xref: /netbsd-src/sys/arch/evbarm/gemini/gemini_machdep.c (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 /*	$NetBSD: gemini_machdep.c,v 1.33 2020/11/28 14:02:30 skrll Exp $	*/
2 
3 /* adapted from:
4  *	NetBSD: sdp24xx_machdep.c,v 1.4 2008/08/27 11:03:10 matt Exp
5  */
6 
7 /*
8  * Machine dependent functions for kernel setup for TI OSK5912 board.
9  * Based on lubbock_machdep.c which in turn was based on iq80310_machhdep.c
10  *
11  * Copyright (c) 2002, 2003, 2005  Genetec Corporation.  All rights reserved.
12  * Written by Hiroyuki Bessho for Genetec Corporation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. The name of Genetec Corporation may not be used to endorse or
23  *    promote products derived from this software without specific prior
24  *    written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  *
38  * Copyright (c) 2001 Wasabi Systems, Inc.
39  * All rights reserved.
40  *
41  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed for the NetBSD Project by
54  *	Wasabi Systems, Inc.
55  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56  *    or promote products derived from this software without specific prior
57  *    written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69  * POSSIBILITY OF SUCH DAMAGE.
70  *
71  * Copyright (c) 1997,1998 Mark Brinicombe.
72  * Copyright (c) 1997,1998 Causality Limited.
73  * All rights reserved.
74  *
75  * Redistribution and use in source and binary forms, with or without
76  * modification, are permitted provided that the following conditions
77  * are met:
78  * 1. Redistributions of source code must retain the above copyright
79  *    notice, this list of conditions and the following disclaimer.
80  * 2. Redistributions in binary form must reproduce the above copyright
81  *    notice, this list of conditions and the following disclaimer in the
82  *    documentation and/or other materials provided with the distribution.
83  * 3. All advertising materials mentioning features or use of this software
84  *    must display the following acknowledgement:
85  *	This product includes software developed by Mark Brinicombe
86  *	for the NetBSD Project.
87  * 4. The name of the company nor the name of the author may be used to
88  *    endorse or promote products derived from this software without specific
89  *    prior written permission.
90  *
91  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
92  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
93  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
94  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
95  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
96  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
97  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
98  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
99  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
100  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
101  * SUCH DAMAGE.
102  *
103  * Copyright (c) 2007 Microsoft
104  * All rights reserved.
105  *
106  * Redistribution and use in source and binary forms, with or without
107  * modification, are permitted provided that the following conditions
108  * are met:
109  * 1. Redistributions of source code must retain the above copyright
110  *    notice, this list of conditions and the following disclaimer.
111  * 2. Redistributions in binary form must reproduce the above copyright
112  *    notice, this list of conditions and the following disclaimer in the
113  *    documentation and/or other materials provided with the distribution.
114  * 3. All advertising materials mentioning features or use of this software
115  *    must display the following acknowledgement:
116  *	This product includes software developed by Microsoft
117  *
118  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
119  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
120  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
121  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
122  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
123  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
124  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
125  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
126  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
127  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
128  * SUCH DAMAGE.
129  */
130 
131 #include <sys/cdefs.h>
132 __KERNEL_RCSID(0, "$NetBSD: gemini_machdep.c,v 1.33 2020/11/28 14:02:30 skrll Exp $");
133 
134 #include "opt_arm_debug.h"
135 #include "opt_console.h"
136 #include "opt_machdep.h"
137 #include "opt_ddb.h"
138 #include "opt_kgdb.h"
139 #include "opt_md.h"
140 #include "opt_com.h"
141 #include "opt_gemini.h"
142 #include "geminiwdt.h"
143 #include "geminiipm.h"
144 
145 #include <sys/param.h>
146 #include <sys/device.h>
147 #include <sys/systm.h>
148 #include <sys/kernel.h>
149 #include <sys/exec.h>
150 #include <sys/proc.h>
151 #include <sys/msgbuf.h>
152 #include <sys/reboot.h>
153 #include <sys/termios.h>
154 #include <sys/ksyms.h>
155 #include <sys/bus.h>
156 #include <sys/cpu.h>
157 #include <sys/conf.h>
158 
159 #include <uvm/uvm_extern.h>
160 
161 #include <dev/cons.h>
162 #include <dev/md.h>
163 
164 #include <machine/db_machdep.h>
165 #include <ddb/db_sym.h>
166 #include <ddb/db_extern.h>
167 #ifdef KGDB
168 #include <sys/kgdb.h>
169 #endif
170 
171 #include <arm/locore.h>
172 #include <arm/undefined.h>
173 
174 #include <arm/arm32/machdep.h>
175 
176 #include <machine/bootconfig.h>
177 
178 #include <arm/gemini/gemini_reg.h>
179 #include <arm/gemini/gemini_var.h>
180 #include <arm/gemini/gemini_wdtvar.h>
181 #include <arm/gemini/gemini_com.h>
182 #include <arm/gemini/lpc_com.h>
183 
184 #include <evbarm/gemini/gemini.h>
185 
186 #if defined(VERBOSE_INIT_ARM)
187 # define GEMINI_PUTCHAR(c)	gemini_putchar(c)
188 # define GEMINI_PUTHEX(n)	gemini_puthex(n)
189 #else	/* VERBOSE_INIT_ARM */
190 # define GEMINI_PUTCHAR(c)
191 # define GEMINI_PUTHEX(n)
192 #endif	/* VERBOSE_INIT_ARM */
193 
194 BootConfig bootconfig;		/* Boot config storage */
195 char *boot_args = NULL;
196 char *boot_file = NULL;
197 
198 /* Physical address of the beginning of SDRAM. */
199 paddr_t physical_start;
200 /* Physical address of the first byte after the end of SDRAM. */
201 paddr_t physical_end;
202 
203 /* Same things, but for the free (unused by the kernel) memory. */
204 static paddr_t physical_freestart, physical_freeend;
205 static u_int free_pages;
206 
207 /* Physical address of the message buffer. */
208 paddr_t msgbufphys;
209 
210 extern char KERNEL_BASE_phys[];
211 extern char KERNEL_BASE_virt[];
212 extern char etext[], __data_start[], _edata[], __bss_start[], __bss_end__[];
213 extern char _end[];
214 
215 #define KERNEL_PT_SYS		0	/* Page table for mapping proc0 zero page */
216 #define KERNEL_PT_KERNEL	1	/* Page table for mapping kernel */
217 #define	KERNEL_PT_KERNEL_NUM	4
218 #define KERNEL_PT_VMDATA	(KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
219 				        /* Page tables for mapping kernel VM */
220 #define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
221 #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
222 
223 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
224 
225 
226 #if (NGEMINIIPM > 0)
227 pv_addr_t ipmq_pt;		/* L2 Page table for mapping IPM queues */
228 #if defined(DEBUG) || 1
229 unsigned long gemini_ipmq_pbase = GEMINI_IPMQ_PBASE;
230 unsigned long gemini_ipmq_vbase = GEMINI_IPMQ_VBASE;
231 #endif	/* DEBUG */
232 #endif	/* NGEMINIIPM > 0 */
233 
234 
235 /*
236  * Macros to translate between physical and virtual for a subset of the
237  * kernel address space.  *Not* for general use.
238  */
239 #define KERNEL_BASE_PHYS ((paddr_t)&KERNEL_BASE_phys)
240 
241 u_long kern_vtopdiff;
242 
243 /* Prototypes */
244 
245 void gemini_intr_init(bus_space_tag_t);
246 void consinit(void);
247 #ifdef KGDB
248 static void kgdb_port_init(void);
249 #endif
250 
251 static void setup_real_page_tables(void);
252 static void init_clocks(void);
253 
254 bs_protos(bs_notimpl);
255 
256 #include "com.h"
257 #if NCOM > 0
258 #include <dev/ic/comreg.h>
259 #include <dev/ic/comvar.h>
260 #endif
261 
262 
263 static void gemini_global_reset(void) __attribute__ ((noreturn));
264 static void gemini_cpu1_start(void);
265 static void gemini_memchk(void);
266 
267 static void
268 gemini_global_reset(void)
269 {
270 #if defined(GEMINI_MASTER) || defined(GEMINI_SINGLE)
271 	volatile uint32_t *rp;
272 	uint32_t r;
273 
274 	rp = (volatile uint32_t *)
275 		(GEMINI_GLOBAL_VBASE + GEMINI_GLOBAL_RESET_CTL);
276 	r = *rp;
277 	r |= GLOBAL_RESET_GLOBAL;
278 	*rp = r;
279 #endif
280 	for(;;);
281 	/* NOTREACHED */
282 }
283 
284 static void
285 gemini_cpu1_start(void)
286 {
287 #ifdef GEMINI_MASTER
288 	volatile uint32_t *rp;
289 	uint32_t r;
290 
291 	rp = (volatile uint32_t *)
292 		(GEMINI_GLOBAL_VBASE + GEMINI_GLOBAL_RESET_CTL);
293 	r = *rp;
294 	r &= ~GLOBAL_RESET_CPU1;
295 	*rp = r;
296 #endif
297 }
298 
299 static void
300 gemini_memchk(void)
301 {
302 	volatile uint32_t *rp;
303 	uint32_t r;
304 	uint32_t base;
305 	uint32_t size;
306 
307 	rp = (volatile uint32_t *)
308 		(GEMINI_DRAMC_VBASE + GEMINI_DRAMC_RMCR);
309 	r = *rp;
310 	base = (r & DRAMC_RMCR_RMBAR) >> DRAMC_RMCR_RMBAR_SHFT;
311 	size = (r & DRAMC_RMCR_RMSZR) >> DRAMC_RMCR_RMSZR_SHFT;
312 #if defined(GEMINI_SINGLE)
313 	if (r != 0)
314 		panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
315 			__FUNCTION__, r, MEMSIZE);
316 #elif defined(GEMINI_MASTER)
317 	if (base != MEMSIZE)
318 		panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
319 			__FUNCTION__, r, MEMSIZE);
320 #elif defined(GEMINI_SLAVE)
321 	if (size != MEMSIZE)
322 		panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
323 			__FUNCTION__, r, MEMSIZE);
324 #endif
325 #if defined(VERBOSE_INIT_ARM) || 1
326 	printf("DRAM Remap: base=%dMB, size=%dMB\n", base, size);
327 #endif
328 }
329 
330 /*
331  * void cpu_reboot(int howto, char *bootstr)
332  *
333  * Reboots the system
334  *
335  * Deal with any syncing, unmounting, dumping and shutdown hooks,
336  * then reset the CPU.
337  */
338 void
339 cpu_reboot(int howto, char *bootstr)
340 {
341 	extern struct geminitmr_softc *ref_sc;
342 
343 #ifdef DIAGNOSTIC
344 	/* info */
345 	printf("boot: howto=%08x curproc=%p\n", howto, curproc);
346 #endif
347 
348 	/*
349 	 * If we are still cold then hit the air brakes
350 	 * and crash to earth fast
351 	 */
352 	if (cold) {
353 		doshutdownhooks();
354 		pmf_system_shutdown(boothowto);
355 		printf("The operating system has halted.\n");
356 		printf("Please press any key to reboot.\n\n");
357 		cngetc();
358 		printf("rebooting...\n");
359 		if (ref_sc != NULL)
360 			delay(2000);			/* cnflush(); */
361 		gemini_global_reset();
362 		/*NOTREACHED*/
363 	}
364 
365 	/* Disable console buffering */
366 	cnpollc(1);
367 
368 	/*
369 	 * If RB_NOSYNC was not specified sync the discs.
370 	 * Note: Unless cold is set to 1 here, syslogd will die during the
371 	 * unmount.  It looks like syslogd is getting woken up only to find
372 	 * that it cannot page part of the binary in as the filesystem has
373 	 * been unmounted.
374 	 */
375 	if (!(howto & RB_NOSYNC))
376 		bootsync();
377 
378 	/* Say NO to interrupts */
379 	splhigh();
380 
381 	/* Do a dump if requested. */
382 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
383 		dumpsys();
384 
385 	/* Run any shutdown hooks */
386 	doshutdownhooks();
387 
388 	pmf_system_shutdown(boothowto);
389 
390 	/* Make sure IRQ's are disabled */
391 	IRQdisable;
392 
393 	if (howto & RB_HALT) {
394 		printf("The operating system has halted.\n");
395 		printf("Please press any key to reboot.\n\n");
396 		cngetc();
397 	}
398 
399 	printf("rebooting...\n");
400 	if (ref_sc != NULL)
401 		delay(2000);			/* cnflush(); */
402 	gemini_global_reset();
403 	/*NOTREACHED*/
404 }
405 
406 /*
407  * Static device mappings. These peripheral registers are mapped at
408  * fixed virtual addresses very early in initarm() so that we can use
409  * them while booting the kernel, and stay at the same address
410  * throughout whole kernel's life time.
411  *
412  * We use this table twice; once with bootstrap page table, and once
413  * with kernel's page table which we build up in initarm().
414  *
415  * Since we map these registers into the bootstrap page table using
416  * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
417  * registers segment-aligned and segment-rounded in order to avoid
418  * using the 2nd page tables.
419  */
420 
421 #define	_A(a)	((a) & ~L1_S_OFFSET)
422 #define	_S(s)	(((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
423 
424 static const struct pmap_devmap devmap[] = {
425 	/* Global regs */
426 	{
427 		.pd_va = _A(GEMINI_GLOBAL_VBASE),
428 		.pd_pa = _A(GEMINI_GLOBAL_BASE),
429 		.pd_size = _S(L1_S_SIZE),
430 		.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
431 		.pd_cache = PTE_NOCACHE
432 	},
433 
434 	/* Watchdog */
435 	{
436 		.pd_va = _A(GEMINI_WATCHDOG_VBASE),
437 		.pd_pa = _A(GEMINI_WATCHDOG_BASE),
438 		.pd_size = _S(L1_S_SIZE),
439 		.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
440 		.pd_cache = PTE_NOCACHE
441 	},
442 
443 	/* UART */
444 	{
445 		.pd_va = _A(GEMINI_UART_VBASE),
446 		.pd_pa = _A(GEMINI_UART_BASE),
447 		.pd_size = _S(L1_S_SIZE),
448 		.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
449 		.pd_cache = PTE_NOCACHE
450 	},
451 
452 	/* LPCHC */
453 	{
454 		.pd_va = _A(GEMINI_LPCHC_VBASE),
455 		.pd_pa = _A(GEMINI_LPCHC_BASE),
456 		.pd_size = _S(L1_S_SIZE),
457 		.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
458 		.pd_cache = PTE_NOCACHE
459 	},
460 
461 	/* LPCIO */
462 	{
463 		.pd_va = _A(GEMINI_LPCIO_VBASE),
464 		.pd_pa = _A(GEMINI_LPCIO_BASE),
465 		.pd_size = _S(L1_S_SIZE),
466 		.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
467 		.pd_cache = PTE_NOCACHE
468 	},
469 
470 	/* Timers */
471 	{
472 		.pd_va = _A(GEMINI_TIMER_VBASE),
473 		.pd_pa = _A(GEMINI_TIMER_BASE),
474 		.pd_size = _S(L1_S_SIZE),
475 		.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
476 		.pd_cache = PTE_NOCACHE
477 	},
478 
479 	/* DRAM Controller */
480 	{
481 		.pd_va = _A(GEMINI_DRAMC_VBASE),
482 		.pd_pa = _A(GEMINI_DRAMC_BASE),
483 		.pd_size = _S(L1_S_SIZE),
484 		.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
485 		.pd_cache = PTE_NOCACHE
486 	},
487 
488 #if defined(MEMORY_DISK_DYNAMIC)
489 	/* Ramdisk */
490 	{
491 		.pd_va = _A(GEMINI_RAMDISK_VBASE),
492 		.pd_pa = _A(GEMINI_RAMDISK_PBASE),
493 		.pd_size = _S(GEMINI_RAMDISK_SIZE),
494 		.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
495 		.pd_cache = PTE_NOCACHE
496 	},
497 #endif
498 
499 	{0}	/* list terminator */
500 };
501 
502 #undef	_A
503 #undef	_S
504 
505 #ifdef DDB
506 static void gemini_db_trap(int where)
507 {
508 #if  NGEMINIWDT > 0
509 	static int oldwatchdogstate;
510 
511 	if (where) {
512 		oldwatchdogstate = geminiwdt_enable(0);
513 	} else {
514 		geminiwdt_enable(oldwatchdogstate);
515 	}
516 #endif
517 }
518 #endif
519 
520 #if defined(VERBOSE_INIT_ARM) || 1
521 void gemini_putchar(char c);
522 void
523 gemini_putchar(char c)
524 {
525 	unsigned char *com0addr = (unsigned char *)GEMINI_UART_VBASE;
526 	int timo = 150000;
527 
528 	while ((com0addr[COM_REG_LSR * 4] & LSR_TXRDY) == 0)
529 		if (--timo == 0)
530 			break;
531 
532 	com0addr[COM_REG_TXDATA] = c;
533 
534 	while ((com0addr[COM_REG_LSR * 4] & LSR_TSRE) == 0)
535 		if (--timo == 0)
536 			break;
537 }
538 
539 void gemini_puthex(unsigned int);
540 void
541 gemini_puthex(unsigned int val)
542 {
543 	char hexc[] = "0123456789abcdef";
544 
545 	gemini_putchar('0');
546 	gemini_putchar('x');
547 	gemini_putchar(hexc[(val >> 28) & 0xf]);
548 	gemini_putchar(hexc[(val >> 24) & 0xf]);
549 	gemini_putchar(hexc[(val >> 20) & 0xf]);
550 	gemini_putchar(hexc[(val >> 16) & 0xf]);
551 	gemini_putchar(hexc[(val >> 12) & 0xf]);
552 	gemini_putchar(hexc[(val >> 8) & 0xf]);
553 	gemini_putchar(hexc[(val >> 4) & 0xf]);
554 	gemini_putchar(hexc[(val >> 0) & 0xf]);
555 }
556 #endif	/* VERBOSE_INIT_ARM */
557 
558 /*
559  * vaddr_t initarm(...)
560  *
561  * Initial entry point on startup. This gets called before main() is
562  * entered.
563  * It should be responsible for setting up everything that must be
564  * in place when main is called.
565  * This includes
566  *   Taking a copy of the boot configuration structure.
567  *   Initialising the physical console so characters can be printed.
568  *   Setting up page tables for the kernel
569  *   Relocating the kernel to the bottom of physical memory
570  */
571 vaddr_t
572 initarm(void *arg)
573 {
574 	GEMINI_PUTCHAR('0');
575 
576 	/*
577 	 * start cpu#1 now
578 	 */
579 	gemini_cpu1_start();
580 
581 	/*
582 	 * When we enter here, we are using a temporary first level
583 	 * translation table with section entries in it to cover the OBIO
584 	 * peripherals and SDRAM.  The temporary first level translation table
585 	 * is at the end of SDRAM.
586 	 */
587 
588 	/* Heads up ... Setup the CPU / MMU / TLB functions. */
589 	GEMINI_PUTCHAR('1');
590 	if (set_cpufuncs())
591 		panic("cpu not recognized!");
592 
593 	GEMINI_PUTCHAR('2');
594 	init_clocks();
595 	GEMINI_PUTCHAR('3');
596 
597 	/* The console is going to try to map things.  Give pmap a devmap. */
598 	pmap_devmap_register(devmap);
599 	GEMINI_PUTCHAR('4');
600 	consinit();
601 	GEMINI_PUTCHAR('5');
602 #ifdef KGDB
603 	kgdb_port_init();
604 #endif
605 
606 	/* Talk to the user */
607 	printf("\nNetBSD/evbarm (gemini) booting ...\n");
608 
609 #ifdef BOOT_ARGS
610 	char mi_bootargs[] = BOOT_ARGS;
611 	parse_mi_bootargs(mi_bootargs);
612 #endif
613 
614 #ifdef VERBOSE_INIT_ARM
615 	printf("initarm: Configuring system ...\n");
616 #endif
617 
618 	/*
619 	 * Set up the variables that define the availability of physical
620 	 * memory.
621 	 */
622 	gemini_memchk();
623 	physical_start = GEMINI_DRAM_BASE;
624 #define	MEMSIZE_BYTES 	(MEMSIZE * 1024 * 1024)
625 	physical_end = (physical_start & ~(0x400000-1)) + MEMSIZE_BYTES;
626 	physmem = (physical_end - physical_start) / PAGE_SIZE;
627 
628 	/* Fake bootconfig structure for the benefit of pmap.c. */
629 	bootconfig.dramblocks = 1;
630 	bootconfig.dram[0].address = physical_start;
631 	bootconfig.dram[0].pages = physmem;
632 
633 	kern_vtopdiff = KERNEL_BASE - GEMINI_DRAM_BASE;
634 
635 	/*
636 	 * Our kernel is at the beginning of memory, so set our free space to
637 	 * all the memory after the kernel.
638 	 */
639 	physical_freestart = KERN_VTOPHYS(round_page((vaddr_t) _end));
640 	physical_freeend = physical_end;
641 	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
642 
643 	/*
644 	 * This is going to do all the hard work of setting up the first and
645 	 * and second level page tables.  Pages of memory will be allocated
646 	 * and mapped for other structures that are required for system
647 	 * operation.  When it returns, physical_freestart and free_pages will
648 	 * have been updated to reflect the allocations that were made.  In
649 	 * addition, kernel_l1pt, kernel_pt_table[], systempage, irqstack,
650 	 * abtstack, undstack, kernelstack, msgbufphys will be set to point to
651 	 * the memory that was allocated for them.
652 	 */
653 	setup_real_page_tables();
654 
655 	/*
656 	 * Moved from cpu_startup() as data_abort_handler() references
657 	 * this during uvm init.
658 	 */
659 	uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
660 
661 #ifdef VERBOSE_INIT_ARM
662 	printf("bootstrap done.\n");
663 #endif
664 
665 	arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
666 
667 	/*
668 	 * Pages were allocated during the secondary bootstrap for the
669 	 * stacks for different CPU modes.
670 	 * We must now set the r13 registers in the different CPU modes to
671 	 * point to these stacks.
672 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
673 	 * of the stack memory.
674 	 */
675 #ifdef VERBOSE_INIT_ARM
676 	printf("init subsystems: stacks ");
677 #endif
678 
679 	set_stackptr(PSR_FIQ32_MODE, fiqstack.pv_va + FIQ_STACK_SIZE * PAGE_SIZE);
680 	set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
681 	set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
682 	set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
683 
684 	/*
685 	 * Well we should set a data abort handler.
686 	 * Once things get going this will change as we will need a proper
687 	 * handler.
688 	 * Until then we will use a handler that just panics but tells us
689 	 * why.
690 	 * Initialisation of the vectors will just panic on a data abort.
691 	 * This just fills in a slightly better one.
692 	 */
693 #ifdef VERBOSE_INIT_ARM
694 	printf("vectors ");
695 #endif
696 	data_abort_handler_address = (u_int)data_abort_handler;
697 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
698 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
699 
700 	/* Initialise the undefined instruction handlers */
701 #ifdef VERBOSE_INIT_ARM
702 	printf("undefined ");
703 #endif
704 	undefined_init();
705 
706 	/* Load memory into UVM. */
707 #ifdef VERBOSE_INIT_ARM
708 	printf("page ");
709 #endif
710 	uvm_md_init();
711 
712 #if (GEMINI_RAM_RESV_PBASE != 0)
713 	uvm_page_physload(atop(physical_freestart), atop(GEMINI_RAM_RESV_PBASE),
714 	    atop(physical_freestart), atop(GEMINI_RAM_RESV_PBASE),
715 	    VM_FREELIST_DEFAULT);
716 	uvm_page_physload(atop(GEMINI_RAM_RESV_PEND), atop(physical_freeend),
717 	    atop(GEMINI_RAM_RESV_PEND), atop(physical_freeend),
718 	    VM_FREELIST_DEFAULT);
719 #else
720 	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
721 	    atop(physical_freestart), atop(physical_freeend),
722 	    VM_FREELIST_DEFAULT);
723 #endif
724 	uvm_page_physload(atop(GEMINI_DRAM_BASE), atop(KERNEL_BASE_phys),
725 	    atop(GEMINI_DRAM_BASE), atop(KERNEL_BASE_phys),
726 	    VM_FREELIST_DEFAULT);
727 
728 	/* Boot strap pmap telling it where managed kernel virtual memory is */
729 #ifdef VERBOSE_INIT_ARM
730 	printf("pmap ");
731 #endif
732 	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
733 
734 #ifdef VERBOSE_INIT_ARM
735 	printf("done.\n");
736 #endif
737 
738 #if defined(MEMORY_DISK_DYNAMIC)
739 	md_root_setconf((char *)GEMINI_RAMDISK_VBASE, GEMINI_RAMDISK_SIZE);
740 #endif
741 
742 #ifdef KGDB
743 	if (boothowto & RB_KDB) {
744 		kgdb_debug_init = 1;
745 		kgdb_connect(1);
746 	}
747 #endif
748 
749 #ifdef DDB
750 	db_trap_callback = gemini_db_trap;
751 	db_machine_init();
752 
753 	/* Firmware doesn't load symbols. */
754 	ddb_init(0, NULL, NULL);
755 
756 	if (boothowto & RB_KDB)
757 		Debugger();
758 #endif
759 	printf("initarm done.\n");
760 
761 	/* We return the new stack pointer address */
762 	return kernelstack.pv_va + USPACE_SVC_STACK_TOP;
763 }
764 
765 static void
766 init_clocks(void)
767 {
768 }
769 
770 #ifndef CONSADDR
771 #error Specify the address of the console UART with the CONSADDR option.
772 #endif
773 #ifndef CONSPEED
774 #define CONSPEED 19200
775 #endif
776 #ifndef CONMODE
777 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
778 #endif
779 
780 static const bus_addr_t consaddr = CONSADDR;
781 static const int conspeed = CONSPEED;
782 static const int conmode = CONMODE;
783 
784 #if CONSADDR==0x42000000
785 /*
786  * console initialization for obio com console
787  */
788 void
789 consinit(void)
790 {
791 	static int consinit_called = 0;
792 
793 	if (consinit_called != 0)
794 		return;
795 	consinit_called = 1;
796 
797 	if (comcnattach(&gemini_a4x_bs_tag, consaddr, conspeed,
798 		GEMINI_COM_FREQ, COM_TYPE_16550_NOERS, conmode))
799 			panic("Serial console can not be initialized.");
800 }
801 
802 #elif CONSADDR==0x478003f8
803 # include <arm/gemini/gemini_lpcvar.h>
804 /*
805  * console initialization for lpc com console
806  */
807 void
808 consinit(void)
809 {
810 	static int consinit_called = 0;
811 	bus_space_tag_t iot = &gemini_bs_tag;
812 	bus_space_handle_t lpchc_ioh;
813 	bus_space_handle_t lpcio_ioh;
814 	bus_size_t sz = L1_S_SIZE;
815 	gemini_lpc_softc_t lpcsoftc;
816 	gemini_lpc_bus_ops_t *ops;
817 	void *lpctag = &lpcsoftc;
818 	uint32_t r;
819 	extern gemini_lpc_bus_ops_t gemini_lpc_bus_ops;
820 
821 	ops = &gemini_lpc_bus_ops;
822 
823 	if (consinit_called != 0)
824 		return;
825 	consinit_called = 1;
826 
827 	if (bus_space_map(iot, GEMINI_LPCHC_BASE, sz, 0, &lpchc_ioh))
828 		panic("consinit: LPCHC can not be mapped.");
829 
830 	if (bus_space_map(iot, GEMINI_LPCIO_BASE, sz, 0, &lpcio_ioh))
831 		panic("consinit: LPCIO can not be mapped.");
832 
833 	/* enable the LPC bus */
834 	r = bus_space_read_4(iot, lpchc_ioh, GEMINI_LPCHC_CSR);
835 	r |= LPCHC_CSR_BEN;
836 	bus_space_write_4(iot, lpchc_ioh, GEMINI_LPCHC_CSR, r);
837 
838 	memset(&lpcsoftc, 0, sizeof(lpcsoftc));
839 	lpcsoftc.sc_iot = iot;
840 	lpcsoftc.sc_ioh = lpcio_ioh;
841 
842 	/* activate Serial Port 1 */
843 	(*ops->lpc_pnp_enter)(lpctag);
844 	(*ops->lpc_pnp_write)(lpctag, 1, 0x30, 0x01);
845 	(*ops->lpc_pnp_exit)(lpctag);
846 
847 	if (comcnattach(iot, consaddr, conspeed,
848 		IT8712F_COM_FREQ, COM_TYPE_NORMAL, conmode)) {
849 			panic("Serial console can not be initialized.");
850 	}
851 
852 	bus_space_unmap(iot, lpcio_ioh, sz);
853 	bus_space_unmap(iot, lpchc_ioh, sz);
854 }
855 #else
856 # error unknown console
857 #endif
858 
859 #ifdef KGDB
860 #ifndef KGDB_DEVADDR
861 #error Specify the address of the kgdb UART with the KGDB_DEVADDR option.
862 #endif
863 #ifndef KGDB_DEVRATE
864 #define KGDB_DEVRATE 19200
865 #endif
866 
867 #ifndef KGDB_DEVMODE
868 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
869 #endif
870 static const vaddr_t comkgdbaddr = KGDB_DEVADDR;
871 static const int comkgdbspeed = KGDB_DEVRATE;
872 static const int comkgdbmode = KGDB_DEVMODE;
873 
874 void
875 static kgdb_port_init(void)
876 {
877 	static int kgdbsinit_called = 0;
878 
879 	if (kgdbsinit_called != 0)
880 		return;
881 
882 	kgdbsinit_called = 1;
883 
884 	bus_space_handle_t bh;
885 	if (bus_space_map(&gemini_a4x_bs_tag, comkgdbaddr,
886 		GEMINI_UART_SIZE, 0, &bh))
887 			panic("kgdb port can not be mapped.");
888 
889 	if (com_kgdb_attach(&gemini_a4x_bs_tag, comkgdbaddr, comkgdbspeed,
890 		GEMINI_UART_SIZE, COM_TYPE_16550_NOERS, comkgdbmode))
891 			panic("KGDB uart can not be initialized.");
892 
893 	bus_space_unmap(&gemini_a4x_bs_tag, bh, GEMINI_UART_SIZE);
894 }
895 #endif
896 
897 static void
898 setup_real_page_tables(void)
899 {
900 	/*
901 	 * We need to allocate some fixed page tables to get the kernel going.
902 	 *
903 	 * We are going to allocate our bootstrap pages from the beginning of
904 	 * the free space that we just calculated.  We allocate one page
905 	 * directory and a number of page tables and store the physical
906 	 * addresses in the kernel_pt_table array.
907 	 *
908 	 * The kernel page directory must be on a 16K boundary.  The page
909 	 * tables must be on 4K boundaries.  What we do is allocate the
910 	 * page directory on the first 16K boundary that we encounter, and
911 	 * the page tables on 4K boundaries otherwise.  Since we allocate
912 	 * at least 3 L2 page tables, we are guaranteed to encounter at
913 	 * least one 16K aligned region.
914 	 */
915 
916 #ifdef VERBOSE_INIT_ARM
917 	printf("Allocating page tables\n");
918 #endif
919 
920 	/*
921 	 * Define a macro to simplify memory allocation.  As we allocate the
922 	 * memory, make sure that we don't walk over our temporary first level
923 	 * translation table.
924 	 */
925 #define valloc_pages(var, np)						\
926 	(var).pv_pa = physical_freestart;				\
927 	physical_freestart += ((np) * PAGE_SIZE);			\
928 	if (physical_freestart > (physical_freeend - L1_TABLE_SIZE))	\
929 		panic("initarm: out of memory");			\
930 	free_pages -= (np);						\
931 	(var).pv_va = KERN_PHYSTOV((var).pv_pa);			\
932 	memset((char *)(var).pv_va, 0, ((np) * PAGE_SIZE));
933 
934 	int loop, pt_index;
935 
936 	pt_index = 0;
937 	kernel_l1pt.pv_pa = 0;
938 	kernel_l1pt.pv_va = 0;
939 #ifdef VERBOSE_INIT_ARM
940 	printf("%s: physical_freestart %#lx\n", __func__, physical_freestart);
941 #endif
942 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
943 		/* Are we 16KB aligned for an L1 ? */
944 		if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0
945 		    && kernel_l1pt.pv_pa == 0) {
946 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
947 		} else {
948 			valloc_pages(kernel_pt_table[pt_index],
949 			    L2_TABLE_SIZE / PAGE_SIZE);
950 			++pt_index;
951 		}
952 	}
953 
954 #if (NGEMINIIPM > 0)
955 	valloc_pages(ipmq_pt, L2_TABLE_SIZE / PAGE_SIZE);
956 #endif
957 
958 #ifdef VERBOSE_INIT_ARM
959 	pt_index=0;
960 	printf("%s: kernel_l1pt: %#lx:%#lx\n",
961 		__func__, kernel_l1pt.pv_va, kernel_l1pt.pv_pa);
962 	printf("%s: kernel_pt_table:\n", __func__);
963 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
964 		printf("\t%#lx:%#lx\n", kernel_pt_table[pt_index].pv_va,
965 			kernel_pt_table[pt_index].pv_pa);
966 		++pt_index;
967 	}
968 #if (NGEMINIIPM > 0)
969 	printf("%s: ipmq_pt:\n", __func__);
970 	printf("\t%#lx:%#lx\n", ipmq_pt.pv_va, ipmq_pt.pv_pa);
971 #endif
972 #endif
973 
974 	/* This should never be able to happen but better confirm that. */
975 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
976 		panic("initarm: Failed to align the kernel page directory");
977 
978 	/*
979 	 * Allocate a page for the system page mapped to V0x00000000
980 	 * This page will just contain the system vectors and can be
981 	 * shared by all processes.
982 	 */
983 	valloc_pages(systempage, 1);
984 	systempage.pv_va = ARM_VECTORS_HIGH;
985 
986 	/* Allocate stacks for all modes */
987 	valloc_pages(fiqstack, FIQ_STACK_SIZE);
988 	valloc_pages(irqstack, IRQ_STACK_SIZE);
989 	valloc_pages(abtstack, ABT_STACK_SIZE);
990 	valloc_pages(undstack, UND_STACK_SIZE);
991 	valloc_pages(kernelstack, UPAGES);
992 
993 	/* Allocate the message buffer. */
994 	pv_addr_t msgbuf;
995 	int msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
996 	valloc_pages(msgbuf, msgbuf_pgs);
997 	msgbufphys = msgbuf.pv_pa;
998 
999 	/*
1000 	 * Ok we have allocated physical pages for the primary kernel
1001 	 * page tables
1002 	 */
1003 
1004 #ifdef VERBOSE_INIT_ARM
1005 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
1006 #endif
1007 
1008 	/*
1009 	 * Now we start construction of the L1 page table
1010 	 * We start by mapping the L2 page tables into the L1.
1011 	 * This means that we can replace L1 mappings later on if necessary
1012 	 */
1013 	vaddr_t l1_va = kernel_l1pt.pv_va;
1014 	paddr_t l1_pa = kernel_l1pt.pv_pa;
1015 
1016 	/* Map the L2 pages tables in the L1 page table */
1017 	pmap_link_l2pt(l1_va, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
1018 		       &kernel_pt_table[KERNEL_PT_SYS]);
1019 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
1020 		pmap_link_l2pt(l1_va, KERNEL_BASE + loop * 0x00400000,
1021 			       &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
1022 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
1023 		pmap_link_l2pt(l1_va, KERNEL_VM_BASE + loop * 0x00400000,
1024 			       &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
1025 
1026 	/* update the top of the kernel VM */
1027 	pmap_curmaxkvaddr =
1028 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
1029 
1030 #if (NGEMINIIPM > 0)
1031 printf("%s:%d: pmap_link_l2pt ipmq_pt\n", __FUNCTION__, __LINE__);
1032 	pmap_link_l2pt(l1_va, GEMINI_IPMQ_VBASE, &ipmq_pt);
1033 #endif
1034 
1035 #ifdef VERBOSE_INIT_ARM
1036 	printf("Mapping kernel\n");
1037 #endif
1038 
1039 	/* Now we fill in the L2 pagetable for the kernel static code/data */
1040 #define round_L_page(x) (((x) + L2_L_OFFSET) & L2_L_FRAME)
1041 	size_t textsize = round_L_page(etext - KERNEL_BASE_virt);
1042 	size_t totalsize = round_L_page(_end - KERNEL_BASE_virt);
1043 	/* offset of kernel in RAM */
1044 	u_int offset = (u_int)KERNEL_BASE_virt - KERNEL_BASE;
1045 
1046 #ifdef DDB
1047 	/* Map text section read-write. */
1048 	offset += pmap_map_chunk(l1_va,
1049 				(vaddr_t)KERNEL_BASE + offset,
1050 				 physical_start + offset, textsize,
1051 				 VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE,
1052 				 PTE_CACHE);
1053 #else
1054 	/* Map text section read-only. */
1055 	offset += pmap_map_chunk(l1_va,
1056 				(vaddr_t)KERNEL_BASE + offset,
1057 				 physical_start + offset, textsize,
1058 				 VM_PROT_READ|VM_PROT_EXECUTE, PTE_CACHE);
1059 #endif
1060 	/* Map data and bss sections read-write. */
1061 	offset += pmap_map_chunk(l1_va,
1062 				(vaddr_t)KERNEL_BASE + offset,
1063 				 physical_start + offset, totalsize - textsize,
1064 				 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1065 
1066 #ifdef VERBOSE_INIT_ARM
1067 	printf("Constructing L2 page tables\n");
1068 #endif
1069 
1070 	/* Map the stack pages */
1071 	pmap_map_chunk(l1_va, fiqstack.pv_va, fiqstack.pv_pa,
1072 	    FIQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1073 	pmap_map_chunk(l1_va, irqstack.pv_va, irqstack.pv_pa,
1074 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1075 	pmap_map_chunk(l1_va, abtstack.pv_va, abtstack.pv_pa,
1076 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1077 	pmap_map_chunk(l1_va, undstack.pv_va, undstack.pv_pa,
1078 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1079 	pmap_map_chunk(l1_va, kernelstack.pv_va, kernelstack.pv_pa,
1080 	    UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
1081 
1082 	pmap_map_chunk(l1_va, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
1083 	    L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
1084 
1085 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
1086 		pmap_map_chunk(l1_va, kernel_pt_table[loop].pv_va,
1087 			       kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
1088 			       VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
1089 	}
1090 
1091 	/* Map the vector page. */
1092 	pmap_map_entry(l1_va, ARM_VECTORS_HIGH, systempage.pv_pa,
1093 		       VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1094 
1095 #if (NGEMINIIPM > 0)
1096 	/* Map the IPM queue l2pt */
1097 	pmap_map_chunk(l1_va, ipmq_pt.pv_va, ipmq_pt.pv_pa,
1098 		L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
1099 
1100 	/* Map the IPM queue pages */
1101 	pmap_map_chunk(l1_va, GEMINI_IPMQ_VBASE, GEMINI_IPMQ_PBASE,
1102 	    GEMINI_IPMQ_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1103 
1104 #ifdef GEMINI_SLAVE
1105 	/*
1106 	 * Map all memory, incluuding that owned by other core
1107 	 * take into account the RAM remap, so view in this region
1108 	 * is consistent with MASTER
1109 	 */
1110 	pmap_map_chunk(l1_va,
1111 	    GEMINI_ALLMEM_VBASE,
1112 	    GEMINI_ALLMEM_PBASE + ((GEMINI_ALLMEM_SIZE - MEMSIZE) * 1024 * 1024),
1113 	    (GEMINI_ALLMEM_SIZE - MEMSIZE) * 1024 * 1024,
1114 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1115 	pmap_map_chunk(l1_va,
1116 	    GEMINI_ALLMEM_VBASE + GEMINI_BUSBASE * 1024 * 1024,
1117 	    GEMINI_ALLMEM_PBASE,
1118 	    (MEMSIZE * 1024 * 1024),
1119 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1120 #else
1121 	/* Map all memory, incluuding that owned by other core */
1122 	pmap_map_chunk(l1_va, GEMINI_ALLMEM_VBASE, GEMINI_ALLMEM_PBASE,
1123 	    GEMINI_ALLMEM_SIZE * 1024 * 1024, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1124 #endif	/* GEMINI_SLAVE */
1125 #endif	/* NGEMINIIPM */
1126 
1127 	/*
1128 	 * Map integrated peripherals at same address in first level page
1129 	 * table so that we can continue to use console.
1130 	 */
1131 	pmap_devmap_bootstrap(l1_va, devmap);
1132 
1133 
1134 #ifdef VERBOSE_INIT_ARM
1135 	/* Tell the user about where all the bits and pieces live. */
1136 	printf("%22s       Physical              Virtual        Num\n", " ");
1137 	printf("%22s Starting    Ending    Starting    Ending   Pages\n", " ");
1138 
1139 	static const char mem_fmt[] =
1140 	    "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %d\n";
1141 	static const char mem_fmt_nov[] =
1142 	    "%20s: 0x%08lx 0x%08lx                       %d\n";
1143 
1144 	printf(mem_fmt, "SDRAM", physical_start, physical_end-1,
1145 	    KERN_PHYSTOV(physical_start), KERN_PHYSTOV(physical_end-1),
1146 	    (int)physmem);
1147 	printf(mem_fmt, "text section",
1148 	       KERN_VTOPHYS((vaddr_t)KERNEL_BASE_virt), KERN_VTOPHYS((vaddr_t)etext-1),
1149 	       (vaddr_t)KERNEL_BASE_virt, (vaddr_t)etext-1,
1150 	       (int)(textsize / PAGE_SIZE));
1151 	printf(mem_fmt, "data section",
1152 	       KERN_VTOPHYS((vaddr_t)__data_start), KERN_VTOPHYS((vaddr_t)_edata),
1153 	       (vaddr_t)__data_start, (vaddr_t)_edata,
1154 	       (int)((round_page((vaddr_t)_edata)
1155 		      - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
1156 	printf(mem_fmt, "bss section",
1157 	       KERN_VTOPHYS((vaddr_t)__bss_start), KERN_VTOPHYS((vaddr_t)__bss_end__),
1158 	       (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
1159 	       (int)((round_page((vaddr_t)__bss_end__)
1160 		      - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
1161 	printf(mem_fmt, "L1 page directory",
1162 	    kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
1163 	    kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
1164 	    L1_TABLE_SIZE / PAGE_SIZE);
1165 	printf(mem_fmt, "Exception Vectors",
1166 	    systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
1167 	    (vaddr_t)ARM_VECTORS_HIGH, (vaddr_t)ARM_VECTORS_HIGH + PAGE_SIZE - 1,
1168 	    1);
1169 	printf(mem_fmt, "FIQ stack",
1170 	    fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
1171 	    fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
1172 	    FIQ_STACK_SIZE);
1173 	printf(mem_fmt, "IRQ stack",
1174 	    irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
1175 	    irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
1176 	    IRQ_STACK_SIZE);
1177 	printf(mem_fmt, "ABT stack",
1178 	    abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
1179 	    abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
1180 	    ABT_STACK_SIZE);
1181 	printf(mem_fmt, "UND stack",
1182 	    undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
1183 	    undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
1184 	    UND_STACK_SIZE);
1185 	printf(mem_fmt, "SVC stack",
1186 	    kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
1187 	    kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
1188 	    UPAGES);
1189 	printf(mem_fmt_nov, "Message Buffer",
1190 	    msgbufphys, msgbufphys + msgbuf_pgs * PAGE_SIZE - 1, msgbuf_pgs);
1191 	printf(mem_fmt, "Free Memory", physical_freestart, physical_freeend-1,
1192 	    KERN_PHYSTOV(physical_freestart), KERN_PHYSTOV(physical_freeend-1),
1193 	    free_pages);
1194 #endif
1195 
1196 	/*
1197 	 * Now we have the real page tables in place so we can switch to them.
1198 	 * Once this is done we will be running with the REAL kernel page
1199 	 * tables.
1200 	 */
1201 
1202 	/* Switch tables */
1203 #ifdef VERBOSE_INIT_ARM
1204 	printf("switching to new L1 page table  @%#lx...", l1_pa);
1205 #endif
1206 
1207 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
1208 	cpu_setttb(l1_pa, true);
1209 	cpu_tlb_flushID();
1210 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
1211 
1212 #ifdef VERBOSE_INIT_ARM
1213 	printf("OK.\n");
1214 #endif
1215 }
1216