xref: /netbsd-src/sys/arch/mips/atheros/dev/if_ae.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* $Id: if_ae.c,v 1.31 2018/06/26 06:47:58 msaitoh Exp $ */
2 /*-
3  * Copyright (c) 2006 Urbana-Champaign Independent Media Center.
4  * Copyright (c) 2006 Garrett D'Amore.
5  * All rights reserved.
6  *
7  * This code was written by Garrett D'Amore for the Champaign-Urbana
8  * Community Wireless Network Project.
9  *
10  * Redistribution and use in source and binary forms, with or
11  * without modification, are permitted provided that the following
12  * conditions are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above
16  *    copyright notice, this list of conditions and the following
17  *    disclaimer in the documentation and/or other materials provided
18  *    with the distribution.
19  * 3. All advertising materials mentioning features or use of this
20  *    software must display the following acknowledgements:
21  *      This product includes software developed by the Urbana-Champaign
22  *      Independent Media Center.
23  *	This product includes software developed by Garrett D'Amore.
24  * 4. Urbana-Champaign Independent Media Center's name and Garrett
25  *    D'Amore's name may not be used to endorse or promote products
26  *    derived from this software without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
29  * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
30  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
31  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
33  * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
34  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
35  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
36  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
37  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
38  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
40  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41  */
42 /*-
43  * Copyright (c) 1998, 1999, 2000, 2002 The NetBSD Foundation, Inc.
44  * All rights reserved.
45  *
46  * This code is derived from software contributed to The NetBSD Foundation
47  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
48  * NASA Ames Research Center; and by Charles M. Hannum.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
60  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69  * POSSIBILITY OF SUCH DAMAGE.
70  */
71 
72 /*
73  * Device driver for the onboard ethernet MAC found on the AR5312
74  * chip's AHB bus.
75  *
76  * This device is very simliar to the tulip in most regards, and
77  * the code is directly derived from NetBSD's tulip.c.  However, it
78  * is different enough that it did not seem to be a good idea to
79  * add further complexity to the tulip driver, so we have our own.
80  *
81  * Also tulip has a lot of complexity in it for various parts/options
82  * that we don't need, and on these little boxes with only ~8MB RAM, we
83  * don't want any extra bloat.
84  */
85 
86 /*
87  * TODO:
88  *
89  * 1) Find out about BUS_MODE_ALIGN16B.  This chip can apparently align
90  *    inbound packets on a half-word boundary, which would make life easier
91  *    for TCP/IP.  (Aligning IP headers on a word.)
92  *
93  * 2) There is stuff in original tulip to shut down the device when reacting
94  *    to a a change in link status.  Is that needed.
95  *
96  * 3) Test with variety of 10/100 HDX/FDX scenarios.
97  *
98  */
99 
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: if_ae.c,v 1.31 2018/06/26 06:47:58 msaitoh Exp $");
102 
103 
104 #include <sys/param.h>
105 #include <sys/bus.h>
106 #include <sys/callout.h>
107 #include <sys/device.h>
108 #include <sys/endian.h>
109 #include <sys/errno.h>
110 #include <sys/intr.h>
111 #include <sys/ioctl.h>
112 #include <sys/kernel.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/socket.h>
116 
117 #include <uvm/uvm_extern.h>
118 
119 #include <net/if.h>
120 #include <net/if_dl.h>
121 #include <net/if_media.h>
122 #include <net/if_ether.h>
123 
124 #include <net/bpf.h>
125 
126 #include <dev/mii/mii.h>
127 #include <dev/mii/miivar.h>
128 #include <dev/mii/mii_bitbang.h>
129 
130 #include <mips/atheros/include/arbusvar.h>
131 #include <mips/atheros/dev/aereg.h>
132 #include <mips/atheros/dev/aevar.h>
133 
134 static const struct {
135 	u_int32_t txth_opmode;		/* OPMODE bits */
136 	const char *txth_name;		/* name of mode */
137 } ae_txthresh[] = {
138 	{ OPMODE_TR_32,		"32 words" },
139 	{ OPMODE_TR_64,		"64 words" },
140 	{ OPMODE_TR_128,	"128 words" },
141 	{ OPMODE_TR_256,	"256 words" },
142 	{ OPMODE_SF,		"store and forward mode" },
143 	{ 0,			NULL },
144 };
145 
146 static int 	ae_match(device_t, struct cfdata *, void *);
147 static void	ae_attach(device_t, device_t, void *);
148 static int	ae_detach(device_t, int);
149 static int	ae_activate(device_t, enum devact);
150 
151 static int	ae_ifflags_cb(struct ethercom *);
152 static void	ae_reset(struct ae_softc *);
153 static void	ae_idle(struct ae_softc *, u_int32_t);
154 
155 static void	ae_start(struct ifnet *);
156 static void	ae_watchdog(struct ifnet *);
157 static int	ae_ioctl(struct ifnet *, u_long, void *);
158 static int	ae_init(struct ifnet *);
159 static void	ae_stop(struct ifnet *, int);
160 
161 static void	ae_shutdown(void *);
162 
163 static void	ae_rxdrain(struct ae_softc *);
164 static int	ae_add_rxbuf(struct ae_softc *, int);
165 
166 static int	ae_enable(struct ae_softc *);
167 static void	ae_disable(struct ae_softc *);
168 static void	ae_power(int, void *);
169 
170 static void	ae_filter_setup(struct ae_softc *);
171 
172 static int	ae_intr(void *);
173 static void	ae_rxintr(struct ae_softc *);
174 static void	ae_txintr(struct ae_softc *);
175 
176 static void	ae_mii_tick(void *);
177 static void	ae_mii_statchg(struct ifnet *);
178 
179 static int	ae_mii_readreg(device_t, int, int);
180 static void	ae_mii_writereg(device_t, int, int, int);
181 
182 #ifdef AE_DEBUG
183 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
184 				printf x
185 #else
186 #define	DPRINTF(sc, x)	/* nothing */
187 #endif
188 
189 #ifdef AE_STATS
190 static void	ae_print_stats(struct ae_softc *);
191 #endif
192 
193 CFATTACH_DECL_NEW(ae, sizeof(struct ae_softc),
194     ae_match, ae_attach, ae_detach, ae_activate);
195 
196 /*
197  * ae_match:
198  *
199  *	Check for a device match.
200  */
201 int
202 ae_match(device_t parent, struct cfdata *cf, void *aux)
203 {
204 	struct arbus_attach_args *aa = aux;
205 
206 	if (strcmp(aa->aa_name, cf->cf_name) == 0)
207 		return 1;
208 
209 	return 0;
210 
211 }
212 
213 /*
214  * ae_attach:
215  *
216  *	Attach an ae interface to the system.
217  */
218 void
219 ae_attach(device_t parent, device_t self, void *aux)
220 {
221 	const uint8_t *enaddr;
222 	prop_data_t ea;
223 	struct ae_softc *sc = device_private(self);
224 	struct arbus_attach_args *aa = aux;
225 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
226 	int i, error;
227 
228 	sc->sc_dev = self;
229 
230 	callout_init(&sc->sc_tick_callout, 0);
231 
232 	printf(": Atheros AR531X 10/100 Ethernet\n");
233 
234 	/*
235 	 * Try to get MAC address.
236 	 */
237 	ea = prop_dictionary_get(device_properties(sc->sc_dev), "mac-address");
238 	if (ea == NULL) {
239 		printf("%s: unable to get mac-addr property\n",
240 		    device_xname(sc->sc_dev));
241 		return;
242 	}
243 	KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
244 	KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
245 	enaddr = prop_data_data_nocopy(ea);
246 
247 	/* Announce ourselves. */
248 	printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
249 	    ether_sprintf(enaddr));
250 
251 	sc->sc_cirq = aa->aa_cirq;
252 	sc->sc_mirq = aa->aa_mirq;
253 	sc->sc_st = aa->aa_bst;
254 	sc->sc_dmat = aa->aa_dmat;
255 
256 	SIMPLEQ_INIT(&sc->sc_txfreeq);
257 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
258 
259 	/*
260 	 * Map registers.
261 	 */
262 	sc->sc_size = aa->aa_size;
263 	if ((error = bus_space_map(sc->sc_st, aa->aa_addr, sc->sc_size, 0,
264 	    &sc->sc_sh)) != 0) {
265 		printf("%s: unable to map registers, error = %d\n",
266 		    device_xname(sc->sc_dev), error);
267 		goto fail_0;
268 	}
269 
270 	/*
271 	 * Allocate the control data structures, and create and load the
272 	 * DMA map for it.
273 	 */
274 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
275 	    sizeof(struct ae_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
276 	    1, &sc->sc_cdnseg, 0)) != 0) {
277 		printf("%s: unable to allocate control data, error = %d\n",
278 		    device_xname(sc->sc_dev), error);
279 		goto fail_1;
280 	}
281 
282 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
283 	    sizeof(struct ae_control_data), (void **)&sc->sc_control_data,
284 	    BUS_DMA_COHERENT)) != 0) {
285 		printf("%s: unable to map control data, error = %d\n",
286 		    device_xname(sc->sc_dev), error);
287 		goto fail_2;
288 	}
289 
290 	if ((error = bus_dmamap_create(sc->sc_dmat,
291 	    sizeof(struct ae_control_data), 1,
292 	    sizeof(struct ae_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
293 		printf("%s: unable to create control data DMA map, "
294 		    "error = %d\n", device_xname(sc->sc_dev), error);
295 		goto fail_3;
296 	}
297 
298 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
299 	    sc->sc_control_data, sizeof(struct ae_control_data), NULL,
300 	    0)) != 0) {
301 		printf("%s: unable to load control data DMA map, error = %d\n",
302 		    device_xname(sc->sc_dev), error);
303 		goto fail_4;
304 	}
305 
306 	/*
307 	 * Create the transmit buffer DMA maps.
308 	 */
309 	for (i = 0; i < AE_TXQUEUELEN; i++) {
310 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
311 		    AE_NTXSEGS, MCLBYTES, 0, 0,
312 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
313 			printf("%s: unable to create tx DMA map %d, "
314 			    "error = %d\n", device_xname(sc->sc_dev), i, error);
315 			goto fail_5;
316 		}
317 	}
318 
319 	/*
320 	 * Create the receive buffer DMA maps.
321 	 */
322 	for (i = 0; i < AE_NRXDESC; i++) {
323 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
324 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
325 			printf("%s: unable to create rx DMA map %d, "
326 			    "error = %d\n", device_xname(sc->sc_dev), i, error);
327 			goto fail_6;
328 		}
329 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
330 	}
331 
332 	/*
333 	 * Reset the chip to a known state.
334 	 */
335 	ae_reset(sc);
336 
337 	/*
338 	 * From this point forward, the attachment cannot fail.  A failure
339 	 * before this point releases all resources that may have been
340 	 * allocated.
341 	 */
342 	sc->sc_flags |= AE_ATTACHED;
343 
344 	/*
345 	 * Initialize our media structures.  This may probe the MII, if
346 	 * present.
347 	 */
348 	sc->sc_mii.mii_ifp = ifp;
349 	sc->sc_mii.mii_readreg = ae_mii_readreg;
350 	sc->sc_mii.mii_writereg = ae_mii_writereg;
351 	sc->sc_mii.mii_statchg = ae_mii_statchg;
352 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
353 	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
354 	    ether_mediastatus);
355 	mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
356 	    MII_OFFSET_ANY, 0);
357 
358 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
359 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
360 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
361 	} else
362 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
363 
364 	sc->sc_tick = ae_mii_tick;
365 
366 	strcpy(ifp->if_xname, device_xname(sc->sc_dev));
367 	ifp->if_softc = sc;
368 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
369 	sc->sc_if_flags = ifp->if_flags;
370 	ifp->if_ioctl = ae_ioctl;
371 	ifp->if_start = ae_start;
372 	ifp->if_watchdog = ae_watchdog;
373 	ifp->if_init = ae_init;
374 	ifp->if_stop = ae_stop;
375 	IFQ_SET_READY(&ifp->if_snd);
376 
377 	/*
378 	 * We can support 802.1Q VLAN-sized frames.
379 	 */
380 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
381 
382 	/*
383 	 * Attach the interface.
384 	 */
385 	if_attach(ifp);
386 	if_deferred_start_init(ifp, NULL);
387 	ether_ifattach(ifp, enaddr);
388 	ether_set_ifflags_cb(&sc->sc_ethercom, ae_ifflags_cb);
389 
390 	rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
391 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
392 
393 	/*
394 	 * Make sure the interface is shutdown during reboot.
395 	 */
396 	sc->sc_sdhook = shutdownhook_establish(ae_shutdown, sc);
397 	if (sc->sc_sdhook == NULL)
398 		printf("%s: WARNING: unable to establish shutdown hook\n",
399 		    device_xname(sc->sc_dev));
400 
401 	/*
402 	 * Add a suspend hook to make sure we come back up after a
403 	 * resume.
404 	 */
405 	sc->sc_powerhook = powerhook_establish(device_xname(sc->sc_dev),
406 	    ae_power, sc);
407 	if (sc->sc_powerhook == NULL)
408 		printf("%s: WARNING: unable to establish power hook\n",
409 		    device_xname(sc->sc_dev));
410 	return;
411 
412 	/*
413 	 * Free any resources we've allocated during the failed attach
414 	 * attempt.  Do this in reverse order and fall through.
415 	 */
416  fail_6:
417 	for (i = 0; i < AE_NRXDESC; i++) {
418 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
419 			bus_dmamap_destroy(sc->sc_dmat,
420 			    sc->sc_rxsoft[i].rxs_dmamap);
421 	}
422  fail_5:
423 	for (i = 0; i < AE_TXQUEUELEN; i++) {
424 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
425 			bus_dmamap_destroy(sc->sc_dmat,
426 			    sc->sc_txsoft[i].txs_dmamap);
427 	}
428 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
429  fail_4:
430 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
431  fail_3:
432 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
433 	    sizeof(struct ae_control_data));
434  fail_2:
435 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
436  fail_1:
437 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
438  fail_0:
439 	return;
440 }
441 
442 /*
443  * ae_activate:
444  *
445  *	Handle device activation/deactivation requests.
446  */
447 int
448 ae_activate(device_t self, enum devact act)
449 {
450 	struct ae_softc *sc = device_private(self);
451 
452 	switch (act) {
453 	case DVACT_DEACTIVATE:
454 		if_deactivate(&sc->sc_ethercom.ec_if);
455 		return 0;
456 	default:
457 		return EOPNOTSUPP;
458 	}
459 }
460 
461 /*
462  * ae_detach:
463  *
464  *	Detach a device interface.
465  */
466 int
467 ae_detach(device_t self, int flags)
468 {
469 	struct ae_softc *sc = device_private(self);
470 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
471 	struct ae_rxsoft *rxs;
472 	struct ae_txsoft *txs;
473 	int i;
474 
475 	/*
476 	 * Succeed now if there isn't any work to do.
477 	 */
478 	if ((sc->sc_flags & AE_ATTACHED) == 0)
479 		return (0);
480 
481 	/* Unhook our tick handler. */
482 	if (sc->sc_tick)
483 		callout_stop(&sc->sc_tick_callout);
484 
485 	/* Detach all PHYs */
486 	mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
487 
488 	/* Delete all remaining media. */
489 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
490 
491 	rnd_detach_source(&sc->sc_rnd_source);
492 	ether_ifdetach(ifp);
493 	if_detach(ifp);
494 
495 	for (i = 0; i < AE_NRXDESC; i++) {
496 		rxs = &sc->sc_rxsoft[i];
497 		if (rxs->rxs_mbuf != NULL) {
498 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
499 			m_freem(rxs->rxs_mbuf);
500 			rxs->rxs_mbuf = NULL;
501 		}
502 		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
503 	}
504 	for (i = 0; i < AE_TXQUEUELEN; i++) {
505 		txs = &sc->sc_txsoft[i];
506 		if (txs->txs_mbuf != NULL) {
507 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
508 			m_freem(txs->txs_mbuf);
509 			txs->txs_mbuf = NULL;
510 		}
511 		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
512 	}
513 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
514 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
515 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
516 	    sizeof(struct ae_control_data));
517 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
518 
519 	shutdownhook_disestablish(sc->sc_sdhook);
520 	powerhook_disestablish(sc->sc_powerhook);
521 
522 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
523 
524 
525 	return (0);
526 }
527 
528 /*
529  * ae_shutdown:
530  *
531  *	Make sure the interface is stopped at reboot time.
532  */
533 static void
534 ae_shutdown(void *arg)
535 {
536 	struct ae_softc *sc = arg;
537 
538 	ae_stop(&sc->sc_ethercom.ec_if, 1);
539 }
540 
541 /*
542  * ae_start:		[ifnet interface function]
543  *
544  *	Start packet transmission on the interface.
545  */
546 static void
547 ae_start(struct ifnet *ifp)
548 {
549 	struct ae_softc *sc = ifp->if_softc;
550 	struct mbuf *m0, *m;
551 	struct ae_txsoft *txs;
552 	bus_dmamap_t dmamap;
553 	int error, firsttx, nexttx, lasttx = 1, ofree, seg;
554 
555 	DPRINTF(sc, ("%s: ae_start: sc_flags 0x%08x, if_flags 0x%08x\n",
556 	    device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags));
557 
558 
559 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
560 		return;
561 
562 	/*
563 	 * Remember the previous number of free descriptors and
564 	 * the first descriptor we'll use.
565 	 */
566 	ofree = sc->sc_txfree;
567 	firsttx = sc->sc_txnext;
568 
569 	DPRINTF(sc, ("%s: ae_start: txfree %d, txnext %d\n",
570 	    device_xname(sc->sc_dev), ofree, firsttx));
571 
572 	/*
573 	 * Loop through the send queue, setting up transmit descriptors
574 	 * until we drain the queue, or use up all available transmit
575 	 * descriptors.
576 	 */
577 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
578 	       sc->sc_txfree != 0) {
579 		/*
580 		 * Grab a packet off the queue.
581 		 */
582 		IFQ_POLL(&ifp->if_snd, m0);
583 		if (m0 == NULL)
584 			break;
585 		m = NULL;
586 
587 		dmamap = txs->txs_dmamap;
588 
589 		/*
590 		 * Load the DMA map.  If this fails, the packet either
591 		 * didn't fit in the alloted number of segments, or we were
592 		 * short on resources.  In this case, we'll copy and try
593 		 * again.
594 		 */
595 		if (((mtod(m0, uintptr_t) & 3) != 0) ||
596 		    bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
597 		      BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
598 			MGETHDR(m, M_DONTWAIT, MT_DATA);
599 			if (m == NULL) {
600 				printf("%s: unable to allocate Tx mbuf\n",
601 				    device_xname(sc->sc_dev));
602 				break;
603 			}
604 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
605 			if (m0->m_pkthdr.len > MHLEN) {
606 				MCLGET(m, M_DONTWAIT);
607 				if ((m->m_flags & M_EXT) == 0) {
608 					printf("%s: unable to allocate Tx "
609 					    "cluster\n", device_xname(sc->sc_dev));
610 					m_freem(m);
611 					break;
612 				}
613 			}
614 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
615 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
616 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
617 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
618 			if (error) {
619 				printf("%s: unable to load Tx buffer, "
620 				    "error = %d\n", device_xname(sc->sc_dev),
621 				    error);
622 				break;
623 			}
624 		}
625 
626 		/*
627 		 * Ensure we have enough descriptors free to describe
628 		 * the packet.
629 		 */
630 		if (dmamap->dm_nsegs > sc->sc_txfree) {
631 			/*
632 			 * Not enough free descriptors to transmit this
633 			 * packet.  We haven't committed to anything yet,
634 			 * so just unload the DMA map, put the packet
635 			 * back on the queue, and punt.  Notify the upper
636 			 * layer that there are no more slots left.
637 			 *
638 			 * XXX We could allocate an mbuf and copy, but
639 			 * XXX it is worth it?
640 			 */
641 			ifp->if_flags |= IFF_OACTIVE;
642 			bus_dmamap_unload(sc->sc_dmat, dmamap);
643 			if (m != NULL)
644 				m_freem(m);
645 			break;
646 		}
647 
648 		IFQ_DEQUEUE(&ifp->if_snd, m0);
649 		if (m != NULL) {
650 			m_freem(m0);
651 			m0 = m;
652 		}
653 
654 		/*
655 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
656 		 */
657 
658 		/* Sync the DMA map. */
659 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
660 		    BUS_DMASYNC_PREWRITE);
661 
662 		/*
663 		 * Initialize the transmit descriptors.
664 		 */
665 		for (nexttx = sc->sc_txnext, seg = 0;
666 		     seg < dmamap->dm_nsegs;
667 		     seg++, nexttx = AE_NEXTTX(nexttx)) {
668 			/*
669 			 * If this is the first descriptor we're
670 			 * enqueueing, don't set the OWN bit just
671 			 * yet.  That could cause a race condition.
672 			 * We'll do it below.
673 			 */
674 			sc->sc_txdescs[nexttx].ad_status =
675 			    (nexttx == firsttx) ? 0 : ADSTAT_OWN;
676 			sc->sc_txdescs[nexttx].ad_bufaddr1 =
677 			    dmamap->dm_segs[seg].ds_addr;
678 			sc->sc_txdescs[nexttx].ad_ctl =
679 			    (dmamap->dm_segs[seg].ds_len <<
680 				ADCTL_SIZE1_SHIFT) |
681 				(nexttx == (AE_NTXDESC - 1) ?
682 				    ADCTL_ER : 0);
683 			lasttx = nexttx;
684 		}
685 
686 		KASSERT(lasttx != -1);
687 
688 		/* Set `first segment' and `last segment' appropriately. */
689 		sc->sc_txdescs[sc->sc_txnext].ad_ctl |= ADCTL_Tx_FS;
690 		sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_LS;
691 
692 #ifdef AE_DEBUG
693 		if (ifp->if_flags & IFF_DEBUG) {
694 			printf("     txsoft %p transmit chain:\n", txs);
695 			for (seg = sc->sc_txnext;; seg = AE_NEXTTX(seg)) {
696 				printf("     descriptor %d:\n", seg);
697 				printf("       ad_status:   0x%08x\n",
698 				    sc->sc_txdescs[seg].ad_status);
699 				printf("       ad_ctl:      0x%08x\n",
700 				    sc->sc_txdescs[seg].ad_ctl);
701 				printf("       ad_bufaddr1: 0x%08x\n",
702 				    sc->sc_txdescs[seg].ad_bufaddr1);
703 				printf("       ad_bufaddr2: 0x%08x\n",
704 				    sc->sc_txdescs[seg].ad_bufaddr2);
705 				if (seg == lasttx)
706 					break;
707 			}
708 		}
709 #endif
710 
711 		/* Sync the descriptors we're using. */
712 		AE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
713 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
714 
715 		/*
716 		 * Store a pointer to the packet so we can free it later,
717 		 * and remember what txdirty will be once the packet is
718 		 * done.
719 		 */
720 		txs->txs_mbuf = m0;
721 		txs->txs_firstdesc = sc->sc_txnext;
722 		txs->txs_lastdesc = lasttx;
723 		txs->txs_ndescs = dmamap->dm_nsegs;
724 
725 		/* Advance the tx pointer. */
726 		sc->sc_txfree -= dmamap->dm_nsegs;
727 		sc->sc_txnext = nexttx;
728 
729 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
730 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
731 
732 		/*
733 		 * Pass the packet to any BPF listeners.
734 		 */
735 		bpf_mtap(ifp, m0, BPF_D_OUT);
736 	}
737 
738 	if (txs == NULL || sc->sc_txfree == 0) {
739 		/* No more slots left; notify upper layer. */
740 		ifp->if_flags |= IFF_OACTIVE;
741 	}
742 
743 	if (sc->sc_txfree != ofree) {
744 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
745 		    device_xname(sc->sc_dev), lasttx, firsttx));
746 		/*
747 		 * Cause a transmit interrupt to happen on the
748 		 * last packet we enqueued.
749 		 */
750 		sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_IC;
751 		AE_CDTXSYNC(sc, lasttx, 1,
752 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
753 
754 		/*
755 		 * The entire packet chain is set up.  Give the
756 		 * first descriptor to the chip now.
757 		 */
758 		sc->sc_txdescs[firsttx].ad_status |= ADSTAT_OWN;
759 		AE_CDTXSYNC(sc, firsttx, 1,
760 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
761 
762 		/* Wake up the transmitter. */
763 		/* XXX USE AUTOPOLLING? */
764 		AE_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD);
765 		AE_BARRIER(sc);
766 
767 		/* Set a watchdog timer in case the chip flakes out. */
768 		ifp->if_timer = 5;
769 	}
770 }
771 
772 /*
773  * ae_watchdog:	[ifnet interface function]
774  *
775  *	Watchdog timer handler.
776  */
777 static void
778 ae_watchdog(struct ifnet *ifp)
779 {
780 	struct ae_softc *sc = ifp->if_softc;
781 	int doing_transmit;
782 
783 	doing_transmit = (! SIMPLEQ_EMPTY(&sc->sc_txdirtyq));
784 
785 	if (doing_transmit) {
786 		printf("%s: transmit timeout\n", device_xname(sc->sc_dev));
787 		ifp->if_oerrors++;
788 	}
789 	else
790 		printf("%s: spurious watchdog timeout\n", device_xname(sc->sc_dev));
791 
792 	(void) ae_init(ifp);
793 
794 	/* Try to get more packets going. */
795 	ae_start(ifp);
796 }
797 
798 /* If the interface is up and running, only modify the receive
799  * filter when changing to/from promiscuous mode.  Otherwise return
800  * ENETRESET so that ether_ioctl will reset the chip.
801  */
802 static int
803 ae_ifflags_cb(struct ethercom *ec)
804 {
805 	struct ifnet *ifp = &ec->ec_if;
806 	struct ae_softc *sc = ifp->if_softc;
807 	int change = ifp->if_flags ^ sc->sc_if_flags;
808 
809 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
810 		return ENETRESET;
811 	else if ((change & IFF_PROMISC) != 0)
812 		ae_filter_setup(sc);
813 	return 0;
814 }
815 
816 /*
817  * ae_ioctl:		[ifnet interface function]
818  *
819  *	Handle control requests from the operator.
820  */
821 static int
822 ae_ioctl(struct ifnet *ifp, u_long cmd, void *data)
823 {
824 	struct ae_softc *sc = ifp->if_softc;
825 	int s, error;
826 
827 	s = splnet();
828 
829 	error = ether_ioctl(ifp, cmd, data);
830 	if (error == ENETRESET) {
831 		if (ifp->if_flags & IFF_RUNNING) {
832 			/*
833 			 * Multicast list has changed.  Set the
834 			 * hardware filter accordingly.
835 			 */
836 			ae_filter_setup(sc);
837 		}
838 		error = 0;
839 	}
840 
841 	/* Try to get more packets going. */
842 	if (AE_IS_ENABLED(sc))
843 		ae_start(ifp);
844 
845 	sc->sc_if_flags = ifp->if_flags;
846 	splx(s);
847 	return (error);
848 }
849 
850 /*
851  * ae_intr:
852  *
853  *	Interrupt service routine.
854  */
855 int
856 ae_intr(void *arg)
857 {
858 	struct ae_softc *sc = arg;
859 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
860 	u_int32_t status, rxstatus, txstatus;
861 	int handled = 0, txthresh;
862 
863 	DPRINTF(sc, ("%s: ae_intr\n", device_xname(sc->sc_dev)));
864 
865 #ifdef DEBUG
866 	if (AE_IS_ENABLED(sc) == 0)
867 		panic("%s: ae_intr: not enabled", device_xname(sc->sc_dev));
868 #endif
869 
870 	/*
871 	 * If the interface isn't running, the interrupt couldn't
872 	 * possibly have come from us.
873 	 */
874 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
875 	    !device_is_active(sc->sc_dev)) {
876 		printf("spurious?!?\n");
877 		return (0);
878 	}
879 
880 	for (;;) {
881 		status = AE_READ(sc, CSR_STATUS);
882 		if (status) {
883 			AE_WRITE(sc, CSR_STATUS, status);
884 			AE_BARRIER(sc);
885 		}
886 
887 		if ((status & sc->sc_inten) == 0)
888 			break;
889 
890 		handled = 1;
891 
892 		rxstatus = status & sc->sc_rxint_mask;
893 		txstatus = status & sc->sc_txint_mask;
894 
895 		if (rxstatus) {
896 			/* Grab new any new packets. */
897 			ae_rxintr(sc);
898 
899 			if (rxstatus & STATUS_RU) {
900 				printf("%s: receive ring overrun\n",
901 				    device_xname(sc->sc_dev));
902 				/* Get the receive process going again. */
903 				AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
904 				AE_BARRIER(sc);
905 				break;
906 			}
907 		}
908 
909 		if (txstatus) {
910 			/* Sweep up transmit descriptors. */
911 			ae_txintr(sc);
912 
913 			if (txstatus & STATUS_TJT)
914 				printf("%s: transmit jabber timeout\n",
915 				    device_xname(sc->sc_dev));
916 
917 			if (txstatus & STATUS_UNF) {
918 				/*
919 				 * Increase our transmit threshold if
920 				 * another is available.
921 				 */
922 				txthresh = sc->sc_txthresh + 1;
923 				if (ae_txthresh[txthresh].txth_name != NULL) {
924 					uint32_t opmode;
925 					/* Idle the transmit process. */
926 					opmode = AE_READ(sc, CSR_OPMODE);
927 					ae_idle(sc, OPMODE_ST);
928 
929 					sc->sc_txthresh = txthresh;
930 					opmode &=
931 					    ~(OPMODE_TR|OPMODE_SF);
932 					opmode |=
933 					    ae_txthresh[txthresh].txth_opmode;
934 					printf("%s: transmit underrun; new "
935 					    "threshold: %s\n",
936 					    device_xname(sc->sc_dev),
937 					    ae_txthresh[txthresh].txth_name);
938 
939 					/*
940 					 * Set the new threshold and restart
941 					 * the transmit process.
942 					 */
943 					AE_WRITE(sc, CSR_OPMODE, opmode);
944 					AE_BARRIER(sc);
945 				}
946 					/*
947 					 * XXX Log every Nth underrun from
948 					 * XXX now on?
949 					 */
950 			}
951 		}
952 
953 		if (status & (STATUS_TPS|STATUS_RPS)) {
954 			if (status & STATUS_TPS)
955 				printf("%s: transmit process stopped\n",
956 				    device_xname(sc->sc_dev));
957 			if (status & STATUS_RPS)
958 				printf("%s: receive process stopped\n",
959 				    device_xname(sc->sc_dev));
960 			(void) ae_init(ifp);
961 			break;
962 		}
963 
964 		if (status & STATUS_SE) {
965 			const char *str;
966 
967 			if (status & STATUS_TX_ABORT)
968 				str = "tx abort";
969 			else if (status & STATUS_RX_ABORT)
970 				str = "rx abort";
971 			else
972 				str = "unknown error";
973 
974 			printf("%s: fatal system error: %s\n",
975 			    device_xname(sc->sc_dev), str);
976 			(void) ae_init(ifp);
977 			break;
978 		}
979 
980 		/*
981 		 * Not handled:
982 		 *
983 		 *	Transmit buffer unavailable -- normal
984 		 *	condition, nothing to do, really.
985 		 *
986 		 *	General purpose timer experied -- we don't
987 		 *	use the general purpose timer.
988 		 *
989 		 *	Early receive interrupt -- not available on
990 		 *	all chips, we just use RI.  We also only
991 		 *	use single-segment receive DMA, so this
992 		 *	is mostly useless.
993 		 */
994 	}
995 
996 	/* Try to get more packets going. */
997 	if_schedule_deferred_start(ifp);
998 
999 	if (handled)
1000 		rnd_add_uint32(&sc->sc_rnd_source, status);
1001 	return (handled);
1002 }
1003 
1004 /*
1005  * ae_rxintr:
1006  *
1007  *	Helper; handle receive interrupts.
1008  */
1009 static void
1010 ae_rxintr(struct ae_softc *sc)
1011 {
1012 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1013 	struct ae_rxsoft *rxs;
1014 	struct mbuf *m;
1015 	u_int32_t rxstat;
1016 	int i, len;
1017 
1018 	for (i = sc->sc_rxptr;; i = AE_NEXTRX(i)) {
1019 		rxs = &sc->sc_rxsoft[i];
1020 
1021 		AE_CDRXSYNC(sc, i,
1022 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1023 
1024 		rxstat = sc->sc_rxdescs[i].ad_status;
1025 
1026 		if (rxstat & ADSTAT_OWN) {
1027 			/*
1028 			 * We have processed all of the receive buffers.
1029 			 */
1030 			break;
1031 		}
1032 
1033 		/*
1034 		 * If any collisions were seen on the wire, count one.
1035 		 */
1036 		if (rxstat & ADSTAT_Rx_CS)
1037 			ifp->if_collisions++;
1038 
1039 		/*
1040 		 * If an error occurred, update stats, clear the status
1041 		 * word, and leave the packet buffer in place.  It will
1042 		 * simply be reused the next time the ring comes around.
1043 	 	 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
1044 		 * error.
1045 		 */
1046 		if (rxstat & ADSTAT_ES &&
1047 		    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
1048 		     (rxstat & (ADSTAT_Rx_DE | ADSTAT_Rx_RF |
1049 				ADSTAT_Rx_DB | ADSTAT_Rx_CE)) != 0)) {
1050 #define	PRINTERR(bit, str)						\
1051 			if (rxstat & (bit))				\
1052 				printf("%s: receive error: %s\n",	\
1053 				    device_xname(sc->sc_dev), str)
1054 			ifp->if_ierrors++;
1055 			PRINTERR(ADSTAT_Rx_DE, "descriptor error");
1056 			PRINTERR(ADSTAT_Rx_RF, "runt frame");
1057 			PRINTERR(ADSTAT_Rx_TL, "frame too long");
1058 			PRINTERR(ADSTAT_Rx_RE, "MII error");
1059 			PRINTERR(ADSTAT_Rx_DB, "dribbling bit");
1060 			PRINTERR(ADSTAT_Rx_CE, "CRC error");
1061 #undef PRINTERR
1062 			AE_INIT_RXDESC(sc, i);
1063 			continue;
1064 		}
1065 
1066 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1067 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1068 
1069 		/*
1070 		 * No errors; receive the packet.  Note the chip
1071 		 * includes the CRC with every packet.
1072 		 */
1073 		len = ADSTAT_Rx_LENGTH(rxstat) - ETHER_CRC_LEN;
1074 
1075 		/*
1076 		 * XXX: the Atheros part can align on half words.  what
1077 		 * is the performance implication of this?  Probably
1078 		 * minimal, and we should use it...
1079 		 */
1080 #ifdef __NO_STRICT_ALIGNMENT
1081 		/*
1082 		 * Allocate a new mbuf cluster.  If that fails, we are
1083 		 * out of memory, and must drop the packet and recycle
1084 		 * the buffer that's already attached to this descriptor.
1085 		 */
1086 		m = rxs->rxs_mbuf;
1087 		if (ae_add_rxbuf(sc, i) != 0) {
1088 			ifp->if_ierrors++;
1089 			AE_INIT_RXDESC(sc, i);
1090 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1091 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1092 			continue;
1093 		}
1094 #else
1095 		/*
1096 		 * The chip's receive buffers must be 4-byte aligned.
1097 		 * But this means that the data after the Ethernet header
1098 		 * is misaligned.  We must allocate a new buffer and
1099 		 * copy the data, shifted forward 2 bytes.
1100 		 */
1101 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1102 		if (m == NULL) {
1103  dropit:
1104 			ifp->if_ierrors++;
1105 			AE_INIT_RXDESC(sc, i);
1106 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1107 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1108 			continue;
1109 		}
1110 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1111 		if (len > (MHLEN - 2)) {
1112 			MCLGET(m, M_DONTWAIT);
1113 			if ((m->m_flags & M_EXT) == 0) {
1114 				m_freem(m);
1115 				goto dropit;
1116 			}
1117 		}
1118 		m->m_data += 2;
1119 
1120 		/*
1121 		 * Note that we use clusters for incoming frames, so the
1122 		 * buffer is virtually contiguous.
1123 		 */
1124 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
1125 
1126 		/* Allow the receive descriptor to continue using its mbuf. */
1127 		AE_INIT_RXDESC(sc, i);
1128 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1129 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1130 #endif /* __NO_STRICT_ALIGNMENT */
1131 
1132 		m_set_rcvif(m, ifp);
1133 		m->m_pkthdr.len = m->m_len = len;
1134 
1135 		/* Pass it on. */
1136 		if_percpuq_enqueue(ifp->if_percpuq, m);
1137 	}
1138 
1139 	/* Update the receive pointer. */
1140 	sc->sc_rxptr = i;
1141 }
1142 
1143 /*
1144  * ae_txintr:
1145  *
1146  *	Helper; handle transmit interrupts.
1147  */
1148 static void
1149 ae_txintr(struct ae_softc *sc)
1150 {
1151 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1152 	struct ae_txsoft *txs;
1153 	u_int32_t txstat;
1154 
1155 	DPRINTF(sc, ("%s: ae_txintr: sc_flags 0x%08x\n",
1156 	    device_xname(sc->sc_dev), sc->sc_flags));
1157 
1158 	ifp->if_flags &= ~IFF_OACTIVE;
1159 
1160 	/*
1161 	 * Go through our Tx list and free mbufs for those
1162 	 * frames that have been transmitted.
1163 	 */
1164 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1165 		AE_CDTXSYNC(sc, txs->txs_lastdesc,
1166 		    txs->txs_ndescs,
1167 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1168 
1169 #ifdef AE_DEBUG
1170 		if (ifp->if_flags & IFF_DEBUG) {
1171 			int i;
1172 			printf("    txsoft %p transmit chain:\n", txs);
1173 			for (i = txs->txs_firstdesc;; i = AE_NEXTTX(i)) {
1174 				printf("     descriptor %d:\n", i);
1175 				printf("       ad_status:   0x%08x\n",
1176 				    sc->sc_txdescs[i].ad_status);
1177 				printf("       ad_ctl:      0x%08x\n",
1178 				    sc->sc_txdescs[i].ad_ctl);
1179 				printf("       ad_bufaddr1: 0x%08x\n",
1180 				    sc->sc_txdescs[i].ad_bufaddr1);
1181 				printf("       ad_bufaddr2: 0x%08x\n",
1182 				    sc->sc_txdescs[i].ad_bufaddr2);
1183 				if (i == txs->txs_lastdesc)
1184 					break;
1185 			}
1186 		}
1187 #endif
1188 
1189 		txstat = sc->sc_txdescs[txs->txs_lastdesc].ad_status;
1190 		if (txstat & ADSTAT_OWN)
1191 			break;
1192 
1193 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1194 
1195 		sc->sc_txfree += txs->txs_ndescs;
1196 
1197 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1198 		    0, txs->txs_dmamap->dm_mapsize,
1199 		    BUS_DMASYNC_POSTWRITE);
1200 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1201 		m_freem(txs->txs_mbuf);
1202 		txs->txs_mbuf = NULL;
1203 
1204 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1205 
1206 		/*
1207 		 * Check for errors and collisions.
1208 		 */
1209 #ifdef AE_STATS
1210 		if (txstat & ADSTAT_Tx_UF)
1211 			sc->sc_stats.ts_tx_uf++;
1212 		if (txstat & ADSTAT_Tx_TO)
1213 			sc->sc_stats.ts_tx_to++;
1214 		if (txstat & ADSTAT_Tx_EC)
1215 			sc->sc_stats.ts_tx_ec++;
1216 		if (txstat & ADSTAT_Tx_LC)
1217 			sc->sc_stats.ts_tx_lc++;
1218 #endif
1219 
1220 		if (txstat & (ADSTAT_Tx_UF|ADSTAT_Tx_TO))
1221 			ifp->if_oerrors++;
1222 
1223 		if (txstat & ADSTAT_Tx_EC)
1224 			ifp->if_collisions += 16;
1225 		else
1226 			ifp->if_collisions += ADSTAT_Tx_COLLISIONS(txstat);
1227 		if (txstat & ADSTAT_Tx_LC)
1228 			ifp->if_collisions++;
1229 
1230 		ifp->if_opackets++;
1231 	}
1232 
1233 	/*
1234 	 * If there are no more pending transmissions, cancel the watchdog
1235 	 * timer.
1236 	 */
1237 	if (txs == NULL)
1238 		ifp->if_timer = 0;
1239 }
1240 
1241 #ifdef AE_STATS
1242 void
1243 ae_print_stats(struct ae_softc *sc)
1244 {
1245 
1246 	printf("%s: tx_uf %lu, tx_to %lu, tx_ec %lu, tx_lc %lu\n",
1247 	    device_xname(sc->sc_dev),
1248 	    sc->sc_stats.ts_tx_uf, sc->sc_stats.ts_tx_to,
1249 	    sc->sc_stats.ts_tx_ec, sc->sc_stats.ts_tx_lc);
1250 }
1251 #endif
1252 
1253 /*
1254  * ae_reset:
1255  *
1256  *	Perform a soft reset on the chip.
1257  */
1258 void
1259 ae_reset(struct ae_softc *sc)
1260 {
1261 	int i;
1262 
1263 	AE_WRITE(sc, CSR_BUSMODE, BUSMODE_SWR);
1264 	AE_BARRIER(sc);
1265 
1266 	/*
1267 	 * The chip doesn't take itself out of reset automatically.
1268 	 * We need to do so after 2us.
1269 	 */
1270 	delay(10);
1271 	AE_WRITE(sc, CSR_BUSMODE, 0);
1272 	AE_BARRIER(sc);
1273 
1274 	for (i = 0; i < 1000; i++) {
1275 		/*
1276 		 * Wait a bit for the reset to complete before peeking
1277 		 * at the chip again.
1278 		 */
1279 		delay(10);
1280 		if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR) == 0)
1281 			break;
1282 	}
1283 
1284 	if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR))
1285 		printf("%s: reset failed to complete\n", device_xname(sc->sc_dev));
1286 
1287 	delay(1000);
1288 }
1289 
1290 /*
1291  * ae_init:		[ ifnet interface function ]
1292  *
1293  *	Initialize the interface.  Must be called at splnet().
1294  */
1295 static int
1296 ae_init(struct ifnet *ifp)
1297 {
1298 	struct ae_softc *sc = ifp->if_softc;
1299 	struct ae_txsoft *txs;
1300 	struct ae_rxsoft *rxs;
1301 	const uint8_t *enaddr;
1302 	int i, error = 0;
1303 
1304 	if ((error = ae_enable(sc)) != 0)
1305 		goto out;
1306 
1307 	/*
1308 	 * Cancel any pending I/O.
1309 	 */
1310 	ae_stop(ifp, 0);
1311 
1312 	/*
1313 	 * Reset the chip to a known state.
1314 	 */
1315 	ae_reset(sc);
1316 
1317 	/*
1318 	 * Initialize the BUSMODE register.
1319 	 */
1320 	AE_WRITE(sc, CSR_BUSMODE,
1321 	    /* XXX: not sure if this is a good thing or not... */
1322 	    //BUSMODE_ALIGN_16B |
1323 	    BUSMODE_BAR | BUSMODE_BLE | BUSMODE_PBL_4LW);
1324 	AE_BARRIER(sc);
1325 
1326 	/*
1327 	 * Initialize the transmit descriptor ring.
1328 	 */
1329 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1330 	for (i = 0; i < AE_NTXDESC; i++) {
1331 		sc->sc_txdescs[i].ad_ctl = 0;
1332 		sc->sc_txdescs[i].ad_bufaddr2 =
1333 		    AE_CDTXADDR(sc, AE_NEXTTX(i));
1334 	}
1335 	sc->sc_txdescs[AE_NTXDESC - 1].ad_ctl |= ADCTL_ER;
1336 	AE_CDTXSYNC(sc, 0, AE_NTXDESC,
1337 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1338 	sc->sc_txfree = AE_NTXDESC;
1339 	sc->sc_txnext = 0;
1340 
1341 	/*
1342 	 * Initialize the transmit job descriptors.
1343 	 */
1344 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1345 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1346 	for (i = 0; i < AE_TXQUEUELEN; i++) {
1347 		txs = &sc->sc_txsoft[i];
1348 		txs->txs_mbuf = NULL;
1349 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1350 	}
1351 
1352 	/*
1353 	 * Initialize the receive descriptor and receive job
1354 	 * descriptor rings.
1355 	 */
1356 	for (i = 0; i < AE_NRXDESC; i++) {
1357 		rxs = &sc->sc_rxsoft[i];
1358 		if (rxs->rxs_mbuf == NULL) {
1359 			if ((error = ae_add_rxbuf(sc, i)) != 0) {
1360 				printf("%s: unable to allocate or map rx "
1361 				    "buffer %d, error = %d\n",
1362 				    device_xname(sc->sc_dev), i, error);
1363 				/*
1364 				 * XXX Should attempt to run with fewer receive
1365 				 * XXX buffers instead of just failing.
1366 				 */
1367 				ae_rxdrain(sc);
1368 				goto out;
1369 			}
1370 		} else
1371 			AE_INIT_RXDESC(sc, i);
1372 	}
1373 	sc->sc_rxptr = 0;
1374 
1375 	/*
1376 	 * Initialize the interrupt mask and enable interrupts.
1377 	 */
1378 	/* normal interrupts */
1379 	sc->sc_inten =  STATUS_TI | STATUS_TU | STATUS_RI | STATUS_NIS;
1380 
1381 	/* abnormal interrupts */
1382 	sc->sc_inten |= STATUS_TPS | STATUS_TJT | STATUS_UNF |
1383 	    STATUS_RU | STATUS_RPS | STATUS_SE | STATUS_AIS;
1384 
1385 	sc->sc_rxint_mask = STATUS_RI|STATUS_RU;
1386 	sc->sc_txint_mask = STATUS_TI|STATUS_UNF|STATUS_TJT;
1387 
1388 	sc->sc_rxint_mask &= sc->sc_inten;
1389 	sc->sc_txint_mask &= sc->sc_inten;
1390 
1391 	AE_WRITE(sc, CSR_INTEN, sc->sc_inten);
1392 	AE_WRITE(sc, CSR_STATUS, 0xffffffff);
1393 
1394 	/*
1395 	 * Give the transmit and receive rings to the chip.
1396 	 */
1397 	AE_WRITE(sc, CSR_TXLIST, AE_CDTXADDR(sc, sc->sc_txnext));
1398 	AE_WRITE(sc, CSR_RXLIST, AE_CDRXADDR(sc, sc->sc_rxptr));
1399 	AE_BARRIER(sc);
1400 
1401 	/*
1402 	 * Set the station address.
1403 	 */
1404 	enaddr = CLLADDR(ifp->if_sadl);
1405 	AE_WRITE(sc, CSR_MACHI, enaddr[5] << 16 | enaddr[4]);
1406 	AE_WRITE(sc, CSR_MACLO, enaddr[3] << 24 | enaddr[2] << 16 |
1407 		enaddr[1] << 8 | enaddr[0]);
1408 	AE_BARRIER(sc);
1409 
1410 	/*
1411 	 * Set the receive filter.  This will start the transmit and
1412 	 * receive processes.
1413 	 */
1414 	ae_filter_setup(sc);
1415 
1416 	/*
1417 	 * Set the current media.
1418 	 */
1419 	if ((error = ether_mediachange(ifp)) != 0)
1420 		goto out;
1421 
1422 	/*
1423 	 * Start the mac.
1424 	 */
1425 	AE_SET(sc, CSR_MACCTL, MACCTL_RE | MACCTL_TE);
1426 	AE_BARRIER(sc);
1427 
1428 	/*
1429 	 * Write out the opmode.
1430 	 */
1431 	AE_WRITE(sc, CSR_OPMODE, OPMODE_SR | OPMODE_ST |
1432 	    ae_txthresh[sc->sc_txthresh].txth_opmode);
1433 	/*
1434 	 * Start the receive process.
1435 	 */
1436 	AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
1437 	AE_BARRIER(sc);
1438 
1439 	if (sc->sc_tick != NULL) {
1440 		/* Start the one second clock. */
1441 		callout_reset(&sc->sc_tick_callout, hz >> 3, sc->sc_tick, sc);
1442 	}
1443 
1444 	/*
1445 	 * Note that the interface is now running.
1446 	 */
1447 	ifp->if_flags |= IFF_RUNNING;
1448 	ifp->if_flags &= ~IFF_OACTIVE;
1449 	sc->sc_if_flags = ifp->if_flags;
1450 
1451  out:
1452 	if (error) {
1453 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1454 		ifp->if_timer = 0;
1455 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
1456 	}
1457 	return (error);
1458 }
1459 
1460 /*
1461  * ae_enable:
1462  *
1463  *	Enable the chip.
1464  */
1465 static int
1466 ae_enable(struct ae_softc *sc)
1467 {
1468 
1469 	if (AE_IS_ENABLED(sc) == 0) {
1470 		sc->sc_ih = arbus_intr_establish(sc->sc_cirq, sc->sc_mirq,
1471 		    ae_intr, sc);
1472 		if (sc->sc_ih == NULL) {
1473 			printf("%s: unable to establish interrupt\n",
1474 			    device_xname(sc->sc_dev));
1475 			return (EIO);
1476 		}
1477 		sc->sc_flags |= AE_ENABLED;
1478 	}
1479 	return (0);
1480 }
1481 
1482 /*
1483  * ae_disable:
1484  *
1485  *	Disable the chip.
1486  */
1487 static void
1488 ae_disable(struct ae_softc *sc)
1489 {
1490 
1491 	if (AE_IS_ENABLED(sc)) {
1492 		arbus_intr_disestablish(sc->sc_ih);
1493 		sc->sc_flags &= ~AE_ENABLED;
1494 	}
1495 }
1496 
1497 /*
1498  * ae_power:
1499  *
1500  *	Power management (suspend/resume) hook.
1501  */
1502 static void
1503 ae_power(int why, void *arg)
1504 {
1505 	struct ae_softc *sc = arg;
1506 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1507 	int s;
1508 
1509 	printf("power called: %d, %x\n", why, (uint32_t)arg);
1510 	s = splnet();
1511 	switch (why) {
1512 	case PWR_STANDBY:
1513 		/* do nothing! */
1514 		break;
1515 	case PWR_SUSPEND:
1516 		ae_stop(ifp, 0);
1517 		ae_disable(sc);
1518 		break;
1519 	case PWR_RESUME:
1520 		if (ifp->if_flags & IFF_UP) {
1521 			ae_enable(sc);
1522 			ae_init(ifp);
1523 		}
1524 		break;
1525 	case PWR_SOFTSUSPEND:
1526 	case PWR_SOFTSTANDBY:
1527 	case PWR_SOFTRESUME:
1528 		break;
1529 	}
1530 	splx(s);
1531 }
1532 
1533 /*
1534  * ae_rxdrain:
1535  *
1536  *	Drain the receive queue.
1537  */
1538 static void
1539 ae_rxdrain(struct ae_softc *sc)
1540 {
1541 	struct ae_rxsoft *rxs;
1542 	int i;
1543 
1544 	for (i = 0; i < AE_NRXDESC; i++) {
1545 		rxs = &sc->sc_rxsoft[i];
1546 		if (rxs->rxs_mbuf != NULL) {
1547 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1548 			m_freem(rxs->rxs_mbuf);
1549 			rxs->rxs_mbuf = NULL;
1550 		}
1551 	}
1552 }
1553 
1554 /*
1555  * ae_stop:		[ ifnet interface function ]
1556  *
1557  *	Stop transmission on the interface.
1558  */
1559 static void
1560 ae_stop(struct ifnet *ifp, int disable)
1561 {
1562 	struct ae_softc *sc = ifp->if_softc;
1563 	struct ae_txsoft *txs;
1564 
1565 	if (sc->sc_tick != NULL) {
1566 		/* Stop the one second clock. */
1567 		callout_stop(&sc->sc_tick_callout);
1568 	}
1569 
1570 	/* Down the MII. */
1571 	mii_down(&sc->sc_mii);
1572 
1573 	/* Disable interrupts. */
1574 	AE_WRITE(sc, CSR_INTEN, 0);
1575 
1576 	/* Stop the transmit and receive processes. */
1577 	AE_WRITE(sc, CSR_OPMODE, 0);
1578 	AE_WRITE(sc, CSR_RXLIST, 0);
1579 	AE_WRITE(sc, CSR_TXLIST, 0);
1580 	AE_CLR(sc, CSR_MACCTL, MACCTL_TE | MACCTL_RE);
1581 	AE_BARRIER(sc);
1582 
1583 	/*
1584 	 * Release any queued transmit buffers.
1585 	 */
1586 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1587 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1588 		if (txs->txs_mbuf != NULL) {
1589 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1590 			m_freem(txs->txs_mbuf);
1591 			txs->txs_mbuf = NULL;
1592 		}
1593 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1594 	}
1595 
1596 	/*
1597 	 * Mark the interface down and cancel the watchdog timer.
1598 	 */
1599 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1600 	sc->sc_if_flags = ifp->if_flags;
1601 	ifp->if_timer = 0;
1602 
1603 	if (disable) {
1604 		ae_rxdrain(sc);
1605 		ae_disable(sc);
1606 	}
1607 
1608 	/*
1609 	 * Reset the chip (needed on some flavors to actually disable it).
1610 	 */
1611 	ae_reset(sc);
1612 }
1613 
1614 /*
1615  * ae_add_rxbuf:
1616  *
1617  *	Add a receive buffer to the indicated descriptor.
1618  */
1619 static int
1620 ae_add_rxbuf(struct ae_softc *sc, int idx)
1621 {
1622 	struct ae_rxsoft *rxs = &sc->sc_rxsoft[idx];
1623 	struct mbuf *m;
1624 	int error;
1625 
1626 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1627 	if (m == NULL)
1628 		return (ENOBUFS);
1629 
1630 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1631 	MCLGET(m, M_DONTWAIT);
1632 	if ((m->m_flags & M_EXT) == 0) {
1633 		m_freem(m);
1634 		return (ENOBUFS);
1635 	}
1636 
1637 	if (rxs->rxs_mbuf != NULL)
1638 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1639 
1640 	rxs->rxs_mbuf = m;
1641 
1642 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1643 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1644 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1645 	if (error) {
1646 		printf("%s: can't load rx DMA map %d, error = %d\n",
1647 		    device_xname(sc->sc_dev), idx, error);
1648 		panic("ae_add_rxbuf");	/* XXX */
1649 	}
1650 
1651 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1652 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1653 
1654 	AE_INIT_RXDESC(sc, idx);
1655 
1656 	return (0);
1657 }
1658 
1659 /*
1660  * ae_filter_setup:
1661  *
1662  *	Set the chip's receive filter.
1663  */
1664 static void
1665 ae_filter_setup(struct ae_softc *sc)
1666 {
1667 	struct ethercom *ec = &sc->sc_ethercom;
1668 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1669 	struct ether_multi *enm;
1670 	struct ether_multistep step;
1671 	uint32_t hash, mchash[2];
1672 	uint32_t macctl = 0;
1673 
1674 	/*
1675 	 * If the chip is running, we need to reset the interface,
1676 	 * and will revisit here (with IFF_RUNNING) clear.  The
1677 	 * chip seems to really not like to have its multicast
1678 	 * filter programmed without a reset.
1679 	 */
1680 	if (ifp->if_flags & IFF_RUNNING) {
1681 		(void) ae_init(ifp);
1682 		return;
1683 	}
1684 
1685 	DPRINTF(sc, ("%s: ae_filter_setup: sc_flags 0x%08x\n",
1686 	    device_xname(sc->sc_dev), sc->sc_flags));
1687 
1688 	macctl = AE_READ(sc, CSR_MACCTL);
1689 	macctl &= ~(MACCTL_PR | MACCTL_PM);
1690 	macctl |= MACCTL_HASH;
1691 	macctl |= MACCTL_HBD;
1692 	macctl |= MACCTL_PR;
1693 
1694 	if (ifp->if_flags & IFF_PROMISC) {
1695 		macctl |= MACCTL_PR;
1696 		goto allmulti;
1697 	}
1698 
1699 	mchash[0] = mchash[1] = 0;
1700 
1701 	ETHER_FIRST_MULTI(step, ec, enm);
1702 	while (enm != NULL) {
1703 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1704 			/*
1705 			 * We must listen to a range of multicast addresses.
1706 			 * For now, just accept all multicasts, rather than
1707 			 * trying to set only those filter bits needed to match
1708 			 * the range.  (At this time, the only use of address
1709 			 * ranges is for IP multicast routing, for which the
1710 			 * range is big enough to require all bits set.)
1711 			 */
1712 			goto allmulti;
1713 		}
1714 
1715 		/* Verify whether we use big or little endian hashes */
1716 		hash = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3f;
1717 		mchash[hash >> 5] |= 1 << (hash & 0x1f);
1718 		ETHER_NEXT_MULTI(step, enm);
1719 	}
1720 	ifp->if_flags &= ~IFF_ALLMULTI;
1721 	goto setit;
1722 
1723  allmulti:
1724 	ifp->if_flags |= IFF_ALLMULTI;
1725 	mchash[0] = mchash[1] = 0xffffffff;
1726 	macctl |= MACCTL_PM;
1727 
1728  setit:
1729 	AE_WRITE(sc, CSR_HTHI, mchash[0]);
1730 	AE_WRITE(sc, CSR_HTHI, mchash[1]);
1731 
1732 	AE_WRITE(sc, CSR_MACCTL, macctl);
1733 	AE_BARRIER(sc);
1734 
1735 	DPRINTF(sc, ("%s: ae_filter_setup: returning %x\n",
1736 		    device_xname(sc->sc_dev), macctl));
1737 }
1738 
1739 /*
1740  * ae_idle:
1741  *
1742  *	Cause the transmit and/or receive processes to go idle.
1743  */
1744 void
1745 ae_idle(struct ae_softc *sc, u_int32_t bits)
1746 {
1747 	static const char * const txstate_names[] = {
1748 		"STOPPED",
1749 		"RUNNING - FETCH",
1750 		"RUNNING - WAIT",
1751 		"RUNNING - READING",
1752 		"-- RESERVED --",
1753 		"RUNNING - SETUP",
1754 		"SUSPENDED",
1755 		"RUNNING - CLOSE",
1756 	};
1757 	static const char * const rxstate_names[] = {
1758 		"STOPPED",
1759 		"RUNNING - FETCH",
1760 		"RUNNING - CHECK",
1761 		"RUNNING - WAIT",
1762 		"SUSPENDED",
1763 		"RUNNING - CLOSE",
1764 		"RUNNING - FLUSH",
1765 		"RUNNING - QUEUE",
1766 	};
1767 
1768 	u_int32_t csr, ackmask = 0;
1769 	int i;
1770 
1771 	if (bits & OPMODE_ST)
1772 		ackmask |= STATUS_TPS;
1773 
1774 	if (bits & OPMODE_SR)
1775 		ackmask |= STATUS_RPS;
1776 
1777 	AE_CLR(sc, CSR_OPMODE, bits);
1778 
1779 	for (i = 0; i < 1000; i++) {
1780 		if (AE_ISSET(sc, CSR_STATUS, ackmask) == ackmask)
1781 			break;
1782 		delay(10);
1783 	}
1784 
1785 	csr = AE_READ(sc, CSR_STATUS);
1786 	if ((csr & ackmask) != ackmask) {
1787 		if ((bits & OPMODE_ST) != 0 && (csr & STATUS_TPS) == 0 &&
1788 		    (csr & STATUS_TS) != STATUS_TS_STOPPED) {
1789 			printf("%s: transmit process failed to idle: "
1790 			    "state %s\n", device_xname(sc->sc_dev),
1791 			    txstate_names[(csr & STATUS_TS) >> 20]);
1792 		}
1793 		if ((bits & OPMODE_SR) != 0 && (csr & STATUS_RPS) == 0 &&
1794 		    (csr & STATUS_RS) != STATUS_RS_STOPPED) {
1795 			printf("%s: receive process failed to idle: "
1796 			    "state %s\n", device_xname(sc->sc_dev),
1797 			    rxstate_names[(csr & STATUS_RS) >> 17]);
1798 		}
1799 	}
1800 }
1801 
1802 /*****************************************************************************
1803  * Support functions for MII-attached media.
1804  *****************************************************************************/
1805 
1806 /*
1807  * ae_mii_tick:
1808  *
1809  *	One second timer, used to tick the MII.
1810  */
1811 static void
1812 ae_mii_tick(void *arg)
1813 {
1814 	struct ae_softc *sc = arg;
1815 	int s;
1816 
1817 	if (!device_is_active(sc->sc_dev))
1818 		return;
1819 
1820 	s = splnet();
1821 	mii_tick(&sc->sc_mii);
1822 	splx(s);
1823 
1824 	callout_reset(&sc->sc_tick_callout, hz, sc->sc_tick, sc);
1825 }
1826 
1827 /*
1828  * ae_mii_statchg:	[mii interface function]
1829  *
1830  *	Callback from PHY when media changes.
1831  */
1832 static void
1833 ae_mii_statchg(struct ifnet *ifp)
1834 {
1835 	struct ae_softc *sc = ifp->if_softc;
1836 	uint32_t	macctl, flowc;
1837 
1838 	//opmode = AE_READ(sc, CSR_OPMODE);
1839 	macctl = AE_READ(sc, CSR_MACCTL);
1840 
1841 	/* XXX: do we need to do this? */
1842 	/* Idle the transmit and receive processes. */
1843 	//ae_idle(sc, OPMODE_ST|OPMODE_SR);
1844 
1845 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
1846 		flowc = FLOWC_FCE;
1847 		macctl &= ~MACCTL_DRO;
1848 		macctl |= MACCTL_FDX;
1849 	} else {
1850 		flowc = 0;	/* cannot do flow control in HDX */
1851 		macctl |= MACCTL_DRO;
1852 		macctl &= ~MACCTL_FDX;
1853 	}
1854 
1855 	AE_WRITE(sc, CSR_FLOWC, flowc);
1856 	AE_WRITE(sc, CSR_MACCTL, macctl);
1857 
1858 	/* restore operational mode */
1859 	//AE_WRITE(sc, CSR_OPMODE, opmode);
1860 	AE_BARRIER(sc);
1861 }
1862 
1863 /*
1864  * ae_mii_readreg:
1865  *
1866  *	Read a PHY register.
1867  */
1868 static int
1869 ae_mii_readreg(device_t self, int phy, int reg)
1870 {
1871 	struct ae_softc	*sc = device_private(self);
1872 	uint32_t	addr;
1873 	int		i;
1874 
1875 	addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT);
1876 	AE_WRITE(sc, CSR_MIIADDR, addr);
1877 	AE_BARRIER(sc);
1878 	for (i = 0; i < 100000000; i++) {
1879 		if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1880 			break;
1881 	}
1882 
1883 	return (AE_READ(sc, CSR_MIIDATA) & 0xffff);
1884 }
1885 
1886 /*
1887  * ae_mii_writereg:
1888  *
1889  *	Write a PHY register.
1890  */
1891 static void
1892 ae_mii_writereg(device_t self, int phy, int reg, int val)
1893 {
1894 	struct ae_softc *sc = device_private(self);
1895 	uint32_t	addr;
1896 	int		i;
1897 
1898 	/* write the data register */
1899 	AE_WRITE(sc, CSR_MIIDATA, val);
1900 
1901 	/* write the address to latch it in */
1902 	addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT) |
1903 	    MIIADDR_WRITE;
1904 	AE_WRITE(sc, CSR_MIIADDR, addr);
1905 	AE_BARRIER(sc);
1906 
1907 	for (i = 0; i < 100000000; i++) {
1908 		if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1909 			break;
1910 	}
1911 }
1912