRITE(sc, CSR_MACHI, enaddr[5] << 16 | enaddr[4]);
1399 	AE_WRITE(sc, CSR_MACLO, enaddr[3] << 24 | enaddr[2] << 16 |
1400 		enaddr[1] << 8 | enaddr[0]);
1401 	AE_BARRIER(sc);
1402 
1403 	/*
1404 	 * Set the receive filter.  This will start the transmit and
1405 	 * receive processes.
1406 	 */
1407 	ae_filter_setup(sc);
1408 
1409 	/*
1410 	 * Set the current media.
1411 	 */
1412 	if ((error = ether_mediachange(ifp)) != 0)
1413 		goto out;
1414 
1415 	/*
1416 	 * Start the mac.
1417 	 */
1418 	AE_SET(sc, CSR_MACCTL, MACCTL_RE | MACCTL_TE);
1419 	AE_BARRIER(sc);
1420 
1421 	/*
1422 	 * Write out the opmode.
1423 	 */
1424 	AE_WRITE(sc, CSR_OPMODE, OPMODE_SR | OPMODE_ST |
1425 	    ae_txthresh[sc->sc_txthresh].txth_opmode);
1426 	/*
1427 	 * Start the receive process.
1428 	 */
1429 	AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
1430 	AE_BARRIER(sc);
1431 
1432 	if (sc->sc_tick != NULL) {
1433 		/* Start the one second clock. */
1434 		callout_reset(&sc->sc_tick_callout, hz >> 3, sc->sc_tick, sc);
1435 	}
1436 
1437 	/*
1438 	 * Note that the interface is now running.
1439 	 */
1440 	ifp->if_flags |= IFF_RUNNING;
1441 	sc->sc_if_flags = ifp->if_flags;
1442 
1443  out:
1444 	if (error) {
1445 		ifp->if_flags &= ~IFF_RUNNING;
1446 		ifp->if_timer = 0;
1447 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
1448 	}
1449 	return (error);
1450 }
1451 
1452 /*
1453  * ae_enable:
1454  *
1455  *	Enable the chip.
1456  */
1457 static int
1458 ae_enable(struct ae_softc *sc)
1459 {
1460 
1461 	if (AE_IS_ENABLED(sc) == 0) {
1462 		sc->sc_ih = arbus_intr_establish(sc->sc_cirq, sc->sc_mirq,
1463 		    ae_intr, sc);
1464 		if (sc->sc_ih == NULL) {
1465 			printf("%s: unable to establish interrupt\n",
1466 			    device_xname(sc->sc_dev));
1467 			return (EIO);
1468 		}
1469 		sc->sc_flags |= AE_ENABLED;
1470 	}
1471 	return (0);
1472 }
1473 
1474 /*
1475  * ae_disable:
1476  *
1477  *	Disable the chip.
1478  */
1479 static void
1480 ae_disable(struct ae_softc *sc)
1481 {
1482 
1483 	if (AE_IS_ENABLED(sc)) {
1484 		arbus_intr_disestablish(sc->sc_ih);
1485 		sc->sc_flags &= ~AE_ENABLED;
1486 	}
1487 }
1488 
1489 /*
1490  * ae_power:
1491  *
1492  *	Power management (suspend/resume) hook.
1493  */
1494 static void
1495 ae_power(int why, void *arg)
1496 {
1497 	struct ae_softc *sc = arg;
1498 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1499 	int s;
1500 
1501 	printf("power called: %d, %x\n", why, (uint32_t)arg);
1502 	s = splnet();
1503 	switch (why) {
1504 	case PWR_STANDBY:
1505 		/* do nothing! */
1506 		break;
1507 	case PWR_SUSPEND:
1508 		ae_stop(ifp, 0);
1509 		ae_disable(sc);
1510 		break;
1511 	case PWR_RESUME:
1512 		if (ifp->if_flags & IFF_UP) {
1513 			ae_enable(sc);
1514 			ae_init(ifp);
1515 		}
1516 		break;
1517 	case PWR_SOFTSUSPEND:
1518 	case PWR_SOFTSTANDBY:
1519 	case PWR_SOFTRESUME:
1520 		break;
1521 	}
1522 	splx(s);
1523 }
1524 
1525 /*
1526  * ae_rxdrain:
1527  *
1528  *	Drain the receive queue.
1529  */
1530 static void
1531 ae_rxdrain(struct ae_softc *sc)
1532 {
1533 	struct ae_rxsoft *rxs;
1534 	int i;
1535 
1536 	for (i = 0; i < AE_NRXDESC; i++) {
1537 		rxs = &sc->sc_rxsoft[i];
1538 		if (rxs->rxs_mbuf != NULL) {
1539 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1540 			m_freem(rxs->rxs_mbuf);
1541 			rxs->rxs_mbuf = NULL;
1542 		}
1543 	}
1544 }
1545 
1546 /*
1547  * ae_stop:		[ ifnet interface function ]
1548  *
1549  *	Stop transmission on the interface.
1550  */
1551 static void
1552 ae_stop(struct ifnet *ifp, int disable)
1553 {
1554 	struct ae_softc *sc = ifp->if_softc;
1555 	struct ae_txsoft *txs;
1556 
1557 	if (sc->sc_tick != NULL) {
1558 		/* Stop the one second clock. */
1559 		callout_stop(&sc->sc_tick_callout);
1560 	}
1561 
1562 	/* Down the MII. */
1563 	mii_down(&sc->sc_mii);
1564 
1565 	/* Disable interrupts. */
1566 	AE_WRITE(sc, CSR_INTEN, 0);
1567 
1568 	/* Stop the transmit and receive processes. */
1569 	AE_WRITE(sc, CSR_OPMODE, 0);
1570 	AE_WRITE(sc, CSR_RXLIST, 0);
1571 	AE_WRITE(sc, CSR_TXLIST, 0);
1572 	AE_CLR(sc, CSR_MACCTL, MACCTL_TE | MACCTL_RE);
1573 	AE_BARRIER(sc);
1574 
1575 	/*
1576 	 * Release any queued transmit buffers.
1577 	 */
1578 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1579 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1580 		if (txs->txs_mbuf != NULL) {
1581 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1582 			m_freem(txs->txs_mbuf);
1583 			txs->txs_mbuf = NULL;
1584 		}
1585 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1586 	}
1587 
1588 	/*
1589 	 * Mark the interface down and cancel the watchdog timer.
1590 	 */
1591 	ifp->if_flags &= ~IFF_RUNNING;
1592 	sc->sc_if_flags = ifp->if_flags;
1593 	ifp->if_timer = 0;
1594 
1595 	if (disable) {
1596 		ae_rxdrain(sc);
1597 		ae_disable(sc);
1598 	}
1599 
1600 	/*
1601 	 * Reset the chip (needed on some flavors to actually disable it).
1602 	 */
1603 	ae_reset(sc);
1604 }
1605 
1606 /*
1607  * ae_add_rxbuf:
1608  *
1609  *	Add a receive buffer to the indicated descriptor.
1610  */
1611 static int
1612 ae_add_rxbuf(struct ae_softc *sc, int idx)
1613 {
1614 	struct ae_rxsoft *rxs = &sc->sc_rxsoft[idx];
1615 	struct mbuf *m;
1616 	int error;
1617 
1618 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1619 	if (m == NULL)
1620 		return (ENOBUFS);
1621 
1622 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1623 	MCLGET(m, M_DONTWAIT);
1624 	if ((m->m_flags & M_EXT) == 0) {
1625 		m_freem(m);
1626 		return (ENOBUFS);
1627 	}
1628 
1629 	if (rxs->rxs_mbuf != NULL)
1630 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1631 
1632 	rxs->rxs_mbuf = m;
1633 
1634 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1635 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1636 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
1637 	if (error) {
1638 		printf("%s: can't load rx DMA map %d, error = %d\n",
1639 		    device_xname(sc->sc_dev), idx, error);
1640 		panic("ae_add_rxbuf");	/* XXX */
1641 	}
1642 
1643 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1644 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1645 
1646 	AE_INIT_RXDESC(sc, idx);
1647 
1648 	return (0);
1649 }
1650 
1651 /*
1652  * ae_filter_setup:
1653  *
1654  *	Set the chip's receive filter.
1655  */
1656 static void
1657 ae_filter_setup(struct ae_softc *sc)
1658 {
1659 	struct ethercom *ec = &sc->sc_ethercom;
1660 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1661 	struct ether_multi *enm;
1662 	struct ether_multistep step;
1663 	uint32_t hash, mchash[2];
1664 	uint32_t macctl = 0;
1665 
1666 	/*
1667 	 * If the chip is running, we need to reset the interface,
1668 	 * and will revisit here (with IFF_RUNNING) clear.  The
1669 	 * chip seems to really not like to have its multicast
1670 	 * filter programmed without a reset.
1671 	 */
1672 	if (ifp->if_flags & IFF_RUNNING) {
1673 		(void) ae_init(ifp);
1674 		return;
1675 	}
1676 
1677 	DPRINTF(sc, ("%s: ae_filter_setup: sc_flags 0x%08x\n",
1678 	    device_xname(sc->sc_dev), sc->sc_flags));
1679 
1680 	macctl = AE_READ(sc, CSR_MACCTL);
1681 	macctl &= ~(MACCTL_PR | MACCTL_PM);
1682 	macctl |= MACCTL_HASH;
1683 	macctl |= MACCTL_HBD;
1684 	macctl |= MACCTL_PR;
1685 
1686 	if (ifp->if_flags & IFF_PROMISC) {
1687 		macctl |= MACCTL_PR;
1688 		goto allmulti;
1689 	}
1690 
1691 	mchash[0] = mchash[1] = 0;
1692 
1693 	ETHER_LOCK(ec);
1694 	ETHER_FIRST_MULTI(step, ec, enm);
1695 	while (enm != NULL) {
1696 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1697 			/*
1698 			 * We must listen to a range of multicast addresses.
1699 			 * For now, just accept all multicasts, rather than
1700 			 * trying to set only those filter bits needed to match
1701 			 * the range.  (At this time, the only use of address
1702 			 * ranges is for IP multicast routing, for which the
1703 			 * range is big enough to require all bits set.)
1704 			 */
1705 			ETHER_UNLOCK(ec);
1706 			goto allmulti;
1707 		}
1708 
1709 		/* Verify whether we use big or little endian hashes */
1710 		hash = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3f;
1711 		mchash[hash >> 5] |= 1 << (hash & 0x1f);
1712 		ETHER_NEXT_MULTI(step, enm);
1713 	}
1714 	ETHER_UNLOCK(ec);
1715 	ifp->if_flags &= ~IFF_ALLMULTI;
1716 	goto setit;
1717 
1718  allmulti:
1719 	ifp->if_flags |= IFF_ALLMULTI;
1720 	mchash[0] = mchash[1] = 0xffffffff;
1721 	macctl |= MACCTL_PM;
1722 
1723  setit:
1724 	AE_WRITE(sc, CSR_HTHI, mchash[0]);
1725 	AE_WRITE(sc, CSR_HTHI, mchash[1]);
1726 
1727 	AE_WRITE(sc, CSR_MACCTL, macctl);
1728 	AE_BARRIER(sc);
1729 
1730 	DPRINTF(sc, ("%s: ae_filter_setup: returning %x\n",
1731 		    device_xname(sc->sc_dev), macctl));
1732 }
1733 
1734 /*
1735  * ae_idle:
1736  *
1737  *	Cause the transmit and/or receive processes to go idle.
1738  */
1739 void
1740 ae_idle(struct ae_softc *sc, uint32_t bits)
1741 {
1742 	static const char * const txstate_names[] = {
1743 		"STOPPED",
1744 		"RUNNING - FETCH",
1745 		"RUNNING - WAIT",
1746 		"RUNNING - READING",
1747 		"-- RESERVED --",
1748 		"RUNNING - SETUP",
1749 		"SUSPENDED",
1750 		"RUNNING - CLOSE",
1751 	};
1752 	static const char * const rxstate_names[] = {
1753 		"STOPPED",
1754 		"RUNNING - FETCH",
1755 		"RUNNING - CHECK",
1756 		"RUNNING - WAIT",
1757 		"SUSPENDED",
1758 		"RUNNING - CLOSE",
1759 		"RUNNING - FLUSH",
1760 		"RUNNING - QUEUE",
1761 	};
1762 
1763 	uint32_t csr, ackmask = 0;
1764 	int i;
1765 
1766 	if (bits & OPMODE_ST)
1767 		ackmask |= STATUS_TPS;
1768 
1769 	if (bits & OPMODE_SR)
1770 		ackmask |= STATUS_RPS;
1771 
1772 	AE_CLR(sc, CSR_OPMODE, bits);
1773 
1774 	for (i = 0; i < 1000; i++) {
1775 		if (AE_ISSET(sc, CSR_STATUS, ackmask) == ackmask)
1776 			break;
1777 		delay(10);
1778 	}
1779 
1780 	csr = AE_READ(sc, CSR_STATUS);
1781 	if ((csr & ackmask) != ackmask) {
1782 		if ((bits & OPMODE_ST) != 0 && (csr & STATUS_TPS) == 0 &&
1783 		    (csr & STATUS_TS) != STATUS_TS_STOPPED) {
1784 			printf("%s: transmit process failed to idle: "
1785 			    "state %s\n", device_xname(sc->sc_dev),
1786 			    txstate_names[(csr & STATUS_TS) >> 20]);
1787 		}
1788 		if ((bits & OPMODE_SR) != 0 && (csr & STATUS_RPS) == 0 &&
1789 		    (csr & STATUS_RS) != STATUS_RS_STOPPED) {
1790 			printf("%s: receive process failed to idle: "
1791 			    "state %s\n", device_xname(sc->sc_dev),
1792 			    rxstate_names[(csr & STATUS_RS) >> 17]);
1793 		}
1794 	}
1795 }
1796 
1797 /*****************************************************************************
1798  * Support functions for MII-attached media.
1799  *****************************************************************************/
1800 
1801 /*
1802  * ae_mii_tick:
1803  *
1804  *	One second timer, used to tick the MII.
1805  */
1806 static void
1807 ae_mii_tick(void *arg)
1808 {
1809 	struct ae_softc *sc = arg;
1810 	int s;
1811 
1812 	if (!device_is_active(sc->sc_dev))
1813 		return;
1814 
1815 	s = splnet();
1816 	mii_tick(&sc->sc_mii);
1817 	splx(s);
1818 
1819 	callout_reset(&sc->sc_tick_callout, hz, sc->sc_tick, sc);
1820 }
1821 
1822 /*
1823  * ae_mii_statchg:	[mii interface function]
1824  *
1825  *	Callback from PHY when media changes.
1826  */
1827 static void
1828 ae_mii_statchg(struct ifnet *ifp)
1829 {
1830 	struct ae_softc *sc = ifp->if_softc;
1831 	uint32_t	macctl, flowc;
1832 
1833 	//opmode = AE_READ(sc, CSR_OPMODE);
1834 	macctl = AE_READ(sc, CSR_MACCTL);
1835 
1836 	/* XXX: do we need to do this? */
1837 	/* Idle the transmit and receive processes. */
1838 	//ae_idle(sc, OPMODE_ST | OPMODE_SR);
1839 
1840 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
1841 		flowc = FLOWC_FCE;
1842 		macctl &= ~MACCTL_DRO;
1843 		macctl |= MACCTL_FDX;
1844 	} else {
1845 		flowc = 0;	/* cannot do flow control in HDX */
1846 		macctl |= MACCTL_DRO;
1847 		macctl &= ~MACCTL_FDX;
1848 	}
1849 
1850 	AE_WRITE(sc, CSR_FLOWC, flowc);
1851 	AE_WRITE(sc, CSR_MACCTL, macctl);
1852 
1853 	/* restore operational mode */
1854 	//AE_WRITE(sc, CSR_OPMODE, opmode);
1855 	AE_BARRIER(sc);
1856 }
1857 
1858 /*
1859  * ae_mii_readreg:
1860  *
1861  *	Read a PHY register.
1862  */
1863 static int
1864 ae_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1865 {
1866 	struct ae_softc	*sc = device_private(self);
1867 	uint32_t	addr;
1868 	int		i;
1869 
1870 	addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT);
1871 	AE_WRITE(sc, CSR_MIIADDR, addr);
1872 	AE_BARRIER(sc);
1873 	for (i = 0; i < 100000000; i++) {
1874 		if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1875 			break;
1876 	}
1877 
1878 	if (i >= 100000000)
1879 		return ETIMEDOUT;
1880 
1881 	*val = AE_READ(sc, CSR_MIIDATA) & 0xffff;
1882 	return 0;
1883 }
1884 
1885 /*
1886  * ae_mii_writereg:
1887  *
1888  *	Write a PHY register.
1889  */
1890 static int
1891 ae_mii_writereg(device_t self, int phy, int reg, uint16_t val)
1892 {
1893 	struct ae_softc *sc = device_private(self);
1894 	uint32_t	addr;
1895 	int		i;
1896 
1897 	/* write the data register */
1898 	AE_WRITE(sc, CSR_MIIDATA, val);
1899 
1900 	/* write the address to latch it in */
1901 	addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT) |
1902 	    MIIADDR_WRITE;
1903 	AE_WRITE(sc, CSR_MIIADDR, addr);
1904 	AE_BARRIER(sc);
1905 
1906 	for (i = 0; i < 100000000; i++) {
1907 		if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1908 			break;
1909 	}
1910 
1911 	if (i >= 100000000)
1912 		return ETIMEDOUT;
1913 
1914 	return 0;
1915 }
1916