xref: /netbsd-src/sys/arch/evbarm/gemini/gemini_machdep.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: gemini_machdep.c,v 1.25 2018/07/15 05:16:42 maxv Exp $	*/
2 
3 /* adapted from:
4  *	NetBSD: sdp24xx_machdep.c,v 1.4 2008/08/27 11:03:10 matt Exp
5  */
6 
7 /*
8  * Machine dependent functions for kernel setup for TI OSK5912 board.
9  * Based on lubbock_machdep.c which in turn was based on iq80310_machhdep.c
10  *
11  * Copyright (c) 2002, 2003, 2005  Genetec Corporation.  All rights reserved.
12  * Written by Hiroyuki Bessho for Genetec Corporation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. The name of Genetec Corporation may not be used to endorse or
23  *    promote products derived from this software without specific prior
24  *    written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  *
38  * Copyright (c) 2001 Wasabi Systems, Inc.
39  * All rights reserved.
40  *
41  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed for the NetBSD Project by
54  *	Wasabi Systems, Inc.
55  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56  *    or promote products derived from this software without specific prior
57  *    written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69  * POSSIBILITY OF SUCH DAMAGE.
70  *
71  * Copyright (c) 1997,1998 Mark Brinicombe.
72  * Copyright (c) 1997,1998 Causality Limited.
73  * All rights reserved.
74  *
75  * Redistribution and use in source and binary forms, with or without
76  * modification, are permitted provided that the following conditions
77  * are met:
78  * 1. Redistributions of source code must retain the above copyright
79  *    notice, this list of conditions and the following disclaimer.
80  * 2. Redistributions in binary form must reproduce the above copyright
81  *    notice, this list of conditions and the following disclaimer in the
82  *    documentation and/or other materials provided with the distribution.
83  * 3. All advertising materials mentioning features or use of this software
84  *    must display the following acknowledgement:
85  *	This product includes software developed by Mark Brinicombe
86  *	for the NetBSD Project.
87  * 4. The name of the company nor the name of the author may be used to
88  *    endorse or promote products derived from this software without specific
89  *    prior written permission.
90  *
91  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
92  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
93  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
94  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
95  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
96  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
97  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
98  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
99  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
100  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
101  * SUCH DAMAGE.
102  *
103  * Copyright (c) 2007 Microsoft
104  * All rights reserved.
105  *
106  * Redistribution and use in source and binary forms, with or without
107  * modification, are permitted provided that the following conditions
108  * are met:
109  * 1. Redistributions of source code must retain the above copyright
110  *    notice, this list of conditions and the following disclaimer.
111  * 2. Redistributions in binary form must reproduce the above copyright
112  *    notice, this list of conditions and the following disclaimer in the
113  *    documentation and/or other materials provided with the distribution.
114  * 3. All advertising materials mentioning features or use of this software
115  *    must display the following acknowledgement:
116  *	This product includes software developed by Microsoft
117  *
118  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
119  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
120  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
121  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
122  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
123  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
124  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
125  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
126  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
127  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
128  * SUCH DAMAGE.
129  */
130 
131 #include <sys/cdefs.h>
132 __KERNEL_RCSID(0, "$NetBSD: gemini_machdep.c,v 1.25 2018/07/15 05:16:42 maxv Exp $");
133 
134 #include "opt_machdep.h"
135 #include "opt_ddb.h"
136 #include "opt_kgdb.h"
137 #include "opt_md.h"
138 #include "opt_com.h"
139 #include "opt_gemini.h"
140 #include "geminiwdt.h"
141 #include "geminiipm.h"
142 
143 #include <sys/param.h>
144 #include <sys/device.h>
145 #include <sys/systm.h>
146 #include <sys/kernel.h>
147 #include <sys/exec.h>
148 #include <sys/proc.h>
149 #include <sys/msgbuf.h>
150 #include <sys/reboot.h>
151 #include <sys/termios.h>
152 #include <sys/ksyms.h>
153 #include <sys/bus.h>
154 #include <sys/cpu.h>
155 #include <sys/conf.h>
156 
157 #include <uvm/uvm_extern.h>
158 
159 #include <dev/cons.h>
160 #include <dev/md.h>
161 
162 #include <machine/db_machdep.h>
163 #include <ddb/db_sym.h>
164 #include <ddb/db_extern.h>
165 #ifdef KGDB
166 #include <sys/kgdb.h>
167 #endif
168 
169 #include <arm/locore.h>
170 #include <arm/undefined.h>
171 
172 #include <arm/arm32/machdep.h>
173 
174 #include <machine/bootconfig.h>
175 
176 #include <arm/gemini/gemini_reg.h>
177 #include <arm/gemini/gemini_var.h>
178 #include <arm/gemini/gemini_wdtvar.h>
179 #include <arm/gemini/gemini_com.h>
180 #include <arm/gemini/lpc_com.h>
181 
182 #include <evbarm/gemini/gemini.h>
183 
184 #if defined(VERBOSE_INIT_ARM)
185 # define GEMINI_PUTCHAR(c)	gemini_putchar(c)
186 # define GEMINI_PUTHEX(n)	gemini_puthex(n)
187 #else	/* VERBOSE_INIT_ARM */
188 # define GEMINI_PUTCHAR(c)
189 # define GEMINI_PUTHEX(n)
190 #endif	/* VERBOSE_INIT_ARM */
191 
192 BootConfig bootconfig;		/* Boot config storage */
193 char *boot_args = NULL;
194 char *boot_file = NULL;
195 
196 /* Physical address of the beginning of SDRAM. */
197 paddr_t physical_start;
198 /* Physical address of the first byte after the end of SDRAM. */
199 paddr_t physical_end;
200 
201 /* Same things, but for the free (unused by the kernel) memory. */
202 static paddr_t physical_freestart, physical_freeend;
203 static u_int free_pages;
204 
205 /* Physical address of the message buffer. */
206 paddr_t msgbufphys;
207 
208 extern char KERNEL_BASE_phys[];
209 extern char KERNEL_BASE_virt[];
210 extern char etext[], __data_start[], _edata[], __bss_start[], __bss_end__[];
211 extern char _end[];
212 
213 #define KERNEL_PT_SYS		0	/* Page table for mapping proc0 zero page */
214 #define KERNEL_PT_KERNEL	1	/* Page table for mapping kernel */
215 #define	KERNEL_PT_KERNEL_NUM	4
216 #define KERNEL_PT_VMDATA	(KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
217 				        /* Page tables for mapping kernel VM */
218 #define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
219 #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
220 
221 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
222 
223 
224 #if (NGEMINIIPM > 0)
225 pv_addr_t ipmq_pt;		/* L2 Page table for mapping IPM queues */
226 #if defined(DEBUG) || 1
227 unsigned long gemini_ipmq_pbase = GEMINI_IPMQ_PBASE;
228 unsigned long gemini_ipmq_vbase = GEMINI_IPMQ_VBASE;
229 #endif	/* DEBUG */
230 #endif	/* NGEMINIIPM > 0 */
231 
232 
233 /*
234  * Macros to translate between physical and virtual for a subset of the
235  * kernel address space.  *Not* for general use.
236  */
237 #define KERNEL_BASE_PHYS ((paddr_t)&KERNEL_BASE_phys)
238 
239 #define KERN_VTOPHYS(va) \
240 	((paddr_t)((vaddr_t)va - KERNEL_BASE + GEMINI_DRAM_BASE))
241 #define KERN_PHYSTOV(pa) \
242 	((vaddr_t)((paddr_t)pa - GEMINI_DRAM_BASE + KERNEL_BASE))
243 
244 /* Prototypes */
245 
246 void gemini_intr_init(bus_space_tag_t);
247 void consinit(void);
248 #ifdef KGDB
249 static void kgdb_port_init(void);
250 #endif
251 
252 static void setup_real_page_tables(void);
253 static void init_clocks(void);
254 
255 bs_protos(bs_notimpl);
256 
257 #include "com.h"
258 #if NCOM > 0
259 #include <dev/ic/comreg.h>
260 #include <dev/ic/comvar.h>
261 #endif
262 
263 
264 static void gemini_global_reset(void) __attribute__ ((noreturn));
265 static void gemini_cpu1_start(void);
266 static void gemini_memchk(void);
267 
268 static void
269 gemini_global_reset(void)
270 {
271 #if defined(GEMINI_MASTER) || defined(GEMINI_SINGLE)
272 	volatile uint32_t *rp;
273 	uint32_t r;
274 
275 	rp = (volatile uint32_t *)
276 		(GEMINI_GLOBAL_VBASE + GEMINI_GLOBAL_RESET_CTL);
277 	r = *rp;
278 	r |= GLOBAL_RESET_GLOBAL;
279 	*rp = r;
280 #endif
281 	for(;;);
282 	/* NOTREACHED */
283 }
284 
285 static void
286 gemini_cpu1_start(void)
287 {
288 #ifdef GEMINI_MASTER
289 	volatile uint32_t *rp;
290 	uint32_t r;
291 
292 	rp = (volatile uint32_t *)
293 		(GEMINI_GLOBAL_VBASE + GEMINI_GLOBAL_RESET_CTL);
294 	r = *rp;
295 	r &= ~GLOBAL_RESET_CPU1;
296 	*rp = r;
297 #endif
298 }
299 
300 static void
301 gemini_memchk(void)
302 {
303 	volatile uint32_t *rp;
304 	uint32_t r;
305 	uint32_t base;
306 	uint32_t size;
307 
308 	rp = (volatile uint32_t *)
309 		(GEMINI_DRAMC_VBASE + GEMINI_DRAMC_RMCR);
310 	r = *rp;
311 	base = (r & DRAMC_RMCR_RMBAR) >> DRAMC_RMCR_RMBAR_SHFT;
312 	size = (r & DRAMC_RMCR_RMSZR) >> DRAMC_RMCR_RMSZR_SHFT;
313 #if defined(GEMINI_SINGLE)
314 	if (r != 0)
315 		panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
316 			__FUNCTION__, r, MEMSIZE);
317 #elif defined(GEMINI_MASTER)
318 	if (base != MEMSIZE)
319 		panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
320 			__FUNCTION__, r, MEMSIZE);
321 #elif defined(GEMINI_SLAVE)
322 	if (size != MEMSIZE)
323 		panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
324 			__FUNCTION__, r, MEMSIZE);
325 #endif
326 #if defined(VERBOSE_INIT_ARM) || 1
327 	printf("DRAM Remap: base=%dMB, size=%dMB\n", base, size);
328 #endif
329 }
330 
331 /*
332  * void cpu_reboot(int howto, char *bootstr)
333  *
334  * Reboots the system
335  *
336  * Deal with any syncing, unmounting, dumping and shutdown hooks,
337  * then reset the CPU.
338  */
339 void
340 cpu_reboot(int howto, char *bootstr)
341 {
342 	extern struct geminitmr_softc *ref_sc;
343 
344 #ifdef DIAGNOSTIC
345 	/* info */
346 	printf("boot: howto=%08x curproc=%p\n", howto, curproc);
347 #endif
348 
349 	/*
350 	 * If we are still cold then hit the air brakes
351 	 * and crash to earth fast
352 	 */
353 	if (cold) {
354 		doshutdownhooks();
355 		pmf_system_shutdown(boothowto);
356 		printf("The operating system has halted.\n");
357 		printf("Please press any key to reboot.\n\n");
358 		cngetc();
359 		printf("rebooting...\n");
360 		if (ref_sc != NULL)
361 			delay(2000);			/* cnflush(); */
362 		gemini_global_reset();
363 		/*NOTREACHED*/
364 	}
365 
366 	/* Disable console buffering */
367 	cnpollc(1);
368 
369 	/*
370 	 * If RB_NOSYNC was not specified sync the discs.
371 	 * Note: Unless cold is set to 1 here, syslogd will die during the
372 	 * unmount.  It looks like syslogd is getting woken up only to find
373 	 * that it cannot page part of the binary in as the filesystem has
374 	 * been unmounted.
375 	 */
376 	if (!(howto & RB_NOSYNC))
377 		bootsync();
378 
379 	/* Say NO to interrupts */
380 	splhigh();
381 
382 	/* Do a dump if requested. */
383 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
384 		dumpsys();
385 
386 	/* Run any shutdown hooks */
387 	doshutdownhooks();
388 
389 	pmf_system_shutdown(boothowto);
390 
391 	/* Make sure IRQ's are disabled */
392 	IRQdisable;
393 
394 	if (howto & RB_HALT) {
395 		printf("The operating system has halted.\n");
396 		printf("Please press any key to reboot.\n\n");
397 		cngetc();
398 	}
399 
400 	printf("rebooting...\n");
401 	if (ref_sc != NULL)
402 		delay(2000);			/* cnflush(); */
403 	gemini_global_reset();
404 	/*NOTREACHED*/
405 }
406 
407 /*
408  * Static device mappings. These peripheral registers are mapped at
409  * fixed virtual addresses very early in initarm() so that we can use
410  * them while booting the kernel, and stay at the same address
411  * throughout whole kernel's life time.
412  *
413  * We use this table twice; once with bootstrap page table, and once
414  * with kernel's page table which we build up in initarm().
415  *
416  * Since we map these registers into the bootstrap page table using
417  * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
418  * registers segment-aligned and segment-rounded in order to avoid
419  * using the 2nd page tables.
420  */
421 
422 #define	_A(a)	((a) & ~L1_S_OFFSET)
423 #define	_S(s)	(((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
424 
425 static const struct pmap_devmap devmap[] = {
426 	/* Global regs */
427 	{
428 		.pd_va = _A(GEMINI_GLOBAL_VBASE),
429 		.pd_pa = _A(GEMINI_GLOBAL_BASE),
430 		.pd_size = _S(L1_S_SIZE),
431 		.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
432 		.pd_cache = PTE_NOCACHE
433 	},
434 
435 	/* Watchdog */
436 	{
437 		.pd_va = _A(GEMINI_WATCHDOG_VBASE),
438 		.pd_pa = _A(GEMINI_WATCHDOG_BASE),
439 		.pd_size = _S(L1_S_SIZE),
440 		.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
441 		.pd_cache = PTE_NOCACHE
442 	},
443 
444 	/* UART */
445 	{
446 		.pd_va = _A(GEMINI_UART_VBASE),
447 		.pd_pa = _A(GEMINI_UART_BASE),
448 		.pd_size = _S(L1_S_SIZE),
449 		.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
450 		.pd_cache = PTE_NOCACHE
451 	},
452 
453 	/* LPCHC */
454 	{
455 		.pd_va = _A(GEMINI_LPCHC_VBASE),
456 		.pd_pa = _A(GEMINI_LPCHC_BASE),
457 		.pd_size = _S(L1_S_SIZE),
458 		.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
459 		.pd_cache = PTE_NOCACHE
460 	},
461 
462 	/* LPCIO */
463 	{
464 		.pd_va = _A(GEMINI_LPCIO_VBASE),
465 		.pd_pa = _A(GEMINI_LPCIO_BASE),
466 		.pd_size = _S(L1_S_SIZE),
467 		.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
468 		.pd_cache = PTE_NOCACHE
469 	},
470 
471 	/* Timers */
472 	{
473 		.pd_va = _A(GEMINI_TIMER_VBASE),
474 		.pd_pa = _A(GEMINI_TIMER_BASE),
475 		.pd_size = _S(L1_S_SIZE),
476 		.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
477 		.pd_cache = PTE_NOCACHE
478 	},
479 
480 	/* DRAM Controller */
481 	{
482 		.pd_va = _A(GEMINI_DRAMC_VBASE),
483 		.pd_pa = _A(GEMINI_DRAMC_BASE),
484 		.pd_size = _S(L1_S_SIZE),
485 		.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
486 		.pd_cache = PTE_NOCACHE
487 	},
488 
489 #if defined(MEMORY_DISK_DYNAMIC)
490 	/* Ramdisk */
491 	{
492 		.pd_va = _A(GEMINI_RAMDISK_VBASE),
493 		.pd_pa = _A(GEMINI_RAMDISK_PBASE),
494 		.pd_size = _S(GEMINI_RAMDISK_SIZE),
495 		.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
496 		.pd_cache = PTE_NOCACHE
497 	},
498 #endif
499 
500 	{0}	/* list terminator */
501 };
502 
503 #undef	_A
504 #undef	_S
505 
506 #ifdef DDB
507 static void gemini_db_trap(int where)
508 {
509 #if  NGEMINIWDT > 0
510 	static int oldwatchdogstate;
511 
512 	if (where) {
513 		oldwatchdogstate = geminiwdt_enable(0);
514 	} else {
515 		geminiwdt_enable(oldwatchdogstate);
516 	}
517 #endif
518 }
519 #endif
520 
521 #if defined(VERBOSE_INIT_ARM) || 1
522 void gemini_putchar(char c);
523 void
524 gemini_putchar(char c)
525 {
526 	unsigned char *com0addr = (unsigned char *)GEMINI_UART_VBASE;
527 	int timo = 150000;
528 
529 	while ((com0addr[COM_REG_LSR * 4] & LSR_TXRDY) == 0)
530 		if (--timo == 0)
531 			break;
532 
533 	com0addr[COM_REG_TXDATA] = c;
534 
535 	while ((com0addr[COM_REG_LSR * 4] & LSR_TSRE) == 0)
536 		if (--timo == 0)
537 			break;
538 }
539 
540 void gemini_puthex(unsigned int);
541 void
542 gemini_puthex(unsigned int val)
543 {
544 	char hexc[] = "0123456789abcdef";
545 
546 	gemini_putchar('0');
547 	gemini_putchar('x');
548 	gemini_putchar(hexc[(val >> 28) & 0xf]);
549 	gemini_putchar(hexc[(val >> 24) & 0xf]);
550 	gemini_putchar(hexc[(val >> 20) & 0xf]);
551 	gemini_putchar(hexc[(val >> 16) & 0xf]);
552 	gemini_putchar(hexc[(val >> 12) & 0xf]);
553 	gemini_putchar(hexc[(val >> 8) & 0xf]);
554 	gemini_putchar(hexc[(val >> 4) & 0xf]);
555 	gemini_putchar(hexc[(val >> 0) & 0xf]);
556 }
557 #endif	/* VERBOSE_INIT_ARM */
558 
559 /*
560  * u_int initarm(...)
561  *
562  * Initial entry point on startup. This gets called before main() is
563  * entered.
564  * It should be responsible for setting up everything that must be
565  * in place when main is called.
566  * This includes
567  *   Taking a copy of the boot configuration structure.
568  *   Initialising the physical console so characters can be printed.
569  *   Setting up page tables for the kernel
570  *   Relocating the kernel to the bottom of physical memory
571  */
572 u_int
573 initarm(void *arg)
574 {
575 	GEMINI_PUTCHAR('0');
576 
577 	/*
578 	 * start cpu#1 now
579 	 */
580 	gemini_cpu1_start();
581 
582 	/*
583 	 * When we enter here, we are using a temporary first level
584 	 * translation table with section entries in it to cover the OBIO
585 	 * peripherals and SDRAM.  The temporary first level translation table
586 	 * is at the end of SDRAM.
587 	 */
588 
589 	/* Heads up ... Setup the CPU / MMU / TLB functions. */
590 	GEMINI_PUTCHAR('1');
591 	if (set_cpufuncs())
592 		panic("cpu not recognized!");
593 
594 	GEMINI_PUTCHAR('2');
595 	init_clocks();
596 	GEMINI_PUTCHAR('3');
597 
598 	/* The console is going to try to map things.  Give pmap a devmap. */
599 	pmap_devmap_register(devmap);
600 	GEMINI_PUTCHAR('4');
601 	consinit();
602 	GEMINI_PUTCHAR('5');
603 #ifdef KGDB
604 	kgdb_port_init();
605 #endif
606 
607 	/* Talk to the user */
608 	printf("\nNetBSD/evbarm (gemini) booting ...\n");
609 
610 #ifdef BOOT_ARGS
611 	char mi_bootargs[] = BOOT_ARGS;
612 	parse_mi_bootargs(mi_bootargs);
613 #endif
614 
615 #ifdef VERBOSE_INIT_ARM
616 	printf("initarm: Configuring system ...\n");
617 #endif
618 
619 	/*
620 	 * Set up the variables that define the availability of physical
621 	 * memory.
622 	 */
623 	gemini_memchk();
624 	physical_start = GEMINI_DRAM_BASE;
625 #define	MEMSIZE_BYTES 	(MEMSIZE * 1024 * 1024)
626 	physical_end = (physical_start & ~(0x400000-1)) + MEMSIZE_BYTES;
627 	physmem = (physical_end - physical_start) / PAGE_SIZE;
628 
629 	/* Fake bootconfig structure for the benefit of pmap.c. */
630 	bootconfig.dramblocks = 1;
631 	bootconfig.dram[0].address = physical_start;
632 	bootconfig.dram[0].pages = physmem;
633 
634 	/*
635 	 * Our kernel is at the beginning of memory, so set our free space to
636 	 * all the memory after the kernel.
637 	 */
638 	physical_freestart = KERN_VTOPHYS(round_page((vaddr_t) _end));
639 	physical_freeend = physical_end;
640 	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
641 
642 	/*
643 	 * This is going to do all the hard work of setting up the first and
644 	 * and second level page tables.  Pages of memory will be allocated
645 	 * and mapped for other structures that are required for system
646 	 * operation.  When it returns, physical_freestart and free_pages will
647 	 * have been updated to reflect the allocations that were made.  In
648 	 * addition, kernel_l1pt, kernel_pt_table[], systempage, irqstack,
649 	 * abtstack, undstack, kernelstack, msgbufphys will be set to point to
650 	 * the memory that was allocated for them.
651 	 */
652 	setup_real_page_tables();
653 
654 	/*
655 	 * Moved from cpu_startup() as data_abort_handler() references
656 	 * this during uvm init.
657 	 */
658 	uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
659 
660 #ifdef VERBOSE_INIT_ARM
661 	printf("bootstrap done.\n");
662 #endif
663 
664 	arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
665 
666 	/*
667 	 * Pages were allocated during the secondary bootstrap for the
668 	 * stacks for different CPU modes.
669 	 * We must now set the r13 registers in the different CPU modes to
670 	 * point to these stacks.
671 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
672 	 * of the stack memory.
673 	 */
674 #ifdef VERBOSE_INIT_ARM
675 	printf("init subsystems: stacks ");
676 #endif
677 
678 	set_stackptr(PSR_FIQ32_MODE, fiqstack.pv_va + FIQ_STACK_SIZE * PAGE_SIZE);
679 	set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
680 	set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
681 	set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
682 
683 	/*
684 	 * Well we should set a data abort handler.
685 	 * Once things get going this will change as we will need a proper
686 	 * handler.
687 	 * Until then we will use a handler that just panics but tells us
688 	 * why.
689 	 * Initialisation of the vectors will just panic on a data abort.
690 	 * This just fills in a slightly better one.
691 	 */
692 #ifdef VERBOSE_INIT_ARM
693 	printf("vectors ");
694 #endif
695 	data_abort_handler_address = (u_int)data_abort_handler;
696 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
697 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
698 
699 	/* Initialise the undefined instruction handlers */
700 #ifdef VERBOSE_INIT_ARM
701 	printf("undefined ");
702 #endif
703 	undefined_init();
704 
705 	/* Load memory into UVM. */
706 #ifdef VERBOSE_INIT_ARM
707 	printf("page ");
708 #endif
709 	uvm_md_init();
710 
711 #if (GEMINI_RAM_RESV_PBASE != 0)
712 	uvm_page_physload(atop(physical_freestart), atop(GEMINI_RAM_RESV_PBASE),
713 	    atop(physical_freestart), atop(GEMINI_RAM_RESV_PBASE),
714 	    VM_FREELIST_DEFAULT);
715 	uvm_page_physload(atop(GEMINI_RAM_RESV_PEND), atop(physical_freeend),
716 	    atop(GEMINI_RAM_RESV_PEND), atop(physical_freeend),
717 	    VM_FREELIST_DEFAULT);
718 #else
719 	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
720 	    atop(physical_freestart), atop(physical_freeend),
721 	    VM_FREELIST_DEFAULT);
722 #endif
723 	uvm_page_physload(atop(GEMINI_DRAM_BASE), atop(KERNEL_BASE_phys),
724 	    atop(GEMINI_DRAM_BASE), atop(KERNEL_BASE_phys),
725 	    VM_FREELIST_DEFAULT);
726 
727 	/* Boot strap pmap telling it where the kernel page table is */
728 #ifdef VERBOSE_INIT_ARM
729 	printf("pmap ");
730 #endif
731 	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
732 
733 #ifdef VERBOSE_INIT_ARM
734 	printf("done.\n");
735 #endif
736 
737 #if defined(MEMORY_DISK_DYNAMIC)
738 	md_root_setconf((char *)GEMINI_RAMDISK_VBASE, GEMINI_RAMDISK_SIZE);
739 #endif
740 
741 #ifdef KGDB
742 	if (boothowto & RB_KDB) {
743 		kgdb_debug_init = 1;
744 		kgdb_connect(1);
745 	}
746 #endif
747 
748 #ifdef DDB
749 	db_trap_callback = gemini_db_trap;
750 	db_machine_init();
751 
752 	/* Firmware doesn't load symbols. */
753 	ddb_init(0, NULL, NULL);
754 
755 	if (boothowto & RB_KDB)
756 		Debugger();
757 #endif
758 	printf("initarm done.\n");
759 
760 	/* We return the new stack pointer address */
761 	return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
762 }
763 
764 static void
765 init_clocks(void)
766 {
767 }
768 
769 #ifndef CONSADDR
770 #error Specify the address of the console UART with the CONSADDR option.
771 #endif
772 #ifndef CONSPEED
773 #define CONSPEED 19200
774 #endif
775 #ifndef CONMODE
776 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
777 #endif
778 
779 static const bus_addr_t consaddr = CONSADDR;
780 static const int conspeed = CONSPEED;
781 static const int conmode = CONMODE;
782 
783 #if CONSADDR==0x42000000
784 /*
785  * console initialization for obio com console
786  */
787 void
788 consinit(void)
789 {
790 	static int consinit_called = 0;
791 
792 	if (consinit_called != 0)
793 		return;
794 	consinit_called = 1;
795 
796 	if (comcnattach(&gemini_a4x_bs_tag, consaddr, conspeed,
797 		GEMINI_COM_FREQ, COM_TYPE_16550_NOERS, conmode))
798 			panic("Serial console can not be initialized.");
799 }
800 
801 #elif CONSADDR==0x478003f8
802 # include <arm/gemini/gemini_lpcvar.h>
803 /*
804  * console initialization for lpc com console
805  */
806 void
807 consinit(void)
808 {
809 	static int consinit_called = 0;
810 	bus_space_tag_t iot = &gemini_bs_tag;
811 	bus_space_handle_t lpchc_ioh;
812 	bus_space_handle_t lpcio_ioh;
813 	bus_size_t sz = L1_S_SIZE;
814 	gemini_lpc_softc_t lpcsoftc;
815 	gemini_lpc_bus_ops_t *ops;
816 	void *lpctag = &lpcsoftc;
817 	uint32_t r;
818 	extern gemini_lpc_bus_ops_t gemini_lpc_bus_ops;
819 
820 	ops = &gemini_lpc_bus_ops;
821 
822 	if (consinit_called != 0)
823 		return;
824 	consinit_called = 1;
825 
826 	if (bus_space_map(iot, GEMINI_LPCHC_BASE, sz, 0, &lpchc_ioh))
827 		panic("consinit: LPCHC can not be mapped.");
828 
829 	if (bus_space_map(iot, GEMINI_LPCIO_BASE, sz, 0, &lpcio_ioh))
830 		panic("consinit: LPCIO can not be mapped.");
831 
832 	/* enable the LPC bus */
833 	r = bus_space_read_4(iot, lpchc_ioh, GEMINI_LPCHC_CSR);
834 	r |= LPCHC_CSR_BEN;
835 	bus_space_write_4(iot, lpchc_ioh, GEMINI_LPCHC_CSR, r);
836 
837 	memset(&lpcsoftc, 0, sizeof(lpcsoftc));
838 	lpcsoftc.sc_iot = iot;
839 	lpcsoftc.sc_ioh = lpcio_ioh;
840 
841 	/* activate Serial Port 1 */
842 	(*ops->lpc_pnp_enter)(lpctag);
843 	(*ops->lpc_pnp_write)(lpctag, 1, 0x30, 0x01);
844 	(*ops->lpc_pnp_exit)(lpctag);
845 
846 	if (comcnattach(iot, consaddr, conspeed,
847 		IT8712F_COM_FREQ, COM_TYPE_NORMAL, conmode)) {
848 			panic("Serial console can not be initialized.");
849 	}
850 
851 	bus_space_unmap(iot, lpcio_ioh, sz);
852 	bus_space_unmap(iot, lpchc_ioh, sz);
853 }
854 #else
855 # error unknown console
856 #endif
857 
858 #ifdef KGDB
859 #ifndef KGDB_DEVADDR
860 #error Specify the address of the kgdb UART with the KGDB_DEVADDR option.
861 #endif
862 #ifndef KGDB_DEVRATE
863 #define KGDB_DEVRATE 19200
864 #endif
865 
866 #ifndef KGDB_DEVMODE
867 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
868 #endif
869 static const vaddr_t comkgdbaddr = KGDB_DEVADDR;
870 static const int comkgdbspeed = KGDB_DEVRATE;
871 static const int comkgdbmode = KGDB_DEVMODE;
872 
873 void
874 static kgdb_port_init(void)
875 {
876 	static int kgdbsinit_called = 0;
877 
878 	if (kgdbsinit_called != 0)
879 		return;
880 
881 	kgdbsinit_called = 1;
882 
883 	bus_space_handle_t bh;
884 	if (bus_space_map(&gemini_a4x_bs_tag, comkgdbaddr,
885 		GEMINI_UART_SIZE, 0, &bh))
886 			panic("kgdb port can not be mapped.");
887 
888 	if (com_kgdb_attach(&gemini_a4x_bs_tag, comkgdbaddr, comkgdbspeed,
889 		GEMINI_UART_SIZE, COM_TYPE_16550_NOERS, comkgdbmode))
890 			panic("KGDB uart can not be initialized.");
891 
892 	bus_space_unmap(&gemini_a4x_bs_tag, bh, GEMINI_UART_SIZE);
893 }
894 #endif
895 
896 static void
897 setup_real_page_tables(void)
898 {
899 	/*
900 	 * We need to allocate some fixed page tables to get the kernel going.
901 	 *
902 	 * We are going to allocate our bootstrap pages from the beginning of
903 	 * the free space that we just calculated.  We allocate one page
904 	 * directory and a number of page tables and store the physical
905 	 * addresses in the kernel_pt_table array.
906 	 *
907 	 * The kernel page directory must be on a 16K boundary.  The page
908 	 * tables must be on 4K boundaries.  What we do is allocate the
909 	 * page directory on the first 16K boundary that we encounter, and
910 	 * the page tables on 4K boundaries otherwise.  Since we allocate
911 	 * at least 3 L2 page tables, we are guaranteed to encounter at
912 	 * least one 16K aligned region.
913 	 */
914 
915 #ifdef VERBOSE_INIT_ARM
916 	printf("Allocating page tables\n");
917 #endif
918 
919 	/*
920 	 * Define a macro to simplify memory allocation.  As we allocate the
921 	 * memory, make sure that we don't walk over our temporary first level
922 	 * translation table.
923 	 */
924 #define valloc_pages(var, np)						\
925 	(var).pv_pa = physical_freestart;				\
926 	physical_freestart += ((np) * PAGE_SIZE);			\
927 	if (physical_freestart > (physical_freeend - L1_TABLE_SIZE))	\
928 		panic("initarm: out of memory");			\
929 	free_pages -= (np);						\
930 	(var).pv_va = KERN_PHYSTOV((var).pv_pa);			\
931 	memset((char *)(var).pv_va, 0, ((np) * PAGE_SIZE));
932 
933 	int loop, pt_index;
934 
935 	pt_index = 0;
936 	kernel_l1pt.pv_pa = 0;
937 	kernel_l1pt.pv_va = 0;
938 #ifdef VERBOSE_INIT_ARM
939 	printf("%s: physical_freestart %#lx\n", __func__, physical_freestart);
940 #endif
941 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
942 		/* Are we 16KB aligned for an L1 ? */
943 		if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0
944 		    && kernel_l1pt.pv_pa == 0) {
945 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
946 		} else {
947 			valloc_pages(kernel_pt_table[pt_index],
948 			    L2_TABLE_SIZE / PAGE_SIZE);
949 			++pt_index;
950 		}
951 	}
952 
953 #if (NGEMINIIPM > 0)
954 	valloc_pages(ipmq_pt, L2_TABLE_SIZE / PAGE_SIZE);
955 #endif
956 
957 #ifdef VERBOSE_INIT_ARM
958 	pt_index=0;
959 	printf("%s: kernel_l1pt: %#lx:%#lx\n",
960 		__func__, kernel_l1pt.pv_va, kernel_l1pt.pv_pa);
961 	printf("%s: kernel_pt_table:\n", __func__);
962 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
963 		printf("\t%#lx:%#lx\n", kernel_pt_table[pt_index].pv_va,
964 			kernel_pt_table[pt_index].pv_pa);
965 		++pt_index;
966 	}
967 #if (NGEMINIIPM > 0)
968 	printf("%s: ipmq_pt:\n", __func__);
969 	printf("\t%#lx:%#lx\n", ipmq_pt.pv_va, ipmq_pt.pv_pa);
970 #endif
971 #endif
972 
973 	/* This should never be able to happen but better confirm that. */
974 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
975 		panic("initarm: Failed to align the kernel page directory");
976 
977 	/*
978 	 * Allocate a page for the system page mapped to V0x00000000
979 	 * This page will just contain the system vectors and can be
980 	 * shared by all processes.
981 	 */
982 	valloc_pages(systempage, 1);
983 	systempage.pv_va = ARM_VECTORS_HIGH;
984 
985 	/* Allocate stacks for all modes */
986 	valloc_pages(fiqstack, FIQ_STACK_SIZE);
987 	valloc_pages(irqstack, IRQ_STACK_SIZE);
988 	valloc_pages(abtstack, ABT_STACK_SIZE);
989 	valloc_pages(undstack, UND_STACK_SIZE);
990 	valloc_pages(kernelstack, UPAGES);
991 
992 	/* Allocate the message buffer. */
993 	pv_addr_t msgbuf;
994 	int msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
995 	valloc_pages(msgbuf, msgbuf_pgs);
996 	msgbufphys = msgbuf.pv_pa;
997 
998 	/*
999 	 * Ok we have allocated physical pages for the primary kernel
1000 	 * page tables
1001 	 */
1002 
1003 #ifdef VERBOSE_INIT_ARM
1004 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
1005 #endif
1006 
1007 	/*
1008 	 * Now we start construction of the L1 page table
1009 	 * We start by mapping the L2 page tables into the L1.
1010 	 * This means that we can replace L1 mappings later on if necessary
1011 	 */
1012 	vaddr_t l1_va = kernel_l1pt.pv_va;
1013 	paddr_t l1_pa = kernel_l1pt.pv_pa;
1014 
1015 	/* Map the L2 pages tables in the L1 page table */
1016 	pmap_link_l2pt(l1_va, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
1017 		       &kernel_pt_table[KERNEL_PT_SYS]);
1018 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
1019 		pmap_link_l2pt(l1_va, KERNEL_BASE + loop * 0x00400000,
1020 			       &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
1021 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
1022 		pmap_link_l2pt(l1_va, KERNEL_VM_BASE + loop * 0x00400000,
1023 			       &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
1024 
1025 	/* update the top of the kernel VM */
1026 	pmap_curmaxkvaddr =
1027 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
1028 
1029 #if (NGEMINIIPM > 0)
1030 printf("%s:%d: pmap_link_l2pt ipmq_pt\n", __FUNCTION__, __LINE__);
1031 	pmap_link_l2pt(l1_va, GEMINI_IPMQ_VBASE, &ipmq_pt);
1032 #endif
1033 
1034 #ifdef VERBOSE_INIT_ARM
1035 	printf("Mapping kernel\n");
1036 #endif
1037 
1038 	/* Now we fill in the L2 pagetable for the kernel static code/data */
1039 #define round_L_page(x) (((x) + L2_L_OFFSET) & L2_L_FRAME)
1040 	size_t textsize = round_L_page(etext - KERNEL_BASE_virt);
1041 	size_t totalsize = round_L_page(_end - KERNEL_BASE_virt);
1042 	/* offset of kernel in RAM */
1043 	u_int offset = (u_int)KERNEL_BASE_virt - KERNEL_BASE;
1044 
1045 #ifdef DDB
1046 	/* Map text section read-write. */
1047 	offset += pmap_map_chunk(l1_va,
1048 				(vaddr_t)KERNEL_BASE + offset,
1049 				 physical_start + offset, textsize,
1050 				 VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE,
1051 				 PTE_CACHE);
1052 #else
1053 	/* Map text section read-only. */
1054 	offset += pmap_map_chunk(l1_va,
1055 				(vaddr_t)KERNEL_BASE + offset,
1056 				 physical_start + offset, textsize,
1057 				 VM_PROT_READ|VM_PROT_EXECUTE, PTE_CACHE);
1058 #endif
1059 	/* Map data and bss sections read-write. */
1060 	offset += pmap_map_chunk(l1_va,
1061 				(vaddr_t)KERNEL_BASE + offset,
1062 				 physical_start + offset, totalsize - textsize,
1063 				 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1064 
1065 #ifdef VERBOSE_INIT_ARM
1066 	printf("Constructing L2 page tables\n");
1067 #endif
1068 
1069 	/* Map the stack pages */
1070 	pmap_map_chunk(l1_va, fiqstack.pv_va, fiqstack.pv_pa,
1071 	    FIQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1072 	pmap_map_chunk(l1_va, irqstack.pv_va, irqstack.pv_pa,
1073 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1074 	pmap_map_chunk(l1_va, abtstack.pv_va, abtstack.pv_pa,
1075 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1076 	pmap_map_chunk(l1_va, undstack.pv_va, undstack.pv_pa,
1077 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1078 	pmap_map_chunk(l1_va, kernelstack.pv_va, kernelstack.pv_pa,
1079 	    UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
1080 
1081 	pmap_map_chunk(l1_va, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
1082 	    L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
1083 
1084 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
1085 		pmap_map_chunk(l1_va, kernel_pt_table[loop].pv_va,
1086 			       kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
1087 			       VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
1088 	}
1089 
1090 	/* Map the vector page. */
1091 	pmap_map_entry(l1_va, ARM_VECTORS_HIGH, systempage.pv_pa,
1092 		       VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1093 
1094 #if (NGEMINIIPM > 0)
1095 	/* Map the IPM queue l2pt */
1096 	pmap_map_chunk(l1_va, ipmq_pt.pv_va, ipmq_pt.pv_pa,
1097 		L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
1098 
1099 	/* Map the IPM queue pages */
1100 	pmap_map_chunk(l1_va, GEMINI_IPMQ_VBASE, GEMINI_IPMQ_PBASE,
1101 	    GEMINI_IPMQ_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1102 
1103 #ifdef GEMINI_SLAVE
1104 	/*
1105 	 * Map all memory, incluuding that owned by other core
1106 	 * take into account the RAM remap, so view in this region
1107 	 * is consistent with MASTER
1108 	 */
1109 	pmap_map_chunk(l1_va,
1110 	    GEMINI_ALLMEM_VBASE,
1111 	    GEMINI_ALLMEM_PBASE + ((GEMINI_ALLMEM_SIZE - MEMSIZE) * 1024 * 1024),
1112 	    (GEMINI_ALLMEM_SIZE - MEMSIZE) * 1024 * 1024,
1113 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1114 	pmap_map_chunk(l1_va,
1115 	    GEMINI_ALLMEM_VBASE + GEMINI_BUSBASE * 1024 * 1024,
1116 	    GEMINI_ALLMEM_PBASE,
1117 	    (MEMSIZE * 1024 * 1024),
1118 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1119 #else
1120 	/* Map all memory, incluuding that owned by other core */
1121 	pmap_map_chunk(l1_va, GEMINI_ALLMEM_VBASE, GEMINI_ALLMEM_PBASE,
1122 	    GEMINI_ALLMEM_SIZE * 1024 * 1024, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1123 #endif	/* GEMINI_SLAVE */
1124 #endif	/* NGEMINIIPM */
1125 
1126 	/*
1127 	 * Map integrated peripherals at same address in first level page
1128 	 * table so that we can continue to use console.
1129 	 */
1130 	pmap_devmap_bootstrap(l1_va, devmap);
1131 
1132 
1133 #ifdef VERBOSE_INIT_ARM
1134 	/* Tell the user about where all the bits and pieces live. */
1135 	printf("%22s       Physical              Virtual        Num\n", " ");
1136 	printf("%22s Starting    Ending    Starting    Ending   Pages\n", " ");
1137 
1138 	static const char mem_fmt[] =
1139 	    "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %d\n";
1140 	static const char mem_fmt_nov[] =
1141 	    "%20s: 0x%08lx 0x%08lx                       %d\n";
1142 
1143 	printf(mem_fmt, "SDRAM", physical_start, physical_end-1,
1144 	    KERN_PHYSTOV(physical_start), KERN_PHYSTOV(physical_end-1),
1145 	    (int)physmem);
1146 	printf(mem_fmt, "text section",
1147 	       KERN_VTOPHYS(KERNEL_BASE_virt), KERN_VTOPHYS(etext-1),
1148 	       (vaddr_t)KERNEL_BASE_virt, (vaddr_t)etext-1,
1149 	       (int)(textsize / PAGE_SIZE));
1150 	printf(mem_fmt, "data section",
1151 	       KERN_VTOPHYS(__data_start), KERN_VTOPHYS(_edata),
1152 	       (vaddr_t)__data_start, (vaddr_t)_edata,
1153 	       (int)((round_page((vaddr_t)_edata)
1154 		      - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
1155 	printf(mem_fmt, "bss section",
1156 	       KERN_VTOPHYS(__bss_start), KERN_VTOPHYS(__bss_end__),
1157 	       (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
1158 	       (int)((round_page((vaddr_t)__bss_end__)
1159 		      - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
1160 	printf(mem_fmt, "L1 page directory",
1161 	    kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
1162 	    kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
1163 	    L1_TABLE_SIZE / PAGE_SIZE);
1164 	printf(mem_fmt, "Exception Vectors",
1165 	    systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
1166 	    (vaddr_t)ARM_VECTORS_HIGH, (vaddr_t)ARM_VECTORS_HIGH + PAGE_SIZE - 1,
1167 	    1);
1168 	printf(mem_fmt, "FIQ stack",
1169 	    fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
1170 	    fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
1171 	    FIQ_STACK_SIZE);
1172 	printf(mem_fmt, "IRQ stack",
1173 	    irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
1174 	    irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
1175 	    IRQ_STACK_SIZE);
1176 	printf(mem_fmt, "ABT stack",
1177 	    abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
1178 	    abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
1179 	    ABT_STACK_SIZE);
1180 	printf(mem_fmt, "UND stack",
1181 	    undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
1182 	    undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
1183 	    UND_STACK_SIZE);
1184 	printf(mem_fmt, "SVC stack",
1185 	    kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
1186 	    kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
1187 	    UPAGES);
1188 	printf(mem_fmt_nov, "Message Buffer",
1189 	    msgbufphys, msgbufphys + msgbuf_pgs * PAGE_SIZE - 1, msgbuf_pgs);
1190 	printf(mem_fmt, "Free Memory", physical_freestart, physical_freeend-1,
1191 	    KERN_PHYSTOV(physical_freestart), KERN_PHYSTOV(physical_freeend-1),
1192 	    free_pages);
1193 #endif
1194 
1195 	/*
1196 	 * Now we have the real page tables in place so we can switch to them.
1197 	 * Once this is done we will be running with the REAL kernel page
1198 	 * tables.
1199 	 */
1200 
1201 	/* Switch tables */
1202 #ifdef VERBOSE_INIT_ARM
1203 	printf("switching to new L1 page table  @%#lx...", l1_pa);
1204 #endif
1205 
1206 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
1207 	cpu_setttb(l1_pa, true);
1208 	cpu_tlb_flushID();
1209 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
1210 
1211 #ifdef VERBOSE_INIT_ARM
1212 	printf("OK.\n");
1213 #endif
1214 }
1215