xref: /netbsd-src/sys/arch/mips/atheros/dev/if_ae.c (revision 7f21db1c0118155e0dd40b75182e30c589d9f63e)
1 /* $Id: if_ae.c,v 1.18 2010/01/22 08:56:05 martin Exp $ */
2 /*-
3  * Copyright (c) 2006 Urbana-Champaign Independent Media Center.
4  * Copyright (c) 2006 Garrett D'Amore.
5  * All rights reserved.
6  *
7  * This code was written by Garrett D'Amore for the Champaign-Urbana
8  * Community Wireless Network Project.
9  *
10  * Redistribution and use in source and binary forms, with or
11  * without modification, are permitted provided that the following
12  * conditions are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above
16  *    copyright notice, this list of conditions and the following
17  *    disclaimer in the documentation and/or other materials provided
18  *    with the distribution.
19  * 3. All advertising materials mentioning features or use of this
20  *    software must display the following acknowledgements:
21  *      This product includes software developed by the Urbana-Champaign
22  *      Independent Media Center.
23  *	This product includes software developed by Garrett D'Amore.
24  * 4. Urbana-Champaign Independent Media Center's name and Garrett
25  *    D'Amore's name may not be used to endorse or promote products
26  *    derived from this software without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
29  * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
30  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
31  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
33  * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
34  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
35  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
36  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
37  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
38  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
40  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41  */
42 /*-
43  * Copyright (c) 1998, 1999, 2000, 2002 The NetBSD Foundation, Inc.
44  * All rights reserved.
45  *
46  * This code is derived from software contributed to The NetBSD Foundation
47  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
48  * NASA Ames Research Center; and by Charles M. Hannum.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
60  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69  * POSSIBILITY OF SUCH DAMAGE.
70  */
71 
72 /*
73  * Device driver for the onboard ethernet MAC found on the AR5312
74  * chip's AHB bus.
75  *
76  * This device is very simliar to the tulip in most regards, and
77  * the code is directly derived from NetBSD's tulip.c.  However, it
78  * is different enough that it did not seem to be a good idea to
79  * add further complexity to the tulip driver, so we have our own.
80  *
81  * Also tulip has a lot of complexity in it for various parts/options
82  * that we don't need, and on these little boxes with only ~8MB RAM, we
83  * don't want any extra bloat.
84  */
85 
86 /*
87  * TODO:
88  *
89  * 1) Find out about BUS_MODE_ALIGN16B.  This chip can apparently align
90  *    inbound packets on a half-word boundary, which would make life easier
91  *    for TCP/IP.  (Aligning IP headers on a word.)
92  *
93  * 2) There is stuff in original tulip to shut down the device when reacting
94  *    to a a change in link status.  Is that needed.
95  *
96  * 3) Test with variety of 10/100 HDX/FDX scenarios.
97  *
98  */
99 
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: if_ae.c,v 1.18 2010/01/22 08:56:05 martin Exp $");
102 
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/callout.h>
107 #include <sys/mbuf.h>
108 #include <sys/malloc.h>
109 #include <sys/kernel.h>
110 #include <sys/socket.h>
111 #include <sys/ioctl.h>
112 #include <sys/errno.h>
113 #include <sys/device.h>
114 
115 #include <machine/endian.h>
116 
117 #include <uvm/uvm_extern.h>
118 
119 #include <net/if.h>
120 #include <net/if_dl.h>
121 #include <net/if_media.h>
122 #include <net/if_ether.h>
123 
124 #include <net/bpf.h>
125 
126 #include <machine/bus.h>
127 #include <machine/intr.h>
128 
129 #include <dev/mii/mii.h>
130 #include <dev/mii/miivar.h>
131 #include <dev/mii/mii_bitbang.h>
132 
133 #include <mips/atheros/include/arbusvar.h>
134 #include <mips/atheros/dev/aereg.h>
135 #include <mips/atheros/dev/aevar.h>
136 
137 static const struct {
138 	u_int32_t txth_opmode;		/* OPMODE bits */
139 	const char *txth_name;		/* name of mode */
140 } ae_txthresh[] = {
141 	{ OPMODE_TR_32,		"32 words" },
142 	{ OPMODE_TR_64,		"64 words" },
143 	{ OPMODE_TR_128,	"128 words" },
144 	{ OPMODE_TR_256,	"256 words" },
145 	{ OPMODE_SF,		"store and forward mode" },
146 	{ 0,			NULL },
147 };
148 
149 static int 	ae_match(device_t, struct cfdata *, void *);
150 static void	ae_attach(device_t, device_t, void *);
151 static int	ae_detach(device_t, int);
152 static int	ae_activate(device_t, enum devact);
153 
154 static int	ae_ifflags_cb(struct ethercom *);
155 static void	ae_reset(struct ae_softc *);
156 static void	ae_idle(struct ae_softc *, u_int32_t);
157 
158 static void	ae_start(struct ifnet *);
159 static void	ae_watchdog(struct ifnet *);
160 static int	ae_ioctl(struct ifnet *, u_long, void *);
161 static int	ae_init(struct ifnet *);
162 static void	ae_stop(struct ifnet *, int);
163 
164 static void	ae_shutdown(void *);
165 
166 static void	ae_rxdrain(struct ae_softc *);
167 static int	ae_add_rxbuf(struct ae_softc *, int);
168 
169 static int	ae_enable(struct ae_softc *);
170 static void	ae_disable(struct ae_softc *);
171 static void	ae_power(int, void *);
172 
173 static void	ae_filter_setup(struct ae_softc *);
174 
175 static int	ae_intr(void *);
176 static void	ae_rxintr(struct ae_softc *);
177 static void	ae_txintr(struct ae_softc *);
178 
179 static void	ae_mii_tick(void *);
180 static void	ae_mii_statchg(device_t);
181 
182 static int	ae_mii_readreg(device_t, int, int);
183 static void	ae_mii_writereg(device_t, int, int, int);
184 
185 #ifdef AE_DEBUG
186 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
187 				printf x
188 #else
189 #define	DPRINTF(sc, x)	/* nothing */
190 #endif
191 
192 #ifdef AE_STATS
193 static void	ae_print_stats(struct ae_softc *);
194 #endif
195 
196 CFATTACH_DECL(ae, sizeof(struct ae_softc),
197     ae_match, ae_attach, ae_detach, ae_activate);
198 
199 /*
200  * ae_match:
201  *
202  *	Check for a device match.
203  */
204 int
205 ae_match(device_t parent, struct cfdata *cf, void *aux)
206 {
207 	struct arbus_attach_args *aa = aux;
208 
209 	if (strcmp(aa->aa_name, cf->cf_name) == 0)
210 		return 1;
211 
212 	return 0;
213 
214 }
215 
216 /*
217  * ae_attach:
218  *
219  *	Attach an ae interface to the system.
220  */
221 void
222 ae_attach(device_t parent, device_t self, void *aux)
223 {
224 	const uint8_t *enaddr;
225 	prop_data_t ea;
226 	struct ae_softc *sc = device_private(self);
227 	struct arbus_attach_args *aa = aux;
228 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
229 	int i, error;
230 
231 	callout_init(&sc->sc_tick_callout, 0);
232 
233 	printf(": Atheros AR531X 10/100 Ethernet\n");
234 
235 	/*
236 	 * Try to get MAC address.
237 	 */
238 	ea = prop_dictionary_get(device_properties(&sc->sc_dev), "mac-address");
239 	if (ea == NULL) {
240 		printf("%s: unable to get mac-addr property\n",
241 		    sc->sc_dev.dv_xname);
242 		return;
243 	}
244 	KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
245 	KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
246 	enaddr = prop_data_data_nocopy(ea);
247 
248 	/* Announce ourselves. */
249 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
250 	    ether_sprintf(enaddr));
251 
252 	sc->sc_cirq = aa->aa_cirq;
253 	sc->sc_mirq = aa->aa_mirq;
254 	sc->sc_st = aa->aa_bst;
255 	sc->sc_dmat = aa->aa_dmat;
256 
257 	SIMPLEQ_INIT(&sc->sc_txfreeq);
258 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
259 
260 	/*
261 	 * Map registers.
262 	 */
263 	sc->sc_size = aa->aa_size;
264 	if ((error = bus_space_map(sc->sc_st, aa->aa_addr, sc->sc_size, 0,
265 	    &sc->sc_sh)) != 0) {
266 		printf("%s: unable to map registers, error = %d\n",
267 		    sc->sc_dev.dv_xname, error);
268 		goto fail_0;
269 	}
270 
271 	/*
272 	 * Allocate the control data structures, and create and load the
273 	 * DMA map for it.
274 	 */
275 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
276 	    sizeof(struct ae_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
277 	    1, &sc->sc_cdnseg, 0)) != 0) {
278 		printf("%s: unable to allocate control data, error = %d\n",
279 		    sc->sc_dev.dv_xname, error);
280 		goto fail_1;
281 	}
282 
283 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
284 	    sizeof(struct ae_control_data), (void **)&sc->sc_control_data,
285 	    BUS_DMA_COHERENT)) != 0) {
286 		printf("%s: unable to map control data, error = %d\n",
287 		    sc->sc_dev.dv_xname, error);
288 		goto fail_2;
289 	}
290 
291 	if ((error = bus_dmamap_create(sc->sc_dmat,
292 	    sizeof(struct ae_control_data), 1,
293 	    sizeof(struct ae_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
294 		printf("%s: unable to create control data DMA map, "
295 		    "error = %d\n", sc->sc_dev.dv_xname, error);
296 		goto fail_3;
297 	}
298 
299 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
300 	    sc->sc_control_data, sizeof(struct ae_control_data), NULL,
301 	    0)) != 0) {
302 		printf("%s: unable to load control data DMA map, error = %d\n",
303 		    sc->sc_dev.dv_xname, error);
304 		goto fail_4;
305 	}
306 
307 	/*
308 	 * Create the transmit buffer DMA maps.
309 	 */
310 	for (i = 0; i < AE_TXQUEUELEN; i++) {
311 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
312 		    AE_NTXSEGS, MCLBYTES, 0, 0,
313 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
314 			printf("%s: unable to create tx DMA map %d, "
315 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
316 			goto fail_5;
317 		}
318 	}
319 
320 	/*
321 	 * Create the receive buffer DMA maps.
322 	 */
323 	for (i = 0; i < AE_NRXDESC; i++) {
324 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
325 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
326 			printf("%s: unable to create rx DMA map %d, "
327 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
328 			goto fail_6;
329 		}
330 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
331 	}
332 
333 	/*
334 	 * Reset the chip to a known state.
335 	 */
336 	ae_reset(sc);
337 
338 	/*
339 	 * From this point forward, the attachment cannot fail.  A failure
340 	 * before this point releases all resources that may have been
341 	 * allocated.
342 	 */
343 	sc->sc_flags |= AE_ATTACHED;
344 
345 	/*
346 	 * Initialize our media structures.  This may probe the MII, if
347 	 * present.
348 	 */
349 	sc->sc_mii.mii_ifp = ifp;
350 	sc->sc_mii.mii_readreg = ae_mii_readreg;
351 	sc->sc_mii.mii_writereg = ae_mii_writereg;
352 	sc->sc_mii.mii_statchg = ae_mii_statchg;
353 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
354 	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
355 	    ether_mediastatus);
356 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
357 	    MII_OFFSET_ANY, 0);
358 
359 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
360 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
361 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
362 	} else
363 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
364 
365 	sc->sc_tick = ae_mii_tick;
366 
367 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
368 	ifp->if_softc = sc;
369 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
370 	sc->sc_if_flags = ifp->if_flags;
371 	ifp->if_ioctl = ae_ioctl;
372 	ifp->if_start = ae_start;
373 	ifp->if_watchdog = ae_watchdog;
374 	ifp->if_init = ae_init;
375 	ifp->if_stop = ae_stop;
376 	IFQ_SET_READY(&ifp->if_snd);
377 
378 	/*
379 	 * We can support 802.1Q VLAN-sized frames.
380 	 */
381 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
382 
383 	/*
384 	 * Attach the interface.
385 	 */
386 	if_attach(ifp);
387 	ether_ifattach(ifp, enaddr);
388 	ether_set_ifflags_cb(&sc->sc_ethercom, ae_ifflags_cb);
389 
390 #if NRND > 0
391 	rnd_attach_source(&sc->sc_rnd_source, sc->sc_dev.dv_xname,
392 	    RND_TYPE_NET, 0);
393 #endif
394 
395 	/*
396 	 * Make sure the interface is shutdown during reboot.
397 	 */
398 	sc->sc_sdhook = shutdownhook_establish(ae_shutdown, sc);
399 	if (sc->sc_sdhook == NULL)
400 		printf("%s: WARNING: unable to establish shutdown hook\n",
401 		    sc->sc_dev.dv_xname);
402 
403 	/*
404 	 * Add a suspend hook to make sure we come back up after a
405 	 * resume.
406 	 */
407 	sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
408 	    ae_power, sc);
409 	if (sc->sc_powerhook == NULL)
410 		printf("%s: WARNING: unable to establish power hook\n",
411 		    sc->sc_dev.dv_xname);
412 	return;
413 
414 	/*
415 	 * Free any resources we've allocated during the failed attach
416 	 * attempt.  Do this in reverse order and fall through.
417 	 */
418  fail_6:
419 	for (i = 0; i < AE_NRXDESC; i++) {
420 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
421 			bus_dmamap_destroy(sc->sc_dmat,
422 			    sc->sc_rxsoft[i].rxs_dmamap);
423 	}
424  fail_5:
425 	for (i = 0; i < AE_TXQUEUELEN; i++) {
426 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
427 			bus_dmamap_destroy(sc->sc_dmat,
428 			    sc->sc_txsoft[i].txs_dmamap);
429 	}
430 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
431  fail_4:
432 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
433  fail_3:
434 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
435 	    sizeof(struct ae_control_data));
436  fail_2:
437 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
438  fail_1:
439 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
440  fail_0:
441 	return;
442 }
443 
444 /*
445  * ae_activate:
446  *
447  *	Handle device activation/deactivation requests.
448  */
449 int
450 ae_activate(device_t self, enum devact act)
451 {
452 	struct ae_softc *sc = device_private(self);
453 
454 	switch (act) {
455 	case DVACT_DEACTIVATE:
456 		if_deactivate(&sc->sc_ethercom.ec_if);
457 		return 0;
458 	default:
459 		return EOPNOTSUPP;
460 	}
461 }
462 
463 /*
464  * ae_detach:
465  *
466  *	Detach a device interface.
467  */
468 int
469 ae_detach(device_t self, int flags)
470 {
471 	struct ae_softc *sc = device_private(self);
472 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
473 	struct ae_rxsoft *rxs;
474 	struct ae_txsoft *txs;
475 	int i;
476 
477 	/*
478 	 * Succeed now if there isn't any work to do.
479 	 */
480 	if ((sc->sc_flags & AE_ATTACHED) == 0)
481 		return (0);
482 
483 	/* Unhook our tick handler. */
484 	if (sc->sc_tick)
485 		callout_stop(&sc->sc_tick_callout);
486 
487 	/* Detach all PHYs */
488 	mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
489 
490 	/* Delete all remaining media. */
491 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
492 
493 #if NRND > 0
494 	rnd_detach_source(&sc->sc_rnd_source);
495 #endif
496 	ether_ifdetach(ifp);
497 	if_detach(ifp);
498 
499 	for (i = 0; i < AE_NRXDESC; i++) {
500 		rxs = &sc->sc_rxsoft[i];
501 		if (rxs->rxs_mbuf != NULL) {
502 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
503 			m_freem(rxs->rxs_mbuf);
504 			rxs->rxs_mbuf = NULL;
505 		}
506 		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
507 	}
508 	for (i = 0; i < AE_TXQUEUELEN; i++) {
509 		txs = &sc->sc_txsoft[i];
510 		if (txs->txs_mbuf != NULL) {
511 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
512 			m_freem(txs->txs_mbuf);
513 			txs->txs_mbuf = NULL;
514 		}
515 		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
516 	}
517 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
518 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
519 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
520 	    sizeof(struct ae_control_data));
521 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
522 
523 	shutdownhook_disestablish(sc->sc_sdhook);
524 	powerhook_disestablish(sc->sc_powerhook);
525 
526 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
527 
528 
529 	return (0);
530 }
531 
532 /*
533  * ae_shutdown:
534  *
535  *	Make sure the interface is stopped at reboot time.
536  */
537 static void
538 ae_shutdown(void *arg)
539 {
540 	struct ae_softc *sc = arg;
541 
542 	ae_stop(&sc->sc_ethercom.ec_if, 1);
543 }
544 
545 /*
546  * ae_start:		[ifnet interface function]
547  *
548  *	Start packet transmission on the interface.
549  */
550 static void
551 ae_start(struct ifnet *ifp)
552 {
553 	struct ae_softc *sc = ifp->if_softc;
554 	struct mbuf *m0, *m;
555 	struct ae_txsoft *txs, *last_txs = NULL;
556 	bus_dmamap_t dmamap;
557 	int error, firsttx, nexttx, lasttx = 1, ofree, seg;
558 
559 	DPRINTF(sc, ("%s: ae_start: sc_flags 0x%08x, if_flags 0x%08x\n",
560 	    sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
561 
562 
563 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
564 		return;
565 
566 	/*
567 	 * Remember the previous number of free descriptors and
568 	 * the first descriptor we'll use.
569 	 */
570 	ofree = sc->sc_txfree;
571 	firsttx = sc->sc_txnext;
572 
573 	DPRINTF(sc, ("%s: ae_start: txfree %d, txnext %d\n",
574 	    sc->sc_dev.dv_xname, ofree, firsttx));
575 
576 	/*
577 	 * Loop through the send queue, setting up transmit descriptors
578 	 * until we drain the queue, or use up all available transmit
579 	 * descriptors.
580 	 */
581 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
582 	       sc->sc_txfree != 0) {
583 		/*
584 		 * Grab a packet off the queue.
585 		 */
586 		IFQ_POLL(&ifp->if_snd, m0);
587 		if (m0 == NULL)
588 			break;
589 		m = NULL;
590 
591 		dmamap = txs->txs_dmamap;
592 
593 		/*
594 		 * Load the DMA map.  If this fails, the packet either
595 		 * didn't fit in the alloted number of segments, or we were
596 		 * short on resources.  In this case, we'll copy and try
597 		 * again.
598 		 */
599 		if (((mtod(m0, uintptr_t) & 3) != 0) ||
600 		    bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
601 		      BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
602 			MGETHDR(m, M_DONTWAIT, MT_DATA);
603 			if (m == NULL) {
604 				printf("%s: unable to allocate Tx mbuf\n",
605 				    sc->sc_dev.dv_xname);
606 				break;
607 			}
608 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
609 			if (m0->m_pkthdr.len > MHLEN) {
610 				MCLGET(m, M_DONTWAIT);
611 				if ((m->m_flags & M_EXT) == 0) {
612 					printf("%s: unable to allocate Tx "
613 					    "cluster\n", sc->sc_dev.dv_xname);
614 					m_freem(m);
615 					break;
616 				}
617 			}
618 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
619 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
620 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
621 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
622 			if (error) {
623 				printf("%s: unable to load Tx buffer, "
624 				    "error = %d\n", sc->sc_dev.dv_xname,
625 				    error);
626 				break;
627 			}
628 		}
629 
630 		/*
631 		 * Ensure we have enough descriptors free to describe
632 		 * the packet.
633 		 */
634 		if (dmamap->dm_nsegs > sc->sc_txfree) {
635 			/*
636 			 * Not enough free descriptors to transmit this
637 			 * packet.  We haven't committed to anything yet,
638 			 * so just unload the DMA map, put the packet
639 			 * back on the queue, and punt.  Notify the upper
640 			 * layer that there are no more slots left.
641 			 *
642 			 * XXX We could allocate an mbuf and copy, but
643 			 * XXX it is worth it?
644 			 */
645 			ifp->if_flags |= IFF_OACTIVE;
646 			bus_dmamap_unload(sc->sc_dmat, dmamap);
647 			if (m != NULL)
648 				m_freem(m);
649 			break;
650 		}
651 
652 		IFQ_DEQUEUE(&ifp->if_snd, m0);
653 		if (m != NULL) {
654 			m_freem(m0);
655 			m0 = m;
656 		}
657 
658 		/*
659 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
660 		 */
661 
662 		/* Sync the DMA map. */
663 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
664 		    BUS_DMASYNC_PREWRITE);
665 
666 		/*
667 		 * Initialize the transmit descriptors.
668 		 */
669 		for (nexttx = sc->sc_txnext, seg = 0;
670 		     seg < dmamap->dm_nsegs;
671 		     seg++, nexttx = AE_NEXTTX(nexttx)) {
672 			/*
673 			 * If this is the first descriptor we're
674 			 * enqueueing, don't set the OWN bit just
675 			 * yet.  That could cause a race condition.
676 			 * We'll do it below.
677 			 */
678 			sc->sc_txdescs[nexttx].ad_status =
679 			    (nexttx == firsttx) ? 0 : ADSTAT_OWN;
680 			sc->sc_txdescs[nexttx].ad_bufaddr1 =
681 			    dmamap->dm_segs[seg].ds_addr;
682 			sc->sc_txdescs[nexttx].ad_ctl =
683 			    (dmamap->dm_segs[seg].ds_len <<
684 				ADCTL_SIZE1_SHIFT) |
685 				(nexttx == (AE_NTXDESC - 1) ?
686 				    ADCTL_ER : 0);
687 			lasttx = nexttx;
688 		}
689 
690 		KASSERT(lasttx != -1);
691 
692 		/* Set `first segment' and `last segment' appropriately. */
693 		sc->sc_txdescs[sc->sc_txnext].ad_ctl |= ADCTL_Tx_FS;
694 		sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_LS;
695 
696 #ifdef AE_DEBUG
697 		if (ifp->if_flags & IFF_DEBUG) {
698 			printf("     txsoft %p transmit chain:\n", txs);
699 			for (seg = sc->sc_txnext;; seg = AE_NEXTTX(seg)) {
700 				printf("     descriptor %d:\n", seg);
701 				printf("       ad_status:   0x%08x\n",
702 				    sc->sc_txdescs[seg].ad_status);
703 				printf("       ad_ctl:      0x%08x\n",
704 				    sc->sc_txdescs[seg].ad_ctl);
705 				printf("       ad_bufaddr1: 0x%08x\n",
706 				    sc->sc_txdescs[seg].ad_bufaddr1);
707 				printf("       ad_bufaddr2: 0x%08x\n",
708 				    sc->sc_txdescs[seg].ad_bufaddr2);
709 				if (seg == lasttx)
710 					break;
711 			}
712 		}
713 #endif
714 
715 		/* Sync the descriptors we're using. */
716 		AE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
717 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
718 
719 		/*
720 		 * Store a pointer to the packet so we can free it later,
721 		 * and remember what txdirty will be once the packet is
722 		 * done.
723 		 */
724 		txs->txs_mbuf = m0;
725 		txs->txs_firstdesc = sc->sc_txnext;
726 		txs->txs_lastdesc = lasttx;
727 		txs->txs_ndescs = dmamap->dm_nsegs;
728 
729 		/* Advance the tx pointer. */
730 		sc->sc_txfree -= dmamap->dm_nsegs;
731 		sc->sc_txnext = nexttx;
732 
733 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
734 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
735 
736 		last_txs = txs;
737 
738 		/*
739 		 * Pass the packet to any BPF listeners.
740 		 */
741 		if (ifp->if_bpf)
742 			bpf_ops->bpf_mtap(ifp->if_bpf, m0);
743 	}
744 
745 	if (txs == NULL || sc->sc_txfree == 0) {
746 		/* No more slots left; notify upper layer. */
747 		ifp->if_flags |= IFF_OACTIVE;
748 	}
749 
750 	if (sc->sc_txfree != ofree) {
751 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
752 		    sc->sc_dev.dv_xname, lasttx, firsttx));
753 		/*
754 		 * Cause a transmit interrupt to happen on the
755 		 * last packet we enqueued.
756 		 */
757 		sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_IC;
758 		AE_CDTXSYNC(sc, lasttx, 1,
759 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
760 
761 		/*
762 		 * The entire packet chain is set up.  Give the
763 		 * first descriptor to the chip now.
764 		 */
765 		sc->sc_txdescs[firsttx].ad_status |= ADSTAT_OWN;
766 		AE_CDTXSYNC(sc, firsttx, 1,
767 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
768 
769 		/* Wake up the transmitter. */
770 		/* XXX USE AUTOPOLLING? */
771 		AE_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD);
772 		AE_BARRIER(sc);
773 
774 		/* Set a watchdog timer in case the chip flakes out. */
775 		ifp->if_timer = 5;
776 	}
777 }
778 
779 /*
780  * ae_watchdog:	[ifnet interface function]
781  *
782  *	Watchdog timer handler.
783  */
784 static void
785 ae_watchdog(struct ifnet *ifp)
786 {
787 	struct ae_softc *sc = ifp->if_softc;
788 	int doing_transmit;
789 
790 	doing_transmit = (! SIMPLEQ_EMPTY(&sc->sc_txdirtyq));
791 
792 	if (doing_transmit) {
793 		printf("%s: transmit timeout\n", sc->sc_dev.dv_xname);
794 		ifp->if_oerrors++;
795 	}
796 	else
797 		printf("%s: spurious watchdog timeout\n", sc->sc_dev.dv_xname);
798 
799 	(void) ae_init(ifp);
800 
801 	/* Try to get more packets going. */
802 	ae_start(ifp);
803 }
804 
805 /* If the interface is up and running, only modify the receive
806  * filter when changing to/from promiscuous mode.  Otherwise return
807  * ENETRESET so that ether_ioctl will reset the chip.
808  */
809 static int
810 ae_ifflags_cb(struct ethercom *ec)
811 {
812 	struct ifnet *ifp = &ec->ec_if;
813 	struct ae_softc *sc = ifp->if_softc;
814 	int change = ifp->if_flags ^ sc->sc_if_flags;
815 
816 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
817 		return ENETRESET;
818 	else if ((change & IFF_PROMISC) != 0)
819 		ae_filter_setup(sc);
820 	return 0;
821 }
822 
823 /*
824  * ae_ioctl:		[ifnet interface function]
825  *
826  *	Handle control requests from the operator.
827  */
828 static int
829 ae_ioctl(struct ifnet *ifp, u_long cmd, void *data)
830 {
831 	struct ae_softc *sc = ifp->if_softc;
832 	int s, error;
833 
834 	s = splnet();
835 
836 	error = ether_ioctl(ifp, cmd, data);
837 	if (error == ENETRESET) {
838 		if (ifp->if_flags & IFF_RUNNING) {
839 			/*
840 			 * Multicast list has changed.  Set the
841 			 * hardware filter accordingly.
842 			 */
843 			ae_filter_setup(sc);
844 		}
845 		error = 0;
846 	}
847 
848 	/* Try to get more packets going. */
849 	if (AE_IS_ENABLED(sc))
850 		ae_start(ifp);
851 
852 	sc->sc_if_flags = ifp->if_flags;
853 	splx(s);
854 	return (error);
855 }
856 
857 /*
858  * ae_intr:
859  *
860  *	Interrupt service routine.
861  */
862 int
863 ae_intr(void *arg)
864 {
865 	struct ae_softc *sc = arg;
866 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
867 	u_int32_t status, rxstatus, txstatus;
868 	int handled = 0, txthresh;
869 
870 	DPRINTF(sc, ("%s: ae_intr\n", sc->sc_dev.dv_xname));
871 
872 #ifdef DEBUG
873 	if (AE_IS_ENABLED(sc) == 0)
874 		panic("%s: ae_intr: not enabled", sc->sc_dev.dv_xname);
875 #endif
876 
877 	/*
878 	 * If the interface isn't running, the interrupt couldn't
879 	 * possibly have come from us.
880 	 */
881 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
882 	    !device_is_active(&sc->sc_dev)) {
883 		printf("spurious?!?\n");
884 		return (0);
885 	}
886 
887 	for (;;) {
888 		status = AE_READ(sc, CSR_STATUS);
889 		if (status) {
890 			AE_WRITE(sc, CSR_STATUS, status);
891 			AE_BARRIER(sc);
892 		}
893 
894 		if ((status & sc->sc_inten) == 0)
895 			break;
896 
897 		handled = 1;
898 
899 		rxstatus = status & sc->sc_rxint_mask;
900 		txstatus = status & sc->sc_txint_mask;
901 
902 		if (rxstatus) {
903 			/* Grab new any new packets. */
904 			ae_rxintr(sc);
905 
906 			if (rxstatus & STATUS_RU) {
907 				printf("%s: receive ring overrun\n",
908 				    sc->sc_dev.dv_xname);
909 				/* Get the receive process going again. */
910 				AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
911 				AE_BARRIER(sc);
912 				break;
913 			}
914 		}
915 
916 		if (txstatus) {
917 			/* Sweep up transmit descriptors. */
918 			ae_txintr(sc);
919 
920 			if (txstatus & STATUS_TJT)
921 				printf("%s: transmit jabber timeout\n",
922 				    sc->sc_dev.dv_xname);
923 
924 			if (txstatus & STATUS_UNF) {
925 				/*
926 				 * Increase our transmit threshold if
927 				 * another is available.
928 				 */
929 				txthresh = sc->sc_txthresh + 1;
930 				if (ae_txthresh[txthresh].txth_name != NULL) {
931 					uint32_t opmode;
932 					/* Idle the transmit process. */
933 					opmode = AE_READ(sc, CSR_OPMODE);
934 					ae_idle(sc, OPMODE_ST);
935 
936 					sc->sc_txthresh = txthresh;
937 					opmode &=
938 					    ~(OPMODE_TR|OPMODE_SF);
939 					opmode |=
940 					    ae_txthresh[txthresh].txth_opmode;
941 					printf("%s: transmit underrun; new "
942 					    "threshold: %s\n",
943 					    sc->sc_dev.dv_xname,
944 					    ae_txthresh[txthresh].txth_name);
945 
946 					/*
947 					 * Set the new threshold and restart
948 					 * the transmit process.
949 					 */
950 					AE_WRITE(sc, CSR_OPMODE, opmode);
951 					AE_BARRIER(sc);
952 				}
953 					/*
954 					 * XXX Log every Nth underrun from
955 					 * XXX now on?
956 					 */
957 			}
958 		}
959 
960 		if (status & (STATUS_TPS|STATUS_RPS)) {
961 			if (status & STATUS_TPS)
962 				printf("%s: transmit process stopped\n",
963 				    sc->sc_dev.dv_xname);
964 			if (status & STATUS_RPS)
965 				printf("%s: receive process stopped\n",
966 				    sc->sc_dev.dv_xname);
967 			(void) ae_init(ifp);
968 			break;
969 		}
970 
971 		if (status & STATUS_SE) {
972 			const char *str;
973 
974 			if (status & STATUS_TX_ABORT)
975 				str = "tx abort";
976 			else if (status & STATUS_RX_ABORT)
977 				str = "rx abort";
978 			else
979 				str = "unknown error";
980 
981 			printf("%s: fatal system error: %s\n",
982 			    sc->sc_dev.dv_xname, str);
983 			(void) ae_init(ifp);
984 			break;
985 		}
986 
987 		/*
988 		 * Not handled:
989 		 *
990 		 *	Transmit buffer unavailable -- normal
991 		 *	condition, nothing to do, really.
992 		 *
993 		 *	General purpose timer experied -- we don't
994 		 *	use the general purpose timer.
995 		 *
996 		 *	Early receive interrupt -- not available on
997 		 *	all chips, we just use RI.  We also only
998 		 *	use single-segment receive DMA, so this
999 		 *	is mostly useless.
1000 		 */
1001 	}
1002 
1003 	/* Try to get more packets going. */
1004 	ae_start(ifp);
1005 
1006 #if NRND > 0
1007 	if (handled)
1008 		rnd_add_uint32(&sc->sc_rnd_source, status);
1009 #endif
1010 	return (handled);
1011 }
1012 
1013 /*
1014  * ae_rxintr:
1015  *
1016  *	Helper; handle receive interrupts.
1017  */
1018 static void
1019 ae_rxintr(struct ae_softc *sc)
1020 {
1021 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1022 	struct ether_header *eh;
1023 	struct ae_rxsoft *rxs;
1024 	struct mbuf *m;
1025 	u_int32_t rxstat;
1026 	int i, len;
1027 
1028 	for (i = sc->sc_rxptr;; i = AE_NEXTRX(i)) {
1029 		rxs = &sc->sc_rxsoft[i];
1030 
1031 		AE_CDRXSYNC(sc, i,
1032 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1033 
1034 		rxstat = sc->sc_rxdescs[i].ad_status;
1035 
1036 		if (rxstat & ADSTAT_OWN) {
1037 			/*
1038 			 * We have processed all of the receive buffers.
1039 			 */
1040 			break;
1041 		}
1042 
1043 		/*
1044 		 * If any collisions were seen on the wire, count one.
1045 		 */
1046 		if (rxstat & ADSTAT_Rx_CS)
1047 			ifp->if_collisions++;
1048 
1049 		/*
1050 		 * If an error occurred, update stats, clear the status
1051 		 * word, and leave the packet buffer in place.  It will
1052 		 * simply be reused the next time the ring comes around.
1053 	 	 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
1054 		 * error.
1055 		 */
1056 		if (rxstat & ADSTAT_ES &&
1057 		    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
1058 		     (rxstat & (ADSTAT_Rx_DE | ADSTAT_Rx_RF |
1059 				ADSTAT_Rx_DB | ADSTAT_Rx_CE)) != 0)) {
1060 #define	PRINTERR(bit, str)						\
1061 			if (rxstat & (bit))				\
1062 				printf("%s: receive error: %s\n",	\
1063 				    sc->sc_dev.dv_xname, str)
1064 			ifp->if_ierrors++;
1065 			PRINTERR(ADSTAT_Rx_DE, "descriptor error");
1066 			PRINTERR(ADSTAT_Rx_RF, "runt frame");
1067 			PRINTERR(ADSTAT_Rx_TL, "frame too long");
1068 			PRINTERR(ADSTAT_Rx_RE, "MII error");
1069 			PRINTERR(ADSTAT_Rx_DB, "dribbling bit");
1070 			PRINTERR(ADSTAT_Rx_CE, "CRC error");
1071 #undef PRINTERR
1072 			AE_INIT_RXDESC(sc, i);
1073 			continue;
1074 		}
1075 
1076 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1077 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1078 
1079 		/*
1080 		 * No errors; receive the packet.  Note the chip
1081 		 * includes the CRC with every packet.
1082 		 */
1083 		len = ADSTAT_Rx_LENGTH(rxstat) - ETHER_CRC_LEN;
1084 
1085 		/*
1086 		 * XXX: the Atheros part can align on half words.  what
1087 		 * is the performance implication of this?  Probably
1088 		 * minimal, and we should use it...
1089 		 */
1090 #ifdef __NO_STRICT_ALIGNMENT
1091 		/*
1092 		 * Allocate a new mbuf cluster.  If that fails, we are
1093 		 * out of memory, and must drop the packet and recycle
1094 		 * the buffer that's already attached to this descriptor.
1095 		 */
1096 		m = rxs->rxs_mbuf;
1097 		if (ae_add_rxbuf(sc, i) != 0) {
1098 			ifp->if_ierrors++;
1099 			AE_INIT_RXDESC(sc, i);
1100 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1101 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1102 			continue;
1103 		}
1104 #else
1105 		/*
1106 		 * The chip's receive buffers must be 4-byte aligned.
1107 		 * But this means that the data after the Ethernet header
1108 		 * is misaligned.  We must allocate a new buffer and
1109 		 * copy the data, shifted forward 2 bytes.
1110 		 */
1111 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1112 		if (m == NULL) {
1113  dropit:
1114 			ifp->if_ierrors++;
1115 			AE_INIT_RXDESC(sc, i);
1116 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1117 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1118 			continue;
1119 		}
1120 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1121 		if (len > (MHLEN - 2)) {
1122 			MCLGET(m, M_DONTWAIT);
1123 			if ((m->m_flags & M_EXT) == 0) {
1124 				m_freem(m);
1125 				goto dropit;
1126 			}
1127 		}
1128 		m->m_data += 2;
1129 
1130 		/*
1131 		 * Note that we use clusters for incoming frames, so the
1132 		 * buffer is virtually contiguous.
1133 		 */
1134 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
1135 
1136 		/* Allow the receive descriptor to continue using its mbuf. */
1137 		AE_INIT_RXDESC(sc, i);
1138 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1139 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1140 #endif /* __NO_STRICT_ALIGNMENT */
1141 
1142 		ifp->if_ipackets++;
1143 		eh = mtod(m, struct ether_header *);
1144 		m->m_pkthdr.rcvif = ifp;
1145 		m->m_pkthdr.len = m->m_len = len;
1146 
1147 		/*
1148 		 * Pass this up to any BPF listeners, but only
1149 		 * pass it up the stack if its for us.
1150 		 */
1151 		if (ifp->if_bpf)
1152 			bpf_ops->bpf_mtap(ifp->if_bpf, m);
1153 
1154 		/* Pass it on. */
1155 		(*ifp->if_input)(ifp, m);
1156 	}
1157 
1158 	/* Update the receive pointer. */
1159 	sc->sc_rxptr = i;
1160 }
1161 
1162 /*
1163  * ae_txintr:
1164  *
1165  *	Helper; handle transmit interrupts.
1166  */
1167 static void
1168 ae_txintr(struct ae_softc *sc)
1169 {
1170 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1171 	struct ae_txsoft *txs;
1172 	u_int32_t txstat;
1173 
1174 	DPRINTF(sc, ("%s: ae_txintr: sc_flags 0x%08x\n",
1175 	    sc->sc_dev.dv_xname, sc->sc_flags));
1176 
1177 	ifp->if_flags &= ~IFF_OACTIVE;
1178 
1179 	/*
1180 	 * Go through our Tx list and free mbufs for those
1181 	 * frames that have been transmitted.
1182 	 */
1183 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1184 		AE_CDTXSYNC(sc, txs->txs_lastdesc,
1185 		    txs->txs_ndescs,
1186 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1187 
1188 #ifdef AE_DEBUG
1189 		if (ifp->if_flags & IFF_DEBUG) {
1190 			int i;
1191 			printf("    txsoft %p transmit chain:\n", txs);
1192 			for (i = txs->txs_firstdesc;; i = AE_NEXTTX(i)) {
1193 				printf("     descriptor %d:\n", i);
1194 				printf("       ad_status:   0x%08x\n",
1195 				    sc->sc_txdescs[i].ad_status);
1196 				printf("       ad_ctl:      0x%08x\n",
1197 				    sc->sc_txdescs[i].ad_ctl);
1198 				printf("       ad_bufaddr1: 0x%08x\n",
1199 				    sc->sc_txdescs[i].ad_bufaddr1);
1200 				printf("       ad_bufaddr2: 0x%08x\n",
1201 				    sc->sc_txdescs[i].ad_bufaddr2);
1202 				if (i == txs->txs_lastdesc)
1203 					break;
1204 			}
1205 		}
1206 #endif
1207 
1208 		txstat = sc->sc_txdescs[txs->txs_lastdesc].ad_status;
1209 		if (txstat & ADSTAT_OWN)
1210 			break;
1211 
1212 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1213 
1214 		sc->sc_txfree += txs->txs_ndescs;
1215 
1216 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1217 		    0, txs->txs_dmamap->dm_mapsize,
1218 		    BUS_DMASYNC_POSTWRITE);
1219 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1220 		m_freem(txs->txs_mbuf);
1221 		txs->txs_mbuf = NULL;
1222 
1223 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1224 
1225 		/*
1226 		 * Check for errors and collisions.
1227 		 */
1228 #ifdef AE_STATS
1229 		if (txstat & ADSTAT_Tx_UF)
1230 			sc->sc_stats.ts_tx_uf++;
1231 		if (txstat & ADSTAT_Tx_TO)
1232 			sc->sc_stats.ts_tx_to++;
1233 		if (txstat & ADSTAT_Tx_EC)
1234 			sc->sc_stats.ts_tx_ec++;
1235 		if (txstat & ADSTAT_Tx_LC)
1236 			sc->sc_stats.ts_tx_lc++;
1237 #endif
1238 
1239 		if (txstat & (ADSTAT_Tx_UF|ADSTAT_Tx_TO))
1240 			ifp->if_oerrors++;
1241 
1242 		if (txstat & ADSTAT_Tx_EC)
1243 			ifp->if_collisions += 16;
1244 		else
1245 			ifp->if_collisions += ADSTAT_Tx_COLLISIONS(txstat);
1246 		if (txstat & ADSTAT_Tx_LC)
1247 			ifp->if_collisions++;
1248 
1249 		ifp->if_opackets++;
1250 	}
1251 
1252 	/*
1253 	 * If there are no more pending transmissions, cancel the watchdog
1254 	 * timer.
1255 	 */
1256 	if (txs == NULL)
1257 		ifp->if_timer = 0;
1258 }
1259 
1260 #ifdef AE_STATS
1261 void
1262 ae_print_stats(struct ae_softc *sc)
1263 {
1264 
1265 	printf("%s: tx_uf %lu, tx_to %lu, tx_ec %lu, tx_lc %lu\n",
1266 	    sc->sc_dev.dv_xname,
1267 	    sc->sc_stats.ts_tx_uf, sc->sc_stats.ts_tx_to,
1268 	    sc->sc_stats.ts_tx_ec, sc->sc_stats.ts_tx_lc);
1269 }
1270 #endif
1271 
1272 /*
1273  * ae_reset:
1274  *
1275  *	Perform a soft reset on the chip.
1276  */
1277 void
1278 ae_reset(struct ae_softc *sc)
1279 {
1280 	int i;
1281 
1282 	AE_WRITE(sc, CSR_BUSMODE, BUSMODE_SWR);
1283 	AE_BARRIER(sc);
1284 
1285 	/*
1286 	 * The chip doesn't take itself out of reset automatically.
1287 	 * We need to do so after 2us.
1288 	 */
1289 	delay(10);
1290 	AE_WRITE(sc, CSR_BUSMODE, 0);
1291 	AE_BARRIER(sc);
1292 
1293 	for (i = 0; i < 1000; i++) {
1294 		/*
1295 		 * Wait a bit for the reset to complete before peeking
1296 		 * at the chip again.
1297 		 */
1298 		delay(10);
1299 		if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR) == 0)
1300 			break;
1301 	}
1302 
1303 	if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR))
1304 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1305 
1306 	delay(1000);
1307 }
1308 
1309 /*
1310  * ae_init:		[ ifnet interface function ]
1311  *
1312  *	Initialize the interface.  Must be called at splnet().
1313  */
1314 static int
1315 ae_init(struct ifnet *ifp)
1316 {
1317 	struct ae_softc *sc = ifp->if_softc;
1318 	struct ae_txsoft *txs;
1319 	struct ae_rxsoft *rxs;
1320 	const uint8_t *enaddr;
1321 	int i, error = 0;
1322 
1323 	if ((error = ae_enable(sc)) != 0)
1324 		goto out;
1325 
1326 	/*
1327 	 * Cancel any pending I/O.
1328 	 */
1329 	ae_stop(ifp, 0);
1330 
1331 	/*
1332 	 * Reset the chip to a known state.
1333 	 */
1334 	ae_reset(sc);
1335 
1336 	/*
1337 	 * Initialize the BUSMODE register.
1338 	 */
1339 	AE_WRITE(sc, CSR_BUSMODE,
1340 	    /* XXX: not sure if this is a good thing or not... */
1341 	    //BUSMODE_ALIGN_16B |
1342 	    BUSMODE_BAR | BUSMODE_BLE | BUSMODE_PBL_4LW);
1343 	AE_BARRIER(sc);
1344 
1345 	/*
1346 	 * Initialize the transmit descriptor ring.
1347 	 */
1348 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1349 	for (i = 0; i < AE_NTXDESC; i++) {
1350 		sc->sc_txdescs[i].ad_ctl = 0;
1351 		sc->sc_txdescs[i].ad_bufaddr2 =
1352 		    AE_CDTXADDR(sc, AE_NEXTTX(i));
1353 	}
1354 	sc->sc_txdescs[AE_NTXDESC - 1].ad_ctl |= ADCTL_ER;
1355 	AE_CDTXSYNC(sc, 0, AE_NTXDESC,
1356 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1357 	sc->sc_txfree = AE_NTXDESC;
1358 	sc->sc_txnext = 0;
1359 
1360 	/*
1361 	 * Initialize the transmit job descriptors.
1362 	 */
1363 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1364 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1365 	for (i = 0; i < AE_TXQUEUELEN; i++) {
1366 		txs = &sc->sc_txsoft[i];
1367 		txs->txs_mbuf = NULL;
1368 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1369 	}
1370 
1371 	/*
1372 	 * Initialize the receive descriptor and receive job
1373 	 * descriptor rings.
1374 	 */
1375 	for (i = 0; i < AE_NRXDESC; i++) {
1376 		rxs = &sc->sc_rxsoft[i];
1377 		if (rxs->rxs_mbuf == NULL) {
1378 			if ((error = ae_add_rxbuf(sc, i)) != 0) {
1379 				printf("%s: unable to allocate or map rx "
1380 				    "buffer %d, error = %d\n",
1381 				    sc->sc_dev.dv_xname, i, error);
1382 				/*
1383 				 * XXX Should attempt to run with fewer receive
1384 				 * XXX buffers instead of just failing.
1385 				 */
1386 				ae_rxdrain(sc);
1387 				goto out;
1388 			}
1389 		} else
1390 			AE_INIT_RXDESC(sc, i);
1391 	}
1392 	sc->sc_rxptr = 0;
1393 
1394 	/*
1395 	 * Initialize the interrupt mask and enable interrupts.
1396 	 */
1397 	/* normal interrupts */
1398 	sc->sc_inten =  STATUS_TI | STATUS_TU | STATUS_RI | STATUS_NIS;
1399 
1400 	/* abnormal interrupts */
1401 	sc->sc_inten |= STATUS_TPS | STATUS_TJT | STATUS_UNF |
1402 	    STATUS_RU | STATUS_RPS | STATUS_SE | STATUS_AIS;
1403 
1404 	sc->sc_rxint_mask = STATUS_RI|STATUS_RU;
1405 	sc->sc_txint_mask = STATUS_TI|STATUS_UNF|STATUS_TJT;
1406 
1407 	sc->sc_rxint_mask &= sc->sc_inten;
1408 	sc->sc_txint_mask &= sc->sc_inten;
1409 
1410 	AE_WRITE(sc, CSR_INTEN, sc->sc_inten);
1411 	AE_WRITE(sc, CSR_STATUS, 0xffffffff);
1412 
1413 	/*
1414 	 * Give the transmit and receive rings to the chip.
1415 	 */
1416 	AE_WRITE(sc, CSR_TXLIST, AE_CDTXADDR(sc, sc->sc_txnext));
1417 	AE_WRITE(sc, CSR_RXLIST, AE_CDRXADDR(sc, sc->sc_rxptr));
1418 	AE_BARRIER(sc);
1419 
1420 	/*
1421 	 * Set the station address.
1422 	 */
1423 	enaddr = CLLADDR(ifp->if_sadl);
1424 	AE_WRITE(sc, CSR_MACHI, enaddr[5] << 16 | enaddr[4]);
1425 	AE_WRITE(sc, CSR_MACLO, enaddr[3] << 24 | enaddr[2] << 16 |
1426 		enaddr[1] << 8 | enaddr[0]);
1427 	AE_BARRIER(sc);
1428 
1429 	/*
1430 	 * Set the receive filter.  This will start the transmit and
1431 	 * receive processes.
1432 	 */
1433 	ae_filter_setup(sc);
1434 
1435 	/*
1436 	 * Set the current media.
1437 	 */
1438 	if ((error = ether_mediachange(ifp)) != 0)
1439 		goto out;
1440 
1441 	/*
1442 	 * Start the mac.
1443 	 */
1444 	AE_SET(sc, CSR_MACCTL, MACCTL_RE | MACCTL_TE);
1445 	AE_BARRIER(sc);
1446 
1447 	/*
1448 	 * Write out the opmode.
1449 	 */
1450 	AE_WRITE(sc, CSR_OPMODE, OPMODE_SR | OPMODE_ST |
1451 	    ae_txthresh[sc->sc_txthresh].txth_opmode);
1452 	/*
1453 	 * Start the receive process.
1454 	 */
1455 	AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
1456 	AE_BARRIER(sc);
1457 
1458 	if (sc->sc_tick != NULL) {
1459 		/* Start the one second clock. */
1460 		callout_reset(&sc->sc_tick_callout, hz >> 3, sc->sc_tick, sc);
1461 	}
1462 
1463 	/*
1464 	 * Note that the interface is now running.
1465 	 */
1466 	ifp->if_flags |= IFF_RUNNING;
1467 	ifp->if_flags &= ~IFF_OACTIVE;
1468 	sc->sc_if_flags = ifp->if_flags;
1469 
1470  out:
1471 	if (error) {
1472 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1473 		ifp->if_timer = 0;
1474 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1475 	}
1476 	return (error);
1477 }
1478 
1479 /*
1480  * ae_enable:
1481  *
1482  *	Enable the chip.
1483  */
1484 static int
1485 ae_enable(struct ae_softc *sc)
1486 {
1487 
1488 	if (AE_IS_ENABLED(sc) == 0) {
1489 		sc->sc_ih = arbus_intr_establish(sc->sc_cirq, sc->sc_mirq,
1490 		    ae_intr, sc);
1491 		if (sc->sc_ih == NULL) {
1492 			printf("%s: unable to establish interrupt\n",
1493 			    sc->sc_dev.dv_xname);
1494 			return (EIO);
1495 		}
1496 		sc->sc_flags |= AE_ENABLED;
1497 	}
1498 	return (0);
1499 }
1500 
1501 /*
1502  * ae_disable:
1503  *
1504  *	Disable the chip.
1505  */
1506 static void
1507 ae_disable(struct ae_softc *sc)
1508 {
1509 
1510 	if (AE_IS_ENABLED(sc)) {
1511 		arbus_intr_disestablish(sc->sc_ih);
1512 		sc->sc_flags &= ~AE_ENABLED;
1513 	}
1514 }
1515 
1516 /*
1517  * ae_power:
1518  *
1519  *	Power management (suspend/resume) hook.
1520  */
1521 static void
1522 ae_power(int why, void *arg)
1523 {
1524 	struct ae_softc *sc = arg;
1525 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1526 	int s;
1527 
1528 	printf("power called: %d, %x\n", why, (uint32_t)arg);
1529 	s = splnet();
1530 	switch (why) {
1531 	case PWR_STANDBY:
1532 		/* do nothing! */
1533 		break;
1534 	case PWR_SUSPEND:
1535 		ae_stop(ifp, 0);
1536 		ae_disable(sc);
1537 		break;
1538 	case PWR_RESUME:
1539 		if (ifp->if_flags & IFF_UP) {
1540 			ae_enable(sc);
1541 			ae_init(ifp);
1542 		}
1543 		break;
1544 	case PWR_SOFTSUSPEND:
1545 	case PWR_SOFTSTANDBY:
1546 	case PWR_SOFTRESUME:
1547 		break;
1548 	}
1549 	splx(s);
1550 }
1551 
1552 /*
1553  * ae_rxdrain:
1554  *
1555  *	Drain the receive queue.
1556  */
1557 static void
1558 ae_rxdrain(struct ae_softc *sc)
1559 {
1560 	struct ae_rxsoft *rxs;
1561 	int i;
1562 
1563 	for (i = 0; i < AE_NRXDESC; i++) {
1564 		rxs = &sc->sc_rxsoft[i];
1565 		if (rxs->rxs_mbuf != NULL) {
1566 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1567 			m_freem(rxs->rxs_mbuf);
1568 			rxs->rxs_mbuf = NULL;
1569 		}
1570 	}
1571 }
1572 
1573 /*
1574  * ae_stop:		[ ifnet interface function ]
1575  *
1576  *	Stop transmission on the interface.
1577  */
1578 static void
1579 ae_stop(struct ifnet *ifp, int disable)
1580 {
1581 	struct ae_softc *sc = ifp->if_softc;
1582 	struct ae_txsoft *txs;
1583 
1584 	if (sc->sc_tick != NULL) {
1585 		/* Stop the one second clock. */
1586 		callout_stop(&sc->sc_tick_callout);
1587 	}
1588 
1589 	/* Down the MII. */
1590 	mii_down(&sc->sc_mii);
1591 
1592 	/* Disable interrupts. */
1593 	AE_WRITE(sc, CSR_INTEN, 0);
1594 
1595 	/* Stop the transmit and receive processes. */
1596 	AE_WRITE(sc, CSR_OPMODE, 0);
1597 	AE_WRITE(sc, CSR_RXLIST, 0);
1598 	AE_WRITE(sc, CSR_TXLIST, 0);
1599 	AE_CLR(sc, CSR_MACCTL, MACCTL_TE | MACCTL_RE);
1600 	AE_BARRIER(sc);
1601 
1602 	/*
1603 	 * Release any queued transmit buffers.
1604 	 */
1605 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1606 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1607 		if (txs->txs_mbuf != NULL) {
1608 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1609 			m_freem(txs->txs_mbuf);
1610 			txs->txs_mbuf = NULL;
1611 		}
1612 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1613 	}
1614 
1615 	/*
1616 	 * Mark the interface down and cancel the watchdog timer.
1617 	 */
1618 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1619 	sc->sc_if_flags = ifp->if_flags;
1620 	ifp->if_timer = 0;
1621 
1622 	if (disable) {
1623 		ae_rxdrain(sc);
1624 		ae_disable(sc);
1625 	}
1626 
1627 	/*
1628 	 * Reset the chip (needed on some flavors to actually disable it).
1629 	 */
1630 	ae_reset(sc);
1631 }
1632 
1633 /*
1634  * ae_add_rxbuf:
1635  *
1636  *	Add a receive buffer to the indicated descriptor.
1637  */
1638 static int
1639 ae_add_rxbuf(struct ae_softc *sc, int idx)
1640 {
1641 	struct ae_rxsoft *rxs = &sc->sc_rxsoft[idx];
1642 	struct mbuf *m;
1643 	int error;
1644 
1645 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1646 	if (m == NULL)
1647 		return (ENOBUFS);
1648 
1649 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1650 	MCLGET(m, M_DONTWAIT);
1651 	if ((m->m_flags & M_EXT) == 0) {
1652 		m_freem(m);
1653 		return (ENOBUFS);
1654 	}
1655 
1656 	if (rxs->rxs_mbuf != NULL)
1657 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1658 
1659 	rxs->rxs_mbuf = m;
1660 
1661 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1662 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1663 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1664 	if (error) {
1665 		printf("%s: can't load rx DMA map %d, error = %d\n",
1666 		    sc->sc_dev.dv_xname, idx, error);
1667 		panic("ae_add_rxbuf");	/* XXX */
1668 	}
1669 
1670 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1671 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1672 
1673 	AE_INIT_RXDESC(sc, idx);
1674 
1675 	return (0);
1676 }
1677 
1678 /*
1679  * ae_filter_setup:
1680  *
1681  *	Set the chip's receive filter.
1682  */
1683 static void
1684 ae_filter_setup(struct ae_softc *sc)
1685 {
1686 	struct ethercom *ec = &sc->sc_ethercom;
1687 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1688 	struct ether_multi *enm;
1689 	struct ether_multistep step;
1690 	uint32_t hash, mchash[2];
1691 	uint32_t macctl = 0;
1692 
1693 	/*
1694 	 * If the chip is running, we need to reset the interface,
1695 	 * and will revisit here (with IFF_RUNNING) clear.  The
1696 	 * chip seems to really not like to have its multicast
1697 	 * filter programmed without a reset.
1698 	 */
1699 	if (ifp->if_flags & IFF_RUNNING) {
1700 		(void) ae_init(ifp);
1701 		return;
1702 	}
1703 
1704 	DPRINTF(sc, ("%s: ae_filter_setup: sc_flags 0x%08x\n",
1705 	    sc->sc_dev.dv_xname, sc->sc_flags));
1706 
1707 	macctl = AE_READ(sc, CSR_MACCTL);
1708 	macctl &= ~(MACCTL_PR | MACCTL_PM);
1709 	macctl |= MACCTL_HASH;
1710 	macctl |= MACCTL_HBD;
1711 	macctl |= MACCTL_PR;
1712 
1713 	if (ifp->if_flags & IFF_PROMISC) {
1714 		macctl |= MACCTL_PR;
1715 		goto allmulti;
1716 	}
1717 
1718 	mchash[0] = mchash[1] = 0;
1719 
1720 	ETHER_FIRST_MULTI(step, ec, enm);
1721 	while (enm != NULL) {
1722 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1723 			/*
1724 			 * We must listen to a range of multicast addresses.
1725 			 * For now, just accept all multicasts, rather than
1726 			 * trying to set only those filter bits needed to match
1727 			 * the range.  (At this time, the only use of address
1728 			 * ranges is for IP multicast routing, for which the
1729 			 * range is big enough to require all bits set.)
1730 			 */
1731 			goto allmulti;
1732 		}
1733 
1734 		/* Verify whether we use big or little endian hashes */
1735 		hash = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3f;
1736 		mchash[hash >> 5] |= 1 << (hash & 0x1f);
1737 		ETHER_NEXT_MULTI(step, enm);
1738 	}
1739 	ifp->if_flags &= ~IFF_ALLMULTI;
1740 	goto setit;
1741 
1742  allmulti:
1743 	ifp->if_flags |= IFF_ALLMULTI;
1744 	mchash[0] = mchash[1] = 0xffffffff;
1745 	macctl |= MACCTL_PM;
1746 
1747  setit:
1748 	AE_WRITE(sc, CSR_HTHI, mchash[0]);
1749 	AE_WRITE(sc, CSR_HTHI, mchash[1]);
1750 
1751 	AE_WRITE(sc, CSR_MACCTL, macctl);
1752 	AE_BARRIER(sc);
1753 
1754 	DPRINTF(sc, ("%s: ae_filter_setup: returning %x\n",
1755 		    sc->sc_dev.dv_xname, macctl));
1756 }
1757 
1758 /*
1759  * ae_idle:
1760  *
1761  *	Cause the transmit and/or receive processes to go idle.
1762  */
1763 void
1764 ae_idle(struct ae_softc *sc, u_int32_t bits)
1765 {
1766 	static const char * const txstate_names[] = {
1767 		"STOPPED",
1768 		"RUNNING - FETCH",
1769 		"RUNNING - WAIT",
1770 		"RUNNING - READING",
1771 		"-- RESERVED --",
1772 		"RUNNING - SETUP",
1773 		"SUSPENDED",
1774 		"RUNNING - CLOSE",
1775 	};
1776 	static const char * const rxstate_names[] = {
1777 		"STOPPED",
1778 		"RUNNING - FETCH",
1779 		"RUNNING - CHECK",
1780 		"RUNNING - WAIT",
1781 		"SUSPENDED",
1782 		"RUNNING - CLOSE",
1783 		"RUNNING - FLUSH",
1784 		"RUNNING - QUEUE",
1785 	};
1786 
1787 	u_int32_t csr, ackmask = 0;
1788 	int i;
1789 
1790 	if (bits & OPMODE_ST)
1791 		ackmask |= STATUS_TPS;
1792 
1793 	if (bits & OPMODE_SR)
1794 		ackmask |= STATUS_RPS;
1795 
1796 	AE_CLR(sc, CSR_OPMODE, bits);
1797 
1798 	for (i = 0; i < 1000; i++) {
1799 		if (AE_ISSET(sc, CSR_STATUS, ackmask) == ackmask)
1800 			break;
1801 		delay(10);
1802 	}
1803 
1804 	csr = AE_READ(sc, CSR_STATUS);
1805 	if ((csr & ackmask) != ackmask) {
1806 		if ((bits & OPMODE_ST) != 0 && (csr & STATUS_TPS) == 0 &&
1807 		    (csr & STATUS_TS) != STATUS_TS_STOPPED) {
1808 			printf("%s: transmit process failed to idle: "
1809 			    "state %s\n", sc->sc_dev.dv_xname,
1810 			    txstate_names[(csr & STATUS_TS) >> 20]);
1811 		}
1812 		if ((bits & OPMODE_SR) != 0 && (csr & STATUS_RPS) == 0 &&
1813 		    (csr & STATUS_RS) != STATUS_RS_STOPPED) {
1814 			printf("%s: receive process failed to idle: "
1815 			    "state %s\n", sc->sc_dev.dv_xname,
1816 			    rxstate_names[(csr & STATUS_RS) >> 17]);
1817 		}
1818 	}
1819 }
1820 
1821 /*****************************************************************************
1822  * Support functions for MII-attached media.
1823  *****************************************************************************/
1824 
1825 /*
1826  * ae_mii_tick:
1827  *
1828  *	One second timer, used to tick the MII.
1829  */
1830 static void
1831 ae_mii_tick(void *arg)
1832 {
1833 	struct ae_softc *sc = arg;
1834 	int s;
1835 
1836 	if (!device_is_active(&sc->sc_dev))
1837 		return;
1838 
1839 	s = splnet();
1840 	mii_tick(&sc->sc_mii);
1841 	splx(s);
1842 
1843 	callout_reset(&sc->sc_tick_callout, hz, sc->sc_tick, sc);
1844 }
1845 
1846 /*
1847  * ae_mii_statchg:	[mii interface function]
1848  *
1849  *	Callback from PHY when media changes.
1850  */
1851 static void
1852 ae_mii_statchg(device_t self)
1853 {
1854 	struct ae_softc *sc = device_private(self);
1855 	uint32_t	macctl, flowc;
1856 
1857 	//opmode = AE_READ(sc, CSR_OPMODE);
1858 	macctl = AE_READ(sc, CSR_MACCTL);
1859 
1860 	/* XXX: do we need to do this? */
1861 	/* Idle the transmit and receive processes. */
1862 	//ae_idle(sc, OPMODE_ST|OPMODE_SR);
1863 
1864 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
1865 		flowc = FLOWC_FCE;
1866 		macctl &= ~MACCTL_DRO;
1867 		macctl |= MACCTL_FDX;
1868 	} else {
1869 		flowc = 0;	/* cannot do flow control in HDX */
1870 		macctl |= MACCTL_DRO;
1871 		macctl &= ~MACCTL_FDX;
1872 	}
1873 
1874 	AE_WRITE(sc, CSR_FLOWC, flowc);
1875 	AE_WRITE(sc, CSR_MACCTL, macctl);
1876 
1877 	/* restore operational mode */
1878 	//AE_WRITE(sc, CSR_OPMODE, opmode);
1879 	AE_BARRIER(sc);
1880 }
1881 
1882 /*
1883  * ae_mii_readreg:
1884  *
1885  *	Read a PHY register.
1886  */
1887 static int
1888 ae_mii_readreg(device_t self, int phy, int reg)
1889 {
1890 	struct ae_softc	*sc = device_private(self);
1891 	uint32_t	addr;
1892 	int		i;
1893 
1894 	addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT);
1895 	AE_WRITE(sc, CSR_MIIADDR, addr);
1896 	AE_BARRIER(sc);
1897 	for (i = 0; i < 100000000; i++) {
1898 		if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1899 			break;
1900 	}
1901 
1902 	return (AE_READ(sc, CSR_MIIDATA) & 0xffff);
1903 }
1904 
1905 /*
1906  * ae_mii_writereg:
1907  *
1908  *	Write a PHY register.
1909  */
1910 static void
1911 ae_mii_writereg(device_t self, int phy, int reg, int val)
1912 {
1913 	struct ae_softc *sc = device_private(self);
1914 	uint32_t	addr;
1915 	int		i;
1916 
1917 	/* write the data register */
1918 	AE_WRITE(sc, CSR_MIIDATA, val);
1919 
1920 	/* write the address to latch it in */
1921 	addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT) |
1922 	    MIIADDR_WRITE;
1923 	AE_WRITE(sc, CSR_MIIADDR, addr);
1924 	AE_BARRIER(sc);
1925 
1926 	for (i = 0; i < 100000000; i++) {
1927 		if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1928 			break;
1929 	}
1930 }
1931