1 /* $NetBSD: gemini_machdep.c,v 1.11 2008/12/06 05:22:39 cliff Exp $ */ 2 3 /* adapted from: 4 * NetBSD: sdp24xx_machdep.c,v 1.4 2008/08/27 11:03:10 matt Exp 5 */ 6 7 /* 8 * Machine dependent functions for kernel setup for TI OSK5912 board. 9 * Based on lubbock_machdep.c which in turn was based on iq80310_machhdep.c 10 * 11 * Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved. 12 * Written by Hiroyuki Bessho for Genetec Corporation. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. The name of Genetec Corporation may not be used to endorse or 23 * promote products derived from this software without specific prior 24 * written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 * 38 * Copyright (c) 2001 Wasabi Systems, Inc. 39 * All rights reserved. 40 * 41 * Written by Jason R. Thorpe for Wasabi Systems, Inc. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed for the NetBSD Project by 54 * Wasabi Systems, Inc. 55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 56 * or promote products derived from this software without specific prior 57 * written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 69 * POSSIBILITY OF SUCH DAMAGE. 70 * 71 * Copyright (c) 1997,1998 Mark Brinicombe. 72 * Copyright (c) 1997,1998 Causality Limited. 73 * All rights reserved. 74 * 75 * Redistribution and use in source and binary forms, with or without 76 * modification, are permitted provided that the following conditions 77 * are met: 78 * 1. Redistributions of source code must retain the above copyright 79 * notice, this list of conditions and the following disclaimer. 80 * 2. Redistributions in binary form must reproduce the above copyright 81 * notice, this list of conditions and the following disclaimer in the 82 * documentation and/or other materials provided with the distribution. 83 * 3. All advertising materials mentioning features or use of this software 84 * must display the following acknowledgement: 85 * This product includes software developed by Mark Brinicombe 86 * for the NetBSD Project. 87 * 4. The name of the company nor the name of the author may be used to 88 * endorse or promote products derived from this software without specific 89 * prior written permission. 90 * 91 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 92 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 93 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 94 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 95 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 96 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 97 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 98 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 99 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 100 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 101 * SUCH DAMAGE. 102 * 103 * Copyright (c) 2007 Microsoft 104 * All rights reserved. 105 * 106 * Redistribution and use in source and binary forms, with or without 107 * modification, are permitted provided that the following conditions 108 * are met: 109 * 1. Redistributions of source code must retain the above copyright 110 * notice, this list of conditions and the following disclaimer. 111 * 2. Redistributions in binary form must reproduce the above copyright 112 * notice, this list of conditions and the following disclaimer in the 113 * documentation and/or other materials provided with the distribution. 114 * 3. All advertising materials mentioning features or use of this software 115 * must display the following acknowledgement: 116 * This product includes software developed by Microsoft 117 * 118 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 119 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 120 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 121 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT, 122 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 123 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 124 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 125 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 126 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 127 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 128 * SUCH DAMAGE. 129 */ 130 131 #include <sys/cdefs.h> 132 __KERNEL_RCSID(0, "$NetBSD: gemini_machdep.c,v 1.11 2008/12/06 05:22:39 cliff Exp $"); 133 134 #include "opt_machdep.h" 135 #include "opt_ddb.h" 136 #include "opt_kgdb.h" 137 #include "opt_ipkdb.h" 138 #include "opt_md.h" 139 #include "opt_com.h" 140 #include "opt_gemini.h" 141 #include "geminiwdt.h" 142 #include "geminiipm.h" 143 #include "md.h" 144 145 #include <sys/param.h> 146 #include <sys/device.h> 147 #include <sys/systm.h> 148 #include <sys/kernel.h> 149 #include <sys/exec.h> 150 #include <sys/proc.h> 151 #include <sys/msgbuf.h> 152 #include <sys/reboot.h> 153 #include <sys/termios.h> 154 #include <sys/ksyms.h> 155 156 #include <uvm/uvm_extern.h> 157 158 #include <sys/conf.h> 159 #include <dev/cons.h> 160 #include <dev/md.h> 161 162 #include <machine/db_machdep.h> 163 #include <ddb/db_sym.h> 164 #include <ddb/db_extern.h> 165 #ifdef KGDB 166 #include <sys/kgdb.h> 167 #endif 168 169 #include <machine/bootconfig.h> 170 #include <machine/bus.h> 171 #include <machine/cpu.h> 172 #include <machine/frame.h> 173 #include <arm/armreg.h> 174 #include <arm/undefined.h> 175 176 #include <arm/arm32/machdep.h> 177 178 #include <arm/gemini/gemini_reg.h> 179 #include <arm/gemini/gemini_var.h> 180 #include <arm/gemini/gemini_wdtvar.h> 181 #include <arm/gemini/gemini_com.h> 182 #include <arm/gemini/lpc_com.h> 183 184 #include <evbarm/gemini/gemini.h> 185 186 #if defined(VERBOSE_INIT_ARM) 187 # define GEMINI_PUTCHAR(c) gemini_putchar(c) 188 # define GEMINI_PUTHEX(n) gemini_puthex(n) 189 #else /* VERBOSE_INIT_ARM */ 190 # define GEMINI_PUTCHAR(c) 191 # define GEMINI_PUTHEX(n) 192 #endif /* VERBOSE_INIT_ARM */ 193 194 /* 195 * Address to call from cpu_reset() to reset the machine. 196 * This is machine architecture dependant as it varies depending 197 * on where the ROM appears when you turn the MMU off. 198 */ 199 200 u_int cpu_reset_address = 0; 201 202 /* Define various stack sizes in pages */ 203 #define IRQ_STACK_SIZE 1 204 #define FIQ_STACK_SIZE 1 205 #define ABT_STACK_SIZE 1 206 #ifdef IPKDB 207 #define UND_STACK_SIZE 2 208 #else 209 #define UND_STACK_SIZE 1 210 #endif 211 212 BootConfig bootconfig; /* Boot config storage */ 213 char *boot_args = NULL; 214 char *boot_file = NULL; 215 216 /* Physical address of the beginning of SDRAM. */ 217 paddr_t physical_start; 218 /* Physical address of the first byte after the end of SDRAM. */ 219 paddr_t physical_end; 220 /* Number of pages of memory. */ 221 int physmem = 0; 222 223 /* Same things, but for the free (unused by the kernel) memory. */ 224 static paddr_t physical_freestart, physical_freeend; 225 static u_int free_pages; 226 227 /* Physical and virtual addresses for some global pages */ 228 pv_addr_t fiqstack; 229 pv_addr_t irqstack; 230 pv_addr_t undstack; 231 pv_addr_t abtstack; 232 pv_addr_t kernelstack; /* stack for SVC mode */ 233 234 /* Physical address of the message buffer. */ 235 paddr_t msgbufphys; 236 237 extern u_int data_abort_handler_address; 238 extern u_int prefetch_abort_handler_address; 239 extern u_int undefined_handler_address; 240 extern char KERNEL_BASE_phys[]; 241 extern char KERNEL_BASE_virt[]; 242 extern char etext[], __data_start[], _edata[], __bss_start[], __bss_end__[]; 243 extern char _end[]; 244 245 #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */ 246 #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */ 247 #define KERNEL_PT_KERNEL_NUM 4 248 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM) 249 /* Page tables for mapping kernel VM */ 250 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */ 251 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) 252 253 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS]; 254 255 256 #if (NGEMINIIPM > 0) 257 pv_addr_t ipmq_pt; /* L2 Page table for mapping IPM queues */ 258 #if defined(DEBUG) || 1 259 unsigned long gemini_ipmq_pbase = GEMINI_IPMQ_PBASE; 260 unsigned long gemini_ipmq_vbase = GEMINI_IPMQ_VBASE; 261 #endif /* DEBUG */ 262 #endif /* NGEMINIIPM > 0 */ 263 264 265 extern struct user *proc0paddr; 266 267 /* 268 * Macros to translate between physical and virtual for a subset of the 269 * kernel address space. *Not* for general use. 270 */ 271 #define KERNEL_BASE_PHYS ((paddr_t)&KERNEL_BASE_phys) 272 273 #define KERN_VTOPHYS(va) \ 274 ((paddr_t)((vaddr_t)va - KERNEL_BASE + GEMINI_DRAM_BASE)) 275 #define KERN_PHYSTOV(pa) \ 276 ((vaddr_t)((paddr_t)pa - GEMINI_DRAM_BASE + KERNEL_BASE)) 277 278 /* Prototypes */ 279 280 void gemini_intr_init(bus_space_tag_t); 281 void consinit(void); 282 #ifdef KGDB 283 static void kgdb_port_init(void); 284 #endif 285 286 static void setup_real_page_tables(void); 287 static void init_clocks(void); 288 289 bs_protos(bs_notimpl); 290 291 #include "com.h" 292 #if NCOM > 0 293 #include <dev/ic/comreg.h> 294 #include <dev/ic/comvar.h> 295 #endif 296 297 298 static void gemini_global_reset(void) __attribute__ ((noreturn)); 299 static void gemini_cpu1_start(void); 300 static void gemini_memchk(void); 301 302 static void 303 gemini_global_reset(void) 304 { 305 #if defined(GEMINI_MASTER) || defined(GEMINI_SINGLE) 306 volatile uint32_t *rp; 307 uint32_t r; 308 309 rp = (volatile uint32_t *) 310 (GEMINI_GLOBAL_VBASE + GEMINI_GLOBAL_RESET_CTL); 311 r = *rp; 312 r |= GLOBAL_RESET_GLOBAL; 313 *rp = r; 314 #endif 315 for(;;); 316 /* NOTREACHED */ 317 } 318 319 static void 320 gemini_cpu1_start(void) 321 { 322 #ifdef GEMINI_MASTER 323 volatile uint32_t *rp; 324 uint32_t r; 325 326 rp = (volatile uint32_t *) 327 (GEMINI_GLOBAL_VBASE + GEMINI_GLOBAL_RESET_CTL); 328 r = *rp; 329 r &= ~GLOBAL_RESET_CPU1; 330 *rp = r; 331 #endif 332 } 333 334 static void 335 gemini_memchk(void) 336 { 337 volatile uint32_t *rp; 338 uint32_t r; 339 uint32_t base; 340 uint32_t size; 341 342 rp = (volatile uint32_t *) 343 (GEMINI_DRAMC_VBASE + GEMINI_DRAMC_RMCR); 344 r = *rp; 345 base = (r & DRAMC_RMCR_RMBAR) >> DRAMC_RMCR_RMBAR_SHFT; 346 size = (r & DRAMC_RMCR_RMSZR) >> DRAMC_RMCR_RMSZR_SHFT; 347 #if defined(GEMINI_SINGLE) 348 if (r != 0) 349 panic("%s: RMCR %#x, MEMSIZE %d mismatch\n", 350 __FUNCTION__, r, MEMSIZE); 351 #elif defined(GEMINI_MASTER) 352 if (base != MEMSIZE) 353 panic("%s: RMCR %#x, MEMSIZE %d mismatch\n", 354 __FUNCTION__, r, MEMSIZE); 355 #elif defined(GEMINI_SLAVE) 356 if (size != MEMSIZE) 357 panic("%s: RMCR %#x, MEMSIZE %d mismatch\n", 358 __FUNCTION__, r, MEMSIZE); 359 #endif 360 #if defined(VERBOSE_INIT_ARM) || 1 361 printf("DRAM Remap: base=%dMB, size=%dMB\n", base, size); 362 #endif 363 } 364 365 /* 366 * void cpu_reboot(int howto, char *bootstr) 367 * 368 * Reboots the system 369 * 370 * Deal with any syncing, unmounting, dumping and shutdown hooks, 371 * then reset the CPU. 372 */ 373 void 374 cpu_reboot(int howto, char *bootstr) 375 { 376 extern struct geminitmr_softc *ref_sc; 377 378 #ifdef DIAGNOSTIC 379 /* info */ 380 printf("boot: howto=%08x curproc=%p\n", howto, curproc); 381 #endif 382 383 /* 384 * If we are still cold then hit the air brakes 385 * and crash to earth fast 386 */ 387 if (cold) { 388 doshutdownhooks(); 389 pmf_system_shutdown(boothowto); 390 printf("The operating system has halted.\n"); 391 printf("Please press any key to reboot.\n\n"); 392 cngetc(); 393 printf("rebooting...\n"); 394 if (ref_sc != NULL) 395 delay(2000); /* cnflush(); */ 396 gemini_global_reset(); 397 /*NOTREACHED*/ 398 } 399 400 /* Disable console buffering */ 401 cnpollc(1); 402 403 /* 404 * If RB_NOSYNC was not specified sync the discs. 405 * Note: Unless cold is set to 1 here, syslogd will die during the 406 * unmount. It looks like syslogd is getting woken up only to find 407 * that it cannot page part of the binary in as the filesystem has 408 * been unmounted. 409 */ 410 if (!(howto & RB_NOSYNC)) 411 bootsync(); 412 413 /* Say NO to interrupts */ 414 splhigh(); 415 416 /* Do a dump if requested. */ 417 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) 418 dumpsys(); 419 420 /* Run any shutdown hooks */ 421 doshutdownhooks(); 422 423 pmf_system_shutdown(boothowto); 424 425 /* Make sure IRQ's are disabled */ 426 IRQdisable; 427 428 if (howto & RB_HALT) { 429 printf("The operating system has halted.\n"); 430 printf("Please press any key to reboot.\n\n"); 431 cngetc(); 432 } 433 434 printf("rebooting...\n"); 435 if (ref_sc != NULL) 436 delay(2000); /* cnflush(); */ 437 gemini_global_reset(); 438 /*NOTREACHED*/ 439 } 440 441 /* 442 * Static device mappings. These peripheral registers are mapped at 443 * fixed virtual addresses very early in initarm() so that we can use 444 * them while booting the kernel, and stay at the same address 445 * throughout whole kernel's life time. 446 * 447 * We use this table twice; once with bootstrap page table, and once 448 * with kernel's page table which we build up in initarm(). 449 * 450 * Since we map these registers into the bootstrap page table using 451 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map 452 * registers segment-aligned and segment-rounded in order to avoid 453 * using the 2nd page tables. 454 */ 455 456 #define _A(a) ((a) & ~L1_S_OFFSET) 457 #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1)) 458 459 static const struct pmap_devmap devmap[] = { 460 /* Global regs */ 461 { 462 .pd_va = _A(GEMINI_GLOBAL_VBASE), 463 .pd_pa = _A(GEMINI_GLOBAL_BASE), 464 .pd_size = _S(L1_S_SIZE), 465 .pd_prot = VM_PROT_READ|VM_PROT_WRITE, 466 .pd_cache = PTE_NOCACHE 467 }, 468 469 /* Watchdog */ 470 { 471 .pd_va = _A(GEMINI_WATCHDOG_VBASE), 472 .pd_pa = _A(GEMINI_WATCHDOG_BASE), 473 .pd_size = _S(L1_S_SIZE), 474 .pd_prot = VM_PROT_READ|VM_PROT_WRITE, 475 .pd_cache = PTE_NOCACHE 476 }, 477 478 /* UART */ 479 { 480 .pd_va = _A(GEMINI_UART_VBASE), 481 .pd_pa = _A(GEMINI_UART_BASE), 482 .pd_size = _S(L1_S_SIZE), 483 .pd_prot = VM_PROT_READ|VM_PROT_WRITE, 484 .pd_cache = PTE_NOCACHE 485 }, 486 487 /* LPCHC */ 488 { 489 .pd_va = _A(GEMINI_LPCHC_VBASE), 490 .pd_pa = _A(GEMINI_LPCHC_BASE), 491 .pd_size = _S(L1_S_SIZE), 492 .pd_prot = VM_PROT_READ|VM_PROT_WRITE, 493 .pd_cache = PTE_NOCACHE 494 }, 495 496 /* LPCIO */ 497 { 498 .pd_va = _A(GEMINI_LPCIO_VBASE), 499 .pd_pa = _A(GEMINI_LPCIO_BASE), 500 .pd_size = _S(L1_S_SIZE), 501 .pd_prot = VM_PROT_READ|VM_PROT_WRITE, 502 .pd_cache = PTE_NOCACHE 503 }, 504 505 /* Timers */ 506 { 507 .pd_va = _A(GEMINI_TIMER_VBASE), 508 .pd_pa = _A(GEMINI_TIMER_BASE), 509 .pd_size = _S(L1_S_SIZE), 510 .pd_prot = VM_PROT_READ|VM_PROT_WRITE, 511 .pd_cache = PTE_NOCACHE 512 }, 513 514 /* DRAM Controller */ 515 { 516 .pd_va = _A(GEMINI_DRAMC_VBASE), 517 .pd_pa = _A(GEMINI_DRAMC_BASE), 518 .pd_size = _S(L1_S_SIZE), 519 .pd_prot = VM_PROT_READ|VM_PROT_WRITE, 520 .pd_cache = PTE_NOCACHE 521 }, 522 523 #if defined(MEMORY_DISK_DYNAMIC) 524 /* Ramdisk */ 525 { 526 .pd_va = _A(GEMINI_RAMDISK_VBASE), 527 .pd_pa = _A(GEMINI_RAMDISK_PBASE), 528 .pd_size = _S(GEMINI_RAMDISK_SIZE), 529 .pd_prot = VM_PROT_READ|VM_PROT_WRITE, 530 .pd_cache = PTE_NOCACHE 531 }, 532 #endif 533 534 {0} /* list terminator */ 535 }; 536 537 #undef _A 538 #undef _S 539 540 #ifdef DDB 541 static void gemini_db_trap(int where) 542 { 543 #if NGEMINIWDT > 0 544 static int oldwatchdogstate; 545 546 if (where) { 547 oldwatchdogstate = geminiwdt_enable(0); 548 } else { 549 geminiwdt_enable(oldwatchdogstate); 550 } 551 #endif 552 } 553 #endif 554 555 #if defined(VERBOSE_INIT_ARM) || 1 556 void gemini_putchar(char c); 557 void 558 gemini_putchar(char c) 559 { 560 unsigned char *com0addr = (unsigned char *)GEMINI_UART_VBASE; 561 int timo = 150000; 562 563 while ((com0addr[COM_REG_LSR * 4] & LSR_TXRDY) == 0) 564 if (--timo == 0) 565 break; 566 567 com0addr[COM_REG_TXDATA] = c; 568 569 while ((com0addr[COM_REG_LSR * 4] & LSR_TSRE) == 0) 570 if (--timo == 0) 571 break; 572 } 573 574 void gemini_puthex(unsigned int); 575 void 576 gemini_puthex(unsigned int val) 577 { 578 char hexc[] = "0123456789abcdef"; 579 580 gemini_putchar('0'); 581 gemini_putchar('x'); 582 gemini_putchar(hexc[(val >> 28) & 0xf]); 583 gemini_putchar(hexc[(val >> 24) & 0xf]); 584 gemini_putchar(hexc[(val >> 20) & 0xf]); 585 gemini_putchar(hexc[(val >> 16) & 0xf]); 586 gemini_putchar(hexc[(val >> 12) & 0xf]); 587 gemini_putchar(hexc[(val >> 8) & 0xf]); 588 gemini_putchar(hexc[(val >> 4) & 0xf]); 589 gemini_putchar(hexc[(val >> 0) & 0xf]); 590 } 591 #endif /* VERBOSE_INIT_ARM */ 592 593 /* 594 * u_int initarm(...) 595 * 596 * Initial entry point on startup. This gets called before main() is 597 * entered. 598 * It should be responsible for setting up everything that must be 599 * in place when main is called. 600 * This includes 601 * Taking a copy of the boot configuration structure. 602 * Initialising the physical console so characters can be printed. 603 * Setting up page tables for the kernel 604 * Relocating the kernel to the bottom of physical memory 605 */ 606 u_int 607 initarm(void *arg) 608 { 609 GEMINI_PUTCHAR('0'); 610 611 /* 612 * start cpu#1 now 613 */ 614 gemini_cpu1_start(); 615 616 /* 617 * When we enter here, we are using a temporary first level 618 * translation table with section entries in it to cover the OBIO 619 * peripherals and SDRAM. The temporary first level translation table 620 * is at the end of SDRAM. 621 */ 622 623 /* Heads up ... Setup the CPU / MMU / TLB functions. */ 624 GEMINI_PUTCHAR('1'); 625 if (set_cpufuncs()) 626 panic("cpu not recognized!"); 627 628 GEMINI_PUTCHAR('2'); 629 init_clocks(); 630 GEMINI_PUTCHAR('3'); 631 632 /* The console is going to try to map things. Give pmap a devmap. */ 633 pmap_devmap_register(devmap); 634 GEMINI_PUTCHAR('4'); 635 consinit(); 636 GEMINI_PUTCHAR('5'); 637 #ifdef KGDB 638 kgdb_port_init(); 639 #endif 640 641 /* Talk to the user */ 642 printf("\nNetBSD/evbarm (gemini) booting ...\n"); 643 644 #ifdef BOOT_ARGS 645 char mi_bootargs[] = BOOT_ARGS; 646 parse_mi_bootargs(mi_bootargs); 647 #endif 648 649 #ifdef VERBOSE_INIT_ARM 650 printf("initarm: Configuring system ...\n"); 651 #endif 652 653 /* 654 * Set up the variables that define the availability of physical 655 * memory. 656 */ 657 gemini_memchk(); 658 physical_start = GEMINI_DRAM_BASE; 659 #define MEMSIZE_BYTES (MEMSIZE * 1024 * 1024) 660 physical_end = (physical_start & ~(0x400000-1)) + MEMSIZE_BYTES; 661 physmem = (physical_end - physical_start) / PAGE_SIZE; 662 663 /* Fake bootconfig structure for the benefit of pmap.c. */ 664 bootconfig.dramblocks = 1; 665 bootconfig.dram[0].address = physical_start; 666 bootconfig.dram[0].pages = physmem; 667 668 /* 669 * Our kernel is at the beginning of memory, so set our free space to 670 * all the memory after the kernel. 671 */ 672 physical_freestart = KERN_VTOPHYS(round_page((vaddr_t) _end)); 673 physical_freeend = physical_end; 674 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; 675 676 /* 677 * This is going to do all the hard work of setting up the first and 678 * and second level page tables. Pages of memory will be allocated 679 * and mapped for other structures that are required for system 680 * operation. When it returns, physical_freestart and free_pages will 681 * have been updated to reflect the allocations that were made. In 682 * addition, kernel_l1pt, kernel_pt_table[], systempage, irqstack, 683 * abtstack, undstack, kernelstack, msgbufphys will be set to point to 684 * the memory that was allocated for them. 685 */ 686 setup_real_page_tables(); 687 688 /* 689 * Moved from cpu_startup() as data_abort_handler() references 690 * this during uvm init. 691 */ 692 proc0paddr = (struct user *)kernelstack.pv_va; 693 lwp0.l_addr = proc0paddr; 694 695 #ifdef VERBOSE_INIT_ARM 696 printf("bootstrap done.\n"); 697 #endif 698 699 arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL); 700 701 /* 702 * Pages were allocated during the secondary bootstrap for the 703 * stacks for different CPU modes. 704 * We must now set the r13 registers in the different CPU modes to 705 * point to these stacks. 706 * Since the ARM stacks use STMFD etc. we must set r13 to the top end 707 * of the stack memory. 708 */ 709 #ifdef VERBOSE_INIT_ARM 710 printf("init subsystems: stacks "); 711 #endif 712 713 set_stackptr(PSR_FIQ32_MODE, fiqstack.pv_va + FIQ_STACK_SIZE * PAGE_SIZE); 714 set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); 715 set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); 716 set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); 717 718 /* 719 * Well we should set a data abort handler. 720 * Once things get going this will change as we will need a proper 721 * handler. 722 * Until then we will use a handler that just panics but tells us 723 * why. 724 * Initialisation of the vectors will just panic on a data abort. 725 * This just fills in a slightly better one. 726 */ 727 #ifdef VERBOSE_INIT_ARM 728 printf("vectors "); 729 #endif 730 data_abort_handler_address = (u_int)data_abort_handler; 731 prefetch_abort_handler_address = (u_int)prefetch_abort_handler; 732 undefined_handler_address = (u_int)undefinedinstruction_bounce; 733 734 /* Initialise the undefined instruction handlers */ 735 #ifdef VERBOSE_INIT_ARM 736 printf("undefined "); 737 #endif 738 undefined_init(); 739 740 /* Load memory into UVM. */ 741 #ifdef VERBOSE_INIT_ARM 742 printf("page "); 743 #endif 744 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ 745 746 #if (GEMINI_RAM_RESV_PBASE != 0) 747 uvm_page_physload(atop(physical_freestart), atop(GEMINI_RAM_RESV_PBASE), 748 atop(physical_freestart), atop(GEMINI_RAM_RESV_PBASE), 749 VM_FREELIST_DEFAULT); 750 uvm_page_physload(atop(GEMINI_RAM_RESV_PEND), atop(physical_freeend), 751 atop(GEMINI_RAM_RESV_PEND), atop(physical_freeend), 752 VM_FREELIST_DEFAULT); 753 #else 754 uvm_page_physload(atop(physical_freestart), atop(physical_freeend), 755 atop(physical_freestart), atop(physical_freeend), 756 VM_FREELIST_DEFAULT); 757 #endif 758 uvm_page_physload(atop(GEMINI_DRAM_BASE), atop(KERNEL_BASE_phys), 759 atop(GEMINI_DRAM_BASE), atop(KERNEL_BASE_phys), 760 VM_FREELIST_DEFAULT); 761 762 /* Boot strap pmap telling it where the kernel page table is */ 763 #ifdef VERBOSE_INIT_ARM 764 printf("pmap "); 765 #endif 766 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); 767 768 #ifdef VERBOSE_INIT_ARM 769 printf("done.\n"); 770 #endif 771 772 #ifdef IPKDB 773 /* Initialise ipkdb */ 774 ipkdb_init(); 775 if (boothowto & RB_KDB) 776 ipkdb_connect(0); 777 #endif 778 779 #if defined(MEMORY_DISK_DYNAMIC) 780 md_root_setconf((char *)GEMINI_RAMDISK_VBASE, GEMINI_RAMDISK_SIZE); 781 #endif 782 783 #ifdef KGDB 784 if (boothowto & RB_KDB) { 785 kgdb_debug_init = 1; 786 kgdb_connect(1); 787 } 788 #endif 789 790 #ifdef DDB 791 db_trap_callback = gemini_db_trap; 792 db_machine_init(); 793 794 /* Firmware doesn't load symbols. */ 795 ddb_init(0, NULL, NULL); 796 797 if (boothowto & RB_KDB) 798 Debugger(); 799 #endif 800 printf("initarm done.\n"); 801 802 /* We return the new stack pointer address */ 803 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP); 804 } 805 806 static void 807 init_clocks(void) 808 { 809 } 810 811 #ifndef CONSADDR 812 #error Specify the address of the console UART with the CONSADDR option. 813 #endif 814 #ifndef CONSPEED 815 #define CONSPEED 19200 816 #endif 817 #ifndef CONMODE 818 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ 819 #endif 820 821 static const bus_addr_t consaddr = CONSADDR; 822 static const int conspeed = CONSPEED; 823 static const int conmode = CONMODE; 824 825 #if CONSADDR==0x42000000 826 /* 827 * console initialization for obio com console 828 */ 829 void 830 consinit(void) 831 { 832 static int consinit_called = 0; 833 834 if (consinit_called != 0) 835 return; 836 consinit_called = 1; 837 838 if (comcnattach(&gemini_a4x_bs_tag, consaddr, conspeed, 839 GEMINI_COM_FREQ, COM_TYPE_16550_NOERS, conmode)) 840 panic("Serial console can not be initialized."); 841 } 842 843 #elif CONSADDR==0x478003f8 844 # include <arm/gemini/gemini_lpcvar.h> 845 /* 846 * console initialization for lpc com console 847 */ 848 void 849 consinit(void) 850 { 851 static int consinit_called = 0; 852 bus_space_tag_t iot = &gemini_bs_tag; 853 bus_space_handle_t lpchc_ioh; 854 bus_space_handle_t lpcio_ioh; 855 bus_size_t sz = L1_S_SIZE; 856 gemini_lpc_softc_t lpcsoftc; 857 gemini_lpc_bus_ops_t *ops; 858 void *lpctag = &lpcsoftc; 859 uint32_t r; 860 extern gemini_lpc_bus_ops_t gemini_lpc_bus_ops; 861 862 ops = &gemini_lpc_bus_ops; 863 864 if (consinit_called != 0) 865 return; 866 consinit_called = 1; 867 868 if (bus_space_map(iot, GEMINI_LPCHC_BASE, sz, 0, &lpchc_ioh)) 869 panic("consinit: LPCHC can not be mapped."); 870 871 if (bus_space_map(iot, GEMINI_LPCIO_BASE, sz, 0, &lpcio_ioh)) 872 panic("consinit: LPCIO can not be mapped."); 873 874 /* enable the LPC bus */ 875 r = bus_space_read_4(iot, lpchc_ioh, GEMINI_LPCHC_CSR); 876 r |= LPCHC_CSR_BEN; 877 bus_space_write_4(iot, lpchc_ioh, GEMINI_LPCHC_CSR, r); 878 879 memset(&lpcsoftc, 0, sizeof(lpcsoftc)); 880 lpcsoftc.sc_iot = iot; 881 lpcsoftc.sc_ioh = lpcio_ioh; 882 883 /* activate Serial Port 1 */ 884 (*ops->lpc_pnp_enter)(lpctag); 885 (*ops->lpc_pnp_write)(lpctag, 1, 0x30, 0x01); 886 (*ops->lpc_pnp_exit)(lpctag); 887 888 if (comcnattach(iot, consaddr, conspeed, 889 IT8712F_COM_FREQ, COM_TYPE_NORMAL, conmode)) { 890 panic("Serial console can not be initialized."); 891 } 892 893 bus_space_unmap(iot, lpcio_ioh, sz); 894 bus_space_unmap(iot, lpchc_ioh, sz); 895 } 896 #else 897 # error unknown console 898 #endif 899 900 #ifdef KGDB 901 #ifndef KGDB_DEVADDR 902 #error Specify the address of the kgdb UART with the KGDB_DEVADDR option. 903 #endif 904 #ifndef KGDB_DEVRATE 905 #define KGDB_DEVRATE 19200 906 #endif 907 908 #ifndef KGDB_DEVMODE 909 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ 910 #endif 911 static const vaddr_t comkgdbaddr = KGDB_DEVADDR; 912 static const int comkgdbspeed = KGDB_DEVRATE; 913 static const int comkgdbmode = KGDB_DEVMODE; 914 915 void 916 static kgdb_port_init(void) 917 { 918 static int kgdbsinit_called = 0; 919 920 if (kgdbsinit_called != 0) 921 return; 922 923 kgdbsinit_called = 1; 924 925 bus_space_handle_t bh; 926 if (bus_space_map(&gemini_a4x_bs_tag, comkgdbaddr, 927 GEMINI_UART_SIZE, 0, &bh)) 928 panic("kgdb port can not be mapped."); 929 930 if (com_kgdb_attach(&gemini_a4x_bs_tag, comkgdbaddr, comkgdbspeed, 931 GEMINI_UART_SIZE, COM_TYPE_16550_NOERS, comkgdbmode)) 932 panic("KGDB uart can not be initialized."); 933 934 bus_space_unmap(&gemini_a4x_bs_tag, bh, GEMINI_UART_SIZE); 935 } 936 #endif 937 938 static void 939 setup_real_page_tables(void) 940 { 941 /* 942 * We need to allocate some fixed page tables to get the kernel going. 943 * 944 * We are going to allocate our bootstrap pages from the beginning of 945 * the free space that we just calculated. We allocate one page 946 * directory and a number of page tables and store the physical 947 * addresses in the kernel_pt_table array. 948 * 949 * The kernel page directory must be on a 16K boundary. The page 950 * tables must be on 4K boundaries. What we do is allocate the 951 * page directory on the first 16K boundary that we encounter, and 952 * the page tables on 4K boundaries otherwise. Since we allocate 953 * at least 3 L2 page tables, we are guaranteed to encounter at 954 * least one 16K aligned region. 955 */ 956 957 #ifdef VERBOSE_INIT_ARM 958 printf("Allocating page tables\n"); 959 #endif 960 961 /* 962 * Define a macro to simplify memory allocation. As we allocate the 963 * memory, make sure that we don't walk over our temporary first level 964 * translation table. 965 */ 966 #define valloc_pages(var, np) \ 967 (var).pv_pa = physical_freestart; \ 968 physical_freestart += ((np) * PAGE_SIZE); \ 969 if (physical_freestart > (physical_freeend - L1_TABLE_SIZE)) \ 970 panic("initarm: out of memory"); \ 971 free_pages -= (np); \ 972 (var).pv_va = KERN_PHYSTOV((var).pv_pa); \ 973 memset((char *)(var).pv_va, 0, ((np) * PAGE_SIZE)); 974 975 int loop, pt_index; 976 977 pt_index = 0; 978 kernel_l1pt.pv_pa = 0; 979 kernel_l1pt.pv_va = 0; 980 #ifdef VERBOSE_INIT_ARM 981 printf("%s: physical_freestart %#lx\n", __func__, physical_freestart); 982 #endif 983 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { 984 /* Are we 16KB aligned for an L1 ? */ 985 if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0 986 && kernel_l1pt.pv_pa == 0) { 987 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); 988 } else { 989 valloc_pages(kernel_pt_table[pt_index], 990 L2_TABLE_SIZE / PAGE_SIZE); 991 ++pt_index; 992 } 993 } 994 995 #if (NGEMINIIPM > 0) 996 valloc_pages(ipmq_pt, L2_TABLE_SIZE / PAGE_SIZE); 997 #endif 998 999 #ifdef VERBOSE_INIT_ARM 1000 pt_index=0; 1001 printf("%s: kernel_l1pt: %#lx:%#lx\n", 1002 __func__, kernel_l1pt.pv_va, kernel_l1pt.pv_pa); 1003 printf("%s: kernel_pt_table:\n", __func__); 1004 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { 1005 printf("\t%#lx:%#lx\n", kernel_pt_table[pt_index].pv_va, 1006 kernel_pt_table[pt_index].pv_pa); 1007 ++pt_index; 1008 } 1009 #if (NGEMINIIPM > 0) 1010 printf("%s: ipmq_pt:\n", __func__); 1011 printf("\t%#lx:%#lx\n", ipmq_pt.pv_va, ipmq_pt.pv_pa); 1012 #endif 1013 #endif 1014 1015 /* This should never be able to happen but better confirm that. */ 1016 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) 1017 panic("initarm: Failed to align the kernel page directory"); 1018 1019 /* 1020 * Allocate a page for the system page mapped to V0x00000000 1021 * This page will just contain the system vectors and can be 1022 * shared by all processes. 1023 */ 1024 valloc_pages(systempage, 1); 1025 systempage.pv_va = ARM_VECTORS_HIGH; 1026 1027 /* Allocate stacks for all modes */ 1028 valloc_pages(fiqstack, FIQ_STACK_SIZE); 1029 valloc_pages(irqstack, IRQ_STACK_SIZE); 1030 valloc_pages(abtstack, ABT_STACK_SIZE); 1031 valloc_pages(undstack, UND_STACK_SIZE); 1032 valloc_pages(kernelstack, UPAGES); 1033 1034 /* Allocate the message buffer. */ 1035 pv_addr_t msgbuf; 1036 int msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE; 1037 valloc_pages(msgbuf, msgbuf_pgs); 1038 msgbufphys = msgbuf.pv_pa; 1039 1040 /* 1041 * Ok we have allocated physical pages for the primary kernel 1042 * page tables 1043 */ 1044 1045 #ifdef VERBOSE_INIT_ARM 1046 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); 1047 #endif 1048 1049 /* 1050 * Now we start construction of the L1 page table 1051 * We start by mapping the L2 page tables into the L1. 1052 * This means that we can replace L1 mappings later on if necessary 1053 */ 1054 vaddr_t l1_va = kernel_l1pt.pv_va; 1055 paddr_t l1_pa = kernel_l1pt.pv_pa; 1056 1057 /* Map the L2 pages tables in the L1 page table */ 1058 pmap_link_l2pt(l1_va, ARM_VECTORS_HIGH & ~(0x00400000 - 1), 1059 &kernel_pt_table[KERNEL_PT_SYS]); 1060 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) 1061 pmap_link_l2pt(l1_va, KERNEL_BASE + loop * 0x00400000, 1062 &kernel_pt_table[KERNEL_PT_KERNEL + loop]); 1063 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) 1064 pmap_link_l2pt(l1_va, KERNEL_VM_BASE + loop * 0x00400000, 1065 &kernel_pt_table[KERNEL_PT_VMDATA + loop]); 1066 1067 /* update the top of the kernel VM */ 1068 pmap_curmaxkvaddr = 1069 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); 1070 1071 #if (NGEMINIIPM > 0) 1072 printf("%s:%d: pmap_link_l2pt ipmq_pt\n", __FUNCTION__, __LINE__); 1073 pmap_link_l2pt(l1_va, GEMINI_IPMQ_VBASE, &ipmq_pt); 1074 #endif 1075 1076 #ifdef VERBOSE_INIT_ARM 1077 printf("Mapping kernel\n"); 1078 #endif 1079 1080 /* Now we fill in the L2 pagetable for the kernel static code/data */ 1081 #define round_L_page(x) (((x) + L2_L_OFFSET) & L2_L_FRAME) 1082 size_t textsize = round_L_page(etext - KERNEL_BASE_virt); 1083 size_t totalsize = round_L_page(_end - KERNEL_BASE_virt); 1084 /* offset of kernel in RAM */ 1085 u_int offset = (u_int)KERNEL_BASE_virt - KERNEL_BASE; 1086 1087 #ifdef DDB 1088 /* Map text section read-write. */ 1089 offset += pmap_map_chunk(l1_va, 1090 (vaddr_t)KERNEL_BASE + offset, 1091 physical_start + offset, textsize, 1092 VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE, 1093 PTE_CACHE); 1094 #else 1095 /* Map text section read-only. */ 1096 offset += pmap_map_chunk(l1_va, 1097 (vaddr_t)KERNEL_BASE + offset, 1098 physical_start + offset, textsize, 1099 VM_PROT_READ|VM_PROT_EXECUTE, PTE_CACHE); 1100 #endif 1101 /* Map data and bss sections read-write. */ 1102 offset += pmap_map_chunk(l1_va, 1103 (vaddr_t)KERNEL_BASE + offset, 1104 physical_start + offset, totalsize - textsize, 1105 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 1106 1107 #ifdef VERBOSE_INIT_ARM 1108 printf("Constructing L2 page tables\n"); 1109 #endif 1110 1111 /* Map the stack pages */ 1112 pmap_map_chunk(l1_va, fiqstack.pv_va, fiqstack.pv_pa, 1113 FIQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 1114 pmap_map_chunk(l1_va, irqstack.pv_va, irqstack.pv_pa, 1115 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 1116 pmap_map_chunk(l1_va, abtstack.pv_va, abtstack.pv_pa, 1117 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 1118 pmap_map_chunk(l1_va, undstack.pv_va, undstack.pv_pa, 1119 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 1120 pmap_map_chunk(l1_va, kernelstack.pv_va, kernelstack.pv_pa, 1121 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); 1122 1123 pmap_map_chunk(l1_va, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, 1124 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE); 1125 1126 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { 1127 pmap_map_chunk(l1_va, kernel_pt_table[loop].pv_va, 1128 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, 1129 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); 1130 } 1131 1132 /* Map the vector page. */ 1133 pmap_map_entry(l1_va, ARM_VECTORS_HIGH, systempage.pv_pa, 1134 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 1135 1136 #if (NGEMINIIPM > 0) 1137 /* Map the IPM queue l2pt */ 1138 pmap_map_chunk(l1_va, ipmq_pt.pv_va, ipmq_pt.pv_pa, 1139 L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); 1140 1141 /* Map the IPM queue pages */ 1142 pmap_map_chunk(l1_va, GEMINI_IPMQ_VBASE, GEMINI_IPMQ_PBASE, 1143 GEMINI_IPMQ_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE); 1144 1145 #ifdef GEMINI_SLAVE 1146 /* 1147 * Map all memory, incluuding that owned by other core 1148 * take into account the RAM remap, so view in this region 1149 * is consistent with MASTER 1150 */ 1151 pmap_map_chunk(l1_va, 1152 GEMINI_ALLMEM_VBASE, 1153 GEMINI_ALLMEM_PBASE + ((GEMINI_ALLMEM_SIZE - MEMSIZE) * 1024 * 1024), 1154 (GEMINI_ALLMEM_SIZE - MEMSIZE) * 1024 * 1024, 1155 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 1156 pmap_map_chunk(l1_va, 1157 GEMINI_ALLMEM_VBASE + GEMINI_BUSBASE * 1024 * 1024, 1158 GEMINI_ALLMEM_PBASE, 1159 (MEMSIZE * 1024 * 1024), 1160 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 1161 #else 1162 /* Map all memory, incluuding that owned by other core */ 1163 pmap_map_chunk(l1_va, GEMINI_ALLMEM_VBASE, GEMINI_ALLMEM_PBASE, 1164 GEMINI_ALLMEM_SIZE * 1024 * 1024, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 1165 #endif /* GEMINI_SLAVE */ 1166 #endif /* NGEMINIIPM */ 1167 1168 /* 1169 * Map integrated peripherals at same address in first level page 1170 * table so that we can continue to use console. 1171 */ 1172 pmap_devmap_bootstrap(l1_va, devmap); 1173 1174 1175 #ifdef VERBOSE_INIT_ARM 1176 /* Tell the user about where all the bits and pieces live. */ 1177 printf("%22s Physical Virtual Num\n", " "); 1178 printf("%22s Starting Ending Starting Ending Pages\n", " "); 1179 1180 static const char mem_fmt[] = 1181 "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %d\n"; 1182 static const char mem_fmt_nov[] = 1183 "%20s: 0x%08lx 0x%08lx %d\n"; 1184 1185 printf(mem_fmt, "SDRAM", physical_start, physical_end-1, 1186 KERN_PHYSTOV(physical_start), KERN_PHYSTOV(physical_end-1), 1187 physmem); 1188 printf(mem_fmt, "text section", 1189 KERN_VTOPHYS(KERNEL_BASE_virt), KERN_VTOPHYS(etext-1), 1190 (vaddr_t)KERNEL_BASE_virt, (vaddr_t)etext-1, 1191 (int)(textsize / PAGE_SIZE)); 1192 printf(mem_fmt, "data section", 1193 KERN_VTOPHYS(__data_start), KERN_VTOPHYS(_edata), 1194 (vaddr_t)__data_start, (vaddr_t)_edata, 1195 (int)((round_page((vaddr_t)_edata) 1196 - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE)); 1197 printf(mem_fmt, "bss section", 1198 KERN_VTOPHYS(__bss_start), KERN_VTOPHYS(__bss_end__), 1199 (vaddr_t)__bss_start, (vaddr_t)__bss_end__, 1200 (int)((round_page((vaddr_t)__bss_end__) 1201 - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE)); 1202 printf(mem_fmt, "L1 page directory", 1203 kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1, 1204 kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1, 1205 L1_TABLE_SIZE / PAGE_SIZE); 1206 printf(mem_fmt, "Exception Vectors", 1207 systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1, 1208 (vaddr_t)ARM_VECTORS_HIGH, (vaddr_t)ARM_VECTORS_HIGH + PAGE_SIZE - 1, 1209 1); 1210 printf(mem_fmt, "FIQ stack", 1211 fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1, 1212 fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1, 1213 FIQ_STACK_SIZE); 1214 printf(mem_fmt, "IRQ stack", 1215 irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1, 1216 irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1, 1217 IRQ_STACK_SIZE); 1218 printf(mem_fmt, "ABT stack", 1219 abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1, 1220 abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1, 1221 ABT_STACK_SIZE); 1222 printf(mem_fmt, "UND stack", 1223 undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1, 1224 undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1, 1225 UND_STACK_SIZE); 1226 printf(mem_fmt, "SVC stack", 1227 kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1, 1228 kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1, 1229 UPAGES); 1230 printf(mem_fmt_nov, "Message Buffer", 1231 msgbufphys, msgbufphys + msgbuf_pgs * PAGE_SIZE - 1, msgbuf_pgs); 1232 printf(mem_fmt, "Free Memory", physical_freestart, physical_freeend-1, 1233 KERN_PHYSTOV(physical_freestart), KERN_PHYSTOV(physical_freeend-1), 1234 free_pages); 1235 #endif 1236 1237 /* 1238 * Now we have the real page tables in place so we can switch to them. 1239 * Once this is done we will be running with the REAL kernel page 1240 * tables. 1241 */ 1242 1243 /* Switch tables */ 1244 #ifdef VERBOSE_INIT_ARM 1245 printf("switching to new L1 page table @%#lx...", l1_pa); 1246 #endif 1247 1248 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); 1249 setttb(l1_pa); 1250 cpu_tlb_flushID(); 1251 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); 1252 1253 #ifdef VERBOSE_INIT_ARM 1254 printf("OK.\n"); 1255 #endif 1256 } 1257