1 /* $NetBSD: gemini_machdep.c,v 1.35 2023/08/10 20:02:55 andvar Exp $ */
2
3 /* adapted from:
4 * NetBSD: sdp24xx_machdep.c,v 1.4 2008/08/27 11:03:10 matt Exp
5 */
6
7 /*
8 * Machine dependent functions for kernel setup for TI OSK5912 board.
9 * Based on lubbock_machdep.c which in turn was based on iq80310_machhdep.c
10 *
11 * Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved.
12 * Written by Hiroyuki Bessho for Genetec Corporation.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. The name of Genetec Corporation may not be used to endorse or
23 * promote products derived from this software without specific prior
24 * written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 *
38 * Copyright (c) 2001 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 *
71 * Copyright (c) 1997,1998 Mark Brinicombe.
72 * Copyright (c) 1997,1998 Causality Limited.
73 * All rights reserved.
74 *
75 * Redistribution and use in source and binary forms, with or without
76 * modification, are permitted provided that the following conditions
77 * are met:
78 * 1. Redistributions of source code must retain the above copyright
79 * notice, this list of conditions and the following disclaimer.
80 * 2. Redistributions in binary form must reproduce the above copyright
81 * notice, this list of conditions and the following disclaimer in the
82 * documentation and/or other materials provided with the distribution.
83 * 3. All advertising materials mentioning features or use of this software
84 * must display the following acknowledgement:
85 * This product includes software developed by Mark Brinicombe
86 * for the NetBSD Project.
87 * 4. The name of the company nor the name of the author may be used to
88 * endorse or promote products derived from this software without specific
89 * prior written permission.
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
92 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
93 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
94 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
95 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
96 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
97 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
98 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
99 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
100 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
101 * SUCH DAMAGE.
102 *
103 * Copyright (c) 2007 Microsoft
104 * All rights reserved.
105 *
106 * Redistribution and use in source and binary forms, with or without
107 * modification, are permitted provided that the following conditions
108 * are met:
109 * 1. Redistributions of source code must retain the above copyright
110 * notice, this list of conditions and the following disclaimer.
111 * 2. Redistributions in binary form must reproduce the above copyright
112 * notice, this list of conditions and the following disclaimer in the
113 * documentation and/or other materials provided with the distribution.
114 * 3. All advertising materials mentioning features or use of this software
115 * must display the following acknowledgement:
116 * This product includes software developed by Microsoft
117 *
118 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
119 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
120 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
121 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
122 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
123 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
124 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
125 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
126 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
127 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
128 * SUCH DAMAGE.
129 */
130
131 #include <sys/cdefs.h>
132 __KERNEL_RCSID(0, "$NetBSD: gemini_machdep.c,v 1.35 2023/08/10 20:02:55 andvar Exp $");
133
134 #include "opt_arm_debug.h"
135 #include "opt_console.h"
136 #include "opt_machdep.h"
137 #include "opt_ddb.h"
138 #include "opt_kgdb.h"
139 #include "opt_md.h"
140 #include "opt_com.h"
141 #include "opt_gemini.h"
142 #include "geminiwdt.h"
143 #include "geminiipm.h"
144
145 #include <sys/param.h>
146 #include <sys/device.h>
147 #include <sys/systm.h>
148 #include <sys/kernel.h>
149 #include <sys/exec.h>
150 #include <sys/proc.h>
151 #include <sys/msgbuf.h>
152 #include <sys/reboot.h>
153 #include <sys/termios.h>
154 #include <sys/ksyms.h>
155 #include <sys/bus.h>
156 #include <sys/cpu.h>
157 #include <sys/conf.h>
158
159 #include <uvm/uvm_extern.h>
160
161 #include <dev/cons.h>
162 #include <dev/md.h>
163
164 #include <machine/db_machdep.h>
165 #include <ddb/db_sym.h>
166 #include <ddb/db_extern.h>
167 #ifdef KGDB
168 #include <sys/kgdb.h>
169 #endif
170
171 #include <arm/locore.h>
172 #include <arm/undefined.h>
173
174 #include <arm/arm32/machdep.h>
175
176 #include <machine/bootconfig.h>
177
178 #include <arm/gemini/gemini_reg.h>
179 #include <arm/gemini/gemini_var.h>
180 #include <arm/gemini/gemini_wdtvar.h>
181 #include <arm/gemini/gemini_com.h>
182 #include <arm/gemini/lpc_com.h>
183
184 #include <evbarm/gemini/gemini.h>
185
186 #if defined(VERBOSE_INIT_ARM)
187 # define GEMINI_PUTCHAR(c) gemini_putchar(c)
188 # define GEMINI_PUTHEX(n) gemini_puthex(n)
189 #else /* VERBOSE_INIT_ARM */
190 # define GEMINI_PUTCHAR(c)
191 # define GEMINI_PUTHEX(n)
192 #endif /* VERBOSE_INIT_ARM */
193
194 BootConfig bootconfig; /* Boot config storage */
195 char *boot_args = NULL;
196 char *boot_file = NULL;
197
198 /* Physical address of the beginning of SDRAM. */
199 paddr_t physical_start;
200 /* Physical address of the first byte after the end of SDRAM. */
201 paddr_t physical_end;
202
203 /* Same things, but for the free (unused by the kernel) memory. */
204 static paddr_t physical_freestart, physical_freeend;
205 static u_int free_pages;
206
207 /* Physical address of the message buffer. */
208 paddr_t msgbufphys;
209
210 extern char KERNEL_BASE_phys[];
211 extern char KERNEL_BASE_virt[];
212 extern char etext[], __data_start[], _edata[], __bss_start[], __bss_end__[];
213 extern char _end[];
214
215 #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
216 #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
217 #define KERNEL_PT_KERNEL_NUM 4
218 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
219 /* Page tables for mapping kernel VM */
220 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
221 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
222
223 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
224
225
226 #if (NGEMINIIPM > 0)
227 pv_addr_t ipmq_pt; /* L2 Page table for mapping IPM queues */
228 #if defined(DEBUG) || 1
229 unsigned long gemini_ipmq_pbase = GEMINI_IPMQ_PBASE;
230 unsigned long gemini_ipmq_vbase = GEMINI_IPMQ_VBASE;
231 #endif /* DEBUG */
232 #endif /* NGEMINIIPM > 0 */
233
234
235 /*
236 * Macros to translate between physical and virtual for a subset of the
237 * kernel address space. *Not* for general use.
238 */
239 #define KERNEL_BASE_PHYS ((paddr_t)&KERNEL_BASE_phys)
240
241 u_long kern_vtopdiff;
242
243 /* Prototypes */
244
245 void gemini_intr_init(bus_space_tag_t);
246 void consinit(void);
247 #ifdef KGDB
248 static void kgdb_port_init(void);
249 #endif
250
251 static void setup_real_page_tables(void);
252 static void init_clocks(void);
253
254 bs_protos(bs_notimpl);
255
256 #include "com.h"
257 #if NCOM > 0
258 #include <dev/ic/comreg.h>
259 #include <dev/ic/comvar.h>
260 #endif
261
262
263 static void gemini_global_reset(void) __attribute__ ((noreturn));
264 static void gemini_cpu1_start(void);
265 static void gemini_memchk(void);
266
267 static void
gemini_global_reset(void)268 gemini_global_reset(void)
269 {
270 #if defined(GEMINI_MASTER) || defined(GEMINI_SINGLE)
271 volatile uint32_t *rp;
272 uint32_t r;
273
274 rp = (volatile uint32_t *)
275 (GEMINI_GLOBAL_VBASE + GEMINI_GLOBAL_RESET_CTL);
276 r = *rp;
277 r |= GLOBAL_RESET_GLOBAL;
278 *rp = r;
279 #endif
280 for(;;);
281 /* NOTREACHED */
282 }
283
284 static void
gemini_cpu1_start(void)285 gemini_cpu1_start(void)
286 {
287 #ifdef GEMINI_MASTER
288 volatile uint32_t *rp;
289 uint32_t r;
290
291 rp = (volatile uint32_t *)
292 (GEMINI_GLOBAL_VBASE + GEMINI_GLOBAL_RESET_CTL);
293 r = *rp;
294 r &= ~GLOBAL_RESET_CPU1;
295 *rp = r;
296 #endif
297 }
298
299 static void
gemini_memchk(void)300 gemini_memchk(void)
301 {
302 volatile uint32_t *rp;
303 uint32_t r;
304 uint32_t base;
305 uint32_t size;
306
307 rp = (volatile uint32_t *)
308 (GEMINI_DRAMC_VBASE + GEMINI_DRAMC_RMCR);
309 r = *rp;
310 base = (r & DRAMC_RMCR_RMBAR) >> DRAMC_RMCR_RMBAR_SHFT;
311 size = (r & DRAMC_RMCR_RMSZR) >> DRAMC_RMCR_RMSZR_SHFT;
312 #if defined(GEMINI_SINGLE)
313 if (r != 0)
314 panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
315 __FUNCTION__, r, MEMSIZE);
316 #elif defined(GEMINI_MASTER)
317 if (base != MEMSIZE)
318 panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
319 __FUNCTION__, r, MEMSIZE);
320 #elif defined(GEMINI_SLAVE)
321 if (size != MEMSIZE)
322 panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
323 __FUNCTION__, r, MEMSIZE);
324 #endif
325 #if defined(VERBOSE_INIT_ARM) || 1
326 printf("DRAM Remap: base=%dMB, size=%dMB\n", base, size);
327 #endif
328 }
329
330 /*
331 * void cpu_reboot(int howto, char *bootstr)
332 *
333 * Reboots the system
334 *
335 * Deal with any syncing, unmounting, dumping and shutdown hooks,
336 * then reset the CPU.
337 */
338 void
cpu_reboot(int howto,char * bootstr)339 cpu_reboot(int howto, char *bootstr)
340 {
341 extern struct geminitmr_softc *ref_sc;
342
343 #ifdef DIAGNOSTIC
344 /* info */
345 printf("boot: howto=%08x curproc=%p\n", howto, curproc);
346 #endif
347
348 /*
349 * If we are still cold then hit the air brakes
350 * and crash to earth fast
351 */
352 if (cold) {
353 doshutdownhooks();
354 pmf_system_shutdown(boothowto);
355 printf("The operating system has halted.\n");
356 printf("Please press any key to reboot.\n\n");
357 cngetc();
358 printf("rebooting...\n");
359 if (ref_sc != NULL)
360 delay(2000); /* cnflush(); */
361 gemini_global_reset();
362 /*NOTREACHED*/
363 }
364
365 /* Disable console buffering */
366 cnpollc(1);
367
368 /*
369 * If RB_NOSYNC was not specified sync the discs.
370 * Note: Unless cold is set to 1 here, syslogd will die during the
371 * unmount. It looks like syslogd is getting woken up only to find
372 * that it cannot page part of the binary in as the filesystem has
373 * been unmounted.
374 */
375 if (!(howto & RB_NOSYNC))
376 bootsync();
377
378 /* Say NO to interrupts */
379 splhigh();
380
381 /* Do a dump if requested. */
382 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
383 dumpsys();
384
385 /* Run any shutdown hooks */
386 doshutdownhooks();
387
388 pmf_system_shutdown(boothowto);
389
390 /* Make sure IRQ's are disabled */
391 IRQdisable;
392
393 if (howto & RB_HALT) {
394 printf("The operating system has halted.\n");
395 printf("Please press any key to reboot.\n\n");
396 cngetc();
397 }
398
399 printf("rebooting...\n");
400 if (ref_sc != NULL)
401 delay(2000); /* cnflush(); */
402 gemini_global_reset();
403 /*NOTREACHED*/
404 }
405
406 /*
407 * Static device mappings. These peripheral registers are mapped at
408 * fixed virtual addresses very early in initarm() so that we can use
409 * them while booting the kernel, and stay at the same address
410 * throughout whole kernel's life time.
411 *
412 * We use this table twice; once with bootstrap page table, and once
413 * with kernel's page table which we build up in initarm().
414 *
415 * Since we map these registers into the bootstrap page table using
416 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
417 * registers segment-aligned and segment-rounded in order to avoid
418 * using the 2nd page tables.
419 */
420
421 static const struct pmap_devmap devmap[] = {
422 /* Global regs */
423 DEVMAP_ENTRY_FLAGS(GEMINI_GLOBAL_VBASE,
424 GEMINI_GLOBAL_BASE,
425 L1_S_SIZE,
426 PMAP_NOCACHE),
427
428 /* Watchdog */
429 DEVMAP_ENTRY_FLAGS(GEMINI_WATCHDOG_VBASE,
430 GEMINI_WATCHDOG_BASE,
431 L1_S_SIZE,
432 PMAP_NOCACHE),
433
434 DEVMAP_ENTRY_FLAGS(GEMINI_WATCHDOG_VBASE,
435 GEMINI_WATCHDOG_BASE,
436 L1_S_SIZE,
437 PMAP_NOCACHE),
438
439 /* UART */
440 DEVMAP_ENTRY_FLAGS(GEMINI_UART_VBASE,
441 GEMINI_UART_BASE,
442 L1_S_SIZE,
443 PMAP_NOCACHE),
444
445 /* LPCHC */
446 DEVMAP_ENTRY_FLAGS(GEMINI_LPCHC_VBASE,
447 GEMINI_LPCHC_BASE,
448 L1_S_SIZE,
449 PMAP_NOCACHE),
450
451 /* LPCIO */
452 DEVMAP_ENTRY_FLAGS(GEMINI_LPCIO_VBASE,
453 GEMINI_LPCIO_BASE,
454 L1_S_SIZE,
455 PMAP_NOCACHE),
456
457 /* Timers */
458 DEVMAP_ENTRY_FLAGS(GEMINI_TIMER_VBASE,
459 GEMINI_TIMER_BASE,
460 L1_S_SIZE,
461 PMAP_NOCACHE),
462
463 /* DRAM Controller */
464 DEVMAP_ENTRY_FLAGS(GEMINI_DRAMC_VBASE,
465 GEMINI_DRAMC_BASE,
466 L1_S_SIZE,
467 PMAP_NOCACHE),
468
469 #if defined(MEMORY_DISK_DYNAMIC)
470 /* Ramdisk */
471 DEVMAP_ENTRY_FLAGS(GEMINI_RAMDISK_VBASE,
472 GEMINI_RAMDISK_PBASE,
473 L1_S_SIZE,
474 PMAP_NOCACHE),
475 #endif
476
477 /* list terminator */
478 DEVMAP_ENTRY_END
479 };
480
481 #ifdef DDB
gemini_db_trap(int where)482 static void gemini_db_trap(int where)
483 {
484 #if NGEMINIWDT > 0
485 static int oldwatchdogstate;
486
487 if (where) {
488 oldwatchdogstate = geminiwdt_enable(0);
489 } else {
490 geminiwdt_enable(oldwatchdogstate);
491 }
492 #endif
493 }
494 #endif
495
496 #if defined(VERBOSE_INIT_ARM) || 1
497 void gemini_putchar(char c);
498 void
gemini_putchar(char c)499 gemini_putchar(char c)
500 {
501 unsigned char *com0addr = (unsigned char *)GEMINI_UART_VBASE;
502 int timo = 150000;
503
504 while ((com0addr[COM_REG_LSR * 4] & LSR_TXRDY) == 0)
505 if (--timo == 0)
506 break;
507
508 com0addr[COM_REG_TXDATA] = c;
509
510 while ((com0addr[COM_REG_LSR * 4] & LSR_TSRE) == 0)
511 if (--timo == 0)
512 break;
513 }
514
515 void gemini_puthex(unsigned int);
516 void
gemini_puthex(unsigned int val)517 gemini_puthex(unsigned int val)
518 {
519 char hexc[] = "0123456789abcdef";
520
521 gemini_putchar('0');
522 gemini_putchar('x');
523 gemini_putchar(hexc[(val >> 28) & 0xf]);
524 gemini_putchar(hexc[(val >> 24) & 0xf]);
525 gemini_putchar(hexc[(val >> 20) & 0xf]);
526 gemini_putchar(hexc[(val >> 16) & 0xf]);
527 gemini_putchar(hexc[(val >> 12) & 0xf]);
528 gemini_putchar(hexc[(val >> 8) & 0xf]);
529 gemini_putchar(hexc[(val >> 4) & 0xf]);
530 gemini_putchar(hexc[(val >> 0) & 0xf]);
531 }
532 #endif /* VERBOSE_INIT_ARM */
533
534 /*
535 * vaddr_t initarm(...)
536 *
537 * Initial entry point on startup. This gets called before main() is
538 * entered.
539 * It should be responsible for setting up everything that must be
540 * in place when main is called.
541 * This includes
542 * Taking a copy of the boot configuration structure.
543 * Initialising the physical console so characters can be printed.
544 * Setting up page tables for the kernel
545 * Relocating the kernel to the bottom of physical memory
546 */
547 vaddr_t
initarm(void * arg)548 initarm(void *arg)
549 {
550 GEMINI_PUTCHAR('0');
551
552 /*
553 * start cpu#1 now
554 */
555 gemini_cpu1_start();
556
557 /*
558 * When we enter here, we are using a temporary first level
559 * translation table with section entries in it to cover the OBIO
560 * peripherals and SDRAM. The temporary first level translation table
561 * is at the end of SDRAM.
562 */
563
564 /* Heads up ... Setup the CPU / MMU / TLB functions. */
565 GEMINI_PUTCHAR('1');
566 if (set_cpufuncs())
567 panic("cpu not recognized!");
568
569 GEMINI_PUTCHAR('2');
570 init_clocks();
571 GEMINI_PUTCHAR('3');
572
573 /* The console is going to try to map things. Give pmap a devmap. */
574 pmap_devmap_register(devmap);
575 GEMINI_PUTCHAR('4');
576 consinit();
577 GEMINI_PUTCHAR('5');
578 #ifdef KGDB
579 kgdb_port_init();
580 #endif
581
582 /* Talk to the user */
583 printf("\nNetBSD/evbarm (gemini) booting ...\n");
584
585 #ifdef BOOT_ARGS
586 char mi_bootargs[] = BOOT_ARGS;
587 parse_mi_bootargs(mi_bootargs);
588 #endif
589
590 #ifdef VERBOSE_INIT_ARM
591 printf("initarm: Configuring system ...\n");
592 #endif
593
594 /*
595 * Set up the variables that define the availability of physical
596 * memory.
597 */
598 gemini_memchk();
599 physical_start = GEMINI_DRAM_BASE;
600 #define MEMSIZE_BYTES (MEMSIZE * 1024 * 1024)
601 physical_end = (physical_start & ~(0x400000-1)) + MEMSIZE_BYTES;
602 physmem = (physical_end - physical_start) / PAGE_SIZE;
603
604 /* Fake bootconfig structure for the benefit of pmap.c. */
605 bootconfig.dramblocks = 1;
606 bootconfig.dram[0].address = physical_start;
607 bootconfig.dram[0].pages = physmem;
608
609 kern_vtopdiff = KERNEL_BASE - GEMINI_DRAM_BASE;
610
611 /*
612 * Our kernel is at the beginning of memory, so set our free space to
613 * all the memory after the kernel.
614 */
615 physical_freestart = KERN_VTOPHYS(round_page((vaddr_t) _end));
616 physical_freeend = physical_end;
617 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
618
619 /*
620 * This is going to do all the hard work of setting up the first and
621 * and second level page tables. Pages of memory will be allocated
622 * and mapped for other structures that are required for system
623 * operation. When it returns, physical_freestart and free_pages will
624 * have been updated to reflect the allocations that were made. In
625 * addition, kernel_l1pt, kernel_pt_table[], systempage, irqstack,
626 * abtstack, undstack, kernelstack, msgbufphys will be set to point to
627 * the memory that was allocated for them.
628 */
629 setup_real_page_tables();
630
631 /*
632 * Moved from cpu_startup() as data_abort_handler() references
633 * this during uvm init.
634 */
635 uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
636
637 #ifdef VERBOSE_INIT_ARM
638 printf("bootstrap done.\n");
639 #endif
640
641 arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
642
643 /*
644 * Pages were allocated during the secondary bootstrap for the
645 * stacks for different CPU modes.
646 * We must now set the r13 registers in the different CPU modes to
647 * point to these stacks.
648 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
649 * of the stack memory.
650 */
651 #ifdef VERBOSE_INIT_ARM
652 printf("init subsystems: stacks ");
653 #endif
654
655 set_stackptr(PSR_FIQ32_MODE, fiqstack.pv_va + FIQ_STACK_SIZE * PAGE_SIZE);
656 set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
657 set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
658 set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
659
660 /*
661 * Well we should set a data abort handler.
662 * Once things get going this will change as we will need a proper
663 * handler.
664 * Until then we will use a handler that just panics but tells us
665 * why.
666 * Initialisation of the vectors will just panic on a data abort.
667 * This just fills in a slightly better one.
668 */
669 #ifdef VERBOSE_INIT_ARM
670 printf("vectors ");
671 #endif
672 data_abort_handler_address = (u_int)data_abort_handler;
673 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
674 undefined_handler_address = (u_int)undefinedinstruction_bounce;
675
676 /* Initialise the undefined instruction handlers */
677 #ifdef VERBOSE_INIT_ARM
678 printf("undefined ");
679 #endif
680 undefined_init();
681
682 /* Load memory into UVM. */
683 #ifdef VERBOSE_INIT_ARM
684 printf("page ");
685 #endif
686 uvm_md_init();
687
688 #if (GEMINI_RAM_RESV_PBASE != 0)
689 uvm_page_physload(atop(physical_freestart), atop(GEMINI_RAM_RESV_PBASE),
690 atop(physical_freestart), atop(GEMINI_RAM_RESV_PBASE),
691 VM_FREELIST_DEFAULT);
692 uvm_page_physload(atop(GEMINI_RAM_RESV_PEND), atop(physical_freeend),
693 atop(GEMINI_RAM_RESV_PEND), atop(physical_freeend),
694 VM_FREELIST_DEFAULT);
695 #else
696 uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
697 atop(physical_freestart), atop(physical_freeend),
698 VM_FREELIST_DEFAULT);
699 #endif
700 uvm_page_physload(atop(GEMINI_DRAM_BASE), atop(KERNEL_BASE_phys),
701 atop(GEMINI_DRAM_BASE), atop(KERNEL_BASE_phys),
702 VM_FREELIST_DEFAULT);
703
704 /* Boot strap pmap telling it where managed kernel virtual memory is */
705 #ifdef VERBOSE_INIT_ARM
706 printf("pmap ");
707 #endif
708 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
709
710 #ifdef VERBOSE_INIT_ARM
711 printf("done.\n");
712 #endif
713
714 #if defined(MEMORY_DISK_DYNAMIC)
715 md_root_setconf((char *)GEMINI_RAMDISK_VBASE, GEMINI_RAMDISK_SIZE);
716 #endif
717
718 #ifdef KGDB
719 if (boothowto & RB_KDB) {
720 kgdb_debug_init = 1;
721 kgdb_connect(1);
722 }
723 #endif
724
725 #ifdef DDB
726 db_trap_callback = gemini_db_trap;
727 db_machine_init();
728
729 /* Firmware doesn't load symbols. */
730 ddb_init(0, NULL, NULL);
731
732 if (boothowto & RB_KDB)
733 Debugger();
734 #endif
735 printf("initarm done.\n");
736
737 /* We return the new stack pointer address */
738 return kernelstack.pv_va + USPACE_SVC_STACK_TOP;
739 }
740
741 static void
init_clocks(void)742 init_clocks(void)
743 {
744 }
745
746 #ifndef CONSADDR
747 #error Specify the address of the console UART with the CONSADDR option.
748 #endif
749 #ifndef CONSPEED
750 #define CONSPEED 19200
751 #endif
752 #ifndef CONMODE
753 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
754 #endif
755
756 static const bus_addr_t consaddr = CONSADDR;
757 static const int conspeed = CONSPEED;
758 static const int conmode = CONMODE;
759
760 #if CONSADDR==0x42000000
761 /*
762 * console initialization for obio com console
763 */
764 void
consinit(void)765 consinit(void)
766 {
767 static int consinit_called = 0;
768
769 if (consinit_called != 0)
770 return;
771 consinit_called = 1;
772
773 if (comcnattach(&gemini_a4x_bs_tag, consaddr, conspeed,
774 GEMINI_COM_FREQ, COM_TYPE_16550_NOERS, conmode))
775 panic("Serial console can not be initialized.");
776 }
777
778 #elif CONSADDR==0x478003f8
779 # include <arm/gemini/gemini_lpcvar.h>
780 /*
781 * console initialization for lpc com console
782 */
783 void
consinit(void)784 consinit(void)
785 {
786 static int consinit_called = 0;
787 bus_space_tag_t iot = &gemini_bs_tag;
788 bus_space_handle_t lpchc_ioh;
789 bus_space_handle_t lpcio_ioh;
790 bus_size_t sz = L1_S_SIZE;
791 gemini_lpc_softc_t lpcsoftc;
792 gemini_lpc_bus_ops_t *ops;
793 void *lpctag = &lpcsoftc;
794 uint32_t r;
795 extern gemini_lpc_bus_ops_t gemini_lpc_bus_ops;
796
797 ops = &gemini_lpc_bus_ops;
798
799 if (consinit_called != 0)
800 return;
801 consinit_called = 1;
802
803 if (bus_space_map(iot, GEMINI_LPCHC_BASE, sz, 0, &lpchc_ioh))
804 panic("consinit: LPCHC can not be mapped.");
805
806 if (bus_space_map(iot, GEMINI_LPCIO_BASE, sz, 0, &lpcio_ioh))
807 panic("consinit: LPCIO can not be mapped.");
808
809 /* enable the LPC bus */
810 r = bus_space_read_4(iot, lpchc_ioh, GEMINI_LPCHC_CSR);
811 r |= LPCHC_CSR_BEN;
812 bus_space_write_4(iot, lpchc_ioh, GEMINI_LPCHC_CSR, r);
813
814 memset(&lpcsoftc, 0, sizeof(lpcsoftc));
815 lpcsoftc.sc_iot = iot;
816 lpcsoftc.sc_ioh = lpcio_ioh;
817
818 /* activate Serial Port 1 */
819 (*ops->lpc_pnp_enter)(lpctag);
820 (*ops->lpc_pnp_write)(lpctag, 1, 0x30, 0x01);
821 (*ops->lpc_pnp_exit)(lpctag);
822
823 if (comcnattach(iot, consaddr, conspeed,
824 IT8712F_COM_FREQ, COM_TYPE_NORMAL, conmode)) {
825 panic("Serial console can not be initialized.");
826 }
827
828 bus_space_unmap(iot, lpcio_ioh, sz);
829 bus_space_unmap(iot, lpchc_ioh, sz);
830 }
831 #else
832 # error unknown console
833 #endif
834
835 #ifdef KGDB
836 #ifndef KGDB_DEVADDR
837 #error Specify the address of the kgdb UART with the KGDB_DEVADDR option.
838 #endif
839 #ifndef KGDB_DEVRATE
840 #define KGDB_DEVRATE 19200
841 #endif
842
843 #ifndef KGDB_DEVMODE
844 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
845 #endif
846 static const vaddr_t comkgdbaddr = KGDB_DEVADDR;
847 static const int comkgdbspeed = KGDB_DEVRATE;
848 static const int comkgdbmode = KGDB_DEVMODE;
849
850 void
kgdb_port_init(void)851 static kgdb_port_init(void)
852 {
853 static int kgdbsinit_called = 0;
854
855 if (kgdbsinit_called != 0)
856 return;
857
858 kgdbsinit_called = 1;
859
860 bus_space_handle_t bh;
861 if (bus_space_map(&gemini_a4x_bs_tag, comkgdbaddr,
862 GEMINI_UART_SIZE, 0, &bh))
863 panic("kgdb port can not be mapped.");
864
865 if (com_kgdb_attach(&gemini_a4x_bs_tag, comkgdbaddr, comkgdbspeed,
866 GEMINI_UART_SIZE, COM_TYPE_16550_NOERS, comkgdbmode))
867 panic("KGDB uart can not be initialized.");
868
869 bus_space_unmap(&gemini_a4x_bs_tag, bh, GEMINI_UART_SIZE);
870 }
871 #endif
872
873 static void
setup_real_page_tables(void)874 setup_real_page_tables(void)
875 {
876 /*
877 * We need to allocate some fixed page tables to get the kernel going.
878 *
879 * We are going to allocate our bootstrap pages from the beginning of
880 * the free space that we just calculated. We allocate one page
881 * directory and a number of page tables and store the physical
882 * addresses in the kernel_pt_table array.
883 *
884 * The kernel page directory must be on a 16K boundary. The page
885 * tables must be on 4K boundaries. What we do is allocate the
886 * page directory on the first 16K boundary that we encounter, and
887 * the page tables on 4K boundaries otherwise. Since we allocate
888 * at least 3 L2 page tables, we are guaranteed to encounter at
889 * least one 16K aligned region.
890 */
891
892 #ifdef VERBOSE_INIT_ARM
893 printf("Allocating page tables\n");
894 #endif
895
896 /*
897 * Define a macro to simplify memory allocation. As we allocate the
898 * memory, make sure that we don't walk over our temporary first level
899 * translation table.
900 */
901 #define valloc_pages(var, np) \
902 (var).pv_pa = physical_freestart; \
903 physical_freestart += ((np) * PAGE_SIZE); \
904 if (physical_freestart > (physical_freeend - L1_TABLE_SIZE)) \
905 panic("initarm: out of memory"); \
906 free_pages -= (np); \
907 (var).pv_va = KERN_PHYSTOV((var).pv_pa); \
908 memset((char *)(var).pv_va, 0, ((np) * PAGE_SIZE));
909
910 int loop, pt_index;
911
912 pt_index = 0;
913 kernel_l1pt.pv_pa = 0;
914 kernel_l1pt.pv_va = 0;
915 #ifdef VERBOSE_INIT_ARM
916 printf("%s: physical_freestart %#lx\n", __func__, physical_freestart);
917 #endif
918 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
919 /* Are we 16KB aligned for an L1 ? */
920 if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0
921 && kernel_l1pt.pv_pa == 0) {
922 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
923 } else {
924 valloc_pages(kernel_pt_table[pt_index],
925 L2_TABLE_SIZE / PAGE_SIZE);
926 ++pt_index;
927 }
928 }
929
930 #if (NGEMINIIPM > 0)
931 valloc_pages(ipmq_pt, L2_TABLE_SIZE / PAGE_SIZE);
932 #endif
933
934 #ifdef VERBOSE_INIT_ARM
935 pt_index=0;
936 printf("%s: kernel_l1pt: %#lx:%#lx\n",
937 __func__, kernel_l1pt.pv_va, kernel_l1pt.pv_pa);
938 printf("%s: kernel_pt_table:\n", __func__);
939 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
940 printf("\t%#lx:%#lx\n", kernel_pt_table[pt_index].pv_va,
941 kernel_pt_table[pt_index].pv_pa);
942 ++pt_index;
943 }
944 #if (NGEMINIIPM > 0)
945 printf("%s: ipmq_pt:\n", __func__);
946 printf("\t%#lx:%#lx\n", ipmq_pt.pv_va, ipmq_pt.pv_pa);
947 #endif
948 #endif
949
950 /* This should never be able to happen but better confirm that. */
951 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
952 panic("initarm: Failed to align the kernel page directory");
953
954 /*
955 * Allocate a page for the system page mapped to V0x00000000
956 * This page will just contain the system vectors and can be
957 * shared by all processes.
958 */
959 valloc_pages(systempage, 1);
960 systempage.pv_va = ARM_VECTORS_HIGH;
961
962 /* Allocate stacks for all modes */
963 valloc_pages(fiqstack, FIQ_STACK_SIZE);
964 valloc_pages(irqstack, IRQ_STACK_SIZE);
965 valloc_pages(abtstack, ABT_STACK_SIZE);
966 valloc_pages(undstack, UND_STACK_SIZE);
967 valloc_pages(kernelstack, UPAGES);
968
969 /* Allocate the message buffer. */
970 pv_addr_t msgbuf;
971 int msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
972 valloc_pages(msgbuf, msgbuf_pgs);
973 msgbufphys = msgbuf.pv_pa;
974
975 /*
976 * Ok we have allocated physical pages for the primary kernel
977 * page tables
978 */
979
980 #ifdef VERBOSE_INIT_ARM
981 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
982 #endif
983
984 /*
985 * Now we start construction of the L1 page table
986 * We start by mapping the L2 page tables into the L1.
987 * This means that we can replace L1 mappings later on if necessary
988 */
989 vaddr_t l1_va = kernel_l1pt.pv_va;
990 paddr_t l1_pa = kernel_l1pt.pv_pa;
991
992 /* Map the L2 pages tables in the L1 page table */
993 pmap_link_l2pt(l1_va, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
994 &kernel_pt_table[KERNEL_PT_SYS]);
995 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
996 pmap_link_l2pt(l1_va, KERNEL_BASE + loop * 0x00400000,
997 &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
998 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
999 pmap_link_l2pt(l1_va, KERNEL_VM_BASE + loop * 0x00400000,
1000 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
1001
1002 /* update the top of the kernel VM */
1003 pmap_curmaxkvaddr =
1004 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
1005
1006 #if (NGEMINIIPM > 0)
1007 printf("%s:%d: pmap_link_l2pt ipmq_pt\n", __FUNCTION__, __LINE__);
1008 pmap_link_l2pt(l1_va, GEMINI_IPMQ_VBASE, &ipmq_pt);
1009 #endif
1010
1011 #ifdef VERBOSE_INIT_ARM
1012 printf("Mapping kernel\n");
1013 #endif
1014
1015 /* Now we fill in the L2 pagetable for the kernel static code/data */
1016 #define round_L_page(x) (((x) + L2_L_OFFSET) & L2_L_FRAME)
1017 size_t textsize = round_L_page(etext - KERNEL_BASE_virt);
1018 size_t totalsize = round_L_page(_end - KERNEL_BASE_virt);
1019 /* offset of kernel in RAM */
1020 u_int offset = (u_int)KERNEL_BASE_virt - KERNEL_BASE;
1021
1022 #ifdef DDB
1023 /* Map text section read-write. */
1024 offset += pmap_map_chunk(l1_va,
1025 (vaddr_t)KERNEL_BASE + offset,
1026 physical_start + offset, textsize,
1027 VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE,
1028 PTE_CACHE);
1029 #else
1030 /* Map text section read-only. */
1031 offset += pmap_map_chunk(l1_va,
1032 (vaddr_t)KERNEL_BASE + offset,
1033 physical_start + offset, textsize,
1034 VM_PROT_READ|VM_PROT_EXECUTE, PTE_CACHE);
1035 #endif
1036 /* Map data and bss sections read-write. */
1037 offset += pmap_map_chunk(l1_va,
1038 (vaddr_t)KERNEL_BASE + offset,
1039 physical_start + offset, totalsize - textsize,
1040 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1041
1042 #ifdef VERBOSE_INIT_ARM
1043 printf("Constructing L2 page tables\n");
1044 #endif
1045
1046 /* Map the stack pages */
1047 pmap_map_chunk(l1_va, fiqstack.pv_va, fiqstack.pv_pa,
1048 FIQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1049 pmap_map_chunk(l1_va, irqstack.pv_va, irqstack.pv_pa,
1050 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1051 pmap_map_chunk(l1_va, abtstack.pv_va, abtstack.pv_pa,
1052 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1053 pmap_map_chunk(l1_va, undstack.pv_va, undstack.pv_pa,
1054 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1055 pmap_map_chunk(l1_va, kernelstack.pv_va, kernelstack.pv_pa,
1056 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
1057
1058 pmap_map_chunk(l1_va, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
1059 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
1060
1061 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
1062 pmap_map_chunk(l1_va, kernel_pt_table[loop].pv_va,
1063 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
1064 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
1065 }
1066
1067 /* Map the vector page. */
1068 pmap_map_entry(l1_va, ARM_VECTORS_HIGH, systempage.pv_pa,
1069 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1070
1071 #if (NGEMINIIPM > 0)
1072 /* Map the IPM queue l2pt */
1073 pmap_map_chunk(l1_va, ipmq_pt.pv_va, ipmq_pt.pv_pa,
1074 L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
1075
1076 /* Map the IPM queue pages */
1077 pmap_map_chunk(l1_va, GEMINI_IPMQ_VBASE, GEMINI_IPMQ_PBASE,
1078 GEMINI_IPMQ_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1079
1080 #ifdef GEMINI_SLAVE
1081 /*
1082 * Map all memory, including that owned by other core
1083 * take into account the RAM remap, so view in this region
1084 * is consistent with MASTER
1085 */
1086 pmap_map_chunk(l1_va,
1087 GEMINI_ALLMEM_VBASE,
1088 GEMINI_ALLMEM_PBASE + ((GEMINI_ALLMEM_SIZE - MEMSIZE) * 1024 * 1024),
1089 (GEMINI_ALLMEM_SIZE - MEMSIZE) * 1024 * 1024,
1090 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1091 pmap_map_chunk(l1_va,
1092 GEMINI_ALLMEM_VBASE + GEMINI_BUSBASE * 1024 * 1024,
1093 GEMINI_ALLMEM_PBASE,
1094 (MEMSIZE * 1024 * 1024),
1095 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1096 #else
1097 /* Map all memory, including that owned by other core */
1098 pmap_map_chunk(l1_va, GEMINI_ALLMEM_VBASE, GEMINI_ALLMEM_PBASE,
1099 GEMINI_ALLMEM_SIZE * 1024 * 1024, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1100 #endif /* GEMINI_SLAVE */
1101 #endif /* NGEMINIIPM */
1102
1103 /*
1104 * Map integrated peripherals at same address in first level page
1105 * table so that we can continue to use console.
1106 */
1107 pmap_devmap_bootstrap(l1_va, devmap);
1108
1109
1110 #ifdef VERBOSE_INIT_ARM
1111 /* Tell the user about where all the bits and pieces live. */
1112 printf("%22s Physical Virtual Num\n", " ");
1113 printf("%22s Starting Ending Starting Ending Pages\n", " ");
1114
1115 static const char mem_fmt[] =
1116 "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %d\n";
1117 static const char mem_fmt_nov[] =
1118 "%20s: 0x%08lx 0x%08lx %d\n";
1119
1120 printf(mem_fmt, "SDRAM", physical_start, physical_end-1,
1121 KERN_PHYSTOV(physical_start), KERN_PHYSTOV(physical_end-1),
1122 (int)physmem);
1123 printf(mem_fmt, "text section",
1124 KERN_VTOPHYS((vaddr_t)KERNEL_BASE_virt), KERN_VTOPHYS((vaddr_t)etext-1),
1125 (vaddr_t)KERNEL_BASE_virt, (vaddr_t)etext-1,
1126 (int)(textsize / PAGE_SIZE));
1127 printf(mem_fmt, "data section",
1128 KERN_VTOPHYS((vaddr_t)__data_start), KERN_VTOPHYS((vaddr_t)_edata),
1129 (vaddr_t)__data_start, (vaddr_t)_edata,
1130 (int)((round_page((vaddr_t)_edata)
1131 - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
1132 printf(mem_fmt, "bss section",
1133 KERN_VTOPHYS((vaddr_t)__bss_start), KERN_VTOPHYS((vaddr_t)__bss_end__),
1134 (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
1135 (int)((round_page((vaddr_t)__bss_end__)
1136 - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
1137 printf(mem_fmt, "L1 page directory",
1138 kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
1139 kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
1140 L1_TABLE_SIZE / PAGE_SIZE);
1141 printf(mem_fmt, "Exception Vectors",
1142 systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
1143 (vaddr_t)ARM_VECTORS_HIGH, (vaddr_t)ARM_VECTORS_HIGH + PAGE_SIZE - 1,
1144 1);
1145 printf(mem_fmt, "FIQ stack",
1146 fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
1147 fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
1148 FIQ_STACK_SIZE);
1149 printf(mem_fmt, "IRQ stack",
1150 irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
1151 irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
1152 IRQ_STACK_SIZE);
1153 printf(mem_fmt, "ABT stack",
1154 abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
1155 abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
1156 ABT_STACK_SIZE);
1157 printf(mem_fmt, "UND stack",
1158 undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
1159 undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
1160 UND_STACK_SIZE);
1161 printf(mem_fmt, "SVC stack",
1162 kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
1163 kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
1164 UPAGES);
1165 printf(mem_fmt_nov, "Message Buffer",
1166 msgbufphys, msgbufphys + msgbuf_pgs * PAGE_SIZE - 1, msgbuf_pgs);
1167 printf(mem_fmt, "Free Memory", physical_freestart, physical_freeend-1,
1168 KERN_PHYSTOV(physical_freestart), KERN_PHYSTOV(physical_freeend-1),
1169 free_pages);
1170 #endif
1171
1172 /*
1173 * Now we have the real page tables in place so we can switch to them.
1174 * Once this is done we will be running with the REAL kernel page
1175 * tables.
1176 */
1177
1178 /* Switch tables */
1179 #ifdef VERBOSE_INIT_ARM
1180 printf("switching to new L1 page table @%#lx...", l1_pa);
1181 #endif
1182
1183 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
1184 cpu_setttb(l1_pa, true);
1185 cpu_tlb_flushID();
1186 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
1187
1188 #ifdef VERBOSE_INIT_ARM
1189 printf("OK.\n");
1190 #endif
1191 }
1192