1 /* $NetBSD: gemini_machdep.c,v 1.22 2013/08/18 15:58:20 matt Exp $ */ 2 3 /* adapted from: 4 * NetBSD: sdp24xx_machdep.c,v 1.4 2008/08/27 11:03:10 matt Exp 5 */ 6 7 /* 8 * Machine dependent functions for kernel setup for TI OSK5912 board. 9 * Based on lubbock_machdep.c which in turn was based on iq80310_machhdep.c 10 * 11 * Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved. 12 * Written by Hiroyuki Bessho for Genetec Corporation. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. The name of Genetec Corporation may not be used to endorse or 23 * promote products derived from this software without specific prior 24 * written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 * 38 * Copyright (c) 2001 Wasabi Systems, Inc. 39 * All rights reserved. 40 * 41 * Written by Jason R. Thorpe for Wasabi Systems, Inc. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed for the NetBSD Project by 54 * Wasabi Systems, Inc. 55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 56 * or promote products derived from this software without specific prior 57 * written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 69 * POSSIBILITY OF SUCH DAMAGE. 70 * 71 * Copyright (c) 1997,1998 Mark Brinicombe. 72 * Copyright (c) 1997,1998 Causality Limited. 73 * All rights reserved. 74 * 75 * Redistribution and use in source and binary forms, with or without 76 * modification, are permitted provided that the following conditions 77 * are met: 78 * 1. Redistributions of source code must retain the above copyright 79 * notice, this list of conditions and the following disclaimer. 80 * 2. Redistributions in binary form must reproduce the above copyright 81 * notice, this list of conditions and the following disclaimer in the 82 * documentation and/or other materials provided with the distribution. 83 * 3. All advertising materials mentioning features or use of this software 84 * must display the following acknowledgement: 85 * This product includes software developed by Mark Brinicombe 86 * for the NetBSD Project. 87 * 4. The name of the company nor the name of the author may be used to 88 * endorse or promote products derived from this software without specific 89 * prior written permission. 90 * 91 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 92 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 93 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 94 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 95 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 96 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 97 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 98 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 99 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 100 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 101 * SUCH DAMAGE. 102 * 103 * Copyright (c) 2007 Microsoft 104 * All rights reserved. 105 * 106 * Redistribution and use in source and binary forms, with or without 107 * modification, are permitted provided that the following conditions 108 * are met: 109 * 1. Redistributions of source code must retain the above copyright 110 * notice, this list of conditions and the following disclaimer. 111 * 2. Redistributions in binary form must reproduce the above copyright 112 * notice, this list of conditions and the following disclaimer in the 113 * documentation and/or other materials provided with the distribution. 114 * 3. All advertising materials mentioning features or use of this software 115 * must display the following acknowledgement: 116 * This product includes software developed by Microsoft 117 * 118 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 119 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 120 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 121 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT, 122 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 123 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 124 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 125 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 126 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 127 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 128 * SUCH DAMAGE. 129 */ 130 131 #include <sys/cdefs.h> 132 __KERNEL_RCSID(0, "$NetBSD: gemini_machdep.c,v 1.22 2013/08/18 15:58:20 matt Exp $"); 133 134 #include "opt_machdep.h" 135 #include "opt_ddb.h" 136 #include "opt_kgdb.h" 137 #include "opt_ipkdb.h" 138 #include "opt_md.h" 139 #include "opt_com.h" 140 #include "opt_gemini.h" 141 #include "geminiwdt.h" 142 #include "geminiipm.h" 143 144 #include <sys/param.h> 145 #include <sys/device.h> 146 #include <sys/systm.h> 147 #include <sys/kernel.h> 148 #include <sys/exec.h> 149 #include <sys/proc.h> 150 #include <sys/msgbuf.h> 151 #include <sys/reboot.h> 152 #include <sys/termios.h> 153 #include <sys/ksyms.h> 154 #include <sys/bus.h> 155 #include <sys/cpu.h> 156 #include <sys/conf.h> 157 158 #include <uvm/uvm_extern.h> 159 160 #include <dev/cons.h> 161 #include <dev/md.h> 162 163 #include <machine/db_machdep.h> 164 #include <ddb/db_sym.h> 165 #include <ddb/db_extern.h> 166 #ifdef KGDB 167 #include <sys/kgdb.h> 168 #endif 169 170 #include <arm/locore.h> 171 #include <arm/undefined.h> 172 173 #include <arm/arm32/machdep.h> 174 175 #include <machine/bootconfig.h> 176 177 #include <arm/gemini/gemini_reg.h> 178 #include <arm/gemini/gemini_var.h> 179 #include <arm/gemini/gemini_wdtvar.h> 180 #include <arm/gemini/gemini_com.h> 181 #include <arm/gemini/lpc_com.h> 182 183 #include <evbarm/gemini/gemini.h> 184 185 #if defined(VERBOSE_INIT_ARM) 186 # define GEMINI_PUTCHAR(c) gemini_putchar(c) 187 # define GEMINI_PUTHEX(n) gemini_puthex(n) 188 #else /* VERBOSE_INIT_ARM */ 189 # define GEMINI_PUTCHAR(c) 190 # define GEMINI_PUTHEX(n) 191 #endif /* VERBOSE_INIT_ARM */ 192 193 BootConfig bootconfig; /* Boot config storage */ 194 char *boot_args = NULL; 195 char *boot_file = NULL; 196 197 /* Physical address of the beginning of SDRAM. */ 198 paddr_t physical_start; 199 /* Physical address of the first byte after the end of SDRAM. */ 200 paddr_t physical_end; 201 202 /* Same things, but for the free (unused by the kernel) memory. */ 203 static paddr_t physical_freestart, physical_freeend; 204 static u_int free_pages; 205 206 /* Physical address of the message buffer. */ 207 paddr_t msgbufphys; 208 209 extern char KERNEL_BASE_phys[]; 210 extern char KERNEL_BASE_virt[]; 211 extern char etext[], __data_start[], _edata[], __bss_start[], __bss_end__[]; 212 extern char _end[]; 213 214 #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */ 215 #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */ 216 #define KERNEL_PT_KERNEL_NUM 4 217 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM) 218 /* Page tables for mapping kernel VM */ 219 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */ 220 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) 221 222 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS]; 223 224 225 #if (NGEMINIIPM > 0) 226 pv_addr_t ipmq_pt; /* L2 Page table for mapping IPM queues */ 227 #if defined(DEBUG) || 1 228 unsigned long gemini_ipmq_pbase = GEMINI_IPMQ_PBASE; 229 unsigned long gemini_ipmq_vbase = GEMINI_IPMQ_VBASE; 230 #endif /* DEBUG */ 231 #endif /* NGEMINIIPM > 0 */ 232 233 234 /* 235 * Macros to translate between physical and virtual for a subset of the 236 * kernel address space. *Not* for general use. 237 */ 238 #define KERNEL_BASE_PHYS ((paddr_t)&KERNEL_BASE_phys) 239 240 #define KERN_VTOPHYS(va) \ 241 ((paddr_t)((vaddr_t)va - KERNEL_BASE + GEMINI_DRAM_BASE)) 242 #define KERN_PHYSTOV(pa) \ 243 ((vaddr_t)((paddr_t)pa - GEMINI_DRAM_BASE + KERNEL_BASE)) 244 245 /* Prototypes */ 246 247 void gemini_intr_init(bus_space_tag_t); 248 void consinit(void); 249 #ifdef KGDB 250 static void kgdb_port_init(void); 251 #endif 252 253 static void setup_real_page_tables(void); 254 static void init_clocks(void); 255 256 bs_protos(bs_notimpl); 257 258 #include "com.h" 259 #if NCOM > 0 260 #include <dev/ic/comreg.h> 261 #include <dev/ic/comvar.h> 262 #endif 263 264 265 static void gemini_global_reset(void) __attribute__ ((noreturn)); 266 static void gemini_cpu1_start(void); 267 static void gemini_memchk(void); 268 269 static void 270 gemini_global_reset(void) 271 { 272 #if defined(GEMINI_MASTER) || defined(GEMINI_SINGLE) 273 volatile uint32_t *rp; 274 uint32_t r; 275 276 rp = (volatile uint32_t *) 277 (GEMINI_GLOBAL_VBASE + GEMINI_GLOBAL_RESET_CTL); 278 r = *rp; 279 r |= GLOBAL_RESET_GLOBAL; 280 *rp = r; 281 #endif 282 for(;;); 283 /* NOTREACHED */ 284 } 285 286 static void 287 gemini_cpu1_start(void) 288 { 289 #ifdef GEMINI_MASTER 290 volatile uint32_t *rp; 291 uint32_t r; 292 293 rp = (volatile uint32_t *) 294 (GEMINI_GLOBAL_VBASE + GEMINI_GLOBAL_RESET_CTL); 295 r = *rp; 296 r &= ~GLOBAL_RESET_CPU1; 297 *rp = r; 298 #endif 299 } 300 301 static void 302 gemini_memchk(void) 303 { 304 volatile uint32_t *rp; 305 uint32_t r; 306 uint32_t base; 307 uint32_t size; 308 309 rp = (volatile uint32_t *) 310 (GEMINI_DRAMC_VBASE + GEMINI_DRAMC_RMCR); 311 r = *rp; 312 base = (r & DRAMC_RMCR_RMBAR) >> DRAMC_RMCR_RMBAR_SHFT; 313 size = (r & DRAMC_RMCR_RMSZR) >> DRAMC_RMCR_RMSZR_SHFT; 314 #if defined(GEMINI_SINGLE) 315 if (r != 0) 316 panic("%s: RMCR %#x, MEMSIZE %d mismatch\n", 317 __FUNCTION__, r, MEMSIZE); 318 #elif defined(GEMINI_MASTER) 319 if (base != MEMSIZE) 320 panic("%s: RMCR %#x, MEMSIZE %d mismatch\n", 321 __FUNCTION__, r, MEMSIZE); 322 #elif defined(GEMINI_SLAVE) 323 if (size != MEMSIZE) 324 panic("%s: RMCR %#x, MEMSIZE %d mismatch\n", 325 __FUNCTION__, r, MEMSIZE); 326 #endif 327 #if defined(VERBOSE_INIT_ARM) || 1 328 printf("DRAM Remap: base=%dMB, size=%dMB\n", base, size); 329 #endif 330 } 331 332 /* 333 * void cpu_reboot(int howto, char *bootstr) 334 * 335 * Reboots the system 336 * 337 * Deal with any syncing, unmounting, dumping and shutdown hooks, 338 * then reset the CPU. 339 */ 340 void 341 cpu_reboot(int howto, char *bootstr) 342 { 343 extern struct geminitmr_softc *ref_sc; 344 345 #ifdef DIAGNOSTIC 346 /* info */ 347 printf("boot: howto=%08x curproc=%p\n", howto, curproc); 348 #endif 349 350 /* 351 * If we are still cold then hit the air brakes 352 * and crash to earth fast 353 */ 354 if (cold) { 355 doshutdownhooks(); 356 pmf_system_shutdown(boothowto); 357 printf("The operating system has halted.\n"); 358 printf("Please press any key to reboot.\n\n"); 359 cngetc(); 360 printf("rebooting...\n"); 361 if (ref_sc != NULL) 362 delay(2000); /* cnflush(); */ 363 gemini_global_reset(); 364 /*NOTREACHED*/ 365 } 366 367 /* Disable console buffering */ 368 cnpollc(1); 369 370 /* 371 * If RB_NOSYNC was not specified sync the discs. 372 * Note: Unless cold is set to 1 here, syslogd will die during the 373 * unmount. It looks like syslogd is getting woken up only to find 374 * that it cannot page part of the binary in as the filesystem has 375 * been unmounted. 376 */ 377 if (!(howto & RB_NOSYNC)) 378 bootsync(); 379 380 /* Say NO to interrupts */ 381 splhigh(); 382 383 /* Do a dump if requested. */ 384 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) 385 dumpsys(); 386 387 /* Run any shutdown hooks */ 388 doshutdownhooks(); 389 390 pmf_system_shutdown(boothowto); 391 392 /* Make sure IRQ's are disabled */ 393 IRQdisable; 394 395 if (howto & RB_HALT) { 396 printf("The operating system has halted.\n"); 397 printf("Please press any key to reboot.\n\n"); 398 cngetc(); 399 } 400 401 printf("rebooting...\n"); 402 if (ref_sc != NULL) 403 delay(2000); /* cnflush(); */ 404 gemini_global_reset(); 405 /*NOTREACHED*/ 406 } 407 408 /* 409 * Static device mappings. These peripheral registers are mapped at 410 * fixed virtual addresses very early in initarm() so that we can use 411 * them while booting the kernel, and stay at the same address 412 * throughout whole kernel's life time. 413 * 414 * We use this table twice; once with bootstrap page table, and once 415 * with kernel's page table which we build up in initarm(). 416 * 417 * Since we map these registers into the bootstrap page table using 418 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map 419 * registers segment-aligned and segment-rounded in order to avoid 420 * using the 2nd page tables. 421 */ 422 423 #define _A(a) ((a) & ~L1_S_OFFSET) 424 #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1)) 425 426 static const struct pmap_devmap devmap[] = { 427 /* Global regs */ 428 { 429 .pd_va = _A(GEMINI_GLOBAL_VBASE), 430 .pd_pa = _A(GEMINI_GLOBAL_BASE), 431 .pd_size = _S(L1_S_SIZE), 432 .pd_prot = VM_PROT_READ|VM_PROT_WRITE, 433 .pd_cache = PTE_NOCACHE 434 }, 435 436 /* Watchdog */ 437 { 438 .pd_va = _A(GEMINI_WATCHDOG_VBASE), 439 .pd_pa = _A(GEMINI_WATCHDOG_BASE), 440 .pd_size = _S(L1_S_SIZE), 441 .pd_prot = VM_PROT_READ|VM_PROT_WRITE, 442 .pd_cache = PTE_NOCACHE 443 }, 444 445 /* UART */ 446 { 447 .pd_va = _A(GEMINI_UART_VBASE), 448 .pd_pa = _A(GEMINI_UART_BASE), 449 .pd_size = _S(L1_S_SIZE), 450 .pd_prot = VM_PROT_READ|VM_PROT_WRITE, 451 .pd_cache = PTE_NOCACHE 452 }, 453 454 /* LPCHC */ 455 { 456 .pd_va = _A(GEMINI_LPCHC_VBASE), 457 .pd_pa = _A(GEMINI_LPCHC_BASE), 458 .pd_size = _S(L1_S_SIZE), 459 .pd_prot = VM_PROT_READ|VM_PROT_WRITE, 460 .pd_cache = PTE_NOCACHE 461 }, 462 463 /* LPCIO */ 464 { 465 .pd_va = _A(GEMINI_LPCIO_VBASE), 466 .pd_pa = _A(GEMINI_LPCIO_BASE), 467 .pd_size = _S(L1_S_SIZE), 468 .pd_prot = VM_PROT_READ|VM_PROT_WRITE, 469 .pd_cache = PTE_NOCACHE 470 }, 471 472 /* Timers */ 473 { 474 .pd_va = _A(GEMINI_TIMER_VBASE), 475 .pd_pa = _A(GEMINI_TIMER_BASE), 476 .pd_size = _S(L1_S_SIZE), 477 .pd_prot = VM_PROT_READ|VM_PROT_WRITE, 478 .pd_cache = PTE_NOCACHE 479 }, 480 481 /* DRAM Controller */ 482 { 483 .pd_va = _A(GEMINI_DRAMC_VBASE), 484 .pd_pa = _A(GEMINI_DRAMC_BASE), 485 .pd_size = _S(L1_S_SIZE), 486 .pd_prot = VM_PROT_READ|VM_PROT_WRITE, 487 .pd_cache = PTE_NOCACHE 488 }, 489 490 #if defined(MEMORY_DISK_DYNAMIC) 491 /* Ramdisk */ 492 { 493 .pd_va = _A(GEMINI_RAMDISK_VBASE), 494 .pd_pa = _A(GEMINI_RAMDISK_PBASE), 495 .pd_size = _S(GEMINI_RAMDISK_SIZE), 496 .pd_prot = VM_PROT_READ|VM_PROT_WRITE, 497 .pd_cache = PTE_NOCACHE 498 }, 499 #endif 500 501 {0} /* list terminator */ 502 }; 503 504 #undef _A 505 #undef _S 506 507 #ifdef DDB 508 static void gemini_db_trap(int where) 509 { 510 #if NGEMINIWDT > 0 511 static int oldwatchdogstate; 512 513 if (where) { 514 oldwatchdogstate = geminiwdt_enable(0); 515 } else { 516 geminiwdt_enable(oldwatchdogstate); 517 } 518 #endif 519 } 520 #endif 521 522 #if defined(VERBOSE_INIT_ARM) || 1 523 void gemini_putchar(char c); 524 void 525 gemini_putchar(char c) 526 { 527 unsigned char *com0addr = (unsigned char *)GEMINI_UART_VBASE; 528 int timo = 150000; 529 530 while ((com0addr[COM_REG_LSR * 4] & LSR_TXRDY) == 0) 531 if (--timo == 0) 532 break; 533 534 com0addr[COM_REG_TXDATA] = c; 535 536 while ((com0addr[COM_REG_LSR * 4] & LSR_TSRE) == 0) 537 if (--timo == 0) 538 break; 539 } 540 541 void gemini_puthex(unsigned int); 542 void 543 gemini_puthex(unsigned int val) 544 { 545 char hexc[] = "0123456789abcdef"; 546 547 gemini_putchar('0'); 548 gemini_putchar('x'); 549 gemini_putchar(hexc[(val >> 28) & 0xf]); 550 gemini_putchar(hexc[(val >> 24) & 0xf]); 551 gemini_putchar(hexc[(val >> 20) & 0xf]); 552 gemini_putchar(hexc[(val >> 16) & 0xf]); 553 gemini_putchar(hexc[(val >> 12) & 0xf]); 554 gemini_putchar(hexc[(val >> 8) & 0xf]); 555 gemini_putchar(hexc[(val >> 4) & 0xf]); 556 gemini_putchar(hexc[(val >> 0) & 0xf]); 557 } 558 #endif /* VERBOSE_INIT_ARM */ 559 560 /* 561 * u_int initarm(...) 562 * 563 * Initial entry point on startup. This gets called before main() is 564 * entered. 565 * It should be responsible for setting up everything that must be 566 * in place when main is called. 567 * This includes 568 * Taking a copy of the boot configuration structure. 569 * Initialising the physical console so characters can be printed. 570 * Setting up page tables for the kernel 571 * Relocating the kernel to the bottom of physical memory 572 */ 573 u_int 574 initarm(void *arg) 575 { 576 GEMINI_PUTCHAR('0'); 577 578 /* 579 * start cpu#1 now 580 */ 581 gemini_cpu1_start(); 582 583 /* 584 * When we enter here, we are using a temporary first level 585 * translation table with section entries in it to cover the OBIO 586 * peripherals and SDRAM. The temporary first level translation table 587 * is at the end of SDRAM. 588 */ 589 590 /* Heads up ... Setup the CPU / MMU / TLB functions. */ 591 GEMINI_PUTCHAR('1'); 592 if (set_cpufuncs()) 593 panic("cpu not recognized!"); 594 595 GEMINI_PUTCHAR('2'); 596 init_clocks(); 597 GEMINI_PUTCHAR('3'); 598 599 /* The console is going to try to map things. Give pmap a devmap. */ 600 pmap_devmap_register(devmap); 601 GEMINI_PUTCHAR('4'); 602 consinit(); 603 GEMINI_PUTCHAR('5'); 604 #ifdef KGDB 605 kgdb_port_init(); 606 #endif 607 608 /* Talk to the user */ 609 printf("\nNetBSD/evbarm (gemini) booting ...\n"); 610 611 #ifdef BOOT_ARGS 612 char mi_bootargs[] = BOOT_ARGS; 613 parse_mi_bootargs(mi_bootargs); 614 #endif 615 616 #ifdef VERBOSE_INIT_ARM 617 printf("initarm: Configuring system ...\n"); 618 #endif 619 620 /* 621 * Set up the variables that define the availability of physical 622 * memory. 623 */ 624 gemini_memchk(); 625 physical_start = GEMINI_DRAM_BASE; 626 #define MEMSIZE_BYTES (MEMSIZE * 1024 * 1024) 627 physical_end = (physical_start & ~(0x400000-1)) + MEMSIZE_BYTES; 628 physmem = (physical_end - physical_start) / PAGE_SIZE; 629 630 /* Fake bootconfig structure for the benefit of pmap.c. */ 631 bootconfig.dramblocks = 1; 632 bootconfig.dram[0].address = physical_start; 633 bootconfig.dram[0].pages = physmem; 634 635 /* 636 * Our kernel is at the beginning of memory, so set our free space to 637 * all the memory after the kernel. 638 */ 639 physical_freestart = KERN_VTOPHYS(round_page((vaddr_t) _end)); 640 physical_freeend = physical_end; 641 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; 642 643 /* 644 * This is going to do all the hard work of setting up the first and 645 * and second level page tables. Pages of memory will be allocated 646 * and mapped for other structures that are required for system 647 * operation. When it returns, physical_freestart and free_pages will 648 * have been updated to reflect the allocations that were made. In 649 * addition, kernel_l1pt, kernel_pt_table[], systempage, irqstack, 650 * abtstack, undstack, kernelstack, msgbufphys will be set to point to 651 * the memory that was allocated for them. 652 */ 653 setup_real_page_tables(); 654 655 /* 656 * Moved from cpu_startup() as data_abort_handler() references 657 * this during uvm init. 658 */ 659 uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); 660 661 #ifdef VERBOSE_INIT_ARM 662 printf("bootstrap done.\n"); 663 #endif 664 665 arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL); 666 667 /* 668 * Pages were allocated during the secondary bootstrap for the 669 * stacks for different CPU modes. 670 * We must now set the r13 registers in the different CPU modes to 671 * point to these stacks. 672 * Since the ARM stacks use STMFD etc. we must set r13 to the top end 673 * of the stack memory. 674 */ 675 #ifdef VERBOSE_INIT_ARM 676 printf("init subsystems: stacks "); 677 #endif 678 679 set_stackptr(PSR_FIQ32_MODE, fiqstack.pv_va + FIQ_STACK_SIZE * PAGE_SIZE); 680 set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); 681 set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); 682 set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); 683 684 /* 685 * Well we should set a data abort handler. 686 * Once things get going this will change as we will need a proper 687 * handler. 688 * Until then we will use a handler that just panics but tells us 689 * why. 690 * Initialisation of the vectors will just panic on a data abort. 691 * This just fills in a slightly better one. 692 */ 693 #ifdef VERBOSE_INIT_ARM 694 printf("vectors "); 695 #endif 696 data_abort_handler_address = (u_int)data_abort_handler; 697 prefetch_abort_handler_address = (u_int)prefetch_abort_handler; 698 undefined_handler_address = (u_int)undefinedinstruction_bounce; 699 700 /* Initialise the undefined instruction handlers */ 701 #ifdef VERBOSE_INIT_ARM 702 printf("undefined "); 703 #endif 704 undefined_init(); 705 706 /* Load memory into UVM. */ 707 #ifdef VERBOSE_INIT_ARM 708 printf("page "); 709 #endif 710 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ 711 712 #if (GEMINI_RAM_RESV_PBASE != 0) 713 uvm_page_physload(atop(physical_freestart), atop(GEMINI_RAM_RESV_PBASE), 714 atop(physical_freestart), atop(GEMINI_RAM_RESV_PBASE), 715 VM_FREELIST_DEFAULT); 716 uvm_page_physload(atop(GEMINI_RAM_RESV_PEND), atop(physical_freeend), 717 atop(GEMINI_RAM_RESV_PEND), atop(physical_freeend), 718 VM_FREELIST_DEFAULT); 719 #else 720 uvm_page_physload(atop(physical_freestart), atop(physical_freeend), 721 atop(physical_freestart), atop(physical_freeend), 722 VM_FREELIST_DEFAULT); 723 #endif 724 uvm_page_physload(atop(GEMINI_DRAM_BASE), atop(KERNEL_BASE_phys), 725 atop(GEMINI_DRAM_BASE), atop(KERNEL_BASE_phys), 726 VM_FREELIST_DEFAULT); 727 728 /* Boot strap pmap telling it where the kernel page table is */ 729 #ifdef VERBOSE_INIT_ARM 730 printf("pmap "); 731 #endif 732 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); 733 734 #ifdef VERBOSE_INIT_ARM 735 printf("done.\n"); 736 #endif 737 738 #ifdef IPKDB 739 /* Initialise ipkdb */ 740 ipkdb_init(); 741 if (boothowto & RB_KDB) 742 ipkdb_connect(0); 743 #endif 744 745 #if defined(MEMORY_DISK_DYNAMIC) 746 md_root_setconf((char *)GEMINI_RAMDISK_VBASE, GEMINI_RAMDISK_SIZE); 747 #endif 748 749 #ifdef KGDB 750 if (boothowto & RB_KDB) { 751 kgdb_debug_init = 1; 752 kgdb_connect(1); 753 } 754 #endif 755 756 #ifdef DDB 757 db_trap_callback = gemini_db_trap; 758 db_machine_init(); 759 760 /* Firmware doesn't load symbols. */ 761 ddb_init(0, NULL, NULL); 762 763 if (boothowto & RB_KDB) 764 Debugger(); 765 #endif 766 printf("initarm done.\n"); 767 768 /* We return the new stack pointer address */ 769 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP); 770 } 771 772 static void 773 init_clocks(void) 774 { 775 } 776 777 #ifndef CONSADDR 778 #error Specify the address of the console UART with the CONSADDR option. 779 #endif 780 #ifndef CONSPEED 781 #define CONSPEED 19200 782 #endif 783 #ifndef CONMODE 784 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ 785 #endif 786 787 static const bus_addr_t consaddr = CONSADDR; 788 static const int conspeed = CONSPEED; 789 static const int conmode = CONMODE; 790 791 #if CONSADDR==0x42000000 792 /* 793 * console initialization for obio com console 794 */ 795 void 796 consinit(void) 797 { 798 static int consinit_called = 0; 799 800 if (consinit_called != 0) 801 return; 802 consinit_called = 1; 803 804 if (comcnattach(&gemini_a4x_bs_tag, consaddr, conspeed, 805 GEMINI_COM_FREQ, COM_TYPE_16550_NOERS, conmode)) 806 panic("Serial console can not be initialized."); 807 } 808 809 #elif CONSADDR==0x478003f8 810 # include <arm/gemini/gemini_lpcvar.h> 811 /* 812 * console initialization for lpc com console 813 */ 814 void 815 consinit(void) 816 { 817 static int consinit_called = 0; 818 bus_space_tag_t iot = &gemini_bs_tag; 819 bus_space_handle_t lpchc_ioh; 820 bus_space_handle_t lpcio_ioh; 821 bus_size_t sz = L1_S_SIZE; 822 gemini_lpc_softc_t lpcsoftc; 823 gemini_lpc_bus_ops_t *ops; 824 void *lpctag = &lpcsoftc; 825 uint32_t r; 826 extern gemini_lpc_bus_ops_t gemini_lpc_bus_ops; 827 828 ops = &gemini_lpc_bus_ops; 829 830 if (consinit_called != 0) 831 return; 832 consinit_called = 1; 833 834 if (bus_space_map(iot, GEMINI_LPCHC_BASE, sz, 0, &lpchc_ioh)) 835 panic("consinit: LPCHC can not be mapped."); 836 837 if (bus_space_map(iot, GEMINI_LPCIO_BASE, sz, 0, &lpcio_ioh)) 838 panic("consinit: LPCIO can not be mapped."); 839 840 /* enable the LPC bus */ 841 r = bus_space_read_4(iot, lpchc_ioh, GEMINI_LPCHC_CSR); 842 r |= LPCHC_CSR_BEN; 843 bus_space_write_4(iot, lpchc_ioh, GEMINI_LPCHC_CSR, r); 844 845 memset(&lpcsoftc, 0, sizeof(lpcsoftc)); 846 lpcsoftc.sc_iot = iot; 847 lpcsoftc.sc_ioh = lpcio_ioh; 848 849 /* activate Serial Port 1 */ 850 (*ops->lpc_pnp_enter)(lpctag); 851 (*ops->lpc_pnp_write)(lpctag, 1, 0x30, 0x01); 852 (*ops->lpc_pnp_exit)(lpctag); 853 854 if (comcnattach(iot, consaddr, conspeed, 855 IT8712F_COM_FREQ, COM_TYPE_NORMAL, conmode)) { 856 panic("Serial console can not be initialized."); 857 } 858 859 bus_space_unmap(iot, lpcio_ioh, sz); 860 bus_space_unmap(iot, lpchc_ioh, sz); 861 } 862 #else 863 # error unknown console 864 #endif 865 866 #ifdef KGDB 867 #ifndef KGDB_DEVADDR 868 #error Specify the address of the kgdb UART with the KGDB_DEVADDR option. 869 #endif 870 #ifndef KGDB_DEVRATE 871 #define KGDB_DEVRATE 19200 872 #endif 873 874 #ifndef KGDB_DEVMODE 875 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ 876 #endif 877 static const vaddr_t comkgdbaddr = KGDB_DEVADDR; 878 static const int comkgdbspeed = KGDB_DEVRATE; 879 static const int comkgdbmode = KGDB_DEVMODE; 880 881 void 882 static kgdb_port_init(void) 883 { 884 static int kgdbsinit_called = 0; 885 886 if (kgdbsinit_called != 0) 887 return; 888 889 kgdbsinit_called = 1; 890 891 bus_space_handle_t bh; 892 if (bus_space_map(&gemini_a4x_bs_tag, comkgdbaddr, 893 GEMINI_UART_SIZE, 0, &bh)) 894 panic("kgdb port can not be mapped."); 895 896 if (com_kgdb_attach(&gemini_a4x_bs_tag, comkgdbaddr, comkgdbspeed, 897 GEMINI_UART_SIZE, COM_TYPE_16550_NOERS, comkgdbmode)) 898 panic("KGDB uart can not be initialized."); 899 900 bus_space_unmap(&gemini_a4x_bs_tag, bh, GEMINI_UART_SIZE); 901 } 902 #endif 903 904 static void 905 setup_real_page_tables(void) 906 { 907 /* 908 * We need to allocate some fixed page tables to get the kernel going. 909 * 910 * We are going to allocate our bootstrap pages from the beginning of 911 * the free space that we just calculated. We allocate one page 912 * directory and a number of page tables and store the physical 913 * addresses in the kernel_pt_table array. 914 * 915 * The kernel page directory must be on a 16K boundary. The page 916 * tables must be on 4K boundaries. What we do is allocate the 917 * page directory on the first 16K boundary that we encounter, and 918 * the page tables on 4K boundaries otherwise. Since we allocate 919 * at least 3 L2 page tables, we are guaranteed to encounter at 920 * least one 16K aligned region. 921 */ 922 923 #ifdef VERBOSE_INIT_ARM 924 printf("Allocating page tables\n"); 925 #endif 926 927 /* 928 * Define a macro to simplify memory allocation. As we allocate the 929 * memory, make sure that we don't walk over our temporary first level 930 * translation table. 931 */ 932 #define valloc_pages(var, np) \ 933 (var).pv_pa = physical_freestart; \ 934 physical_freestart += ((np) * PAGE_SIZE); \ 935 if (physical_freestart > (physical_freeend - L1_TABLE_SIZE)) \ 936 panic("initarm: out of memory"); \ 937 free_pages -= (np); \ 938 (var).pv_va = KERN_PHYSTOV((var).pv_pa); \ 939 memset((char *)(var).pv_va, 0, ((np) * PAGE_SIZE)); 940 941 int loop, pt_index; 942 943 pt_index = 0; 944 kernel_l1pt.pv_pa = 0; 945 kernel_l1pt.pv_va = 0; 946 #ifdef VERBOSE_INIT_ARM 947 printf("%s: physical_freestart %#lx\n", __func__, physical_freestart); 948 #endif 949 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { 950 /* Are we 16KB aligned for an L1 ? */ 951 if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0 952 && kernel_l1pt.pv_pa == 0) { 953 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); 954 } else { 955 valloc_pages(kernel_pt_table[pt_index], 956 L2_TABLE_SIZE / PAGE_SIZE); 957 ++pt_index; 958 } 959 } 960 961 #if (NGEMINIIPM > 0) 962 valloc_pages(ipmq_pt, L2_TABLE_SIZE / PAGE_SIZE); 963 #endif 964 965 #ifdef VERBOSE_INIT_ARM 966 pt_index=0; 967 printf("%s: kernel_l1pt: %#lx:%#lx\n", 968 __func__, kernel_l1pt.pv_va, kernel_l1pt.pv_pa); 969 printf("%s: kernel_pt_table:\n", __func__); 970 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { 971 printf("\t%#lx:%#lx\n", kernel_pt_table[pt_index].pv_va, 972 kernel_pt_table[pt_index].pv_pa); 973 ++pt_index; 974 } 975 #if (NGEMINIIPM > 0) 976 printf("%s: ipmq_pt:\n", __func__); 977 printf("\t%#lx:%#lx\n", ipmq_pt.pv_va, ipmq_pt.pv_pa); 978 #endif 979 #endif 980 981 /* This should never be able to happen but better confirm that. */ 982 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) 983 panic("initarm: Failed to align the kernel page directory"); 984 985 /* 986 * Allocate a page for the system page mapped to V0x00000000 987 * This page will just contain the system vectors and can be 988 * shared by all processes. 989 */ 990 valloc_pages(systempage, 1); 991 systempage.pv_va = ARM_VECTORS_HIGH; 992 993 /* Allocate stacks for all modes */ 994 valloc_pages(fiqstack, FIQ_STACK_SIZE); 995 valloc_pages(irqstack, IRQ_STACK_SIZE); 996 valloc_pages(abtstack, ABT_STACK_SIZE); 997 valloc_pages(undstack, UND_STACK_SIZE); 998 valloc_pages(kernelstack, UPAGES); 999 1000 /* Allocate the message buffer. */ 1001 pv_addr_t msgbuf; 1002 int msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE; 1003 valloc_pages(msgbuf, msgbuf_pgs); 1004 msgbufphys = msgbuf.pv_pa; 1005 1006 /* 1007 * Ok we have allocated physical pages for the primary kernel 1008 * page tables 1009 */ 1010 1011 #ifdef VERBOSE_INIT_ARM 1012 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); 1013 #endif 1014 1015 /* 1016 * Now we start construction of the L1 page table 1017 * We start by mapping the L2 page tables into the L1. 1018 * This means that we can replace L1 mappings later on if necessary 1019 */ 1020 vaddr_t l1_va = kernel_l1pt.pv_va; 1021 paddr_t l1_pa = kernel_l1pt.pv_pa; 1022 1023 /* Map the L2 pages tables in the L1 page table */ 1024 pmap_link_l2pt(l1_va, ARM_VECTORS_HIGH & ~(0x00400000 - 1), 1025 &kernel_pt_table[KERNEL_PT_SYS]); 1026 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) 1027 pmap_link_l2pt(l1_va, KERNEL_BASE + loop * 0x00400000, 1028 &kernel_pt_table[KERNEL_PT_KERNEL + loop]); 1029 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) 1030 pmap_link_l2pt(l1_va, KERNEL_VM_BASE + loop * 0x00400000, 1031 &kernel_pt_table[KERNEL_PT_VMDATA + loop]); 1032 1033 /* update the top of the kernel VM */ 1034 pmap_curmaxkvaddr = 1035 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); 1036 1037 #if (NGEMINIIPM > 0) 1038 printf("%s:%d: pmap_link_l2pt ipmq_pt\n", __FUNCTION__, __LINE__); 1039 pmap_link_l2pt(l1_va, GEMINI_IPMQ_VBASE, &ipmq_pt); 1040 #endif 1041 1042 #ifdef VERBOSE_INIT_ARM 1043 printf("Mapping kernel\n"); 1044 #endif 1045 1046 /* Now we fill in the L2 pagetable for the kernel static code/data */ 1047 #define round_L_page(x) (((x) + L2_L_OFFSET) & L2_L_FRAME) 1048 size_t textsize = round_L_page(etext - KERNEL_BASE_virt); 1049 size_t totalsize = round_L_page(_end - KERNEL_BASE_virt); 1050 /* offset of kernel in RAM */ 1051 u_int offset = (u_int)KERNEL_BASE_virt - KERNEL_BASE; 1052 1053 #ifdef DDB 1054 /* Map text section read-write. */ 1055 offset += pmap_map_chunk(l1_va, 1056 (vaddr_t)KERNEL_BASE + offset, 1057 physical_start + offset, textsize, 1058 VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE, 1059 PTE_CACHE); 1060 #else 1061 /* Map text section read-only. */ 1062 offset += pmap_map_chunk(l1_va, 1063 (vaddr_t)KERNEL_BASE + offset, 1064 physical_start + offset, textsize, 1065 VM_PROT_READ|VM_PROT_EXECUTE, PTE_CACHE); 1066 #endif 1067 /* Map data and bss sections read-write. */ 1068 offset += pmap_map_chunk(l1_va, 1069 (vaddr_t)KERNEL_BASE + offset, 1070 physical_start + offset, totalsize - textsize, 1071 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 1072 1073 #ifdef VERBOSE_INIT_ARM 1074 printf("Constructing L2 page tables\n"); 1075 #endif 1076 1077 /* Map the stack pages */ 1078 pmap_map_chunk(l1_va, fiqstack.pv_va, fiqstack.pv_pa, 1079 FIQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 1080 pmap_map_chunk(l1_va, irqstack.pv_va, irqstack.pv_pa, 1081 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 1082 pmap_map_chunk(l1_va, abtstack.pv_va, abtstack.pv_pa, 1083 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 1084 pmap_map_chunk(l1_va, undstack.pv_va, undstack.pv_pa, 1085 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 1086 pmap_map_chunk(l1_va, kernelstack.pv_va, kernelstack.pv_pa, 1087 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); 1088 1089 pmap_map_chunk(l1_va, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, 1090 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE); 1091 1092 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { 1093 pmap_map_chunk(l1_va, kernel_pt_table[loop].pv_va, 1094 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, 1095 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); 1096 } 1097 1098 /* Map the vector page. */ 1099 pmap_map_entry(l1_va, ARM_VECTORS_HIGH, systempage.pv_pa, 1100 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 1101 1102 #if (NGEMINIIPM > 0) 1103 /* Map the IPM queue l2pt */ 1104 pmap_map_chunk(l1_va, ipmq_pt.pv_va, ipmq_pt.pv_pa, 1105 L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); 1106 1107 /* Map the IPM queue pages */ 1108 pmap_map_chunk(l1_va, GEMINI_IPMQ_VBASE, GEMINI_IPMQ_PBASE, 1109 GEMINI_IPMQ_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE); 1110 1111 #ifdef GEMINI_SLAVE 1112 /* 1113 * Map all memory, incluuding that owned by other core 1114 * take into account the RAM remap, so view in this region 1115 * is consistent with MASTER 1116 */ 1117 pmap_map_chunk(l1_va, 1118 GEMINI_ALLMEM_VBASE, 1119 GEMINI_ALLMEM_PBASE + ((GEMINI_ALLMEM_SIZE - MEMSIZE) * 1024 * 1024), 1120 (GEMINI_ALLMEM_SIZE - MEMSIZE) * 1024 * 1024, 1121 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 1122 pmap_map_chunk(l1_va, 1123 GEMINI_ALLMEM_VBASE + GEMINI_BUSBASE * 1024 * 1024, 1124 GEMINI_ALLMEM_PBASE, 1125 (MEMSIZE * 1024 * 1024), 1126 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 1127 #else 1128 /* Map all memory, incluuding that owned by other core */ 1129 pmap_map_chunk(l1_va, GEMINI_ALLMEM_VBASE, GEMINI_ALLMEM_PBASE, 1130 GEMINI_ALLMEM_SIZE * 1024 * 1024, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 1131 #endif /* GEMINI_SLAVE */ 1132 #endif /* NGEMINIIPM */ 1133 1134 /* 1135 * Map integrated peripherals at same address in first level page 1136 * table so that we can continue to use console. 1137 */ 1138 pmap_devmap_bootstrap(l1_va, devmap); 1139 1140 1141 #ifdef VERBOSE_INIT_ARM 1142 /* Tell the user about where all the bits and pieces live. */ 1143 printf("%22s Physical Virtual Num\n", " "); 1144 printf("%22s Starting Ending Starting Ending Pages\n", " "); 1145 1146 static const char mem_fmt[] = 1147 "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %d\n"; 1148 static const char mem_fmt_nov[] = 1149 "%20s: 0x%08lx 0x%08lx %d\n"; 1150 1151 printf(mem_fmt, "SDRAM", physical_start, physical_end-1, 1152 KERN_PHYSTOV(physical_start), KERN_PHYSTOV(physical_end-1), 1153 physmem); 1154 printf(mem_fmt, "text section", 1155 KERN_VTOPHYS(KERNEL_BASE_virt), KERN_VTOPHYS(etext-1), 1156 (vaddr_t)KERNEL_BASE_virt, (vaddr_t)etext-1, 1157 (int)(textsize / PAGE_SIZE)); 1158 printf(mem_fmt, "data section", 1159 KERN_VTOPHYS(__data_start), KERN_VTOPHYS(_edata), 1160 (vaddr_t)__data_start, (vaddr_t)_edata, 1161 (int)((round_page((vaddr_t)_edata) 1162 - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE)); 1163 printf(mem_fmt, "bss section", 1164 KERN_VTOPHYS(__bss_start), KERN_VTOPHYS(__bss_end__), 1165 (vaddr_t)__bss_start, (vaddr_t)__bss_end__, 1166 (int)((round_page((vaddr_t)__bss_end__) 1167 - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE)); 1168 printf(mem_fmt, "L1 page directory", 1169 kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1, 1170 kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1, 1171 L1_TABLE_SIZE / PAGE_SIZE); 1172 printf(mem_fmt, "Exception Vectors", 1173 systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1, 1174 (vaddr_t)ARM_VECTORS_HIGH, (vaddr_t)ARM_VECTORS_HIGH + PAGE_SIZE - 1, 1175 1); 1176 printf(mem_fmt, "FIQ stack", 1177 fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1, 1178 fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1, 1179 FIQ_STACK_SIZE); 1180 printf(mem_fmt, "IRQ stack", 1181 irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1, 1182 irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1, 1183 IRQ_STACK_SIZE); 1184 printf(mem_fmt, "ABT stack", 1185 abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1, 1186 abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1, 1187 ABT_STACK_SIZE); 1188 printf(mem_fmt, "UND stack", 1189 undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1, 1190 undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1, 1191 UND_STACK_SIZE); 1192 printf(mem_fmt, "SVC stack", 1193 kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1, 1194 kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1, 1195 UPAGES); 1196 printf(mem_fmt_nov, "Message Buffer", 1197 msgbufphys, msgbufphys + msgbuf_pgs * PAGE_SIZE - 1, msgbuf_pgs); 1198 printf(mem_fmt, "Free Memory", physical_freestart, physical_freeend-1, 1199 KERN_PHYSTOV(physical_freestart), KERN_PHYSTOV(physical_freeend-1), 1200 free_pages); 1201 #endif 1202 1203 /* 1204 * Now we have the real page tables in place so we can switch to them. 1205 * Once this is done we will be running with the REAL kernel page 1206 * tables. 1207 */ 1208 1209 /* Switch tables */ 1210 #ifdef VERBOSE_INIT_ARM 1211 printf("switching to new L1 page table @%#lx...", l1_pa); 1212 #endif 1213 1214 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); 1215 cpu_setttb(l1_pa, true); 1216 cpu_tlb_flushID(); 1217 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); 1218 1219 #ifdef VERBOSE_INIT_ARM 1220 printf("OK.\n"); 1221 #endif 1222 } 1223