1 /* $NetBSD: gemini_machdep.c,v 1.15 2009/12/26 16:01:24 uebayasi Exp $ */ 2 3 /* adapted from: 4 * NetBSD: sdp24xx_machdep.c,v 1.4 2008/08/27 11:03:10 matt Exp 5 */ 6 7 /* 8 * Machine dependent functions for kernel setup for TI OSK5912 board. 9 * Based on lubbock_machdep.c which in turn was based on iq80310_machhdep.c 10 * 11 * Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved. 12 * Written by Hiroyuki Bessho for Genetec Corporation. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. The name of Genetec Corporation may not be used to endorse or 23 * promote products derived from this software without specific prior 24 * written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 * 38 * Copyright (c) 2001 Wasabi Systems, Inc. 39 * All rights reserved. 40 * 41 * Written by Jason R. Thorpe for Wasabi Systems, Inc. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed for the NetBSD Project by 54 * Wasabi Systems, Inc. 55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 56 * or promote products derived from this software without specific prior 57 * written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 69 * POSSIBILITY OF SUCH DAMAGE. 70 * 71 * Copyright (c) 1997,1998 Mark Brinicombe. 72 * Copyright (c) 1997,1998 Causality Limited. 73 * All rights reserved. 74 * 75 * Redistribution and use in source and binary forms, with or without 76 * modification, are permitted provided that the following conditions 77 * are met: 78 * 1. Redistributions of source code must retain the above copyright 79 * notice, this list of conditions and the following disclaimer. 80 * 2. Redistributions in binary form must reproduce the above copyright 81 * notice, this list of conditions and the following disclaimer in the 82 * documentation and/or other materials provided with the distribution. 83 * 3. All advertising materials mentioning features or use of this software 84 * must display the following acknowledgement: 85 * This product includes software developed by Mark Brinicombe 86 * for the NetBSD Project. 87 * 4. The name of the company nor the name of the author may be used to 88 * endorse or promote products derived from this software without specific 89 * prior written permission. 90 * 91 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 92 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 93 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 94 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 95 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 96 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 97 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 98 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 99 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 100 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 101 * SUCH DAMAGE. 102 * 103 * Copyright (c) 2007 Microsoft 104 * All rights reserved. 105 * 106 * Redistribution and use in source and binary forms, with or without 107 * modification, are permitted provided that the following conditions 108 * are met: 109 * 1. Redistributions of source code must retain the above copyright 110 * notice, this list of conditions and the following disclaimer. 111 * 2. Redistributions in binary form must reproduce the above copyright 112 * notice, this list of conditions and the following disclaimer in the 113 * documentation and/or other materials provided with the distribution. 114 * 3. All advertising materials mentioning features or use of this software 115 * must display the following acknowledgement: 116 * This product includes software developed by Microsoft 117 * 118 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 119 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 120 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 121 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT, 122 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 123 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 124 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 125 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 126 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 127 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 128 * SUCH DAMAGE. 129 */ 130 131 #include <sys/cdefs.h> 132 __KERNEL_RCSID(0, "$NetBSD: gemini_machdep.c,v 1.15 2009/12/26 16:01:24 uebayasi Exp $"); 133 134 #include "opt_machdep.h" 135 #include "opt_ddb.h" 136 #include "opt_kgdb.h" 137 #include "opt_ipkdb.h" 138 #include "opt_md.h" 139 #include "opt_com.h" 140 #include "opt_gemini.h" 141 #include "geminiwdt.h" 142 #include "geminiipm.h" 143 #include "md.h" 144 145 #include <sys/param.h> 146 #include <sys/device.h> 147 #include <sys/systm.h> 148 #include <sys/kernel.h> 149 #include <sys/exec.h> 150 #include <sys/proc.h> 151 #include <sys/msgbuf.h> 152 #include <sys/reboot.h> 153 #include <sys/termios.h> 154 #include <sys/ksyms.h> 155 156 #include <uvm/uvm_extern.h> 157 158 #include <sys/conf.h> 159 #include <dev/cons.h> 160 #include <dev/md.h> 161 162 #include <machine/db_machdep.h> 163 #include <ddb/db_sym.h> 164 #include <ddb/db_extern.h> 165 #ifdef KGDB 166 #include <sys/kgdb.h> 167 #endif 168 169 #include <machine/bootconfig.h> 170 #include <machine/bus.h> 171 #include <machine/cpu.h> 172 #include <machine/frame.h> 173 #include <arm/armreg.h> 174 #include <arm/undefined.h> 175 176 #include <arm/arm32/machdep.h> 177 178 #include <arm/gemini/gemini_reg.h> 179 #include <arm/gemini/gemini_var.h> 180 #include <arm/gemini/gemini_wdtvar.h> 181 #include <arm/gemini/gemini_com.h> 182 #include <arm/gemini/lpc_com.h> 183 184 #include <evbarm/gemini/gemini.h> 185 186 #if defined(VERBOSE_INIT_ARM) 187 # define GEMINI_PUTCHAR(c) gemini_putchar(c) 188 # define GEMINI_PUTHEX(n) gemini_puthex(n) 189 #else /* VERBOSE_INIT_ARM */ 190 # define GEMINI_PUTCHAR(c) 191 # define GEMINI_PUTHEX(n) 192 #endif /* VERBOSE_INIT_ARM */ 193 194 /* 195 * Address to call from cpu_reset() to reset the machine. 196 * This is machine architecture dependant as it varies depending 197 * on where the ROM appears when you turn the MMU off. 198 */ 199 200 u_int cpu_reset_address = 0; 201 202 /* Define various stack sizes in pages */ 203 #define IRQ_STACK_SIZE 1 204 #define FIQ_STACK_SIZE 1 205 #define ABT_STACK_SIZE 1 206 #ifdef IPKDB 207 #define UND_STACK_SIZE 2 208 #else 209 #define UND_STACK_SIZE 1 210 #endif 211 212 BootConfig bootconfig; /* Boot config storage */ 213 char *boot_args = NULL; 214 char *boot_file = NULL; 215 216 /* Physical address of the beginning of SDRAM. */ 217 paddr_t physical_start; 218 /* Physical address of the first byte after the end of SDRAM. */ 219 paddr_t physical_end; 220 221 /* Same things, but for the free (unused by the kernel) memory. */ 222 static paddr_t physical_freestart, physical_freeend; 223 static u_int free_pages; 224 225 /* Physical and virtual addresses for some global pages */ 226 pv_addr_t fiqstack; 227 pv_addr_t irqstack; 228 pv_addr_t undstack; 229 pv_addr_t abtstack; 230 pv_addr_t kernelstack; /* stack for SVC mode */ 231 232 /* Physical address of the message buffer. */ 233 paddr_t msgbufphys; 234 235 extern u_int data_abort_handler_address; 236 extern u_int prefetch_abort_handler_address; 237 extern u_int undefined_handler_address; 238 extern char KERNEL_BASE_phys[]; 239 extern char KERNEL_BASE_virt[]; 240 extern char etext[], __data_start[], _edata[], __bss_start[], __bss_end__[]; 241 extern char _end[]; 242 243 #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */ 244 #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */ 245 #define KERNEL_PT_KERNEL_NUM 4 246 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM) 247 /* Page tables for mapping kernel VM */ 248 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */ 249 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) 250 251 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS]; 252 253 254 #if (NGEMINIIPM > 0) 255 pv_addr_t ipmq_pt; /* L2 Page table for mapping IPM queues */ 256 #if defined(DEBUG) || 1 257 unsigned long gemini_ipmq_pbase = GEMINI_IPMQ_PBASE; 258 unsigned long gemini_ipmq_vbase = GEMINI_IPMQ_VBASE; 259 #endif /* DEBUG */ 260 #endif /* NGEMINIIPM > 0 */ 261 262 263 /* 264 * Macros to translate between physical and virtual for a subset of the 265 * kernel address space. *Not* for general use. 266 */ 267 #define KERNEL_BASE_PHYS ((paddr_t)&KERNEL_BASE_phys) 268 269 #define KERN_VTOPHYS(va) \ 270 ((paddr_t)((vaddr_t)va - KERNEL_BASE + GEMINI_DRAM_BASE)) 271 #define KERN_PHYSTOV(pa) \ 272 ((vaddr_t)((paddr_t)pa - GEMINI_DRAM_BASE + KERNEL_BASE)) 273 274 /* Prototypes */ 275 276 void gemini_intr_init(bus_space_tag_t); 277 void consinit(void); 278 #ifdef KGDB 279 static void kgdb_port_init(void); 280 #endif 281 282 static void setup_real_page_tables(void); 283 static void init_clocks(void); 284 285 bs_protos(bs_notimpl); 286 287 #include "com.h" 288 #if NCOM > 0 289 #include <dev/ic/comreg.h> 290 #include <dev/ic/comvar.h> 291 #endif 292 293 294 static void gemini_global_reset(void) __attribute__ ((noreturn)); 295 static void gemini_cpu1_start(void); 296 static void gemini_memchk(void); 297 298 static void 299 gemini_global_reset(void) 300 { 301 #if defined(GEMINI_MASTER) || defined(GEMINI_SINGLE) 302 volatile uint32_t *rp; 303 uint32_t r; 304 305 rp = (volatile uint32_t *) 306 (GEMINI_GLOBAL_VBASE + GEMINI_GLOBAL_RESET_CTL); 307 r = *rp; 308 r |= GLOBAL_RESET_GLOBAL; 309 *rp = r; 310 #endif 311 for(;;); 312 /* NOTREACHED */ 313 } 314 315 static void 316 gemini_cpu1_start(void) 317 { 318 #ifdef GEMINI_MASTER 319 volatile uint32_t *rp; 320 uint32_t r; 321 322 rp = (volatile uint32_t *) 323 (GEMINI_GLOBAL_VBASE + GEMINI_GLOBAL_RESET_CTL); 324 r = *rp; 325 r &= ~GLOBAL_RESET_CPU1; 326 *rp = r; 327 #endif 328 } 329 330 static void 331 gemini_memchk(void) 332 { 333 volatile uint32_t *rp; 334 uint32_t r; 335 uint32_t base; 336 uint32_t size; 337 338 rp = (volatile uint32_t *) 339 (GEMINI_DRAMC_VBASE + GEMINI_DRAMC_RMCR); 340 r = *rp; 341 base = (r & DRAMC_RMCR_RMBAR) >> DRAMC_RMCR_RMBAR_SHFT; 342 size = (r & DRAMC_RMCR_RMSZR) >> DRAMC_RMCR_RMSZR_SHFT; 343 #if defined(GEMINI_SINGLE) 344 if (r != 0) 345 panic("%s: RMCR %#x, MEMSIZE %d mismatch\n", 346 __FUNCTION__, r, MEMSIZE); 347 #elif defined(GEMINI_MASTER) 348 if (base != MEMSIZE) 349 panic("%s: RMCR %#x, MEMSIZE %d mismatch\n", 350 __FUNCTION__, r, MEMSIZE); 351 #elif defined(GEMINI_SLAVE) 352 if (size != MEMSIZE) 353 panic("%s: RMCR %#x, MEMSIZE %d mismatch\n", 354 __FUNCTION__, r, MEMSIZE); 355 #endif 356 #if defined(VERBOSE_INIT_ARM) || 1 357 printf("DRAM Remap: base=%dMB, size=%dMB\n", base, size); 358 #endif 359 } 360 361 /* 362 * void cpu_reboot(int howto, char *bootstr) 363 * 364 * Reboots the system 365 * 366 * Deal with any syncing, unmounting, dumping and shutdown hooks, 367 * then reset the CPU. 368 */ 369 void 370 cpu_reboot(int howto, char *bootstr) 371 { 372 extern struct geminitmr_softc *ref_sc; 373 374 #ifdef DIAGNOSTIC 375 /* info */ 376 printf("boot: howto=%08x curproc=%p\n", howto, curproc); 377 #endif 378 379 /* 380 * If we are still cold then hit the air brakes 381 * and crash to earth fast 382 */ 383 if (cold) { 384 doshutdownhooks(); 385 pmf_system_shutdown(boothowto); 386 printf("The operating system has halted.\n"); 387 printf("Please press any key to reboot.\n\n"); 388 cngetc(); 389 printf("rebooting...\n"); 390 if (ref_sc != NULL) 391 delay(2000); /* cnflush(); */ 392 gemini_global_reset(); 393 /*NOTREACHED*/ 394 } 395 396 /* Disable console buffering */ 397 cnpollc(1); 398 399 /* 400 * If RB_NOSYNC was not specified sync the discs. 401 * Note: Unless cold is set to 1 here, syslogd will die during the 402 * unmount. It looks like syslogd is getting woken up only to find 403 * that it cannot page part of the binary in as the filesystem has 404 * been unmounted. 405 */ 406 if (!(howto & RB_NOSYNC)) 407 bootsync(); 408 409 /* Say NO to interrupts */ 410 splhigh(); 411 412 /* Do a dump if requested. */ 413 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) 414 dumpsys(); 415 416 /* Run any shutdown hooks */ 417 doshutdownhooks(); 418 419 pmf_system_shutdown(boothowto); 420 421 /* Make sure IRQ's are disabled */ 422 IRQdisable; 423 424 if (howto & RB_HALT) { 425 printf("The operating system has halted.\n"); 426 printf("Please press any key to reboot.\n\n"); 427 cngetc(); 428 } 429 430 printf("rebooting...\n"); 431 if (ref_sc != NULL) 432 delay(2000); /* cnflush(); */ 433 gemini_global_reset(); 434 /*NOTREACHED*/ 435 } 436 437 /* 438 * Static device mappings. These peripheral registers are mapped at 439 * fixed virtual addresses very early in initarm() so that we can use 440 * them while booting the kernel, and stay at the same address 441 * throughout whole kernel's life time. 442 * 443 * We use this table twice; once with bootstrap page table, and once 444 * with kernel's page table which we build up in initarm(). 445 * 446 * Since we map these registers into the bootstrap page table using 447 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map 448 * registers segment-aligned and segment-rounded in order to avoid 449 * using the 2nd page tables. 450 */ 451 452 #define _A(a) ((a) & ~L1_S_OFFSET) 453 #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1)) 454 455 static const struct pmap_devmap devmap[] = { 456 /* Global regs */ 457 { 458 .pd_va = _A(GEMINI_GLOBAL_VBASE), 459 .pd_pa = _A(GEMINI_GLOBAL_BASE), 460 .pd_size = _S(L1_S_SIZE), 461 .pd_prot = VM_PROT_READ|VM_PROT_WRITE, 462 .pd_cache = PTE_NOCACHE 463 }, 464 465 /* Watchdog */ 466 { 467 .pd_va = _A(GEMINI_WATCHDOG_VBASE), 468 .pd_pa = _A(GEMINI_WATCHDOG_BASE), 469 .pd_size = _S(L1_S_SIZE), 470 .pd_prot = VM_PROT_READ|VM_PROT_WRITE, 471 .pd_cache = PTE_NOCACHE 472 }, 473 474 /* UART */ 475 { 476 .pd_va = _A(GEMINI_UART_VBASE), 477 .pd_pa = _A(GEMINI_UART_BASE), 478 .pd_size = _S(L1_S_SIZE), 479 .pd_prot = VM_PROT_READ|VM_PROT_WRITE, 480 .pd_cache = PTE_NOCACHE 481 }, 482 483 /* LPCHC */ 484 { 485 .pd_va = _A(GEMINI_LPCHC_VBASE), 486 .pd_pa = _A(GEMINI_LPCHC_BASE), 487 .pd_size = _S(L1_S_SIZE), 488 .pd_prot = VM_PROT_READ|VM_PROT_WRITE, 489 .pd_cache = PTE_NOCACHE 490 }, 491 492 /* LPCIO */ 493 { 494 .pd_va = _A(GEMINI_LPCIO_VBASE), 495 .pd_pa = _A(GEMINI_LPCIO_BASE), 496 .pd_size = _S(L1_S_SIZE), 497 .pd_prot = VM_PROT_READ|VM_PROT_WRITE, 498 .pd_cache = PTE_NOCACHE 499 }, 500 501 /* Timers */ 502 { 503 .pd_va = _A(GEMINI_TIMER_VBASE), 504 .pd_pa = _A(GEMINI_TIMER_BASE), 505 .pd_size = _S(L1_S_SIZE), 506 .pd_prot = VM_PROT_READ|VM_PROT_WRITE, 507 .pd_cache = PTE_NOCACHE 508 }, 509 510 /* DRAM Controller */ 511 { 512 .pd_va = _A(GEMINI_DRAMC_VBASE), 513 .pd_pa = _A(GEMINI_DRAMC_BASE), 514 .pd_size = _S(L1_S_SIZE), 515 .pd_prot = VM_PROT_READ|VM_PROT_WRITE, 516 .pd_cache = PTE_NOCACHE 517 }, 518 519 #if defined(MEMORY_DISK_DYNAMIC) 520 /* Ramdisk */ 521 { 522 .pd_va = _A(GEMINI_RAMDISK_VBASE), 523 .pd_pa = _A(GEMINI_RAMDISK_PBASE), 524 .pd_size = _S(GEMINI_RAMDISK_SIZE), 525 .pd_prot = VM_PROT_READ|VM_PROT_WRITE, 526 .pd_cache = PTE_NOCACHE 527 }, 528 #endif 529 530 {0} /* list terminator */ 531 }; 532 533 #undef _A 534 #undef _S 535 536 #ifdef DDB 537 static void gemini_db_trap(int where) 538 { 539 #if NGEMINIWDT > 0 540 static int oldwatchdogstate; 541 542 if (where) { 543 oldwatchdogstate = geminiwdt_enable(0); 544 } else { 545 geminiwdt_enable(oldwatchdogstate); 546 } 547 #endif 548 } 549 #endif 550 551 #if defined(VERBOSE_INIT_ARM) || 1 552 void gemini_putchar(char c); 553 void 554 gemini_putchar(char c) 555 { 556 unsigned char *com0addr = (unsigned char *)GEMINI_UART_VBASE; 557 int timo = 150000; 558 559 while ((com0addr[COM_REG_LSR * 4] & LSR_TXRDY) == 0) 560 if (--timo == 0) 561 break; 562 563 com0addr[COM_REG_TXDATA] = c; 564 565 while ((com0addr[COM_REG_LSR * 4] & LSR_TSRE) == 0) 566 if (--timo == 0) 567 break; 568 } 569 570 void gemini_puthex(unsigned int); 571 void 572 gemini_puthex(unsigned int val) 573 { 574 char hexc[] = "0123456789abcdef"; 575 576 gemini_putchar('0'); 577 gemini_putchar('x'); 578 gemini_putchar(hexc[(val >> 28) & 0xf]); 579 gemini_putchar(hexc[(val >> 24) & 0xf]); 580 gemini_putchar(hexc[(val >> 20) & 0xf]); 581 gemini_putchar(hexc[(val >> 16) & 0xf]); 582 gemini_putchar(hexc[(val >> 12) & 0xf]); 583 gemini_putchar(hexc[(val >> 8) & 0xf]); 584 gemini_putchar(hexc[(val >> 4) & 0xf]); 585 gemini_putchar(hexc[(val >> 0) & 0xf]); 586 } 587 #endif /* VERBOSE_INIT_ARM */ 588 589 /* 590 * u_int initarm(...) 591 * 592 * Initial entry point on startup. This gets called before main() is 593 * entered. 594 * It should be responsible for setting up everything that must be 595 * in place when main is called. 596 * This includes 597 * Taking a copy of the boot configuration structure. 598 * Initialising the physical console so characters can be printed. 599 * Setting up page tables for the kernel 600 * Relocating the kernel to the bottom of physical memory 601 */ 602 u_int 603 initarm(void *arg) 604 { 605 GEMINI_PUTCHAR('0'); 606 607 /* 608 * start cpu#1 now 609 */ 610 gemini_cpu1_start(); 611 612 /* 613 * When we enter here, we are using a temporary first level 614 * translation table with section entries in it to cover the OBIO 615 * peripherals and SDRAM. The temporary first level translation table 616 * is at the end of SDRAM. 617 */ 618 619 /* Heads up ... Setup the CPU / MMU / TLB functions. */ 620 GEMINI_PUTCHAR('1'); 621 if (set_cpufuncs()) 622 panic("cpu not recognized!"); 623 624 GEMINI_PUTCHAR('2'); 625 init_clocks(); 626 GEMINI_PUTCHAR('3'); 627 628 /* The console is going to try to map things. Give pmap a devmap. */ 629 pmap_devmap_register(devmap); 630 GEMINI_PUTCHAR('4'); 631 consinit(); 632 GEMINI_PUTCHAR('5'); 633 #ifdef KGDB 634 kgdb_port_init(); 635 #endif 636 637 /* Talk to the user */ 638 printf("\nNetBSD/evbarm (gemini) booting ...\n"); 639 640 #ifdef BOOT_ARGS 641 char mi_bootargs[] = BOOT_ARGS; 642 parse_mi_bootargs(mi_bootargs); 643 #endif 644 645 #ifdef VERBOSE_INIT_ARM 646 printf("initarm: Configuring system ...\n"); 647 #endif 648 649 /* 650 * Set up the variables that define the availability of physical 651 * memory. 652 */ 653 gemini_memchk(); 654 physical_start = GEMINI_DRAM_BASE; 655 #define MEMSIZE_BYTES (MEMSIZE * 1024 * 1024) 656 physical_end = (physical_start & ~(0x400000-1)) + MEMSIZE_BYTES; 657 physmem = (physical_end - physical_start) / PAGE_SIZE; 658 659 /* Fake bootconfig structure for the benefit of pmap.c. */ 660 bootconfig.dramblocks = 1; 661 bootconfig.dram[0].address = physical_start; 662 bootconfig.dram[0].pages = physmem; 663 664 /* 665 * Our kernel is at the beginning of memory, so set our free space to 666 * all the memory after the kernel. 667 */ 668 physical_freestart = KERN_VTOPHYS(round_page((vaddr_t) _end)); 669 physical_freeend = physical_end; 670 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; 671 672 /* 673 * This is going to do all the hard work of setting up the first and 674 * and second level page tables. Pages of memory will be allocated 675 * and mapped for other structures that are required for system 676 * operation. When it returns, physical_freestart and free_pages will 677 * have been updated to reflect the allocations that were made. In 678 * addition, kernel_l1pt, kernel_pt_table[], systempage, irqstack, 679 * abtstack, undstack, kernelstack, msgbufphys will be set to point to 680 * the memory that was allocated for them. 681 */ 682 setup_real_page_tables(); 683 684 /* 685 * Moved from cpu_startup() as data_abort_handler() references 686 * this during uvm init. 687 */ 688 uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); 689 690 #ifdef VERBOSE_INIT_ARM 691 printf("bootstrap done.\n"); 692 #endif 693 694 arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL); 695 696 /* 697 * Pages were allocated during the secondary bootstrap for the 698 * stacks for different CPU modes. 699 * We must now set the r13 registers in the different CPU modes to 700 * point to these stacks. 701 * Since the ARM stacks use STMFD etc. we must set r13 to the top end 702 * of the stack memory. 703 */ 704 #ifdef VERBOSE_INIT_ARM 705 printf("init subsystems: stacks "); 706 #endif 707 708 set_stackptr(PSR_FIQ32_MODE, fiqstack.pv_va + FIQ_STACK_SIZE * PAGE_SIZE); 709 set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); 710 set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); 711 set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); 712 713 /* 714 * Well we should set a data abort handler. 715 * Once things get going this will change as we will need a proper 716 * handler. 717 * Until then we will use a handler that just panics but tells us 718 * why. 719 * Initialisation of the vectors will just panic on a data abort. 720 * This just fills in a slightly better one. 721 */ 722 #ifdef VERBOSE_INIT_ARM 723 printf("vectors "); 724 #endif 725 data_abort_handler_address = (u_int)data_abort_handler; 726 prefetch_abort_handler_address = (u_int)prefetch_abort_handler; 727 undefined_handler_address = (u_int)undefinedinstruction_bounce; 728 729 /* Initialise the undefined instruction handlers */ 730 #ifdef VERBOSE_INIT_ARM 731 printf("undefined "); 732 #endif 733 undefined_init(); 734 735 /* Load memory into UVM. */ 736 #ifdef VERBOSE_INIT_ARM 737 printf("page "); 738 #endif 739 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ 740 741 #if (GEMINI_RAM_RESV_PBASE != 0) 742 uvm_page_physload(atop(physical_freestart), atop(GEMINI_RAM_RESV_PBASE), 743 atop(physical_freestart), atop(GEMINI_RAM_RESV_PBASE), 744 VM_FREELIST_DEFAULT); 745 uvm_page_physload(atop(GEMINI_RAM_RESV_PEND), atop(physical_freeend), 746 atop(GEMINI_RAM_RESV_PEND), atop(physical_freeend), 747 VM_FREELIST_DEFAULT); 748 #else 749 uvm_page_physload(atop(physical_freestart), atop(physical_freeend), 750 atop(physical_freestart), atop(physical_freeend), 751 VM_FREELIST_DEFAULT); 752 #endif 753 uvm_page_physload(atop(GEMINI_DRAM_BASE), atop(KERNEL_BASE_phys), 754 atop(GEMINI_DRAM_BASE), atop(KERNEL_BASE_phys), 755 VM_FREELIST_DEFAULT); 756 757 /* Boot strap pmap telling it where the kernel page table is */ 758 #ifdef VERBOSE_INIT_ARM 759 printf("pmap "); 760 #endif 761 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); 762 763 #ifdef VERBOSE_INIT_ARM 764 printf("done.\n"); 765 #endif 766 767 #ifdef IPKDB 768 /* Initialise ipkdb */ 769 ipkdb_init(); 770 if (boothowto & RB_KDB) 771 ipkdb_connect(0); 772 #endif 773 774 #if defined(MEMORY_DISK_DYNAMIC) 775 md_root_setconf((char *)GEMINI_RAMDISK_VBASE, GEMINI_RAMDISK_SIZE); 776 #endif 777 778 #ifdef KGDB 779 if (boothowto & RB_KDB) { 780 kgdb_debug_init = 1; 781 kgdb_connect(1); 782 } 783 #endif 784 785 #ifdef DDB 786 db_trap_callback = gemini_db_trap; 787 db_machine_init(); 788 789 /* Firmware doesn't load symbols. */ 790 ddb_init(0, NULL, NULL); 791 792 if (boothowto & RB_KDB) 793 Debugger(); 794 #endif 795 printf("initarm done.\n"); 796 797 /* We return the new stack pointer address */ 798 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP); 799 } 800 801 static void 802 init_clocks(void) 803 { 804 } 805 806 #ifndef CONSADDR 807 #error Specify the address of the console UART with the CONSADDR option. 808 #endif 809 #ifndef CONSPEED 810 #define CONSPEED 19200 811 #endif 812 #ifndef CONMODE 813 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ 814 #endif 815 816 static const bus_addr_t consaddr = CONSADDR; 817 static const int conspeed = CONSPEED; 818 static const int conmode = CONMODE; 819 820 #if CONSADDR==0x42000000 821 /* 822 * console initialization for obio com console 823 */ 824 void 825 consinit(void) 826 { 827 static int consinit_called = 0; 828 829 if (consinit_called != 0) 830 return; 831 consinit_called = 1; 832 833 if (comcnattach(&gemini_a4x_bs_tag, consaddr, conspeed, 834 GEMINI_COM_FREQ, COM_TYPE_16550_NOERS, conmode)) 835 panic("Serial console can not be initialized."); 836 } 837 838 #elif CONSADDR==0x478003f8 839 # include <arm/gemini/gemini_lpcvar.h> 840 /* 841 * console initialization for lpc com console 842 */ 843 void 844 consinit(void) 845 { 846 static int consinit_called = 0; 847 bus_space_tag_t iot = &gemini_bs_tag; 848 bus_space_handle_t lpchc_ioh; 849 bus_space_handle_t lpcio_ioh; 850 bus_size_t sz = L1_S_SIZE; 851 gemini_lpc_softc_t lpcsoftc; 852 gemini_lpc_bus_ops_t *ops; 853 void *lpctag = &lpcsoftc; 854 uint32_t r; 855 extern gemini_lpc_bus_ops_t gemini_lpc_bus_ops; 856 857 ops = &gemini_lpc_bus_ops; 858 859 if (consinit_called != 0) 860 return; 861 consinit_called = 1; 862 863 if (bus_space_map(iot, GEMINI_LPCHC_BASE, sz, 0, &lpchc_ioh)) 864 panic("consinit: LPCHC can not be mapped."); 865 866 if (bus_space_map(iot, GEMINI_LPCIO_BASE, sz, 0, &lpcio_ioh)) 867 panic("consinit: LPCIO can not be mapped."); 868 869 /* enable the LPC bus */ 870 r = bus_space_read_4(iot, lpchc_ioh, GEMINI_LPCHC_CSR); 871 r |= LPCHC_CSR_BEN; 872 bus_space_write_4(iot, lpchc_ioh, GEMINI_LPCHC_CSR, r); 873 874 memset(&lpcsoftc, 0, sizeof(lpcsoftc)); 875 lpcsoftc.sc_iot = iot; 876 lpcsoftc.sc_ioh = lpcio_ioh; 877 878 /* activate Serial Port 1 */ 879 (*ops->lpc_pnp_enter)(lpctag); 880 (*ops->lpc_pnp_write)(lpctag, 1, 0x30, 0x01); 881 (*ops->lpc_pnp_exit)(lpctag); 882 883 if (comcnattach(iot, consaddr, conspeed, 884 IT8712F_COM_FREQ, COM_TYPE_NORMAL, conmode)) { 885 panic("Serial console can not be initialized."); 886 } 887 888 bus_space_unmap(iot, lpcio_ioh, sz); 889 bus_space_unmap(iot, lpchc_ioh, sz); 890 } 891 #else 892 # error unknown console 893 #endif 894 895 #ifdef KGDB 896 #ifndef KGDB_DEVADDR 897 #error Specify the address of the kgdb UART with the KGDB_DEVADDR option. 898 #endif 899 #ifndef KGDB_DEVRATE 900 #define KGDB_DEVRATE 19200 901 #endif 902 903 #ifndef KGDB_DEVMODE 904 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ 905 #endif 906 static const vaddr_t comkgdbaddr = KGDB_DEVADDR; 907 static const int comkgdbspeed = KGDB_DEVRATE; 908 static const int comkgdbmode = KGDB_DEVMODE; 909 910 void 911 static kgdb_port_init(void) 912 { 913 static int kgdbsinit_called = 0; 914 915 if (kgdbsinit_called != 0) 916 return; 917 918 kgdbsinit_called = 1; 919 920 bus_space_handle_t bh; 921 if (bus_space_map(&gemini_a4x_bs_tag, comkgdbaddr, 922 GEMINI_UART_SIZE, 0, &bh)) 923 panic("kgdb port can not be mapped."); 924 925 if (com_kgdb_attach(&gemini_a4x_bs_tag, comkgdbaddr, comkgdbspeed, 926 GEMINI_UART_SIZE, COM_TYPE_16550_NOERS, comkgdbmode)) 927 panic("KGDB uart can not be initialized."); 928 929 bus_space_unmap(&gemini_a4x_bs_tag, bh, GEMINI_UART_SIZE); 930 } 931 #endif 932 933 static void 934 setup_real_page_tables(void) 935 { 936 /* 937 * We need to allocate some fixed page tables to get the kernel going. 938 * 939 * We are going to allocate our bootstrap pages from the beginning of 940 * the free space that we just calculated. We allocate one page 941 * directory and a number of page tables and store the physical 942 * addresses in the kernel_pt_table array. 943 * 944 * The kernel page directory must be on a 16K boundary. The page 945 * tables must be on 4K boundaries. What we do is allocate the 946 * page directory on the first 16K boundary that we encounter, and 947 * the page tables on 4K boundaries otherwise. Since we allocate 948 * at least 3 L2 page tables, we are guaranteed to encounter at 949 * least one 16K aligned region. 950 */ 951 952 #ifdef VERBOSE_INIT_ARM 953 printf("Allocating page tables\n"); 954 #endif 955 956 /* 957 * Define a macro to simplify memory allocation. As we allocate the 958 * memory, make sure that we don't walk over our temporary first level 959 * translation table. 960 */ 961 #define valloc_pages(var, np) \ 962 (var).pv_pa = physical_freestart; \ 963 physical_freestart += ((np) * PAGE_SIZE); \ 964 if (physical_freestart > (physical_freeend - L1_TABLE_SIZE)) \ 965 panic("initarm: out of memory"); \ 966 free_pages -= (np); \ 967 (var).pv_va = KERN_PHYSTOV((var).pv_pa); \ 968 memset((char *)(var).pv_va, 0, ((np) * PAGE_SIZE)); 969 970 int loop, pt_index; 971 972 pt_index = 0; 973 kernel_l1pt.pv_pa = 0; 974 kernel_l1pt.pv_va = 0; 975 #ifdef VERBOSE_INIT_ARM 976 printf("%s: physical_freestart %#lx\n", __func__, physical_freestart); 977 #endif 978 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { 979 /* Are we 16KB aligned for an L1 ? */ 980 if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0 981 && kernel_l1pt.pv_pa == 0) { 982 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); 983 } else { 984 valloc_pages(kernel_pt_table[pt_index], 985 L2_TABLE_SIZE / PAGE_SIZE); 986 ++pt_index; 987 } 988 } 989 990 #if (NGEMINIIPM > 0) 991 valloc_pages(ipmq_pt, L2_TABLE_SIZE / PAGE_SIZE); 992 #endif 993 994 #ifdef VERBOSE_INIT_ARM 995 pt_index=0; 996 printf("%s: kernel_l1pt: %#lx:%#lx\n", 997 __func__, kernel_l1pt.pv_va, kernel_l1pt.pv_pa); 998 printf("%s: kernel_pt_table:\n", __func__); 999 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { 1000 printf("\t%#lx:%#lx\n", kernel_pt_table[pt_index].pv_va, 1001 kernel_pt_table[pt_index].pv_pa); 1002 ++pt_index; 1003 } 1004 #if (NGEMINIIPM > 0) 1005 printf("%s: ipmq_pt:\n", __func__); 1006 printf("\t%#lx:%#lx\n", ipmq_pt.pv_va, ipmq_pt.pv_pa); 1007 #endif 1008 #endif 1009 1010 /* This should never be able to happen but better confirm that. */ 1011 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) 1012 panic("initarm: Failed to align the kernel page directory"); 1013 1014 /* 1015 * Allocate a page for the system page mapped to V0x00000000 1016 * This page will just contain the system vectors and can be 1017 * shared by all processes. 1018 */ 1019 valloc_pages(systempage, 1); 1020 systempage.pv_va = ARM_VECTORS_HIGH; 1021 1022 /* Allocate stacks for all modes */ 1023 valloc_pages(fiqstack, FIQ_STACK_SIZE); 1024 valloc_pages(irqstack, IRQ_STACK_SIZE); 1025 valloc_pages(abtstack, ABT_STACK_SIZE); 1026 valloc_pages(undstack, UND_STACK_SIZE); 1027 valloc_pages(kernelstack, UPAGES); 1028 1029 /* Allocate the message buffer. */ 1030 pv_addr_t msgbuf; 1031 int msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE; 1032 valloc_pages(msgbuf, msgbuf_pgs); 1033 msgbufphys = msgbuf.pv_pa; 1034 1035 /* 1036 * Ok we have allocated physical pages for the primary kernel 1037 * page tables 1038 */ 1039 1040 #ifdef VERBOSE_INIT_ARM 1041 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); 1042 #endif 1043 1044 /* 1045 * Now we start construction of the L1 page table 1046 * We start by mapping the L2 page tables into the L1. 1047 * This means that we can replace L1 mappings later on if necessary 1048 */ 1049 vaddr_t l1_va = kernel_l1pt.pv_va; 1050 paddr_t l1_pa = kernel_l1pt.pv_pa; 1051 1052 /* Map the L2 pages tables in the L1 page table */ 1053 pmap_link_l2pt(l1_va, ARM_VECTORS_HIGH & ~(0x00400000 - 1), 1054 &kernel_pt_table[KERNEL_PT_SYS]); 1055 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) 1056 pmap_link_l2pt(l1_va, KERNEL_BASE + loop * 0x00400000, 1057 &kernel_pt_table[KERNEL_PT_KERNEL + loop]); 1058 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) 1059 pmap_link_l2pt(l1_va, KERNEL_VM_BASE + loop * 0x00400000, 1060 &kernel_pt_table[KERNEL_PT_VMDATA + loop]); 1061 1062 /* update the top of the kernel VM */ 1063 pmap_curmaxkvaddr = 1064 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); 1065 1066 #if (NGEMINIIPM > 0) 1067 printf("%s:%d: pmap_link_l2pt ipmq_pt\n", __FUNCTION__, __LINE__); 1068 pmap_link_l2pt(l1_va, GEMINI_IPMQ_VBASE, &ipmq_pt); 1069 #endif 1070 1071 #ifdef VERBOSE_INIT_ARM 1072 printf("Mapping kernel\n"); 1073 #endif 1074 1075 /* Now we fill in the L2 pagetable for the kernel static code/data */ 1076 #define round_L_page(x) (((x) + L2_L_OFFSET) & L2_L_FRAME) 1077 size_t textsize = round_L_page(etext - KERNEL_BASE_virt); 1078 size_t totalsize = round_L_page(_end - KERNEL_BASE_virt); 1079 /* offset of kernel in RAM */ 1080 u_int offset = (u_int)KERNEL_BASE_virt - KERNEL_BASE; 1081 1082 #ifdef DDB 1083 /* Map text section read-write. */ 1084 offset += pmap_map_chunk(l1_va, 1085 (vaddr_t)KERNEL_BASE + offset, 1086 physical_start + offset, textsize, 1087 VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE, 1088 PTE_CACHE); 1089 #else 1090 /* Map text section read-only. */ 1091 offset += pmap_map_chunk(l1_va, 1092 (vaddr_t)KERNEL_BASE + offset, 1093 physical_start + offset, textsize, 1094 VM_PROT_READ|VM_PROT_EXECUTE, PTE_CACHE); 1095 #endif 1096 /* Map data and bss sections read-write. */ 1097 offset += pmap_map_chunk(l1_va, 1098 (vaddr_t)KERNEL_BASE + offset, 1099 physical_start + offset, totalsize - textsize, 1100 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 1101 1102 #ifdef VERBOSE_INIT_ARM 1103 printf("Constructing L2 page tables\n"); 1104 #endif 1105 1106 /* Map the stack pages */ 1107 pmap_map_chunk(l1_va, fiqstack.pv_va, fiqstack.pv_pa, 1108 FIQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 1109 pmap_map_chunk(l1_va, irqstack.pv_va, irqstack.pv_pa, 1110 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 1111 pmap_map_chunk(l1_va, abtstack.pv_va, abtstack.pv_pa, 1112 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 1113 pmap_map_chunk(l1_va, undstack.pv_va, undstack.pv_pa, 1114 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 1115 pmap_map_chunk(l1_va, kernelstack.pv_va, kernelstack.pv_pa, 1116 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); 1117 1118 pmap_map_chunk(l1_va, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, 1119 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE); 1120 1121 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { 1122 pmap_map_chunk(l1_va, kernel_pt_table[loop].pv_va, 1123 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, 1124 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); 1125 } 1126 1127 /* Map the vector page. */ 1128 pmap_map_entry(l1_va, ARM_VECTORS_HIGH, systempage.pv_pa, 1129 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 1130 1131 #if (NGEMINIIPM > 0) 1132 /* Map the IPM queue l2pt */ 1133 pmap_map_chunk(l1_va, ipmq_pt.pv_va, ipmq_pt.pv_pa, 1134 L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); 1135 1136 /* Map the IPM queue pages */ 1137 pmap_map_chunk(l1_va, GEMINI_IPMQ_VBASE, GEMINI_IPMQ_PBASE, 1138 GEMINI_IPMQ_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE); 1139 1140 #ifdef GEMINI_SLAVE 1141 /* 1142 * Map all memory, incluuding that owned by other core 1143 * take into account the RAM remap, so view in this region 1144 * is consistent with MASTER 1145 */ 1146 pmap_map_chunk(l1_va, 1147 GEMINI_ALLMEM_VBASE, 1148 GEMINI_ALLMEM_PBASE + ((GEMINI_ALLMEM_SIZE - MEMSIZE) * 1024 * 1024), 1149 (GEMINI_ALLMEM_SIZE - MEMSIZE) * 1024 * 1024, 1150 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 1151 pmap_map_chunk(l1_va, 1152 GEMINI_ALLMEM_VBASE + GEMINI_BUSBASE * 1024 * 1024, 1153 GEMINI_ALLMEM_PBASE, 1154 (MEMSIZE * 1024 * 1024), 1155 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 1156 #else 1157 /* Map all memory, incluuding that owned by other core */ 1158 pmap_map_chunk(l1_va, GEMINI_ALLMEM_VBASE, GEMINI_ALLMEM_PBASE, 1159 GEMINI_ALLMEM_SIZE * 1024 * 1024, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 1160 #endif /* GEMINI_SLAVE */ 1161 #endif /* NGEMINIIPM */ 1162 1163 /* 1164 * Map integrated peripherals at same address in first level page 1165 * table so that we can continue to use console. 1166 */ 1167 pmap_devmap_bootstrap(l1_va, devmap); 1168 1169 1170 #ifdef VERBOSE_INIT_ARM 1171 /* Tell the user about where all the bits and pieces live. */ 1172 printf("%22s Physical Virtual Num\n", " "); 1173 printf("%22s Starting Ending Starting Ending Pages\n", " "); 1174 1175 static const char mem_fmt[] = 1176 "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %d\n"; 1177 static const char mem_fmt_nov[] = 1178 "%20s: 0x%08lx 0x%08lx %d\n"; 1179 1180 printf(mem_fmt, "SDRAM", physical_start, physical_end-1, 1181 KERN_PHYSTOV(physical_start), KERN_PHYSTOV(physical_end-1), 1182 physmem); 1183 printf(mem_fmt, "text section", 1184 KERN_VTOPHYS(KERNEL_BASE_virt), KERN_VTOPHYS(etext-1), 1185 (vaddr_t)KERNEL_BASE_virt, (vaddr_t)etext-1, 1186 (int)(textsize / PAGE_SIZE)); 1187 printf(mem_fmt, "data section", 1188 KERN_VTOPHYS(__data_start), KERN_VTOPHYS(_edata), 1189 (vaddr_t)__data_start, (vaddr_t)_edata, 1190 (int)((round_page((vaddr_t)_edata) 1191 - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE)); 1192 printf(mem_fmt, "bss section", 1193 KERN_VTOPHYS(__bss_start), KERN_VTOPHYS(__bss_end__), 1194 (vaddr_t)__bss_start, (vaddr_t)__bss_end__, 1195 (int)((round_page((vaddr_t)__bss_end__) 1196 - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE)); 1197 printf(mem_fmt, "L1 page directory", 1198 kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1, 1199 kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1, 1200 L1_TABLE_SIZE / PAGE_SIZE); 1201 printf(mem_fmt, "Exception Vectors", 1202 systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1, 1203 (vaddr_t)ARM_VECTORS_HIGH, (vaddr_t)ARM_VECTORS_HIGH + PAGE_SIZE - 1, 1204 1); 1205 printf(mem_fmt, "FIQ stack", 1206 fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1, 1207 fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1, 1208 FIQ_STACK_SIZE); 1209 printf(mem_fmt, "IRQ stack", 1210 irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1, 1211 irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1, 1212 IRQ_STACK_SIZE); 1213 printf(mem_fmt, "ABT stack", 1214 abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1, 1215 abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1, 1216 ABT_STACK_SIZE); 1217 printf(mem_fmt, "UND stack", 1218 undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1, 1219 undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1, 1220 UND_STACK_SIZE); 1221 printf(mem_fmt, "SVC stack", 1222 kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1, 1223 kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1, 1224 UPAGES); 1225 printf(mem_fmt_nov, "Message Buffer", 1226 msgbufphys, msgbufphys + msgbuf_pgs * PAGE_SIZE - 1, msgbuf_pgs); 1227 printf(mem_fmt, "Free Memory", physical_freestart, physical_freeend-1, 1228 KERN_PHYSTOV(physical_freestart), KERN_PHYSTOV(physical_freeend-1), 1229 free_pages); 1230 #endif 1231 1232 /* 1233 * Now we have the real page tables in place so we can switch to them. 1234 * Once this is done we will be running with the REAL kernel page 1235 * tables. 1236 */ 1237 1238 /* Switch tables */ 1239 #ifdef VERBOSE_INIT_ARM 1240 printf("switching to new L1 page table @%#lx...", l1_pa); 1241 #endif 1242 1243 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); 1244 cpu_setttb(l1_pa); 1245 cpu_tlb_flushID(); 1246 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); 1247 1248 #ifdef VERBOSE_INIT_ARM 1249 printf("OK.\n"); 1250 #endif 1251 } 1252