xref: /netbsd-src/sys/arch/mips/atheros/dev/if_ae.c (revision abb0f93cd77b67f080613360c65701f85e5f5cfe)
1 /* $Id: if_ae.c,v 1.16 2009/11/12 19:18:55 dyoung Exp $ */
2 /*-
3  * Copyright (c) 2006 Urbana-Champaign Independent Media Center.
4  * Copyright (c) 2006 Garrett D'Amore.
5  * All rights reserved.
6  *
7  * This code was written by Garrett D'Amore for the Champaign-Urbana
8  * Community Wireless Network Project.
9  *
10  * Redistribution and use in source and binary forms, with or
11  * without modification, are permitted provided that the following
12  * conditions are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above
16  *    copyright notice, this list of conditions and the following
17  *    disclaimer in the documentation and/or other materials provided
18  *    with the distribution.
19  * 3. All advertising materials mentioning features or use of this
20  *    software must display the following acknowledgements:
21  *      This product includes software developed by the Urbana-Champaign
22  *      Independent Media Center.
23  *	This product includes software developed by Garrett D'Amore.
24  * 4. Urbana-Champaign Independent Media Center's name and Garrett
25  *    D'Amore's name may not be used to endorse or promote products
26  *    derived from this software without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
29  * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
30  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
31  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
33  * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
34  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
35  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
36  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
37  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
38  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
40  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41  */
42 /*-
43  * Copyright (c) 1998, 1999, 2000, 2002 The NetBSD Foundation, Inc.
44  * All rights reserved.
45  *
46  * This code is derived from software contributed to The NetBSD Foundation
47  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
48  * NASA Ames Research Center; and by Charles M. Hannum.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
60  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69  * POSSIBILITY OF SUCH DAMAGE.
70  */
71 
72 /*
73  * Device driver for the onboard ethernet MAC found on the AR5312
74  * chip's AHB bus.
75  *
76  * This device is very simliar to the tulip in most regards, and
77  * the code is directly derived from NetBSD's tulip.c.  However, it
78  * is different enough that it did not seem to be a good idea to
79  * add further complexity to the tulip driver, so we have our own.
80  *
81  * Also tulip has a lot of complexity in it for various parts/options
82  * that we don't need, and on these little boxes with only ~8MB RAM, we
83  * don't want any extra bloat.
84  */
85 
86 /*
87  * TODO:
88  *
89  * 1) Find out about BUS_MODE_ALIGN16B.  This chip can apparently align
90  *    inbound packets on a half-word boundary, which would make life easier
91  *    for TCP/IP.  (Aligning IP headers on a word.)
92  *
93  * 2) There is stuff in original tulip to shut down the device when reacting
94  *    to a a change in link status.  Is that needed.
95  *
96  * 3) Test with variety of 10/100 HDX/FDX scenarios.
97  *
98  */
99 
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: if_ae.c,v 1.16 2009/11/12 19:18:55 dyoung Exp $");
102 
103 #include "bpfilter.h"
104 
105 #include <sys/param.h>
106 #include <sys/systm.h>
107 #include <sys/callout.h>
108 #include <sys/mbuf.h>
109 #include <sys/malloc.h>
110 #include <sys/kernel.h>
111 #include <sys/socket.h>
112 #include <sys/ioctl.h>
113 #include <sys/errno.h>
114 #include <sys/device.h>
115 
116 #include <machine/endian.h>
117 
118 #include <uvm/uvm_extern.h>
119 
120 #include <net/if.h>
121 #include <net/if_dl.h>
122 #include <net/if_media.h>
123 #include <net/if_ether.h>
124 
125 #if NBPFILTER > 0
126 #include <net/bpf.h>
127 #endif
128 
129 #include <machine/bus.h>
130 #include <machine/intr.h>
131 
132 #include <dev/mii/mii.h>
133 #include <dev/mii/miivar.h>
134 #include <dev/mii/mii_bitbang.h>
135 
136 #include <mips/atheros/include/arbusvar.h>
137 #include <mips/atheros/dev/aereg.h>
138 #include <mips/atheros/dev/aevar.h>
139 
140 static const struct {
141 	u_int32_t txth_opmode;		/* OPMODE bits */
142 	const char *txth_name;		/* name of mode */
143 } ae_txthresh[] = {
144 	{ OPMODE_TR_32,		"32 words" },
145 	{ OPMODE_TR_64,		"64 words" },
146 	{ OPMODE_TR_128,	"128 words" },
147 	{ OPMODE_TR_256,	"256 words" },
148 	{ OPMODE_SF,		"store and forward mode" },
149 	{ 0,			NULL },
150 };
151 
152 static int 	ae_match(device_t, struct cfdata *, void *);
153 static void	ae_attach(device_t, device_t, void *);
154 static int	ae_detach(device_t, int);
155 static int	ae_activate(device_t, enum devact);
156 
157 static int	ae_ifflags_cb(struct ethercom *);
158 static void	ae_reset(struct ae_softc *);
159 static void	ae_idle(struct ae_softc *, u_int32_t);
160 
161 static void	ae_start(struct ifnet *);
162 static void	ae_watchdog(struct ifnet *);
163 static int	ae_ioctl(struct ifnet *, u_long, void *);
164 static int	ae_init(struct ifnet *);
165 static void	ae_stop(struct ifnet *, int);
166 
167 static void	ae_shutdown(void *);
168 
169 static void	ae_rxdrain(struct ae_softc *);
170 static int	ae_add_rxbuf(struct ae_softc *, int);
171 
172 static int	ae_enable(struct ae_softc *);
173 static void	ae_disable(struct ae_softc *);
174 static void	ae_power(int, void *);
175 
176 static void	ae_filter_setup(struct ae_softc *);
177 
178 static int	ae_intr(void *);
179 static void	ae_rxintr(struct ae_softc *);
180 static void	ae_txintr(struct ae_softc *);
181 
182 static void	ae_mii_tick(void *);
183 static void	ae_mii_statchg(device_t);
184 
185 static int	ae_mii_readreg(device_t, int, int);
186 static void	ae_mii_writereg(device_t, int, int, int);
187 
188 #ifdef AE_DEBUG
189 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
190 				printf x
191 #else
192 #define	DPRINTF(sc, x)	/* nothing */
193 #endif
194 
195 #ifdef AE_STATS
196 static void	ae_print_stats(struct ae_softc *);
197 #endif
198 
199 CFATTACH_DECL(ae, sizeof(struct ae_softc),
200     ae_match, ae_attach, ae_detach, ae_activate);
201 
202 /*
203  * ae_match:
204  *
205  *	Check for a device match.
206  */
207 int
208 ae_match(device_t parent, struct cfdata *cf, void *aux)
209 {
210 	struct arbus_attach_args *aa = aux;
211 
212 	if (strcmp(aa->aa_name, cf->cf_name) == 0)
213 		return 1;
214 
215 	return 0;
216 
217 }
218 
219 /*
220  * ae_attach:
221  *
222  *	Attach an ae interface to the system.
223  */
224 void
225 ae_attach(device_t parent, device_t self, void *aux)
226 {
227 	const uint8_t *enaddr;
228 	prop_data_t ea;
229 	struct ae_softc *sc = device_private(self);
230 	struct arbus_attach_args *aa = aux;
231 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
232 	int i, error;
233 
234 	callout_init(&sc->sc_tick_callout, 0);
235 
236 	printf(": Atheros AR531X 10/100 Ethernet\n");
237 
238 	/*
239 	 * Try to get MAC address.
240 	 */
241 	ea = prop_dictionary_get(device_properties(&sc->sc_dev), "mac-addr");
242 	if (ea == NULL) {
243 		printf("%s: unable to get mac-addr property\n",
244 		    sc->sc_dev.dv_xname);
245 		return;
246 	}
247 	KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
248 	KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
249 	enaddr = prop_data_data_nocopy(ea);
250 
251 	/* Announce ourselves. */
252 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
253 	    ether_sprintf(enaddr));
254 
255 	sc->sc_cirq = aa->aa_cirq;
256 	sc->sc_mirq = aa->aa_mirq;
257 	sc->sc_st = aa->aa_bst;
258 	sc->sc_dmat = aa->aa_dmat;
259 
260 	SIMPLEQ_INIT(&sc->sc_txfreeq);
261 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
262 
263 	/*
264 	 * Map registers.
265 	 */
266 	sc->sc_size = aa->aa_size;
267 	if ((error = bus_space_map(sc->sc_st, aa->aa_addr, sc->sc_size, 0,
268 	    &sc->sc_sh)) != 0) {
269 		printf("%s: unable to map registers, error = %d\n",
270 		    sc->sc_dev.dv_xname, error);
271 		goto fail_0;
272 	}
273 
274 	/*
275 	 * Allocate the control data structures, and create and load the
276 	 * DMA map for it.
277 	 */
278 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
279 	    sizeof(struct ae_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
280 	    1, &sc->sc_cdnseg, 0)) != 0) {
281 		printf("%s: unable to allocate control data, error = %d\n",
282 		    sc->sc_dev.dv_xname, error);
283 		goto fail_1;
284 	}
285 
286 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
287 	    sizeof(struct ae_control_data), (void **)&sc->sc_control_data,
288 	    BUS_DMA_COHERENT)) != 0) {
289 		printf("%s: unable to map control data, error = %d\n",
290 		    sc->sc_dev.dv_xname, error);
291 		goto fail_2;
292 	}
293 
294 	if ((error = bus_dmamap_create(sc->sc_dmat,
295 	    sizeof(struct ae_control_data), 1,
296 	    sizeof(struct ae_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
297 		printf("%s: unable to create control data DMA map, "
298 		    "error = %d\n", sc->sc_dev.dv_xname, error);
299 		goto fail_3;
300 	}
301 
302 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
303 	    sc->sc_control_data, sizeof(struct ae_control_data), NULL,
304 	    0)) != 0) {
305 		printf("%s: unable to load control data DMA map, error = %d\n",
306 		    sc->sc_dev.dv_xname, error);
307 		goto fail_4;
308 	}
309 
310 	/*
311 	 * Create the transmit buffer DMA maps.
312 	 */
313 	for (i = 0; i < AE_TXQUEUELEN; i++) {
314 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
315 		    AE_NTXSEGS, MCLBYTES, 0, 0,
316 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
317 			printf("%s: unable to create tx DMA map %d, "
318 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
319 			goto fail_5;
320 		}
321 	}
322 
323 	/*
324 	 * Create the receive buffer DMA maps.
325 	 */
326 	for (i = 0; i < AE_NRXDESC; i++) {
327 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
328 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
329 			printf("%s: unable to create rx DMA map %d, "
330 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
331 			goto fail_6;
332 		}
333 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
334 	}
335 
336 	/*
337 	 * Reset the chip to a known state.
338 	 */
339 	ae_reset(sc);
340 
341 	/*
342 	 * From this point forward, the attachment cannot fail.  A failure
343 	 * before this point releases all resources that may have been
344 	 * allocated.
345 	 */
346 	sc->sc_flags |= AE_ATTACHED;
347 
348 	/*
349 	 * Initialize our media structures.  This may probe the MII, if
350 	 * present.
351 	 */
352 	sc->sc_mii.mii_ifp = ifp;
353 	sc->sc_mii.mii_readreg = ae_mii_readreg;
354 	sc->sc_mii.mii_writereg = ae_mii_writereg;
355 	sc->sc_mii.mii_statchg = ae_mii_statchg;
356 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
357 	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
358 	    ether_mediastatus);
359 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
360 	    MII_OFFSET_ANY, 0);
361 
362 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
363 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
364 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
365 	} else
366 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
367 
368 	sc->sc_tick = ae_mii_tick;
369 
370 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
371 	ifp->if_softc = sc;
372 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
373 	sc->sc_if_flags = ifp->if_flags;
374 	ifp->if_ioctl = ae_ioctl;
375 	ifp->if_start = ae_start;
376 	ifp->if_watchdog = ae_watchdog;
377 	ifp->if_init = ae_init;
378 	ifp->if_stop = ae_stop;
379 	IFQ_SET_READY(&ifp->if_snd);
380 
381 	/*
382 	 * We can support 802.1Q VLAN-sized frames.
383 	 */
384 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
385 
386 	/*
387 	 * Attach the interface.
388 	 */
389 	if_attach(ifp);
390 	ether_ifattach(ifp, enaddr);
391 	ether_set_ifflags_cb(&sc->sc_ethercom, ae_ifflags_cb);
392 
393 #if NRND > 0
394 	rnd_attach_source(&sc->sc_rnd_source, sc->sc_dev.dv_xname,
395 	    RND_TYPE_NET, 0);
396 #endif
397 
398 	/*
399 	 * Make sure the interface is shutdown during reboot.
400 	 */
401 	sc->sc_sdhook = shutdownhook_establish(ae_shutdown, sc);
402 	if (sc->sc_sdhook == NULL)
403 		printf("%s: WARNING: unable to establish shutdown hook\n",
404 		    sc->sc_dev.dv_xname);
405 
406 	/*
407 	 * Add a suspend hook to make sure we come back up after a
408 	 * resume.
409 	 */
410 	sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
411 	    ae_power, sc);
412 	if (sc->sc_powerhook == NULL)
413 		printf("%s: WARNING: unable to establish power hook\n",
414 		    sc->sc_dev.dv_xname);
415 	return;
416 
417 	/*
418 	 * Free any resources we've allocated during the failed attach
419 	 * attempt.  Do this in reverse order and fall through.
420 	 */
421  fail_6:
422 	for (i = 0; i < AE_NRXDESC; i++) {
423 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
424 			bus_dmamap_destroy(sc->sc_dmat,
425 			    sc->sc_rxsoft[i].rxs_dmamap);
426 	}
427  fail_5:
428 	for (i = 0; i < AE_TXQUEUELEN; i++) {
429 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
430 			bus_dmamap_destroy(sc->sc_dmat,
431 			    sc->sc_txsoft[i].txs_dmamap);
432 	}
433 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
434  fail_4:
435 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
436  fail_3:
437 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
438 	    sizeof(struct ae_control_data));
439  fail_2:
440 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
441  fail_1:
442 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
443  fail_0:
444 	return;
445 }
446 
447 /*
448  * ae_activate:
449  *
450  *	Handle device activation/deactivation requests.
451  */
452 int
453 ae_activate(device_t self, enum devact act)
454 {
455 	struct ae_softc *sc = device_private(self);
456 
457 	switch (act) {
458 	case DVACT_DEACTIVATE:
459 		if_deactivate(&sc->sc_ethercom.ec_if);
460 		return 0;
461 	default:
462 		return EOPNOTSUPP;
463 	}
464 }
465 
466 /*
467  * ae_detach:
468  *
469  *	Detach a device interface.
470  */
471 int
472 ae_detach(device_t self, int flags)
473 {
474 	struct ae_softc *sc = device_private(self);
475 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
476 	struct ae_rxsoft *rxs;
477 	struct ae_txsoft *txs;
478 	int i;
479 
480 	/*
481 	 * Succeed now if there isn't any work to do.
482 	 */
483 	if ((sc->sc_flags & AE_ATTACHED) == 0)
484 		return (0);
485 
486 	/* Unhook our tick handler. */
487 	if (sc->sc_tick)
488 		callout_stop(&sc->sc_tick_callout);
489 
490 	/* Detach all PHYs */
491 	mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
492 
493 	/* Delete all remaining media. */
494 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
495 
496 #if NRND > 0
497 	rnd_detach_source(&sc->sc_rnd_source);
498 #endif
499 	ether_ifdetach(ifp);
500 	if_detach(ifp);
501 
502 	for (i = 0; i < AE_NRXDESC; i++) {
503 		rxs = &sc->sc_rxsoft[i];
504 		if (rxs->rxs_mbuf != NULL) {
505 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
506 			m_freem(rxs->rxs_mbuf);
507 			rxs->rxs_mbuf = NULL;
508 		}
509 		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
510 	}
511 	for (i = 0; i < AE_TXQUEUELEN; i++) {
512 		txs = &sc->sc_txsoft[i];
513 		if (txs->txs_mbuf != NULL) {
514 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
515 			m_freem(txs->txs_mbuf);
516 			txs->txs_mbuf = NULL;
517 		}
518 		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
519 	}
520 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
521 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
522 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
523 	    sizeof(struct ae_control_data));
524 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
525 
526 	shutdownhook_disestablish(sc->sc_sdhook);
527 	powerhook_disestablish(sc->sc_powerhook);
528 
529 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
530 
531 
532 	return (0);
533 }
534 
535 /*
536  * ae_shutdown:
537  *
538  *	Make sure the interface is stopped at reboot time.
539  */
540 static void
541 ae_shutdown(void *arg)
542 {
543 	struct ae_softc *sc = arg;
544 
545 	ae_stop(&sc->sc_ethercom.ec_if, 1);
546 }
547 
548 /*
549  * ae_start:		[ifnet interface function]
550  *
551  *	Start packet transmission on the interface.
552  */
553 static void
554 ae_start(struct ifnet *ifp)
555 {
556 	struct ae_softc *sc = ifp->if_softc;
557 	struct mbuf *m0, *m;
558 	struct ae_txsoft *txs, *last_txs = NULL;
559 	bus_dmamap_t dmamap;
560 	int error, firsttx, nexttx, lasttx = 1, ofree, seg;
561 
562 	DPRINTF(sc, ("%s: ae_start: sc_flags 0x%08x, if_flags 0x%08x\n",
563 	    sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
564 
565 
566 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
567 		return;
568 
569 	/*
570 	 * Remember the previous number of free descriptors and
571 	 * the first descriptor we'll use.
572 	 */
573 	ofree = sc->sc_txfree;
574 	firsttx = sc->sc_txnext;
575 
576 	DPRINTF(sc, ("%s: ae_start: txfree %d, txnext %d\n",
577 	    sc->sc_dev.dv_xname, ofree, firsttx));
578 
579 	/*
580 	 * Loop through the send queue, setting up transmit descriptors
581 	 * until we drain the queue, or use up all available transmit
582 	 * descriptors.
583 	 */
584 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
585 	       sc->sc_txfree != 0) {
586 		/*
587 		 * Grab a packet off the queue.
588 		 */
589 		IFQ_POLL(&ifp->if_snd, m0);
590 		if (m0 == NULL)
591 			break;
592 		m = NULL;
593 
594 		dmamap = txs->txs_dmamap;
595 
596 		/*
597 		 * Load the DMA map.  If this fails, the packet either
598 		 * didn't fit in the alloted number of segments, or we were
599 		 * short on resources.  In this case, we'll copy and try
600 		 * again.
601 		 */
602 		if (((mtod(m0, uintptr_t) & 3) != 0) ||
603 		    bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
604 		      BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
605 			MGETHDR(m, M_DONTWAIT, MT_DATA);
606 			if (m == NULL) {
607 				printf("%s: unable to allocate Tx mbuf\n",
608 				    sc->sc_dev.dv_xname);
609 				break;
610 			}
611 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
612 			if (m0->m_pkthdr.len > MHLEN) {
613 				MCLGET(m, M_DONTWAIT);
614 				if ((m->m_flags & M_EXT) == 0) {
615 					printf("%s: unable to allocate Tx "
616 					    "cluster\n", sc->sc_dev.dv_xname);
617 					m_freem(m);
618 					break;
619 				}
620 			}
621 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
622 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
623 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
624 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
625 			if (error) {
626 				printf("%s: unable to load Tx buffer, "
627 				    "error = %d\n", sc->sc_dev.dv_xname,
628 				    error);
629 				break;
630 			}
631 		}
632 
633 		/*
634 		 * Ensure we have enough descriptors free to describe
635 		 * the packet.
636 		 */
637 		if (dmamap->dm_nsegs > sc->sc_txfree) {
638 			/*
639 			 * Not enough free descriptors to transmit this
640 			 * packet.  We haven't committed to anything yet,
641 			 * so just unload the DMA map, put the packet
642 			 * back on the queue, and punt.  Notify the upper
643 			 * layer that there are no more slots left.
644 			 *
645 			 * XXX We could allocate an mbuf and copy, but
646 			 * XXX it is worth it?
647 			 */
648 			ifp->if_flags |= IFF_OACTIVE;
649 			bus_dmamap_unload(sc->sc_dmat, dmamap);
650 			if (m != NULL)
651 				m_freem(m);
652 			break;
653 		}
654 
655 		IFQ_DEQUEUE(&ifp->if_snd, m0);
656 		if (m != NULL) {
657 			m_freem(m0);
658 			m0 = m;
659 		}
660 
661 		/*
662 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
663 		 */
664 
665 		/* Sync the DMA map. */
666 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
667 		    BUS_DMASYNC_PREWRITE);
668 
669 		/*
670 		 * Initialize the transmit descriptors.
671 		 */
672 		for (nexttx = sc->sc_txnext, seg = 0;
673 		     seg < dmamap->dm_nsegs;
674 		     seg++, nexttx = AE_NEXTTX(nexttx)) {
675 			/*
676 			 * If this is the first descriptor we're
677 			 * enqueueing, don't set the OWN bit just
678 			 * yet.  That could cause a race condition.
679 			 * We'll do it below.
680 			 */
681 			sc->sc_txdescs[nexttx].ad_status =
682 			    (nexttx == firsttx) ? 0 : ADSTAT_OWN;
683 			sc->sc_txdescs[nexttx].ad_bufaddr1 =
684 			    dmamap->dm_segs[seg].ds_addr;
685 			sc->sc_txdescs[nexttx].ad_ctl =
686 			    (dmamap->dm_segs[seg].ds_len <<
687 				ADCTL_SIZE1_SHIFT) |
688 				(nexttx == (AE_NTXDESC - 1) ?
689 				    ADCTL_ER : 0);
690 			lasttx = nexttx;
691 		}
692 
693 		KASSERT(lasttx != -1);
694 
695 		/* Set `first segment' and `last segment' appropriately. */
696 		sc->sc_txdescs[sc->sc_txnext].ad_ctl |= ADCTL_Tx_FS;
697 		sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_LS;
698 
699 #ifdef AE_DEBUG
700 		if (ifp->if_flags & IFF_DEBUG) {
701 			printf("     txsoft %p transmit chain:\n", txs);
702 			for (seg = sc->sc_txnext;; seg = AE_NEXTTX(seg)) {
703 				printf("     descriptor %d:\n", seg);
704 				printf("       ad_status:   0x%08x\n",
705 				    sc->sc_txdescs[seg].ad_status);
706 				printf("       ad_ctl:      0x%08x\n",
707 				    sc->sc_txdescs[seg].ad_ctl);
708 				printf("       ad_bufaddr1: 0x%08x\n",
709 				    sc->sc_txdescs[seg].ad_bufaddr1);
710 				printf("       ad_bufaddr2: 0x%08x\n",
711 				    sc->sc_txdescs[seg].ad_bufaddr2);
712 				if (seg == lasttx)
713 					break;
714 			}
715 		}
716 #endif
717 
718 		/* Sync the descriptors we're using. */
719 		AE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
720 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
721 
722 		/*
723 		 * Store a pointer to the packet so we can free it later,
724 		 * and remember what txdirty will be once the packet is
725 		 * done.
726 		 */
727 		txs->txs_mbuf = m0;
728 		txs->txs_firstdesc = sc->sc_txnext;
729 		txs->txs_lastdesc = lasttx;
730 		txs->txs_ndescs = dmamap->dm_nsegs;
731 
732 		/* Advance the tx pointer. */
733 		sc->sc_txfree -= dmamap->dm_nsegs;
734 		sc->sc_txnext = nexttx;
735 
736 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
737 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
738 
739 		last_txs = txs;
740 
741 #if NBPFILTER > 0
742 		/*
743 		 * Pass the packet to any BPF listeners.
744 		 */
745 		if (ifp->if_bpf)
746 			bpf_mtap(ifp->if_bpf, m0);
747 #endif /* NBPFILTER > 0 */
748 	}
749 
750 	if (txs == NULL || sc->sc_txfree == 0) {
751 		/* No more slots left; notify upper layer. */
752 		ifp->if_flags |= IFF_OACTIVE;
753 	}
754 
755 	if (sc->sc_txfree != ofree) {
756 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
757 		    sc->sc_dev.dv_xname, lasttx, firsttx));
758 		/*
759 		 * Cause a transmit interrupt to happen on the
760 		 * last packet we enqueued.
761 		 */
762 		sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_IC;
763 		AE_CDTXSYNC(sc, lasttx, 1,
764 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
765 
766 		/*
767 		 * The entire packet chain is set up.  Give the
768 		 * first descriptor to the chip now.
769 		 */
770 		sc->sc_txdescs[firsttx].ad_status |= ADSTAT_OWN;
771 		AE_CDTXSYNC(sc, firsttx, 1,
772 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
773 
774 		/* Wake up the transmitter. */
775 		/* XXX USE AUTOPOLLING? */
776 		AE_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD);
777 		AE_BARRIER(sc);
778 
779 		/* Set a watchdog timer in case the chip flakes out. */
780 		ifp->if_timer = 5;
781 	}
782 }
783 
784 /*
785  * ae_watchdog:	[ifnet interface function]
786  *
787  *	Watchdog timer handler.
788  */
789 static void
790 ae_watchdog(struct ifnet *ifp)
791 {
792 	struct ae_softc *sc = ifp->if_softc;
793 	int doing_transmit;
794 
795 	doing_transmit = (! SIMPLEQ_EMPTY(&sc->sc_txdirtyq));
796 
797 	if (doing_transmit) {
798 		printf("%s: transmit timeout\n", sc->sc_dev.dv_xname);
799 		ifp->if_oerrors++;
800 	}
801 	else
802 		printf("%s: spurious watchdog timeout\n", sc->sc_dev.dv_xname);
803 
804 	(void) ae_init(ifp);
805 
806 	/* Try to get more packets going. */
807 	ae_start(ifp);
808 }
809 
810 /* If the interface is up and running, only modify the receive
811  * filter when changing to/from promiscuous mode.  Otherwise return
812  * ENETRESET so that ether_ioctl will reset the chip.
813  */
814 static int
815 ae_ifflags_cb(struct ethercom *ec)
816 {
817 	struct ifnet *ifp = &ec->ec_if;
818 	struct ae_softc *sc = ifp->if_softc;
819 	int change = ifp->if_flags ^ sc->sc_if_flags;
820 
821 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
822 		return ENETRESET;
823 	else if ((change & IFF_PROMISC) != 0)
824 		ae_filter_setup(sc);
825 	return 0;
826 }
827 
828 /*
829  * ae_ioctl:		[ifnet interface function]
830  *
831  *	Handle control requests from the operator.
832  */
833 static int
834 ae_ioctl(struct ifnet *ifp, u_long cmd, void *data)
835 {
836 	struct ae_softc *sc = ifp->if_softc;
837 	int s, error;
838 
839 	s = splnet();
840 
841 	error = ether_ioctl(ifp, cmd, data);
842 	if (error == ENETRESET) {
843 		if (ifp->if_flags & IFF_RUNNING) {
844 			/*
845 			 * Multicast list has changed.  Set the
846 			 * hardware filter accordingly.
847 			 */
848 			ae_filter_setup(sc);
849 		}
850 		error = 0;
851 	}
852 
853 	/* Try to get more packets going. */
854 	if (AE_IS_ENABLED(sc))
855 		ae_start(ifp);
856 
857 	sc->sc_if_flags = ifp->if_flags;
858 	splx(s);
859 	return (error);
860 }
861 
862 /*
863  * ae_intr:
864  *
865  *	Interrupt service routine.
866  */
867 int
868 ae_intr(void *arg)
869 {
870 	struct ae_softc *sc = arg;
871 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
872 	u_int32_t status, rxstatus, txstatus;
873 	int handled = 0, txthresh;
874 
875 	DPRINTF(sc, ("%s: ae_intr\n", sc->sc_dev.dv_xname));
876 
877 #ifdef DEBUG
878 	if (AE_IS_ENABLED(sc) == 0)
879 		panic("%s: ae_intr: not enabled", sc->sc_dev.dv_xname);
880 #endif
881 
882 	/*
883 	 * If the interface isn't running, the interrupt couldn't
884 	 * possibly have come from us.
885 	 */
886 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
887 	    !device_is_active(&sc->sc_dev)) {
888 		printf("spurious?!?\n");
889 		return (0);
890 	}
891 
892 	for (;;) {
893 		status = AE_READ(sc, CSR_STATUS);
894 		if (status) {
895 			AE_WRITE(sc, CSR_STATUS, status);
896 			AE_BARRIER(sc);
897 		}
898 
899 		if ((status & sc->sc_inten) == 0)
900 			break;
901 
902 		handled = 1;
903 
904 		rxstatus = status & sc->sc_rxint_mask;
905 		txstatus = status & sc->sc_txint_mask;
906 
907 		if (rxstatus) {
908 			/* Grab new any new packets. */
909 			ae_rxintr(sc);
910 
911 			if (rxstatus & STATUS_RU) {
912 				printf("%s: receive ring overrun\n",
913 				    sc->sc_dev.dv_xname);
914 				/* Get the receive process going again. */
915 				AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
916 				AE_BARRIER(sc);
917 				break;
918 			}
919 		}
920 
921 		if (txstatus) {
922 			/* Sweep up transmit descriptors. */
923 			ae_txintr(sc);
924 
925 			if (txstatus & STATUS_TJT)
926 				printf("%s: transmit jabber timeout\n",
927 				    sc->sc_dev.dv_xname);
928 
929 			if (txstatus & STATUS_UNF) {
930 				/*
931 				 * Increase our transmit threshold if
932 				 * another is available.
933 				 */
934 				txthresh = sc->sc_txthresh + 1;
935 				if (ae_txthresh[txthresh].txth_name != NULL) {
936 					uint32_t opmode;
937 					/* Idle the transmit process. */
938 					opmode = AE_READ(sc, CSR_OPMODE);
939 					ae_idle(sc, OPMODE_ST);
940 
941 					sc->sc_txthresh = txthresh;
942 					opmode &=
943 					    ~(OPMODE_TR|OPMODE_SF);
944 					opmode |=
945 					    ae_txthresh[txthresh].txth_opmode;
946 					printf("%s: transmit underrun; new "
947 					    "threshold: %s\n",
948 					    sc->sc_dev.dv_xname,
949 					    ae_txthresh[txthresh].txth_name);
950 
951 					/*
952 					 * Set the new threshold and restart
953 					 * the transmit process.
954 					 */
955 					AE_WRITE(sc, CSR_OPMODE, opmode);
956 					AE_BARRIER(sc);
957 				}
958 					/*
959 					 * XXX Log every Nth underrun from
960 					 * XXX now on?
961 					 */
962 			}
963 		}
964 
965 		if (status & (STATUS_TPS|STATUS_RPS)) {
966 			if (status & STATUS_TPS)
967 				printf("%s: transmit process stopped\n",
968 				    sc->sc_dev.dv_xname);
969 			if (status & STATUS_RPS)
970 				printf("%s: receive process stopped\n",
971 				    sc->sc_dev.dv_xname);
972 			(void) ae_init(ifp);
973 			break;
974 		}
975 
976 		if (status & STATUS_SE) {
977 			const char *str;
978 
979 			if (status & STATUS_TX_ABORT)
980 				str = "tx abort";
981 			else if (status & STATUS_RX_ABORT)
982 				str = "rx abort";
983 			else
984 				str = "unknown error";
985 
986 			printf("%s: fatal system error: %s\n",
987 			    sc->sc_dev.dv_xname, str);
988 			(void) ae_init(ifp);
989 			break;
990 		}
991 
992 		/*
993 		 * Not handled:
994 		 *
995 		 *	Transmit buffer unavailable -- normal
996 		 *	condition, nothing to do, really.
997 		 *
998 		 *	General purpose timer experied -- we don't
999 		 *	use the general purpose timer.
1000 		 *
1001 		 *	Early receive interrupt -- not available on
1002 		 *	all chips, we just use RI.  We also only
1003 		 *	use single-segment receive DMA, so this
1004 		 *	is mostly useless.
1005 		 */
1006 	}
1007 
1008 	/* Try to get more packets going. */
1009 	ae_start(ifp);
1010 
1011 #if NRND > 0
1012 	if (handled)
1013 		rnd_add_uint32(&sc->sc_rnd_source, status);
1014 #endif
1015 	return (handled);
1016 }
1017 
1018 /*
1019  * ae_rxintr:
1020  *
1021  *	Helper; handle receive interrupts.
1022  */
1023 static void
1024 ae_rxintr(struct ae_softc *sc)
1025 {
1026 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1027 	struct ether_header *eh;
1028 	struct ae_rxsoft *rxs;
1029 	struct mbuf *m;
1030 	u_int32_t rxstat;
1031 	int i, len;
1032 
1033 	for (i = sc->sc_rxptr;; i = AE_NEXTRX(i)) {
1034 		rxs = &sc->sc_rxsoft[i];
1035 
1036 		AE_CDRXSYNC(sc, i,
1037 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1038 
1039 		rxstat = sc->sc_rxdescs[i].ad_status;
1040 
1041 		if (rxstat & ADSTAT_OWN) {
1042 			/*
1043 			 * We have processed all of the receive buffers.
1044 			 */
1045 			break;
1046 		}
1047 
1048 		/*
1049 		 * If any collisions were seen on the wire, count one.
1050 		 */
1051 		if (rxstat & ADSTAT_Rx_CS)
1052 			ifp->if_collisions++;
1053 
1054 		/*
1055 		 * If an error occurred, update stats, clear the status
1056 		 * word, and leave the packet buffer in place.  It will
1057 		 * simply be reused the next time the ring comes around.
1058 	 	 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
1059 		 * error.
1060 		 */
1061 		if (rxstat & ADSTAT_ES &&
1062 		    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
1063 		     (rxstat & (ADSTAT_Rx_DE | ADSTAT_Rx_RF |
1064 				ADSTAT_Rx_DB | ADSTAT_Rx_CE)) != 0)) {
1065 #define	PRINTERR(bit, str)						\
1066 			if (rxstat & (bit))				\
1067 				printf("%s: receive error: %s\n",	\
1068 				    sc->sc_dev.dv_xname, str)
1069 			ifp->if_ierrors++;
1070 			PRINTERR(ADSTAT_Rx_DE, "descriptor error");
1071 			PRINTERR(ADSTAT_Rx_RF, "runt frame");
1072 			PRINTERR(ADSTAT_Rx_TL, "frame too long");
1073 			PRINTERR(ADSTAT_Rx_RE, "MII error");
1074 			PRINTERR(ADSTAT_Rx_DB, "dribbling bit");
1075 			PRINTERR(ADSTAT_Rx_CE, "CRC error");
1076 #undef PRINTERR
1077 			AE_INIT_RXDESC(sc, i);
1078 			continue;
1079 		}
1080 
1081 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1082 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1083 
1084 		/*
1085 		 * No errors; receive the packet.  Note the chip
1086 		 * includes the CRC with every packet.
1087 		 */
1088 		len = ADSTAT_Rx_LENGTH(rxstat) - ETHER_CRC_LEN;
1089 
1090 		/*
1091 		 * XXX: the Atheros part can align on half words.  what
1092 		 * is the performance implication of this?  Probably
1093 		 * minimal, and we should use it...
1094 		 */
1095 #ifdef __NO_STRICT_ALIGNMENT
1096 		/*
1097 		 * Allocate a new mbuf cluster.  If that fails, we are
1098 		 * out of memory, and must drop the packet and recycle
1099 		 * the buffer that's already attached to this descriptor.
1100 		 */
1101 		m = rxs->rxs_mbuf;
1102 		if (ae_add_rxbuf(sc, i) != 0) {
1103 			ifp->if_ierrors++;
1104 			AE_INIT_RXDESC(sc, i);
1105 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1106 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1107 			continue;
1108 		}
1109 #else
1110 		/*
1111 		 * The chip's receive buffers must be 4-byte aligned.
1112 		 * But this means that the data after the Ethernet header
1113 		 * is misaligned.  We must allocate a new buffer and
1114 		 * copy the data, shifted forward 2 bytes.
1115 		 */
1116 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1117 		if (m == NULL) {
1118  dropit:
1119 			ifp->if_ierrors++;
1120 			AE_INIT_RXDESC(sc, i);
1121 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1122 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1123 			continue;
1124 		}
1125 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1126 		if (len > (MHLEN - 2)) {
1127 			MCLGET(m, M_DONTWAIT);
1128 			if ((m->m_flags & M_EXT) == 0) {
1129 				m_freem(m);
1130 				goto dropit;
1131 			}
1132 		}
1133 		m->m_data += 2;
1134 
1135 		/*
1136 		 * Note that we use clusters for incoming frames, so the
1137 		 * buffer is virtually contiguous.
1138 		 */
1139 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
1140 
1141 		/* Allow the receive descriptor to continue using its mbuf. */
1142 		AE_INIT_RXDESC(sc, i);
1143 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1144 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1145 #endif /* __NO_STRICT_ALIGNMENT */
1146 
1147 		ifp->if_ipackets++;
1148 		eh = mtod(m, struct ether_header *);
1149 		m->m_pkthdr.rcvif = ifp;
1150 		m->m_pkthdr.len = m->m_len = len;
1151 
1152 #if NBPFILTER > 0
1153 		/*
1154 		 * Pass this up to any BPF listeners, but only
1155 		 * pass it up the stack if its for us.
1156 		 */
1157 		if (ifp->if_bpf)
1158 			bpf_mtap(ifp->if_bpf, m);
1159 #endif /* NBPFILTER > 0 */
1160 
1161 		/* Pass it on. */
1162 		(*ifp->if_input)(ifp, m);
1163 	}
1164 
1165 	/* Update the receive pointer. */
1166 	sc->sc_rxptr = i;
1167 }
1168 
1169 /*
1170  * ae_txintr:
1171  *
1172  *	Helper; handle transmit interrupts.
1173  */
1174 static void
1175 ae_txintr(struct ae_softc *sc)
1176 {
1177 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1178 	struct ae_txsoft *txs;
1179 	u_int32_t txstat;
1180 
1181 	DPRINTF(sc, ("%s: ae_txintr: sc_flags 0x%08x\n",
1182 	    sc->sc_dev.dv_xname, sc->sc_flags));
1183 
1184 	ifp->if_flags &= ~IFF_OACTIVE;
1185 
1186 	/*
1187 	 * Go through our Tx list and free mbufs for those
1188 	 * frames that have been transmitted.
1189 	 */
1190 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1191 		AE_CDTXSYNC(sc, txs->txs_lastdesc,
1192 		    txs->txs_ndescs,
1193 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1194 
1195 #ifdef AE_DEBUG
1196 		if (ifp->if_flags & IFF_DEBUG) {
1197 			int i;
1198 			printf("    txsoft %p transmit chain:\n", txs);
1199 			for (i = txs->txs_firstdesc;; i = AE_NEXTTX(i)) {
1200 				printf("     descriptor %d:\n", i);
1201 				printf("       ad_status:   0x%08x\n",
1202 				    sc->sc_txdescs[i].ad_status);
1203 				printf("       ad_ctl:      0x%08x\n",
1204 				    sc->sc_txdescs[i].ad_ctl);
1205 				printf("       ad_bufaddr1: 0x%08x\n",
1206 				    sc->sc_txdescs[i].ad_bufaddr1);
1207 				printf("       ad_bufaddr2: 0x%08x\n",
1208 				    sc->sc_txdescs[i].ad_bufaddr2);
1209 				if (i == txs->txs_lastdesc)
1210 					break;
1211 			}
1212 		}
1213 #endif
1214 
1215 		txstat = sc->sc_txdescs[txs->txs_lastdesc].ad_status;
1216 		if (txstat & ADSTAT_OWN)
1217 			break;
1218 
1219 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1220 
1221 		sc->sc_txfree += txs->txs_ndescs;
1222 
1223 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1224 		    0, txs->txs_dmamap->dm_mapsize,
1225 		    BUS_DMASYNC_POSTWRITE);
1226 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1227 		m_freem(txs->txs_mbuf);
1228 		txs->txs_mbuf = NULL;
1229 
1230 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1231 
1232 		/*
1233 		 * Check for errors and collisions.
1234 		 */
1235 #ifdef AE_STATS
1236 		if (txstat & ADSTAT_Tx_UF)
1237 			sc->sc_stats.ts_tx_uf++;
1238 		if (txstat & ADSTAT_Tx_TO)
1239 			sc->sc_stats.ts_tx_to++;
1240 		if (txstat & ADSTAT_Tx_EC)
1241 			sc->sc_stats.ts_tx_ec++;
1242 		if (txstat & ADSTAT_Tx_LC)
1243 			sc->sc_stats.ts_tx_lc++;
1244 #endif
1245 
1246 		if (txstat & (ADSTAT_Tx_UF|ADSTAT_Tx_TO))
1247 			ifp->if_oerrors++;
1248 
1249 		if (txstat & ADSTAT_Tx_EC)
1250 			ifp->if_collisions += 16;
1251 		else
1252 			ifp->if_collisions += ADSTAT_Tx_COLLISIONS(txstat);
1253 		if (txstat & ADSTAT_Tx_LC)
1254 			ifp->if_collisions++;
1255 
1256 		ifp->if_opackets++;
1257 	}
1258 
1259 	/*
1260 	 * If there are no more pending transmissions, cancel the watchdog
1261 	 * timer.
1262 	 */
1263 	if (txs == NULL)
1264 		ifp->if_timer = 0;
1265 }
1266 
1267 #ifdef AE_STATS
1268 void
1269 ae_print_stats(struct ae_softc *sc)
1270 {
1271 
1272 	printf("%s: tx_uf %lu, tx_to %lu, tx_ec %lu, tx_lc %lu\n",
1273 	    sc->sc_dev.dv_xname,
1274 	    sc->sc_stats.ts_tx_uf, sc->sc_stats.ts_tx_to,
1275 	    sc->sc_stats.ts_tx_ec, sc->sc_stats.ts_tx_lc);
1276 }
1277 #endif
1278 
1279 /*
1280  * ae_reset:
1281  *
1282  *	Perform a soft reset on the chip.
1283  */
1284 void
1285 ae_reset(struct ae_softc *sc)
1286 {
1287 	int i;
1288 
1289 	AE_WRITE(sc, CSR_BUSMODE, BUSMODE_SWR);
1290 	AE_BARRIER(sc);
1291 
1292 	/*
1293 	 * The chip doesn't take itself out of reset automatically.
1294 	 * We need to do so after 2us.
1295 	 */
1296 	delay(10);
1297 	AE_WRITE(sc, CSR_BUSMODE, 0);
1298 	AE_BARRIER(sc);
1299 
1300 	for (i = 0; i < 1000; i++) {
1301 		/*
1302 		 * Wait a bit for the reset to complete before peeking
1303 		 * at the chip again.
1304 		 */
1305 		delay(10);
1306 		if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR) == 0)
1307 			break;
1308 	}
1309 
1310 	if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR))
1311 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1312 
1313 	delay(1000);
1314 }
1315 
1316 /*
1317  * ae_init:		[ ifnet interface function ]
1318  *
1319  *	Initialize the interface.  Must be called at splnet().
1320  */
1321 static int
1322 ae_init(struct ifnet *ifp)
1323 {
1324 	struct ae_softc *sc = ifp->if_softc;
1325 	struct ae_txsoft *txs;
1326 	struct ae_rxsoft *rxs;
1327 	const uint8_t *enaddr;
1328 	int i, error = 0;
1329 
1330 	if ((error = ae_enable(sc)) != 0)
1331 		goto out;
1332 
1333 	/*
1334 	 * Cancel any pending I/O.
1335 	 */
1336 	ae_stop(ifp, 0);
1337 
1338 	/*
1339 	 * Reset the chip to a known state.
1340 	 */
1341 	ae_reset(sc);
1342 
1343 	/*
1344 	 * Initialize the BUSMODE register.
1345 	 */
1346 	AE_WRITE(sc, CSR_BUSMODE,
1347 	    /* XXX: not sure if this is a good thing or not... */
1348 	    //BUSMODE_ALIGN_16B |
1349 	    BUSMODE_BAR | BUSMODE_BLE | BUSMODE_PBL_4LW);
1350 	AE_BARRIER(sc);
1351 
1352 	/*
1353 	 * Initialize the transmit descriptor ring.
1354 	 */
1355 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1356 	for (i = 0; i < AE_NTXDESC; i++) {
1357 		sc->sc_txdescs[i].ad_ctl = 0;
1358 		sc->sc_txdescs[i].ad_bufaddr2 =
1359 		    AE_CDTXADDR(sc, AE_NEXTTX(i));
1360 	}
1361 	sc->sc_txdescs[AE_NTXDESC - 1].ad_ctl |= ADCTL_ER;
1362 	AE_CDTXSYNC(sc, 0, AE_NTXDESC,
1363 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1364 	sc->sc_txfree = AE_NTXDESC;
1365 	sc->sc_txnext = 0;
1366 
1367 	/*
1368 	 * Initialize the transmit job descriptors.
1369 	 */
1370 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1371 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1372 	for (i = 0; i < AE_TXQUEUELEN; i++) {
1373 		txs = &sc->sc_txsoft[i];
1374 		txs->txs_mbuf = NULL;
1375 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1376 	}
1377 
1378 	/*
1379 	 * Initialize the receive descriptor and receive job
1380 	 * descriptor rings.
1381 	 */
1382 	for (i = 0; i < AE_NRXDESC; i++) {
1383 		rxs = &sc->sc_rxsoft[i];
1384 		if (rxs->rxs_mbuf == NULL) {
1385 			if ((error = ae_add_rxbuf(sc, i)) != 0) {
1386 				printf("%s: unable to allocate or map rx "
1387 				    "buffer %d, error = %d\n",
1388 				    sc->sc_dev.dv_xname, i, error);
1389 				/*
1390 				 * XXX Should attempt to run with fewer receive
1391 				 * XXX buffers instead of just failing.
1392 				 */
1393 				ae_rxdrain(sc);
1394 				goto out;
1395 			}
1396 		} else
1397 			AE_INIT_RXDESC(sc, i);
1398 	}
1399 	sc->sc_rxptr = 0;
1400 
1401 	/*
1402 	 * Initialize the interrupt mask and enable interrupts.
1403 	 */
1404 	/* normal interrupts */
1405 	sc->sc_inten =  STATUS_TI | STATUS_TU | STATUS_RI | STATUS_NIS;
1406 
1407 	/* abnormal interrupts */
1408 	sc->sc_inten |= STATUS_TPS | STATUS_TJT | STATUS_UNF |
1409 	    STATUS_RU | STATUS_RPS | STATUS_SE | STATUS_AIS;
1410 
1411 	sc->sc_rxint_mask = STATUS_RI|STATUS_RU;
1412 	sc->sc_txint_mask = STATUS_TI|STATUS_UNF|STATUS_TJT;
1413 
1414 	sc->sc_rxint_mask &= sc->sc_inten;
1415 	sc->sc_txint_mask &= sc->sc_inten;
1416 
1417 	AE_WRITE(sc, CSR_INTEN, sc->sc_inten);
1418 	AE_WRITE(sc, CSR_STATUS, 0xffffffff);
1419 
1420 	/*
1421 	 * Give the transmit and receive rings to the chip.
1422 	 */
1423 	AE_WRITE(sc, CSR_TXLIST, AE_CDTXADDR(sc, sc->sc_txnext));
1424 	AE_WRITE(sc, CSR_RXLIST, AE_CDRXADDR(sc, sc->sc_rxptr));
1425 	AE_BARRIER(sc);
1426 
1427 	/*
1428 	 * Set the station address.
1429 	 */
1430 	enaddr = CLLADDR(ifp->if_sadl);
1431 	AE_WRITE(sc, CSR_MACHI, enaddr[5] << 16 | enaddr[4]);
1432 	AE_WRITE(sc, CSR_MACLO, enaddr[3] << 24 | enaddr[2] << 16 |
1433 		enaddr[1] << 8 | enaddr[0]);
1434 	AE_BARRIER(sc);
1435 
1436 	/*
1437 	 * Set the receive filter.  This will start the transmit and
1438 	 * receive processes.
1439 	 */
1440 	ae_filter_setup(sc);
1441 
1442 	/*
1443 	 * Set the current media.
1444 	 */
1445 	if ((error = ether_mediachange(ifp)) != 0)
1446 		goto out;
1447 
1448 	/*
1449 	 * Start the mac.
1450 	 */
1451 	AE_SET(sc, CSR_MACCTL, MACCTL_RE | MACCTL_TE);
1452 	AE_BARRIER(sc);
1453 
1454 	/*
1455 	 * Write out the opmode.
1456 	 */
1457 	AE_WRITE(sc, CSR_OPMODE, OPMODE_SR | OPMODE_ST |
1458 	    ae_txthresh[sc->sc_txthresh].txth_opmode);
1459 	/*
1460 	 * Start the receive process.
1461 	 */
1462 	AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
1463 	AE_BARRIER(sc);
1464 
1465 	if (sc->sc_tick != NULL) {
1466 		/* Start the one second clock. */
1467 		callout_reset(&sc->sc_tick_callout, hz >> 3, sc->sc_tick, sc);
1468 	}
1469 
1470 	/*
1471 	 * Note that the interface is now running.
1472 	 */
1473 	ifp->if_flags |= IFF_RUNNING;
1474 	ifp->if_flags &= ~IFF_OACTIVE;
1475 	sc->sc_if_flags = ifp->if_flags;
1476 
1477  out:
1478 	if (error) {
1479 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1480 		ifp->if_timer = 0;
1481 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1482 	}
1483 	return (error);
1484 }
1485 
1486 /*
1487  * ae_enable:
1488  *
1489  *	Enable the chip.
1490  */
1491 static int
1492 ae_enable(struct ae_softc *sc)
1493 {
1494 
1495 	if (AE_IS_ENABLED(sc) == 0) {
1496 		sc->sc_ih = arbus_intr_establish(sc->sc_cirq, sc->sc_mirq,
1497 		    ae_intr, sc);
1498 		if (sc->sc_ih == NULL) {
1499 			printf("%s: unable to establish interrupt\n",
1500 			    sc->sc_dev.dv_xname);
1501 			return (EIO);
1502 		}
1503 		sc->sc_flags |= AE_ENABLED;
1504 	}
1505 	return (0);
1506 }
1507 
1508 /*
1509  * ae_disable:
1510  *
1511  *	Disable the chip.
1512  */
1513 static void
1514 ae_disable(struct ae_softc *sc)
1515 {
1516 
1517 	if (AE_IS_ENABLED(sc)) {
1518 		arbus_intr_disestablish(sc->sc_ih);
1519 		sc->sc_flags &= ~AE_ENABLED;
1520 	}
1521 }
1522 
1523 /*
1524  * ae_power:
1525  *
1526  *	Power management (suspend/resume) hook.
1527  */
1528 static void
1529 ae_power(int why, void *arg)
1530 {
1531 	struct ae_softc *sc = arg;
1532 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1533 	int s;
1534 
1535 	printf("power called: %d, %x\n", why, (uint32_t)arg);
1536 	s = splnet();
1537 	switch (why) {
1538 	case PWR_STANDBY:
1539 		/* do nothing! */
1540 		break;
1541 	case PWR_SUSPEND:
1542 		ae_stop(ifp, 0);
1543 		ae_disable(sc);
1544 		break;
1545 	case PWR_RESUME:
1546 		if (ifp->if_flags & IFF_UP) {
1547 			ae_enable(sc);
1548 			ae_init(ifp);
1549 		}
1550 		break;
1551 	case PWR_SOFTSUSPEND:
1552 	case PWR_SOFTSTANDBY:
1553 	case PWR_SOFTRESUME:
1554 		break;
1555 	}
1556 	splx(s);
1557 }
1558 
1559 /*
1560  * ae_rxdrain:
1561  *
1562  *	Drain the receive queue.
1563  */
1564 static void
1565 ae_rxdrain(struct ae_softc *sc)
1566 {
1567 	struct ae_rxsoft *rxs;
1568 	int i;
1569 
1570 	for (i = 0; i < AE_NRXDESC; i++) {
1571 		rxs = &sc->sc_rxsoft[i];
1572 		if (rxs->rxs_mbuf != NULL) {
1573 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1574 			m_freem(rxs->rxs_mbuf);
1575 			rxs->rxs_mbuf = NULL;
1576 		}
1577 	}
1578 }
1579 
1580 /*
1581  * ae_stop:		[ ifnet interface function ]
1582  *
1583  *	Stop transmission on the interface.
1584  */
1585 static void
1586 ae_stop(struct ifnet *ifp, int disable)
1587 {
1588 	struct ae_softc *sc = ifp->if_softc;
1589 	struct ae_txsoft *txs;
1590 
1591 	if (sc->sc_tick != NULL) {
1592 		/* Stop the one second clock. */
1593 		callout_stop(&sc->sc_tick_callout);
1594 	}
1595 
1596 	/* Down the MII. */
1597 	mii_down(&sc->sc_mii);
1598 
1599 	/* Disable interrupts. */
1600 	AE_WRITE(sc, CSR_INTEN, 0);
1601 
1602 	/* Stop the transmit and receive processes. */
1603 	AE_WRITE(sc, CSR_OPMODE, 0);
1604 	AE_WRITE(sc, CSR_RXLIST, 0);
1605 	AE_WRITE(sc, CSR_TXLIST, 0);
1606 	AE_CLR(sc, CSR_MACCTL, MACCTL_TE | MACCTL_RE);
1607 	AE_BARRIER(sc);
1608 
1609 	/*
1610 	 * Release any queued transmit buffers.
1611 	 */
1612 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1613 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1614 		if (txs->txs_mbuf != NULL) {
1615 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1616 			m_freem(txs->txs_mbuf);
1617 			txs->txs_mbuf = NULL;
1618 		}
1619 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1620 	}
1621 
1622 	/*
1623 	 * Mark the interface down and cancel the watchdog timer.
1624 	 */
1625 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1626 	sc->sc_if_flags = ifp->if_flags;
1627 	ifp->if_timer = 0;
1628 
1629 	if (disable) {
1630 		ae_rxdrain(sc);
1631 		ae_disable(sc);
1632 	}
1633 
1634 	/*
1635 	 * Reset the chip (needed on some flavors to actually disable it).
1636 	 */
1637 	ae_reset(sc);
1638 }
1639 
1640 /*
1641  * ae_add_rxbuf:
1642  *
1643  *	Add a receive buffer to the indicated descriptor.
1644  */
1645 static int
1646 ae_add_rxbuf(struct ae_softc *sc, int idx)
1647 {
1648 	struct ae_rxsoft *rxs = &sc->sc_rxsoft[idx];
1649 	struct mbuf *m;
1650 	int error;
1651 
1652 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1653 	if (m == NULL)
1654 		return (ENOBUFS);
1655 
1656 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1657 	MCLGET(m, M_DONTWAIT);
1658 	if ((m->m_flags & M_EXT) == 0) {
1659 		m_freem(m);
1660 		return (ENOBUFS);
1661 	}
1662 
1663 	if (rxs->rxs_mbuf != NULL)
1664 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1665 
1666 	rxs->rxs_mbuf = m;
1667 
1668 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1669 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1670 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1671 	if (error) {
1672 		printf("%s: can't load rx DMA map %d, error = %d\n",
1673 		    sc->sc_dev.dv_xname, idx, error);
1674 		panic("ae_add_rxbuf");	/* XXX */
1675 	}
1676 
1677 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1678 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1679 
1680 	AE_INIT_RXDESC(sc, idx);
1681 
1682 	return (0);
1683 }
1684 
1685 /*
1686  * ae_filter_setup:
1687  *
1688  *	Set the chip's receive filter.
1689  */
1690 static void
1691 ae_filter_setup(struct ae_softc *sc)
1692 {
1693 	struct ethercom *ec = &sc->sc_ethercom;
1694 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1695 	struct ether_multi *enm;
1696 	struct ether_multistep step;
1697 	uint32_t hash, mchash[2];
1698 	uint32_t macctl = 0;
1699 
1700 	/*
1701 	 * If the chip is running, we need to reset the interface,
1702 	 * and will revisit here (with IFF_RUNNING) clear.  The
1703 	 * chip seems to really not like to have its multicast
1704 	 * filter programmed without a reset.
1705 	 */
1706 	if (ifp->if_flags & IFF_RUNNING) {
1707 		(void) ae_init(ifp);
1708 		return;
1709 	}
1710 
1711 	DPRINTF(sc, ("%s: ae_filter_setup: sc_flags 0x%08x\n",
1712 	    sc->sc_dev.dv_xname, sc->sc_flags));
1713 
1714 	macctl = AE_READ(sc, CSR_MACCTL);
1715 	macctl &= ~(MACCTL_PR | MACCTL_PM);
1716 	macctl |= MACCTL_HASH;
1717 	macctl |= MACCTL_HBD;
1718 	macctl |= MACCTL_PR;
1719 
1720 	if (ifp->if_flags & IFF_PROMISC) {
1721 		macctl |= MACCTL_PR;
1722 		goto allmulti;
1723 	}
1724 
1725 	mchash[0] = mchash[1] = 0;
1726 
1727 	ETHER_FIRST_MULTI(step, ec, enm);
1728 	while (enm != NULL) {
1729 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1730 			/*
1731 			 * We must listen to a range of multicast addresses.
1732 			 * For now, just accept all multicasts, rather than
1733 			 * trying to set only those filter bits needed to match
1734 			 * the range.  (At this time, the only use of address
1735 			 * ranges is for IP multicast routing, for which the
1736 			 * range is big enough to require all bits set.)
1737 			 */
1738 			goto allmulti;
1739 		}
1740 
1741 		/* Verify whether we use big or little endian hashes */
1742 		hash = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3f;
1743 		mchash[hash >> 5] |= 1 << (hash & 0x1f);
1744 		ETHER_NEXT_MULTI(step, enm);
1745 	}
1746 	ifp->if_flags &= ~IFF_ALLMULTI;
1747 	goto setit;
1748 
1749  allmulti:
1750 	ifp->if_flags |= IFF_ALLMULTI;
1751 	mchash[0] = mchash[1] = 0xffffffff;
1752 	macctl |= MACCTL_PM;
1753 
1754  setit:
1755 	AE_WRITE(sc, CSR_HTHI, mchash[0]);
1756 	AE_WRITE(sc, CSR_HTHI, mchash[1]);
1757 
1758 	AE_WRITE(sc, CSR_MACCTL, macctl);
1759 	AE_BARRIER(sc);
1760 
1761 	DPRINTF(sc, ("%s: ae_filter_setup: returning %x\n",
1762 		    sc->sc_dev.dv_xname, macctl));
1763 }
1764 
1765 /*
1766  * ae_idle:
1767  *
1768  *	Cause the transmit and/or receive processes to go idle.
1769  */
1770 void
1771 ae_idle(struct ae_softc *sc, u_int32_t bits)
1772 {
1773 	static const char * const txstate_names[] = {
1774 		"STOPPED",
1775 		"RUNNING - FETCH",
1776 		"RUNNING - WAIT",
1777 		"RUNNING - READING",
1778 		"-- RESERVED --",
1779 		"RUNNING - SETUP",
1780 		"SUSPENDED",
1781 		"RUNNING - CLOSE",
1782 	};
1783 	static const char * const rxstate_names[] = {
1784 		"STOPPED",
1785 		"RUNNING - FETCH",
1786 		"RUNNING - CHECK",
1787 		"RUNNING - WAIT",
1788 		"SUSPENDED",
1789 		"RUNNING - CLOSE",
1790 		"RUNNING - FLUSH",
1791 		"RUNNING - QUEUE",
1792 	};
1793 
1794 	u_int32_t csr, ackmask = 0;
1795 	int i;
1796 
1797 	if (bits & OPMODE_ST)
1798 		ackmask |= STATUS_TPS;
1799 
1800 	if (bits & OPMODE_SR)
1801 		ackmask |= STATUS_RPS;
1802 
1803 	AE_CLR(sc, CSR_OPMODE, bits);
1804 
1805 	for (i = 0; i < 1000; i++) {
1806 		if (AE_ISSET(sc, CSR_STATUS, ackmask) == ackmask)
1807 			break;
1808 		delay(10);
1809 	}
1810 
1811 	csr = AE_READ(sc, CSR_STATUS);
1812 	if ((csr & ackmask) != ackmask) {
1813 		if ((bits & OPMODE_ST) != 0 && (csr & STATUS_TPS) == 0 &&
1814 		    (csr & STATUS_TS) != STATUS_TS_STOPPED) {
1815 			printf("%s: transmit process failed to idle: "
1816 			    "state %s\n", sc->sc_dev.dv_xname,
1817 			    txstate_names[(csr & STATUS_TS) >> 20]);
1818 		}
1819 		if ((bits & OPMODE_SR) != 0 && (csr & STATUS_RPS) == 0 &&
1820 		    (csr & STATUS_RS) != STATUS_RS_STOPPED) {
1821 			printf("%s: receive process failed to idle: "
1822 			    "state %s\n", sc->sc_dev.dv_xname,
1823 			    rxstate_names[(csr & STATUS_RS) >> 17]);
1824 		}
1825 	}
1826 }
1827 
1828 /*****************************************************************************
1829  * Support functions for MII-attached media.
1830  *****************************************************************************/
1831 
1832 /*
1833  * ae_mii_tick:
1834  *
1835  *	One second timer, used to tick the MII.
1836  */
1837 static void
1838 ae_mii_tick(void *arg)
1839 {
1840 	struct ae_softc *sc = arg;
1841 	int s;
1842 
1843 	if (!device_is_active(&sc->sc_dev))
1844 		return;
1845 
1846 	s = splnet();
1847 	mii_tick(&sc->sc_mii);
1848 	splx(s);
1849 
1850 	callout_reset(&sc->sc_tick_callout, hz, sc->sc_tick, sc);
1851 }
1852 
1853 /*
1854  * ae_mii_statchg:	[mii interface function]
1855  *
1856  *	Callback from PHY when media changes.
1857  */
1858 static void
1859 ae_mii_statchg(device_t self)
1860 {
1861 	struct ae_softc *sc = device_private(self);
1862 	uint32_t	macctl, flowc;
1863 
1864 	//opmode = AE_READ(sc, CSR_OPMODE);
1865 	macctl = AE_READ(sc, CSR_MACCTL);
1866 
1867 	/* XXX: do we need to do this? */
1868 	/* Idle the transmit and receive processes. */
1869 	//ae_idle(sc, OPMODE_ST|OPMODE_SR);
1870 
1871 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
1872 		flowc = FLOWC_FCE;
1873 		macctl &= ~MACCTL_DRO;
1874 		macctl |= MACCTL_FDX;
1875 	} else {
1876 		flowc = 0;	/* cannot do flow control in HDX */
1877 		macctl |= MACCTL_DRO;
1878 		macctl &= ~MACCTL_FDX;
1879 	}
1880 
1881 	AE_WRITE(sc, CSR_FLOWC, flowc);
1882 	AE_WRITE(sc, CSR_MACCTL, macctl);
1883 
1884 	/* restore operational mode */
1885 	//AE_WRITE(sc, CSR_OPMODE, opmode);
1886 	AE_BARRIER(sc);
1887 }
1888 
1889 /*
1890  * ae_mii_readreg:
1891  *
1892  *	Read a PHY register.
1893  */
1894 static int
1895 ae_mii_readreg(device_t self, int phy, int reg)
1896 {
1897 	struct ae_softc	*sc = device_private(self);
1898 	uint32_t	addr;
1899 	int		i;
1900 
1901 	addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT);
1902 	AE_WRITE(sc, CSR_MIIADDR, addr);
1903 	AE_BARRIER(sc);
1904 	for (i = 0; i < 100000000; i++) {
1905 		if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1906 			break;
1907 	}
1908 
1909 	return (AE_READ(sc, CSR_MIIDATA) & 0xffff);
1910 }
1911 
1912 /*
1913  * ae_mii_writereg:
1914  *
1915  *	Write a PHY register.
1916  */
1917 static void
1918 ae_mii_writereg(device_t self, int phy, int reg, int val)
1919 {
1920 	struct ae_softc *sc = device_private(self);
1921 	uint32_t	addr;
1922 	int		i;
1923 
1924 	/* write the data register */
1925 	AE_WRITE(sc, CSR_MIIDATA, val);
1926 
1927 	/* write the address to latch it in */
1928 	addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT) |
1929 	    MIIADDR_WRITE;
1930 	AE_WRITE(sc, CSR_MIIADDR, addr);
1931 	AE_BARRIER(sc);
1932 
1933 	for (i = 0; i < 100000000; i++) {
1934 		if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1935 			break;
1936 	}
1937 }
1938