xref: /netbsd-src/sys/arch/mips/atheros/dev/if_ae.c (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 /* $NetBSD: if_ae.c,v 1.40 2020/09/02 08:26:05 msaitoh Exp $ */
2 /*-
3  * Copyright (c) 2006 Urbana-Champaign Independent Media Center.
4  * Copyright (c) 2006 Garrett D'Amore.
5  * All rights reserved.
6  *
7  * This code was written by Garrett D'Amore for the Champaign-Urbana
8  * Community Wireless Network Project.
9  *
10  * Redistribution and use in source and binary forms, with or
11  * without modification, are permitted provided that the following
12  * conditions are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above
16  *    copyright notice, this list of conditions and the following
17  *    disclaimer in the documentation and/or other materials provided
18  *    with the distribution.
19  * 3. All advertising materials mentioning features or use of this
20  *    software must display the following acknowledgements:
21  *      This product includes software developed by the Urbana-Champaign
22  *      Independent Media Center.
23  *	This product includes software developed by Garrett D'Amore.
24  * 4. Urbana-Champaign Independent Media Center's name and Garrett
25  *    D'Amore's name may not be used to endorse or promote products
26  *    derived from this software without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
29  * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
30  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
31  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
33  * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
34  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
35  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
36  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
37  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
38  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
40  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41  */
42 /*-
43  * Copyright (c) 1998, 1999, 2000, 2002 The NetBSD Foundation, Inc.
44  * All rights reserved.
45  *
46  * This code is derived from software contributed to The NetBSD Foundation
47  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
48  * NASA Ames Research Center; and by Charles M. Hannum.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
60  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69  * POSSIBILITY OF SUCH DAMAGE.
70  */
71 
72 /*
73  * Device driver for the onboard ethernet MAC found on the AR5312
74  * chip's AHB bus.
75  *
76  * This device is very simliar to the tulip in most regards, and
77  * the code is directly derived from NetBSD's tulip.c.  However, it
78  * is different enough that it did not seem to be a good idea to
79  * add further complexity to the tulip driver, so we have our own.
80  *
81  * Also tulip has a lot of complexity in it for various parts/options
82  * that we don't need, and on these little boxes with only ~8MB RAM, we
83  * don't want any extra bloat.
84  */
85 
86 /*
87  * TODO:
88  *
89  * 1) Find out about BUS_MODE_ALIGN16B.  This chip can apparently align
90  *    inbound packets on a half-word boundary, which would make life easier
91  *    for TCP/IP.  (Aligning IP headers on a word.)
92  *
93  * 2) There is stuff in original tulip to shut down the device when reacting
94  *    to a change in link status.  Is that needed.
95  *
96  * 3) Test with variety of 10/100 HDX/FDX scenarios.
97  *
98  */
99 
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: if_ae.c,v 1.40 2020/09/02 08:26:05 msaitoh Exp $");
102 
103 
104 #include <sys/param.h>
105 #include <sys/bus.h>
106 #include <sys/callout.h>
107 #include <sys/device.h>
108 #include <sys/endian.h>
109 #include <sys/errno.h>
110 #include <sys/intr.h>
111 #include <sys/ioctl.h>
112 #include <sys/kernel.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/socket.h>
116 
117 #include <uvm/uvm_extern.h>
118 
119 #include <net/if.h>
120 #include <net/if_dl.h>
121 #include <net/if_media.h>
122 #include <net/if_ether.h>
123 
124 #include <net/bpf.h>
125 
126 #include <dev/mii/mii.h>
127 #include <dev/mii/miivar.h>
128 #include <dev/mii/mii_bitbang.h>
129 
130 #include <mips/atheros/include/arbusvar.h>
131 #include <mips/atheros/dev/aereg.h>
132 #include <mips/atheros/dev/aevar.h>
133 
134 static const struct {
135 	uint32_t txth_opmode;		/* OPMODE bits */
136 	const char *txth_name;		/* name of mode */
137 } ae_txthresh[] = {
138 	{ OPMODE_TR_32,		"32 words" },
139 	{ OPMODE_TR_64,		"64 words" },
140 	{ OPMODE_TR_128,	"128 words" },
141 	{ OPMODE_TR_256,	"256 words" },
142 	{ OPMODE_SF,		"store and forward mode" },
143 	{ 0,			NULL },
144 };
145 
146 static int	ae_match(device_t, struct cfdata *, void *);
147 static void	ae_attach(device_t, device_t, void *);
148 static int	ae_detach(device_t, int);
149 static int	ae_activate(device_t, enum devact);
150 
151 static int	ae_ifflags_cb(struct ethercom *);
152 static void	ae_reset(struct ae_softc *);
153 static void	ae_idle(struct ae_softc *, uint32_t);
154 
155 static void	ae_start(struct ifnet *);
156 static void	ae_watchdog(struct ifnet *);
157 static int	ae_ioctl(struct ifnet *, u_long, void *);
158 static int	ae_init(struct ifnet *);
159 static void	ae_stop(struct ifnet *, int);
160 
161 static void	ae_shutdown(void *);
162 
163 static void	ae_rxdrain(struct ae_softc *);
164 static int	ae_add_rxbuf(struct ae_softc *, int);
165 
166 static int	ae_enable(struct ae_softc *);
167 static void	ae_disable(struct ae_softc *);
168 static void	ae_power(int, void *);
169 
170 static void	ae_filter_setup(struct ae_softc *);
171 
172 static int	ae_intr(void *);
173 static void	ae_rxintr(struct ae_softc *);
174 static void	ae_txintr(struct ae_softc *);
175 
176 static void	ae_mii_tick(void *);
177 static void	ae_mii_statchg(struct ifnet *);
178 
179 static int	ae_mii_readreg(device_t, int, int, uint16_t *);
180 static int	ae_mii_writereg(device_t, int, int, uint16_t);
181 
182 #ifdef AE_DEBUG
183 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
184 				printf x
185 #else
186 #define	DPRINTF(sc, x)	/* nothing */
187 #endif
188 
189 #ifdef AE_STATS
190 static void	ae_print_stats(struct ae_softc *);
191 #endif
192 
193 CFATTACH_DECL_NEW(ae, sizeof(struct ae_softc),
194     ae_match, ae_attach, ae_detach, ae_activate);
195 
196 /*
197  * ae_match:
198  *
199  *	Check for a device match.
200  */
201 int
202 ae_match(device_t parent, struct cfdata *cf, void *aux)
203 {
204 	struct arbus_attach_args *aa = aux;
205 
206 	if (strcmp(aa->aa_name, cf->cf_name) == 0)
207 		return 1;
208 
209 	return 0;
210 
211 }
212 
213 /*
214  * ae_attach:
215  *
216  *	Attach an ae interface to the system.
217  */
218 void
219 ae_attach(device_t parent, device_t self, void *aux)
220 {
221 	const uint8_t *enaddr;
222 	prop_data_t ea;
223 	struct ae_softc *sc = device_private(self);
224 	struct arbus_attach_args *aa = aux;
225 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
226 	struct mii_data * const mii = &sc->sc_mii;
227 	int i, error;
228 
229 	sc->sc_dev = self;
230 
231 	callout_init(&sc->sc_tick_callout, 0);
232 
233 	printf(": Atheros AR531X 10/100 Ethernet\n");
234 
235 	/*
236 	 * Try to get MAC address.
237 	 */
238 	ea = prop_dictionary_get(device_properties(sc->sc_dev), "mac-address");
239 	if (ea == NULL) {
240 		printf("%s: unable to get mac-addr property\n",
241 		    device_xname(sc->sc_dev));
242 		return;
243 	}
244 	KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
245 	KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
246 	enaddr = prop_data_data_nocopy(ea);
247 
248 	/* Announce ourselves. */
249 	printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
250 	    ether_sprintf(enaddr));
251 
252 	sc->sc_cirq = aa->aa_cirq;
253 	sc->sc_mirq = aa->aa_mirq;
254 	sc->sc_st = aa->aa_bst;
255 	sc->sc_dmat = aa->aa_dmat;
256 
257 	SIMPLEQ_INIT(&sc->sc_txfreeq);
258 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
259 
260 	/*
261 	 * Map registers.
262 	 */
263 	sc->sc_size = aa->aa_size;
264 	if ((error = bus_space_map(sc->sc_st, aa->aa_addr, sc->sc_size, 0,
265 	    &sc->sc_sh)) != 0) {
266 		printf("%s: unable to map registers, error = %d\n",
267 		    device_xname(sc->sc_dev), error);
268 		goto fail_0;
269 	}
270 
271 	/*
272 	 * Allocate the control data structures, and create and load the
273 	 * DMA map for it.
274 	 */
275 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
276 	    sizeof(struct ae_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
277 	    1, &sc->sc_cdnseg, 0)) != 0) {
278 		printf("%s: unable to allocate control data, error = %d\n",
279 		    device_xname(sc->sc_dev), error);
280 		goto fail_1;
281 	}
282 
283 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
284 	    sizeof(struct ae_control_data), (void **)&sc->sc_control_data,
285 	    BUS_DMA_COHERENT)) != 0) {
286 		printf("%s: unable to map control data, error = %d\n",
287 		    device_xname(sc->sc_dev), error);
288 		goto fail_2;
289 	}
290 
291 	if ((error = bus_dmamap_create(sc->sc_dmat,
292 	    sizeof(struct ae_control_data), 1,
293 	    sizeof(struct ae_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
294 		printf("%s: unable to create control data DMA map, "
295 		    "error = %d\n", device_xname(sc->sc_dev), error);
296 		goto fail_3;
297 	}
298 
299 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
300 	    sc->sc_control_data, sizeof(struct ae_control_data), NULL,
301 	    0)) != 0) {
302 		printf("%s: unable to load control data DMA map, error = %d\n",
303 		    device_xname(sc->sc_dev), error);
304 		goto fail_4;
305 	}
306 
307 	/*
308 	 * Create the transmit buffer DMA maps.
309 	 */
310 	for (i = 0; i < AE_TXQUEUELEN; i++) {
311 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
312 		    AE_NTXSEGS, MCLBYTES, 0, 0,
313 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
314 			printf("%s: unable to create tx DMA map %d, "
315 			    "error = %d\n", device_xname(sc->sc_dev), i, error);
316 			goto fail_5;
317 		}
318 	}
319 
320 	/*
321 	 * Create the receive buffer DMA maps.
322 	 */
323 	for (i = 0; i < AE_NRXDESC; i++) {
324 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
325 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
326 			printf("%s: unable to create rx DMA map %d, "
327 			    "error = %d\n", device_xname(sc->sc_dev), i, error);
328 			goto fail_6;
329 		}
330 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
331 	}
332 
333 	/*
334 	 * Reset the chip to a known state.
335 	 */
336 	ae_reset(sc);
337 
338 	/*
339 	 * From this point forward, the attachment cannot fail.  A failure
340 	 * before this point releases all resources that may have been
341 	 * allocated.
342 	 */
343 	sc->sc_flags |= AE_ATTACHED;
344 
345 	/*
346 	 * Initialize our media structures.  This may probe the MII, if
347 	 * present.
348 	 */
349 	mii->mii_ifp = ifp;
350 	mii->mii_readreg = ae_mii_readreg;
351 	mii->mii_writereg = ae_mii_writereg;
352 	mii->mii_statchg = ae_mii_statchg;
353 	sc->sc_ethercom.ec_mii = mii;
354 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
355 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
356 	    MII_OFFSET_ANY, 0);
357 
358 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
359 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
360 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
361 	} else
362 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
363 
364 	sc->sc_tick = ae_mii_tick;
365 
366 	strcpy(ifp->if_xname, device_xname(sc->sc_dev));
367 	ifp->if_softc = sc;
368 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
369 	sc->sc_if_flags = ifp->if_flags;
370 	ifp->if_ioctl = ae_ioctl;
371 	ifp->if_start = ae_start;
372 	ifp->if_watchdog = ae_watchdog;
373 	ifp->if_init = ae_init;
374 	ifp->if_stop = ae_stop;
375 	IFQ_SET_READY(&ifp->if_snd);
376 
377 	/*
378 	 * We can support 802.1Q VLAN-sized frames.
379 	 */
380 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
381 
382 	/*
383 	 * Attach the interface.
384 	 */
385 	if_attach(ifp);
386 	if_deferred_start_init(ifp, NULL);
387 	ether_ifattach(ifp, enaddr);
388 	ether_set_ifflags_cb(&sc->sc_ethercom, ae_ifflags_cb);
389 
390 	rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
391 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
392 
393 	/*
394 	 * Make sure the interface is shutdown during reboot.
395 	 */
396 	sc->sc_sdhook = shutdownhook_establish(ae_shutdown, sc);
397 	if (sc->sc_sdhook == NULL)
398 		printf("%s: WARNING: unable to establish shutdown hook\n",
399 		    device_xname(sc->sc_dev));
400 
401 	/*
402 	 * Add a suspend hook to make sure we come back up after a
403 	 * resume.
404 	 */
405 	sc->sc_powerhook = powerhook_establish(device_xname(sc->sc_dev),
406 	    ae_power, sc);
407 	if (sc->sc_powerhook == NULL)
408 		printf("%s: WARNING: unable to establish power hook\n",
409 		    device_xname(sc->sc_dev));
410 	return;
411 
412 	/*
413 	 * Free any resources we've allocated during the failed attach
414 	 * attempt.  Do this in reverse order and fall through.
415 	 */
416  fail_6:
417 	for (i = 0; i < AE_NRXDESC; i++) {
418 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
419 			bus_dmamap_destroy(sc->sc_dmat,
420 			    sc->sc_rxsoft[i].rxs_dmamap);
421 	}
422  fail_5:
423 	for (i = 0; i < AE_TXQUEUELEN; i++) {
424 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
425 			bus_dmamap_destroy(sc->sc_dmat,
426 			    sc->sc_txsoft[i].txs_dmamap);
427 	}
428 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
429  fail_4:
430 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
431  fail_3:
432 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
433 	    sizeof(struct ae_control_data));
434  fail_2:
435 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
436  fail_1:
437 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
438  fail_0:
439 	return;
440 }
441 
442 /*
443  * ae_activate:
444  *
445  *	Handle device activation/deactivation requests.
446  */
447 int
448 ae_activate(device_t self, enum devact act)
449 {
450 	struct ae_softc *sc = device_private(self);
451 
452 	switch (act) {
453 	case DVACT_DEACTIVATE:
454 		if_deactivate(&sc->sc_ethercom.ec_if);
455 		return 0;
456 	default:
457 		return EOPNOTSUPP;
458 	}
459 }
460 
461 /*
462  * ae_detach:
463  *
464  *	Detach a device interface.
465  */
466 int
467 ae_detach(device_t self, int flags)
468 {
469 	struct ae_softc *sc = device_private(self);
470 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
471 	struct ae_rxsoft *rxs;
472 	struct ae_txsoft *txs;
473 	int i;
474 
475 	/*
476 	 * Succeed now if there isn't any work to do.
477 	 */
478 	if ((sc->sc_flags & AE_ATTACHED) == 0)
479 		return (0);
480 
481 	/* Unhook our tick handler. */
482 	if (sc->sc_tick)
483 		callout_stop(&sc->sc_tick_callout);
484 
485 	/* Detach all PHYs */
486 	mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
487 
488 	rnd_detach_source(&sc->sc_rnd_source);
489 	ether_ifdetach(ifp);
490 	if_detach(ifp);
491 
492 	/* Delete all remaining media. */
493 	ifmedia_fini(&sc->sc_mii.mii_media);
494 
495 	for (i = 0; i < AE_NRXDESC; i++) {
496 		rxs = &sc->sc_rxsoft[i];
497 		if (rxs->rxs_mbuf != NULL) {
498 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
499 			m_freem(rxs->rxs_mbuf);
500 			rxs->rxs_mbuf = NULL;
501 		}
502 		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
503 	}
504 	for (i = 0; i < AE_TXQUEUELEN; i++) {
505 		txs = &sc->sc_txsoft[i];
506 		if (txs->txs_mbuf != NULL) {
507 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
508 			m_freem(txs->txs_mbuf);
509 			txs->txs_mbuf = NULL;
510 		}
511 		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
512 	}
513 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
514 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
515 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
516 	    sizeof(struct ae_control_data));
517 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
518 
519 	shutdownhook_disestablish(sc->sc_sdhook);
520 	powerhook_disestablish(sc->sc_powerhook);
521 
522 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
523 
524 
525 	return (0);
526 }
527 
528 /*
529  * ae_shutdown:
530  *
531  *	Make sure the interface is stopped at reboot time.
532  */
533 static void
534 ae_shutdown(void *arg)
535 {
536 	struct ae_softc *sc = arg;
537 
538 	ae_stop(&sc->sc_ethercom.ec_if, 1);
539 }
540 
541 /*
542  * ae_start:		[ifnet interface function]
543  *
544  *	Start packet transmission on the interface.
545  */
546 static void
547 ae_start(struct ifnet *ifp)
548 {
549 	struct ae_softc *sc = ifp->if_softc;
550 	struct mbuf *m0, *m;
551 	struct ae_txsoft *txs;
552 	bus_dmamap_t dmamap;
553 	int error, firsttx, nexttx, lasttx = 1, ofree, seg;
554 
555 	DPRINTF(sc, ("%s: ae_start: sc_flags 0x%08x, if_flags 0x%08x\n",
556 	    device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags));
557 
558 
559 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
560 		return;
561 
562 	/*
563 	 * Remember the previous number of free descriptors and
564 	 * the first descriptor we'll use.
565 	 */
566 	ofree = sc->sc_txfree;
567 	firsttx = sc->sc_txnext;
568 
569 	DPRINTF(sc, ("%s: ae_start: txfree %d, txnext %d\n",
570 	    device_xname(sc->sc_dev), ofree, firsttx));
571 
572 	/*
573 	 * Loop through the send queue, setting up transmit descriptors
574 	 * until we drain the queue, or use up all available transmit
575 	 * descriptors.
576 	 */
577 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
578 	       sc->sc_txfree != 0) {
579 		/*
580 		 * Grab a packet off the queue.
581 		 */
582 		IFQ_POLL(&ifp->if_snd, m0);
583 		if (m0 == NULL)
584 			break;
585 		m = NULL;
586 
587 		dmamap = txs->txs_dmamap;
588 
589 		/*
590 		 * Load the DMA map.  If this fails, the packet either
591 		 * didn't fit in the alloted number of segments, or we were
592 		 * short on resources.  In this case, we'll copy and try
593 		 * again.
594 		 */
595 		if (((mtod(m0, uintptr_t) & 3) != 0) ||
596 		    bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
597 		      BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
598 			MGETHDR(m, M_DONTWAIT, MT_DATA);
599 			if (m == NULL) {
600 				printf("%s: unable to allocate Tx mbuf\n",
601 				    device_xname(sc->sc_dev));
602 				break;
603 			}
604 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
605 			if (m0->m_pkthdr.len > MHLEN) {
606 				MCLGET(m, M_DONTWAIT);
607 				if ((m->m_flags & M_EXT) == 0) {
608 					printf("%s: unable to allocate Tx "
609 					    "cluster\n", device_xname(sc->sc_dev));
610 					m_freem(m);
611 					break;
612 				}
613 			}
614 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
615 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
616 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
617 			    m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
618 			if (error) {
619 				printf("%s: unable to load Tx buffer, "
620 				    "error = %d\n", device_xname(sc->sc_dev),
621 				    error);
622 				break;
623 			}
624 		}
625 
626 		/*
627 		 * Ensure we have enough descriptors free to describe
628 		 * the packet.
629 		 */
630 		if (dmamap->dm_nsegs > sc->sc_txfree) {
631 			/*
632 			 * Not enough free descriptors to transmit this
633 			 * packet.  We haven't committed to anything yet,
634 			 * so just unload the DMA map, put the packet
635 			 * back on the queue, and punt.  Notify the upper
636 			 * layer that there are no more slots left.
637 			 *
638 			 * XXX We could allocate an mbuf and copy, but
639 			 * XXX it is worth it?
640 			 */
641 			ifp->if_flags |= IFF_OACTIVE;
642 			bus_dmamap_unload(sc->sc_dmat, dmamap);
643 			if (m != NULL)
644 				m_freem(m);
645 			break;
646 		}
647 
648 		IFQ_DEQUEUE(&ifp->if_snd, m0);
649 		if (m != NULL) {
650 			m_freem(m0);
651 			m0 = m;
652 		}
653 
654 		/*
655 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
656 		 */
657 
658 		/* Sync the DMA map. */
659 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
660 		    BUS_DMASYNC_PREWRITE);
661 
662 		/*
663 		 * Initialize the transmit descriptors.
664 		 */
665 		for (nexttx = sc->sc_txnext, seg = 0;
666 		     seg < dmamap->dm_nsegs;
667 		     seg++, nexttx = AE_NEXTTX(nexttx)) {
668 			/*
669 			 * If this is the first descriptor we're
670 			 * enqueueing, don't set the OWN bit just
671 			 * yet.  That could cause a race condition.
672 			 * We'll do it below.
673 			 */
674 			sc->sc_txdescs[nexttx].ad_status =
675 			    (nexttx == firsttx) ? 0 : ADSTAT_OWN;
676 			sc->sc_txdescs[nexttx].ad_bufaddr1 =
677 			    dmamap->dm_segs[seg].ds_addr;
678 			sc->sc_txdescs[nexttx].ad_ctl =
679 			    (dmamap->dm_segs[seg].ds_len <<
680 				ADCTL_SIZE1_SHIFT) |
681 				(nexttx == (AE_NTXDESC - 1) ?
682 				    ADCTL_ER : 0);
683 			lasttx = nexttx;
684 		}
685 
686 		KASSERT(lasttx != -1);
687 
688 		/* Set `first segment' and `last segment' appropriately. */
689 		sc->sc_txdescs[sc->sc_txnext].ad_ctl |= ADCTL_Tx_FS;
690 		sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_LS;
691 
692 #ifdef AE_DEBUG
693 		if (ifp->if_flags & IFF_DEBUG) {
694 			printf("     txsoft %p transmit chain:\n", txs);
695 			for (seg = sc->sc_txnext;; seg = AE_NEXTTX(seg)) {
696 				printf("     descriptor %d:\n", seg);
697 				printf("       ad_status:   0x%08x\n",
698 				    sc->sc_txdescs[seg].ad_status);
699 				printf("       ad_ctl:      0x%08x\n",
700 				    sc->sc_txdescs[seg].ad_ctl);
701 				printf("       ad_bufaddr1: 0x%08x\n",
702 				    sc->sc_txdescs[seg].ad_bufaddr1);
703 				printf("       ad_bufaddr2: 0x%08x\n",
704 				    sc->sc_txdescs[seg].ad_bufaddr2);
705 				if (seg == lasttx)
706 					break;
707 			}
708 		}
709 #endif
710 
711 		/* Sync the descriptors we're using. */
712 		AE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
713 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
714 
715 		/*
716 		 * Store a pointer to the packet so we can free it later,
717 		 * and remember what txdirty will be once the packet is
718 		 * done.
719 		 */
720 		txs->txs_mbuf = m0;
721 		txs->txs_firstdesc = sc->sc_txnext;
722 		txs->txs_lastdesc = lasttx;
723 		txs->txs_ndescs = dmamap->dm_nsegs;
724 
725 		/* Advance the tx pointer. */
726 		sc->sc_txfree -= dmamap->dm_nsegs;
727 		sc->sc_txnext = nexttx;
728 
729 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
730 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
731 
732 		/*
733 		 * Pass the packet to any BPF listeners.
734 		 */
735 		bpf_mtap(ifp, m0, BPF_D_OUT);
736 	}
737 
738 	if (txs == NULL || sc->sc_txfree == 0) {
739 		/* No more slots left; notify upper layer. */
740 		ifp->if_flags |= IFF_OACTIVE;
741 	}
742 
743 	if (sc->sc_txfree != ofree) {
744 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
745 		    device_xname(sc->sc_dev), lasttx, firsttx));
746 		/*
747 		 * Cause a transmit interrupt to happen on the
748 		 * last packet we enqueued.
749 		 */
750 		sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_IC;
751 		AE_CDTXSYNC(sc, lasttx, 1,
752 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
753 
754 		/*
755 		 * The entire packet chain is set up.  Give the
756 		 * first descriptor to the chip now.
757 		 */
758 		sc->sc_txdescs[firsttx].ad_status |= ADSTAT_OWN;
759 		AE_CDTXSYNC(sc, firsttx, 1,
760 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
761 
762 		/* Wake up the transmitter. */
763 		/* XXX USE AUTOPOLLING? */
764 		AE_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD);
765 		AE_BARRIER(sc);
766 
767 		/* Set a watchdog timer in case the chip flakes out. */
768 		ifp->if_timer = 5;
769 	}
770 }
771 
772 /*
773  * ae_watchdog:	[ifnet interface function]
774  *
775  *	Watchdog timer handler.
776  */
777 static void
778 ae_watchdog(struct ifnet *ifp)
779 {
780 	struct ae_softc *sc = ifp->if_softc;
781 	int doing_transmit;
782 
783 	doing_transmit = (! SIMPLEQ_EMPTY(&sc->sc_txdirtyq));
784 
785 	if (doing_transmit) {
786 		printf("%s: transmit timeout\n", device_xname(sc->sc_dev));
787 		if_statinc(ifp, if_oerrors);
788 	}
789 	else
790 		printf("%s: spurious watchdog timeout\n", device_xname(sc->sc_dev));
791 
792 	(void) ae_init(ifp);
793 
794 	/* Try to get more packets going. */
795 	ae_start(ifp);
796 }
797 
798 /* If the interface is up and running, only modify the receive
799  * filter when changing to/from promiscuous mode.  Otherwise return
800  * ENETRESET so that ether_ioctl will reset the chip.
801  */
802 static int
803 ae_ifflags_cb(struct ethercom *ec)
804 {
805 	struct ifnet *ifp = &ec->ec_if;
806 	struct ae_softc *sc = ifp->if_softc;
807 	u_short change = ifp->if_flags ^ sc->sc_if_flags;
808 
809 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
810 		return ENETRESET;
811 	else if ((change & IFF_PROMISC) != 0)
812 		ae_filter_setup(sc);
813 	return 0;
814 }
815 
816 /*
817  * ae_ioctl:		[ifnet interface function]
818  *
819  *	Handle control requests from the operator.
820  */
821 static int
822 ae_ioctl(struct ifnet *ifp, u_long cmd, void *data)
823 {
824 	struct ae_softc *sc = ifp->if_softc;
825 	int s, error;
826 
827 	s = splnet();
828 
829 	error = ether_ioctl(ifp, cmd, data);
830 	if (error == ENETRESET) {
831 		if (ifp->if_flags & IFF_RUNNING) {
832 			/*
833 			 * Multicast list has changed.  Set the
834 			 * hardware filter accordingly.
835 			 */
836 			ae_filter_setup(sc);
837 		}
838 		error = 0;
839 	}
840 
841 	/* Try to get more packets going. */
842 	if (AE_IS_ENABLED(sc))
843 		ae_start(ifp);
844 
845 	sc->sc_if_flags = ifp->if_flags;
846 	splx(s);
847 	return (error);
848 }
849 
850 /*
851  * ae_intr:
852  *
853  *	Interrupt service routine.
854  */
855 int
856 ae_intr(void *arg)
857 {
858 	struct ae_softc *sc = arg;
859 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
860 	uint32_t status, rxstatus, txstatus;
861 	int handled = 0, txthresh;
862 
863 	DPRINTF(sc, ("%s: ae_intr\n", device_xname(sc->sc_dev)));
864 
865 #ifdef DEBUG
866 	if (AE_IS_ENABLED(sc) == 0)
867 		panic("%s: ae_intr: not enabled", device_xname(sc->sc_dev));
868 #endif
869 
870 	/*
871 	 * If the interface isn't running, the interrupt couldn't
872 	 * possibly have come from us.
873 	 */
874 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
875 	    !device_is_active(sc->sc_dev)) {
876 		printf("spurious?!?\n");
877 		return (0);
878 	}
879 
880 	for (;;) {
881 		status = AE_READ(sc, CSR_STATUS);
882 		if (status) {
883 			AE_WRITE(sc, CSR_STATUS, status);
884 			AE_BARRIER(sc);
885 		}
886 
887 		if ((status & sc->sc_inten) == 0)
888 			break;
889 
890 		handled = 1;
891 
892 		rxstatus = status & sc->sc_rxint_mask;
893 		txstatus = status & sc->sc_txint_mask;
894 
895 		if (rxstatus) {
896 			/* Grab new any new packets. */
897 			ae_rxintr(sc);
898 
899 			if (rxstatus & STATUS_RU) {
900 				printf("%s: receive ring overrun\n",
901 				    device_xname(sc->sc_dev));
902 				/* Get the receive process going again. */
903 				AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
904 				AE_BARRIER(sc);
905 				break;
906 			}
907 		}
908 
909 		if (txstatus) {
910 			/* Sweep up transmit descriptors. */
911 			ae_txintr(sc);
912 
913 			if (txstatus & STATUS_TJT)
914 				printf("%s: transmit jabber timeout\n",
915 				    device_xname(sc->sc_dev));
916 
917 			if (txstatus & STATUS_UNF) {
918 				/*
919 				 * Increase our transmit threshold if
920 				 * another is available.
921 				 */
922 				txthresh = sc->sc_txthresh + 1;
923 				if (ae_txthresh[txthresh].txth_name != NULL) {
924 					uint32_t opmode;
925 					/* Idle the transmit process. */
926 					opmode = AE_READ(sc, CSR_OPMODE);
927 					ae_idle(sc, OPMODE_ST);
928 
929 					sc->sc_txthresh = txthresh;
930 					opmode &= ~(OPMODE_TR | OPMODE_SF);
931 					opmode |=
932 					    ae_txthresh[txthresh].txth_opmode;
933 					printf("%s: transmit underrun; new "
934 					    "threshold: %s\n",
935 					    device_xname(sc->sc_dev),
936 					    ae_txthresh[txthresh].txth_name);
937 
938 					/*
939 					 * Set the new threshold and restart
940 					 * the transmit process.
941 					 */
942 					AE_WRITE(sc, CSR_OPMODE, opmode);
943 					AE_BARRIER(sc);
944 				}
945 					/*
946 					 * XXX Log every Nth underrun from
947 					 * XXX now on?
948 					 */
949 			}
950 		}
951 
952 		if (status & (STATUS_TPS | STATUS_RPS)) {
953 			if (status & STATUS_TPS)
954 				printf("%s: transmit process stopped\n",
955 				    device_xname(sc->sc_dev));
956 			if (status & STATUS_RPS)
957 				printf("%s: receive process stopped\n",
958 				    device_xname(sc->sc_dev));
959 			(void) ae_init(ifp);
960 			break;
961 		}
962 
963 		if (status & STATUS_SE) {
964 			const char *str;
965 
966 			if (status & STATUS_TX_ABORT)
967 				str = "tx abort";
968 			else if (status & STATUS_RX_ABORT)
969 				str = "rx abort";
970 			else
971 				str = "unknown error";
972 
973 			printf("%s: fatal system error: %s\n",
974 			    device_xname(sc->sc_dev), str);
975 			(void) ae_init(ifp);
976 			break;
977 		}
978 
979 		/*
980 		 * Not handled:
981 		 *
982 		 *	Transmit buffer unavailable -- normal
983 		 *	condition, nothing to do, really.
984 		 *
985 		 *	General purpose timer experied -- we don't
986 		 *	use the general purpose timer.
987 		 *
988 		 *	Early receive interrupt -- not available on
989 		 *	all chips, we just use RI.  We also only
990 		 *	use single-segment receive DMA, so this
991 		 *	is mostly useless.
992 		 */
993 	}
994 
995 	/* Try to get more packets going. */
996 	if_schedule_deferred_start(ifp);
997 
998 	if (handled)
999 		rnd_add_uint32(&sc->sc_rnd_source, status);
1000 	return (handled);
1001 }
1002 
1003 /*
1004  * ae_rxintr:
1005  *
1006  *	Helper; handle receive interrupts.
1007  */
1008 static void
1009 ae_rxintr(struct ae_softc *sc)
1010 {
1011 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1012 	struct ae_rxsoft *rxs;
1013 	struct mbuf *m;
1014 	uint32_t rxstat;
1015 	int i, len;
1016 
1017 	for (i = sc->sc_rxptr;; i = AE_NEXTRX(i)) {
1018 		rxs = &sc->sc_rxsoft[i];
1019 
1020 		AE_CDRXSYNC(sc, i,
1021 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1022 
1023 		rxstat = sc->sc_rxdescs[i].ad_status;
1024 
1025 		if (rxstat & ADSTAT_OWN) {
1026 			/*
1027 			 * We have processed all of the receive buffers.
1028 			 */
1029 			break;
1030 		}
1031 
1032 		/*
1033 		 * If any collisions were seen on the wire, count one.
1034 		 */
1035 		if (rxstat & ADSTAT_Rx_CS)
1036 			if_statinc(ifp, if_collisions);
1037 
1038 		/*
1039 		 * If an error occurred, update stats, clear the status
1040 		 * word, and leave the packet buffer in place.  It will
1041 		 * simply be reused the next time the ring comes around.
1042 	 	 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
1043 		 * error.
1044 		 */
1045 		if (rxstat & ADSTAT_ES &&
1046 		    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
1047 		     (rxstat & (ADSTAT_Rx_DE | ADSTAT_Rx_RF |
1048 				ADSTAT_Rx_DB | ADSTAT_Rx_CE)) != 0)) {
1049 #define	PRINTERR(bit, str)						\
1050 			if (rxstat & (bit))				\
1051 				printf("%s: receive error: %s\n",	\
1052 				    device_xname(sc->sc_dev), str)
1053 			if_statinc(ifp, if_ierrors);
1054 			PRINTERR(ADSTAT_Rx_DE, "descriptor error");
1055 			PRINTERR(ADSTAT_Rx_RF, "runt frame");
1056 			PRINTERR(ADSTAT_Rx_TL, "frame too long");
1057 			PRINTERR(ADSTAT_Rx_RE, "MII error");
1058 			PRINTERR(ADSTAT_Rx_DB, "dribbling bit");
1059 			PRINTERR(ADSTAT_Rx_CE, "CRC error");
1060 #undef PRINTERR
1061 			AE_INIT_RXDESC(sc, i);
1062 			continue;
1063 		}
1064 
1065 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1066 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1067 
1068 		/*
1069 		 * No errors; receive the packet.  Note the chip
1070 		 * includes the CRC with every packet.
1071 		 */
1072 		len = ADSTAT_Rx_LENGTH(rxstat) - ETHER_CRC_LEN;
1073 
1074 		/*
1075 		 * XXX: the Atheros part can align on half words.  what
1076 		 * is the performance implication of this?  Probably
1077 		 * minimal, and we should use it...
1078 		 */
1079 #ifdef __NO_STRICT_ALIGNMENT
1080 		/*
1081 		 * Allocate a new mbuf cluster.  If that fails, we are
1082 		 * out of memory, and must drop the packet and recycle
1083 		 * the buffer that's already attached to this descriptor.
1084 		 */
1085 		m = rxs->rxs_mbuf;
1086 		if (ae_add_rxbuf(sc, i) != 0) {
1087 			if_statinc(ifp, if_ierrors);
1088 			AE_INIT_RXDESC(sc, i);
1089 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1090 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1091 			continue;
1092 		}
1093 #else
1094 		/*
1095 		 * The chip's receive buffers must be 4-byte aligned.
1096 		 * But this means that the data after the Ethernet header
1097 		 * is misaligned.  We must allocate a new buffer and
1098 		 * copy the data, shifted forward 2 bytes.
1099 		 */
1100 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1101 		if (m == NULL) {
1102  dropit:
1103 			if_statinc(ifp, if_ierrors);
1104 			AE_INIT_RXDESC(sc, i);
1105 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1106 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1107 			continue;
1108 		}
1109 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1110 		if (len > (MHLEN - 2)) {
1111 			MCLGET(m, M_DONTWAIT);
1112 			if ((m->m_flags & M_EXT) == 0) {
1113 				m_freem(m);
1114 				goto dropit;
1115 			}
1116 		}
1117 		m->m_data += 2;
1118 
1119 		/*
1120 		 * Note that we use clusters for incoming frames, so the
1121 		 * buffer is virtually contiguous.
1122 		 */
1123 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
1124 
1125 		/* Allow the receive descriptor to continue using its mbuf. */
1126 		AE_INIT_RXDESC(sc, i);
1127 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1128 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1129 #endif /* __NO_STRICT_ALIGNMENT */
1130 
1131 		m_set_rcvif(m, ifp);
1132 		m->m_pkthdr.len = m->m_len = len;
1133 
1134 		/* Pass it on. */
1135 		if_percpuq_enqueue(ifp->if_percpuq, m);
1136 	}
1137 
1138 	/* Update the receive pointer. */
1139 	sc->sc_rxptr = i;
1140 }
1141 
1142 /*
1143  * ae_txintr:
1144  *
1145  *	Helper; handle transmit interrupts.
1146  */
1147 static void
1148 ae_txintr(struct ae_softc *sc)
1149 {
1150 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1151 	struct ae_txsoft *txs;
1152 	uint32_t txstat;
1153 
1154 	DPRINTF(sc, ("%s: ae_txintr: sc_flags 0x%08x\n",
1155 	    device_xname(sc->sc_dev), sc->sc_flags));
1156 
1157 	ifp->if_flags &= ~IFF_OACTIVE;
1158 
1159 	/*
1160 	 * Go through our Tx list and free mbufs for those
1161 	 * frames that have been transmitted.
1162 	 */
1163 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1164 		AE_CDTXSYNC(sc, txs->txs_lastdesc,
1165 		    txs->txs_ndescs,
1166 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1167 
1168 #ifdef AE_DEBUG
1169 		if (ifp->if_flags & IFF_DEBUG) {
1170 			int i;
1171 			printf("    txsoft %p transmit chain:\n", txs);
1172 			for (i = txs->txs_firstdesc;; i = AE_NEXTTX(i)) {
1173 				printf("     descriptor %d:\n", i);
1174 				printf("       ad_status:   0x%08x\n",
1175 				    sc->sc_txdescs[i].ad_status);
1176 				printf("       ad_ctl:      0x%08x\n",
1177 				    sc->sc_txdescs[i].ad_ctl);
1178 				printf("       ad_bufaddr1: 0x%08x\n",
1179 				    sc->sc_txdescs[i].ad_bufaddr1);
1180 				printf("       ad_bufaddr2: 0x%08x\n",
1181 				    sc->sc_txdescs[i].ad_bufaddr2);
1182 				if (i == txs->txs_lastdesc)
1183 					break;
1184 			}
1185 		}
1186 #endif
1187 
1188 		txstat = sc->sc_txdescs[txs->txs_lastdesc].ad_status;
1189 		if (txstat & ADSTAT_OWN)
1190 			break;
1191 
1192 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1193 
1194 		sc->sc_txfree += txs->txs_ndescs;
1195 
1196 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1197 		    0, txs->txs_dmamap->dm_mapsize,
1198 		    BUS_DMASYNC_POSTWRITE);
1199 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1200 		m_freem(txs->txs_mbuf);
1201 		txs->txs_mbuf = NULL;
1202 
1203 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1204 
1205 		/*
1206 		 * Check for errors and collisions.
1207 		 */
1208 #ifdef AE_STATS
1209 		if (txstat & ADSTAT_Tx_UF)
1210 			sc->sc_stats.ts_tx_uf++;
1211 		if (txstat & ADSTAT_Tx_TO)
1212 			sc->sc_stats.ts_tx_to++;
1213 		if (txstat & ADSTAT_Tx_EC)
1214 			sc->sc_stats.ts_tx_ec++;
1215 		if (txstat & ADSTAT_Tx_LC)
1216 			sc->sc_stats.ts_tx_lc++;
1217 #endif
1218 
1219 		net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1220 		if (txstat & (ADSTAT_Tx_UF | ADSTAT_Tx_TO))
1221 			if_statinc_ref(nsr, if_oerrors);
1222 
1223 		if (txstat & ADSTAT_Tx_EC)
1224 			if_statadd_ref(nsr, if_collisions, 16);
1225 		else if (ADSTAT_Tx_COLLISIONS(txstat))
1226 			if_statadd_ref(nsr, if_collisions,
1227 			    ADSTAT_Tx_COLLISIONS(txstat));
1228 		if (txstat & ADSTAT_Tx_LC)
1229 			if_statinc_ref(nsr, if_collisions);
1230 
1231 		if_statinc_ref(nsr, if_opackets);
1232 		IF_STAT_PUTREF(ifp);
1233 	}
1234 
1235 	/*
1236 	 * If there are no more pending transmissions, cancel the watchdog
1237 	 * timer.
1238 	 */
1239 	if (txs == NULL)
1240 		ifp->if_timer = 0;
1241 }
1242 
1243 #ifdef AE_STATS
1244 void
1245 ae_print_stats(struct ae_softc *sc)
1246 {
1247 
1248 	printf("%s: tx_uf %lu, tx_to %lu, tx_ec %lu, tx_lc %lu\n",
1249 	    device_xname(sc->sc_dev),
1250 	    sc->sc_stats.ts_tx_uf, sc->sc_stats.ts_tx_to,
1251 	    sc->sc_stats.ts_tx_ec, sc->sc_stats.ts_tx_lc);
1252 }
1253 #endif
1254 
1255 /*
1256  * ae_reset:
1257  *
1258  *	Perform a soft reset on the chip.
1259  */
1260 void
1261 ae_reset(struct ae_softc *sc)
1262 {
1263 	int i;
1264 
1265 	AE_WRITE(sc, CSR_BUSMODE, BUSMODE_SWR);
1266 	AE_BARRIER(sc);
1267 
1268 	/*
1269 	 * The chip doesn't take itself out of reset automatically.
1270 	 * We need to do so after 2us.
1271 	 */
1272 	delay(10);
1273 	AE_WRITE(sc, CSR_BUSMODE, 0);
1274 	AE_BARRIER(sc);
1275 
1276 	for (i = 0; i < 1000; i++) {
1277 		/*
1278 		 * Wait a bit for the reset to complete before peeking
1279 		 * at the chip again.
1280 		 */
1281 		delay(10);
1282 		if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR) == 0)
1283 			break;
1284 	}
1285 
1286 	if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR))
1287 		printf("%s: reset failed to complete\n", device_xname(sc->sc_dev));
1288 
1289 	delay(1000);
1290 }
1291 
1292 /*
1293  * ae_init:		[ ifnet interface function ]
1294  *
1295  *	Initialize the interface.  Must be called at splnet().
1296  */
1297 static int
1298 ae_init(struct ifnet *ifp)
1299 {
1300 	struct ae_softc *sc = ifp->if_softc;
1301 	struct ae_txsoft *txs;
1302 	struct ae_rxsoft *rxs;
1303 	const uint8_t *enaddr;
1304 	int i, error = 0;
1305 
1306 	if ((error = ae_enable(sc)) != 0)
1307 		goto out;
1308 
1309 	/*
1310 	 * Cancel any pending I/O.
1311 	 */
1312 	ae_stop(ifp, 0);
1313 
1314 	/*
1315 	 * Reset the chip to a known state.
1316 	 */
1317 	ae_reset(sc);
1318 
1319 	/*
1320 	 * Initialize the BUSMODE register.
1321 	 */
1322 	AE_WRITE(sc, CSR_BUSMODE,
1323 	    /* XXX: not sure if this is a good thing or not... */
1324 	    //BUSMODE_ALIGN_16B |
1325 	    BUSMODE_BAR | BUSMODE_BLE | BUSMODE_PBL_4LW);
1326 	AE_BARRIER(sc);
1327 
1328 	/*
1329 	 * Initialize the transmit descriptor ring.
1330 	 */
1331 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1332 	for (i = 0; i < AE_NTXDESC; i++) {
1333 		sc->sc_txdescs[i].ad_ctl = 0;
1334 		sc->sc_txdescs[i].ad_bufaddr2 =
1335 		    AE_CDTXADDR(sc, AE_NEXTTX(i));
1336 	}
1337 	sc->sc_txdescs[AE_NTXDESC - 1].ad_ctl |= ADCTL_ER;
1338 	AE_CDTXSYNC(sc, 0, AE_NTXDESC,
1339 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1340 	sc->sc_txfree = AE_NTXDESC;
1341 	sc->sc_txnext = 0;
1342 
1343 	/*
1344 	 * Initialize the transmit job descriptors.
1345 	 */
1346 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1347 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1348 	for (i = 0; i < AE_TXQUEUELEN; i++) {
1349 		txs = &sc->sc_txsoft[i];
1350 		txs->txs_mbuf = NULL;
1351 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1352 	}
1353 
1354 	/*
1355 	 * Initialize the receive descriptor and receive job
1356 	 * descriptor rings.
1357 	 */
1358 	for (i = 0; i < AE_NRXDESC; i++) {
1359 		rxs = &sc->sc_rxsoft[i];
1360 		if (rxs->rxs_mbuf == NULL) {
1361 			if ((error = ae_add_rxbuf(sc, i)) != 0) {
1362 				printf("%s: unable to allocate or map rx "
1363 				    "buffer %d, error = %d\n",
1364 				    device_xname(sc->sc_dev), i, error);
1365 				/*
1366 				 * XXX Should attempt to run with fewer receive
1367 				 * XXX buffers instead of just failing.
1368 				 */
1369 				ae_rxdrain(sc);
1370 				goto out;
1371 			}
1372 		} else
1373 			AE_INIT_RXDESC(sc, i);
1374 	}
1375 	sc->sc_rxptr = 0;
1376 
1377 	/*
1378 	 * Initialize the interrupt mask and enable interrupts.
1379 	 */
1380 	/* normal interrupts */
1381 	sc->sc_inten = STATUS_TI | STATUS_TU | STATUS_RI | STATUS_NIS;
1382 
1383 	/* abnormal interrupts */
1384 	sc->sc_inten |= STATUS_TPS | STATUS_TJT | STATUS_UNF |
1385 	    STATUS_RU | STATUS_RPS | STATUS_SE | STATUS_AIS;
1386 
1387 	sc->sc_rxint_mask = STATUS_RI | STATUS_RU;
1388 	sc->sc_txint_mask = STATUS_TI | STATUS_UNF | STATUS_TJT;
1389 
1390 	sc->sc_rxint_mask &= sc->sc_inten;
1391 	sc->sc_txint_mask &= sc->sc_inten;
1392 
1393 	AE_WRITE(sc, CSR_INTEN, sc->sc_inten);
1394 	AE_WRITE(sc, CSR_STATUS, 0xffffffff);
1395 
1396 	/*
1397 	 * Give the transmit and receive rings to the chip.
1398 	 */
1399 	AE_WRITE(sc, CSR_TXLIST, AE_CDTXADDR(sc, sc->sc_txnext));
1400 	AE_WRITE(sc, CSR_RXLIST, AE_CDRXADDR(sc, sc->sc_rxptr));
1401 	AE_BARRIER(sc);
1402 
1403 	/*
1404 	 * Set the station address.
1405 	 */
1406 	enaddr = CLLADDR(ifp->if_sadl);
1407 	AE_WRITE(sc, CSR_MACHI, enaddr[5] << 16 | enaddr[4]);
1408 	AE_WRITE(sc, CSR_MACLO, enaddr[3] << 24 | enaddr[2] << 16 |
1409 		enaddr[1] << 8 | enaddr[0]);
1410 	AE_BARRIER(sc);
1411 
1412 	/*
1413 	 * Set the receive filter.  This will start the transmit and
1414 	 * receive processes.
1415 	 */
1416 	ae_filter_setup(sc);
1417 
1418 	/*
1419 	 * Set the current media.
1420 	 */
1421 	if ((error = ether_mediachange(ifp)) != 0)
1422 		goto out;
1423 
1424 	/*
1425 	 * Start the mac.
1426 	 */
1427 	AE_SET(sc, CSR_MACCTL, MACCTL_RE | MACCTL_TE);
1428 	AE_BARRIER(sc);
1429 
1430 	/*
1431 	 * Write out the opmode.
1432 	 */
1433 	AE_WRITE(sc, CSR_OPMODE, OPMODE_SR | OPMODE_ST |
1434 	    ae_txthresh[sc->sc_txthresh].txth_opmode);
1435 	/*
1436 	 * Start the receive process.
1437 	 */
1438 	AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
1439 	AE_BARRIER(sc);
1440 
1441 	if (sc->sc_tick != NULL) {
1442 		/* Start the one second clock. */
1443 		callout_reset(&sc->sc_tick_callout, hz >> 3, sc->sc_tick, sc);
1444 	}
1445 
1446 	/*
1447 	 * Note that the interface is now running.
1448 	 */
1449 	ifp->if_flags |= IFF_RUNNING;
1450 	ifp->if_flags &= ~IFF_OACTIVE;
1451 	sc->sc_if_flags = ifp->if_flags;
1452 
1453  out:
1454 	if (error) {
1455 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1456 		ifp->if_timer = 0;
1457 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
1458 	}
1459 	return (error);
1460 }
1461 
1462 /*
1463  * ae_enable:
1464  *
1465  *	Enable the chip.
1466  */
1467 static int
1468 ae_enable(struct ae_softc *sc)
1469 {
1470 
1471 	if (AE_IS_ENABLED(sc) == 0) {
1472 		sc->sc_ih = arbus_intr_establish(sc->sc_cirq, sc->sc_mirq,
1473 		    ae_intr, sc);
1474 		if (sc->sc_ih == NULL) {
1475 			printf("%s: unable to establish interrupt\n",
1476 			    device_xname(sc->sc_dev));
1477 			return (EIO);
1478 		}
1479 		sc->sc_flags |= AE_ENABLED;
1480 	}
1481 	return (0);
1482 }
1483 
1484 /*
1485  * ae_disable:
1486  *
1487  *	Disable the chip.
1488  */
1489 static void
1490 ae_disable(struct ae_softc *sc)
1491 {
1492 
1493 	if (AE_IS_ENABLED(sc)) {
1494 		arbus_intr_disestablish(sc->sc_ih);
1495 		sc->sc_flags &= ~AE_ENABLED;
1496 	}
1497 }
1498 
1499 /*
1500  * ae_power:
1501  *
1502  *	Power management (suspend/resume) hook.
1503  */
1504 static void
1505 ae_power(int why, void *arg)
1506 {
1507 	struct ae_softc *sc = arg;
1508 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1509 	int s;
1510 
1511 	printf("power called: %d, %x\n", why, (uint32_t)arg);
1512 	s = splnet();
1513 	switch (why) {
1514 	case PWR_STANDBY:
1515 		/* do nothing! */
1516 		break;
1517 	case PWR_SUSPEND:
1518 		ae_stop(ifp, 0);
1519 		ae_disable(sc);
1520 		break;
1521 	case PWR_RESUME:
1522 		if (ifp->if_flags & IFF_UP) {
1523 			ae_enable(sc);
1524 			ae_init(ifp);
1525 		}
1526 		break;
1527 	case PWR_SOFTSUSPEND:
1528 	case PWR_SOFTSTANDBY:
1529 	case PWR_SOFTRESUME:
1530 		break;
1531 	}
1532 	splx(s);
1533 }
1534 
1535 /*
1536  * ae_rxdrain:
1537  *
1538  *	Drain the receive queue.
1539  */
1540 static void
1541 ae_rxdrain(struct ae_softc *sc)
1542 {
1543 	struct ae_rxsoft *rxs;
1544 	int i;
1545 
1546 	for (i = 0; i < AE_NRXDESC; i++) {
1547 		rxs = &sc->sc_rxsoft[i];
1548 		if (rxs->rxs_mbuf != NULL) {
1549 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1550 			m_freem(rxs->rxs_mbuf);
1551 			rxs->rxs_mbuf = NULL;
1552 		}
1553 	}
1554 }
1555 
1556 /*
1557  * ae_stop:		[ ifnet interface function ]
1558  *
1559  *	Stop transmission on the interface.
1560  */
1561 static void
1562 ae_stop(struct ifnet *ifp, int disable)
1563 {
1564 	struct ae_softc *sc = ifp->if_softc;
1565 	struct ae_txsoft *txs;
1566 
1567 	if (sc->sc_tick != NULL) {
1568 		/* Stop the one second clock. */
1569 		callout_stop(&sc->sc_tick_callout);
1570 	}
1571 
1572 	/* Down the MII. */
1573 	mii_down(&sc->sc_mii);
1574 
1575 	/* Disable interrupts. */
1576 	AE_WRITE(sc, CSR_INTEN, 0);
1577 
1578 	/* Stop the transmit and receive processes. */
1579 	AE_WRITE(sc, CSR_OPMODE, 0);
1580 	AE_WRITE(sc, CSR_RXLIST, 0);
1581 	AE_WRITE(sc, CSR_TXLIST, 0);
1582 	AE_CLR(sc, CSR_MACCTL, MACCTL_TE | MACCTL_RE);
1583 	AE_BARRIER(sc);
1584 
1585 	/*
1586 	 * Release any queued transmit buffers.
1587 	 */
1588 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1589 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1590 		if (txs->txs_mbuf != NULL) {
1591 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1592 			m_freem(txs->txs_mbuf);
1593 			txs->txs_mbuf = NULL;
1594 		}
1595 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1596 	}
1597 
1598 	/*
1599 	 * Mark the interface down and cancel the watchdog timer.
1600 	 */
1601 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1602 	sc->sc_if_flags = ifp->if_flags;
1603 	ifp->if_timer = 0;
1604 
1605 	if (disable) {
1606 		ae_rxdrain(sc);
1607 		ae_disable(sc);
1608 	}
1609 
1610 	/*
1611 	 * Reset the chip (needed on some flavors to actually disable it).
1612 	 */
1613 	ae_reset(sc);
1614 }
1615 
1616 /*
1617  * ae_add_rxbuf:
1618  *
1619  *	Add a receive buffer to the indicated descriptor.
1620  */
1621 static int
1622 ae_add_rxbuf(struct ae_softc *sc, int idx)
1623 {
1624 	struct ae_rxsoft *rxs = &sc->sc_rxsoft[idx];
1625 	struct mbuf *m;
1626 	int error;
1627 
1628 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1629 	if (m == NULL)
1630 		return (ENOBUFS);
1631 
1632 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1633 	MCLGET(m, M_DONTWAIT);
1634 	if ((m->m_flags & M_EXT) == 0) {
1635 		m_freem(m);
1636 		return (ENOBUFS);
1637 	}
1638 
1639 	if (rxs->rxs_mbuf != NULL)
1640 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1641 
1642 	rxs->rxs_mbuf = m;
1643 
1644 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1645 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1646 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
1647 	if (error) {
1648 		printf("%s: can't load rx DMA map %d, error = %d\n",
1649 		    device_xname(sc->sc_dev), idx, error);
1650 		panic("ae_add_rxbuf");	/* XXX */
1651 	}
1652 
1653 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1654 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1655 
1656 	AE_INIT_RXDESC(sc, idx);
1657 
1658 	return (0);
1659 }
1660 
1661 /*
1662  * ae_filter_setup:
1663  *
1664  *	Set the chip's receive filter.
1665  */
1666 static void
1667 ae_filter_setup(struct ae_softc *sc)
1668 {
1669 	struct ethercom *ec = &sc->sc_ethercom;
1670 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1671 	struct ether_multi *enm;
1672 	struct ether_multistep step;
1673 	uint32_t hash, mchash[2];
1674 	uint32_t macctl = 0;
1675 
1676 	/*
1677 	 * If the chip is running, we need to reset the interface,
1678 	 * and will revisit here (with IFF_RUNNING) clear.  The
1679 	 * chip seems to really not like to have its multicast
1680 	 * filter programmed without a reset.
1681 	 */
1682 	if (ifp->if_flags & IFF_RUNNING) {
1683 		(void) ae_init(ifp);
1684 		return;
1685 	}
1686 
1687 	DPRINTF(sc, ("%s: ae_filter_setup: sc_flags 0x%08x\n",
1688 	    device_xname(sc->sc_dev), sc->sc_flags));
1689 
1690 	macctl = AE_READ(sc, CSR_MACCTL);
1691 	macctl &= ~(MACCTL_PR | MACCTL_PM);
1692 	macctl |= MACCTL_HASH;
1693 	macctl |= MACCTL_HBD;
1694 	macctl |= MACCTL_PR;
1695 
1696 	if (ifp->if_flags & IFF_PROMISC) {
1697 		macctl |= MACCTL_PR;
1698 		goto allmulti;
1699 	}
1700 
1701 	mchash[0] = mchash[1] = 0;
1702 
1703 	ETHER_LOCK(ec);
1704 	ETHER_FIRST_MULTI(step, ec, enm);
1705 	while (enm != NULL) {
1706 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1707 			/*
1708 			 * We must listen to a range of multicast addresses.
1709 			 * For now, just accept all multicasts, rather than
1710 			 * trying to set only those filter bits needed to match
1711 			 * the range.  (At this time, the only use of address
1712 			 * ranges is for IP multicast routing, for which the
1713 			 * range is big enough to require all bits set.)
1714 			 */
1715 			ETHER_UNLOCK(ec);
1716 			goto allmulti;
1717 		}
1718 
1719 		/* Verify whether we use big or little endian hashes */
1720 		hash = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3f;
1721 		mchash[hash >> 5] |= 1 << (hash & 0x1f);
1722 		ETHER_NEXT_MULTI(step, enm);
1723 	}
1724 	ETHER_UNLOCK(ec);
1725 	ifp->if_flags &= ~IFF_ALLMULTI;
1726 	goto setit;
1727 
1728  allmulti:
1729 	ifp->if_flags |= IFF_ALLMULTI;
1730 	mchash[0] = mchash[1] = 0xffffffff;
1731 	macctl |= MACCTL_PM;
1732 
1733  setit:
1734 	AE_WRITE(sc, CSR_HTHI, mchash[0]);
1735 	AE_WRITE(sc, CSR_HTHI, mchash[1]);
1736 
1737 	AE_WRITE(sc, CSR_MACCTL, macctl);
1738 	AE_BARRIER(sc);
1739 
1740 	DPRINTF(sc, ("%s: ae_filter_setup: returning %x\n",
1741 		    device_xname(sc->sc_dev), macctl));
1742 }
1743 
1744 /*
1745  * ae_idle:
1746  *
1747  *	Cause the transmit and/or receive processes to go idle.
1748  */
1749 void
1750 ae_idle(struct ae_softc *sc, uint32_t bits)
1751 {
1752 	static const char * const txstate_names[] = {
1753 		"STOPPED",
1754 		"RUNNING - FETCH",
1755 		"RUNNING - WAIT",
1756 		"RUNNING - READING",
1757 		"-- RESERVED --",
1758 		"RUNNING - SETUP",
1759 		"SUSPENDED",
1760 		"RUNNING - CLOSE",
1761 	};
1762 	static const char * const rxstate_names[] = {
1763 		"STOPPED",
1764 		"RUNNING - FETCH",
1765 		"RUNNING - CHECK",
1766 		"RUNNING - WAIT",
1767 		"SUSPENDED",
1768 		"RUNNING - CLOSE",
1769 		"RUNNING - FLUSH",
1770 		"RUNNING - QUEUE",
1771 	};
1772 
1773 	uint32_t csr, ackmask = 0;
1774 	int i;
1775 
1776 	if (bits & OPMODE_ST)
1777 		ackmask |= STATUS_TPS;
1778 
1779 	if (bits & OPMODE_SR)
1780 		ackmask |= STATUS_RPS;
1781 
1782 	AE_CLR(sc, CSR_OPMODE, bits);
1783 
1784 	for (i = 0; i < 1000; i++) {
1785 		if (AE_ISSET(sc, CSR_STATUS, ackmask) == ackmask)
1786 			break;
1787 		delay(10);
1788 	}
1789 
1790 	csr = AE_READ(sc, CSR_STATUS);
1791 	if ((csr & ackmask) != ackmask) {
1792 		if ((bits & OPMODE_ST) != 0 && (csr & STATUS_TPS) == 0 &&
1793 		    (csr & STATUS_TS) != STATUS_TS_STOPPED) {
1794 			printf("%s: transmit process failed to idle: "
1795 			    "state %s\n", device_xname(sc->sc_dev),
1796 			    txstate_names[(csr & STATUS_TS) >> 20]);
1797 		}
1798 		if ((bits & OPMODE_SR) != 0 && (csr & STATUS_RPS) == 0 &&
1799 		    (csr & STATUS_RS) != STATUS_RS_STOPPED) {
1800 			printf("%s: receive process failed to idle: "
1801 			    "state %s\n", device_xname(sc->sc_dev),
1802 			    rxstate_names[(csr & STATUS_RS) >> 17]);
1803 		}
1804 	}
1805 }
1806 
1807 /*****************************************************************************
1808  * Support functions for MII-attached media.
1809  *****************************************************************************/
1810 
1811 /*
1812  * ae_mii_tick:
1813  *
1814  *	One second timer, used to tick the MII.
1815  */
1816 static void
1817 ae_mii_tick(void *arg)
1818 {
1819 	struct ae_softc *sc = arg;
1820 	int s;
1821 
1822 	if (!device_is_active(sc->sc_dev))
1823 		return;
1824 
1825 	s = splnet();
1826 	mii_tick(&sc->sc_mii);
1827 	splx(s);
1828 
1829 	callout_reset(&sc->sc_tick_callout, hz, sc->sc_tick, sc);
1830 }
1831 
1832 /*
1833  * ae_mii_statchg:	[mii interface function]
1834  *
1835  *	Callback from PHY when media changes.
1836  */
1837 static void
1838 ae_mii_statchg(struct ifnet *ifp)
1839 {
1840 	struct ae_softc *sc = ifp->if_softc;
1841 	uint32_t	macctl, flowc;
1842 
1843 	//opmode = AE_READ(sc, CSR_OPMODE);
1844 	macctl = AE_READ(sc, CSR_MACCTL);
1845 
1846 	/* XXX: do we need to do this? */
1847 	/* Idle the transmit and receive processes. */
1848 	//ae_idle(sc, OPMODE_ST | OPMODE_SR);
1849 
1850 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
1851 		flowc = FLOWC_FCE;
1852 		macctl &= ~MACCTL_DRO;
1853 		macctl |= MACCTL_FDX;
1854 	} else {
1855 		flowc = 0;	/* cannot do flow control in HDX */
1856 		macctl |= MACCTL_DRO;
1857 		macctl &= ~MACCTL_FDX;
1858 	}
1859 
1860 	AE_WRITE(sc, CSR_FLOWC, flowc);
1861 	AE_WRITE(sc, CSR_MACCTL, macctl);
1862 
1863 	/* restore operational mode */
1864 	//AE_WRITE(sc, CSR_OPMODE, opmode);
1865 	AE_BARRIER(sc);
1866 }
1867 
1868 /*
1869  * ae_mii_readreg:
1870  *
1871  *	Read a PHY register.
1872  */
1873 static int
1874 ae_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1875 {
1876 	struct ae_softc	*sc = device_private(self);
1877 	uint32_t	addr;
1878 	int		i;
1879 
1880 	addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT);
1881 	AE_WRITE(sc, CSR_MIIADDR, addr);
1882 	AE_BARRIER(sc);
1883 	for (i = 0; i < 100000000; i++) {
1884 		if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1885 			break;
1886 	}
1887 
1888 	if (i >= 100000000)
1889 		return ETIMEDOUT;
1890 
1891 	*val = AE_READ(sc, CSR_MIIDATA) & 0xffff;
1892 	return 0;
1893 }
1894 
1895 /*
1896  * ae_mii_writereg:
1897  *
1898  *	Write a PHY register.
1899  */
1900 static int
1901 ae_mii_writereg(device_t self, int phy, int reg, uint16_t val)
1902 {
1903 	struct ae_softc *sc = device_private(self);
1904 	uint32_t	addr;
1905 	int		i;
1906 
1907 	/* write the data register */
1908 	AE_WRITE(sc, CSR_MIIDATA, val);
1909 
1910 	/* write the address to latch it in */
1911 	addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT) |
1912 	    MIIADDR_WRITE;
1913 	AE_WRITE(sc, CSR_MIIADDR, addr);
1914 	AE_BARRIER(sc);
1915 
1916 	for (i = 0; i < 100000000; i++) {
1917 		if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1918 			break;
1919 	}
1920 
1921 	if (i >= 100000000)
1922 		return ETIMEDOUT;
1923 
1924 	return 0;
1925 }
1926