xref: /netbsd-src/sys/arch/evbarm/gemini/gemini_machdep.c (revision 404fbe5fb94ca1e054339640cabb2801ce52dd30)
1 /*	$NetBSD: gemini_machdep.c,v 1.11 2008/12/06 05:22:39 cliff Exp $	*/
2 
3 /* adapted from:
4  *	NetBSD: sdp24xx_machdep.c,v 1.4 2008/08/27 11:03:10 matt Exp
5  */
6 
7 /*
8  * Machine dependent functions for kernel setup for TI OSK5912 board.
9  * Based on lubbock_machdep.c which in turn was based on iq80310_machhdep.c
10  *
11  * Copyright (c) 2002, 2003, 2005  Genetec Corporation.  All rights reserved.
12  * Written by Hiroyuki Bessho for Genetec Corporation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. The name of Genetec Corporation may not be used to endorse or
23  *    promote products derived from this software without specific prior
24  *    written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  *
38  * Copyright (c) 2001 Wasabi Systems, Inc.
39  * All rights reserved.
40  *
41  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed for the NetBSD Project by
54  *	Wasabi Systems, Inc.
55  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56  *    or promote products derived from this software without specific prior
57  *    written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69  * POSSIBILITY OF SUCH DAMAGE.
70  *
71  * Copyright (c) 1997,1998 Mark Brinicombe.
72  * Copyright (c) 1997,1998 Causality Limited.
73  * All rights reserved.
74  *
75  * Redistribution and use in source and binary forms, with or without
76  * modification, are permitted provided that the following conditions
77  * are met:
78  * 1. Redistributions of source code must retain the above copyright
79  *    notice, this list of conditions and the following disclaimer.
80  * 2. Redistributions in binary form must reproduce the above copyright
81  *    notice, this list of conditions and the following disclaimer in the
82  *    documentation and/or other materials provided with the distribution.
83  * 3. All advertising materials mentioning features or use of this software
84  *    must display the following acknowledgement:
85  *	This product includes software developed by Mark Brinicombe
86  *	for the NetBSD Project.
87  * 4. The name of the company nor the name of the author may be used to
88  *    endorse or promote products derived from this software without specific
89  *    prior written permission.
90  *
91  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
92  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
93  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
94  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
95  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
96  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
97  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
98  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
99  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
100  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
101  * SUCH DAMAGE.
102  *
103  * Copyright (c) 2007 Microsoft
104  * All rights reserved.
105  *
106  * Redistribution and use in source and binary forms, with or without
107  * modification, are permitted provided that the following conditions
108  * are met:
109  * 1. Redistributions of source code must retain the above copyright
110  *    notice, this list of conditions and the following disclaimer.
111  * 2. Redistributions in binary form must reproduce the above copyright
112  *    notice, this list of conditions and the following disclaimer in the
113  *    documentation and/or other materials provided with the distribution.
114  * 3. All advertising materials mentioning features or use of this software
115  *    must display the following acknowledgement:
116  *	This product includes software developed by Microsoft
117  *
118  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
119  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
120  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
121  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
122  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
123  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
124  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
125  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
126  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
127  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
128  * SUCH DAMAGE.
129  */
130 
131 #include <sys/cdefs.h>
132 __KERNEL_RCSID(0, "$NetBSD: gemini_machdep.c,v 1.11 2008/12/06 05:22:39 cliff Exp $");
133 
134 #include "opt_machdep.h"
135 #include "opt_ddb.h"
136 #include "opt_kgdb.h"
137 #include "opt_ipkdb.h"
138 #include "opt_md.h"
139 #include "opt_com.h"
140 #include "opt_gemini.h"
141 #include "geminiwdt.h"
142 #include "geminiipm.h"
143 #include "md.h"
144 
145 #include <sys/param.h>
146 #include <sys/device.h>
147 #include <sys/systm.h>
148 #include <sys/kernel.h>
149 #include <sys/exec.h>
150 #include <sys/proc.h>
151 #include <sys/msgbuf.h>
152 #include <sys/reboot.h>
153 #include <sys/termios.h>
154 #include <sys/ksyms.h>
155 
156 #include <uvm/uvm_extern.h>
157 
158 #include <sys/conf.h>
159 #include <dev/cons.h>
160 #include <dev/md.h>
161 
162 #include <machine/db_machdep.h>
163 #include <ddb/db_sym.h>
164 #include <ddb/db_extern.h>
165 #ifdef KGDB
166 #include <sys/kgdb.h>
167 #endif
168 
169 #include <machine/bootconfig.h>
170 #include <machine/bus.h>
171 #include <machine/cpu.h>
172 #include <machine/frame.h>
173 #include <arm/armreg.h>
174 #include <arm/undefined.h>
175 
176 #include <arm/arm32/machdep.h>
177 
178 #include <arm/gemini/gemini_reg.h>
179 #include <arm/gemini/gemini_var.h>
180 #include <arm/gemini/gemini_wdtvar.h>
181 #include <arm/gemini/gemini_com.h>
182 #include <arm/gemini/lpc_com.h>
183 
184 #include <evbarm/gemini/gemini.h>
185 
186 #if defined(VERBOSE_INIT_ARM)
187 # define GEMINI_PUTCHAR(c)	gemini_putchar(c)
188 # define GEMINI_PUTHEX(n)	gemini_puthex(n)
189 #else	/* VERBOSE_INIT_ARM */
190 # define GEMINI_PUTCHAR(c)
191 # define GEMINI_PUTHEX(n)
192 #endif	/* VERBOSE_INIT_ARM */
193 
194 /*
195  * Address to call from cpu_reset() to reset the machine.
196  * This is machine architecture dependant as it varies depending
197  * on where the ROM appears when you turn the MMU off.
198  */
199 
200 u_int cpu_reset_address = 0;
201 
202 /* Define various stack sizes in pages */
203 #define IRQ_STACK_SIZE	1
204 #define FIQ_STACK_SIZE	1
205 #define ABT_STACK_SIZE	1
206 #ifdef IPKDB
207 #define UND_STACK_SIZE	2
208 #else
209 #define UND_STACK_SIZE	1
210 #endif
211 
212 BootConfig bootconfig;		/* Boot config storage */
213 char *boot_args = NULL;
214 char *boot_file = NULL;
215 
216 /* Physical address of the beginning of SDRAM. */
217 paddr_t physical_start;
218 /* Physical address of the first byte after the end of SDRAM. */
219 paddr_t physical_end;
220 /* Number of pages of memory. */
221 int physmem = 0;
222 
223 /* Same things, but for the free (unused by the kernel) memory. */
224 static paddr_t physical_freestart, physical_freeend;
225 static u_int free_pages;
226 
227 /* Physical and virtual addresses for some global pages */
228 pv_addr_t fiqstack;
229 pv_addr_t irqstack;
230 pv_addr_t undstack;
231 pv_addr_t abtstack;
232 pv_addr_t kernelstack;	/* stack for SVC mode */
233 
234 /* Physical address of the message buffer. */
235 paddr_t msgbufphys;
236 
237 extern u_int data_abort_handler_address;
238 extern u_int prefetch_abort_handler_address;
239 extern u_int undefined_handler_address;
240 extern char KERNEL_BASE_phys[];
241 extern char KERNEL_BASE_virt[];
242 extern char etext[], __data_start[], _edata[], __bss_start[], __bss_end__[];
243 extern char _end[];
244 
245 #define KERNEL_PT_SYS		0	/* Page table for mapping proc0 zero page */
246 #define KERNEL_PT_KERNEL	1	/* Page table for mapping kernel */
247 #define	KERNEL_PT_KERNEL_NUM	4
248 #define KERNEL_PT_VMDATA	(KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
249 				        /* Page tables for mapping kernel VM */
250 #define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
251 #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
252 
253 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
254 
255 
256 #if (NGEMINIIPM > 0)
257 pv_addr_t ipmq_pt;		/* L2 Page table for mapping IPM queues */
258 #if defined(DEBUG) || 1
259 unsigned long gemini_ipmq_pbase = GEMINI_IPMQ_PBASE;
260 unsigned long gemini_ipmq_vbase = GEMINI_IPMQ_VBASE;
261 #endif	/* DEBUG */
262 #endif	/* NGEMINIIPM > 0 */
263 
264 
265 extern struct user *proc0paddr;
266 
267 /*
268  * Macros to translate between physical and virtual for a subset of the
269  * kernel address space.  *Not* for general use.
270  */
271 #define KERNEL_BASE_PHYS ((paddr_t)&KERNEL_BASE_phys)
272 
273 #define KERN_VTOPHYS(va) \
274 	((paddr_t)((vaddr_t)va - KERNEL_BASE + GEMINI_DRAM_BASE))
275 #define KERN_PHYSTOV(pa) \
276 	((vaddr_t)((paddr_t)pa - GEMINI_DRAM_BASE + KERNEL_BASE))
277 
278 /* Prototypes */
279 
280 void gemini_intr_init(bus_space_tag_t);
281 void consinit(void);
282 #ifdef KGDB
283 static void kgdb_port_init(void);
284 #endif
285 
286 static void setup_real_page_tables(void);
287 static void init_clocks(void);
288 
289 bs_protos(bs_notimpl);
290 
291 #include "com.h"
292 #if NCOM > 0
293 #include <dev/ic/comreg.h>
294 #include <dev/ic/comvar.h>
295 #endif
296 
297 
298 static void gemini_global_reset(void) __attribute__ ((noreturn));
299 static void gemini_cpu1_start(void);
300 static void gemini_memchk(void);
301 
302 static void
303 gemini_global_reset(void)
304 {
305 #if defined(GEMINI_MASTER) || defined(GEMINI_SINGLE)
306 	volatile uint32_t *rp;
307 	uint32_t r;
308 
309 	rp = (volatile uint32_t *)
310 		(GEMINI_GLOBAL_VBASE + GEMINI_GLOBAL_RESET_CTL);
311 	r = *rp;
312 	r |= GLOBAL_RESET_GLOBAL;
313 	*rp = r;
314 #endif
315 	for(;;);
316 	/* NOTREACHED */
317 }
318 
319 static void
320 gemini_cpu1_start(void)
321 {
322 #ifdef GEMINI_MASTER
323 	volatile uint32_t *rp;
324 	uint32_t r;
325 
326 	rp = (volatile uint32_t *)
327 		(GEMINI_GLOBAL_VBASE + GEMINI_GLOBAL_RESET_CTL);
328 	r = *rp;
329 	r &= ~GLOBAL_RESET_CPU1;
330 	*rp = r;
331 #endif
332 }
333 
334 static void
335 gemini_memchk(void)
336 {
337 	volatile uint32_t *rp;
338 	uint32_t r;
339 	uint32_t base;
340 	uint32_t size;
341 
342 	rp = (volatile uint32_t *)
343 		(GEMINI_DRAMC_VBASE + GEMINI_DRAMC_RMCR);
344 	r = *rp;
345 	base = (r & DRAMC_RMCR_RMBAR) >> DRAMC_RMCR_RMBAR_SHFT;
346 	size = (r & DRAMC_RMCR_RMSZR) >> DRAMC_RMCR_RMSZR_SHFT;
347 #if defined(GEMINI_SINGLE)
348 	if (r != 0)
349 		panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
350 			__FUNCTION__, r, MEMSIZE);
351 #elif defined(GEMINI_MASTER)
352 	if (base != MEMSIZE)
353 		panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
354 			__FUNCTION__, r, MEMSIZE);
355 #elif defined(GEMINI_SLAVE)
356 	if (size != MEMSIZE)
357 		panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
358 			__FUNCTION__, r, MEMSIZE);
359 #endif
360 #if defined(VERBOSE_INIT_ARM) || 1
361 	printf("DRAM Remap: base=%dMB, size=%dMB\n", base, size);
362 #endif
363 }
364 
365 /*
366  * void cpu_reboot(int howto, char *bootstr)
367  *
368  * Reboots the system
369  *
370  * Deal with any syncing, unmounting, dumping and shutdown hooks,
371  * then reset the CPU.
372  */
373 void
374 cpu_reboot(int howto, char *bootstr)
375 {
376 	extern struct geminitmr_softc *ref_sc;
377 
378 #ifdef DIAGNOSTIC
379 	/* info */
380 	printf("boot: howto=%08x curproc=%p\n", howto, curproc);
381 #endif
382 
383 	/*
384 	 * If we are still cold then hit the air brakes
385 	 * and crash to earth fast
386 	 */
387 	if (cold) {
388 		doshutdownhooks();
389 		pmf_system_shutdown(boothowto);
390 		printf("The operating system has halted.\n");
391 		printf("Please press any key to reboot.\n\n");
392 		cngetc();
393 		printf("rebooting...\n");
394 		if (ref_sc != NULL)
395 			delay(2000);			/* cnflush(); */
396 		gemini_global_reset();
397 		/*NOTREACHED*/
398 	}
399 
400 	/* Disable console buffering */
401 	cnpollc(1);
402 
403 	/*
404 	 * If RB_NOSYNC was not specified sync the discs.
405 	 * Note: Unless cold is set to 1 here, syslogd will die during the
406 	 * unmount.  It looks like syslogd is getting woken up only to find
407 	 * that it cannot page part of the binary in as the filesystem has
408 	 * been unmounted.
409 	 */
410 	if (!(howto & RB_NOSYNC))
411 		bootsync();
412 
413 	/* Say NO to interrupts */
414 	splhigh();
415 
416 	/* Do a dump if requested. */
417 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
418 		dumpsys();
419 
420 	/* Run any shutdown hooks */
421 	doshutdownhooks();
422 
423 	pmf_system_shutdown(boothowto);
424 
425 	/* Make sure IRQ's are disabled */
426 	IRQdisable;
427 
428 	if (howto & RB_HALT) {
429 		printf("The operating system has halted.\n");
430 		printf("Please press any key to reboot.\n\n");
431 		cngetc();
432 	}
433 
434 	printf("rebooting...\n");
435 	if (ref_sc != NULL)
436 		delay(2000);			/* cnflush(); */
437 	gemini_global_reset();
438 	/*NOTREACHED*/
439 }
440 
441 /*
442  * Static device mappings. These peripheral registers are mapped at
443  * fixed virtual addresses very early in initarm() so that we can use
444  * them while booting the kernel, and stay at the same address
445  * throughout whole kernel's life time.
446  *
447  * We use this table twice; once with bootstrap page table, and once
448  * with kernel's page table which we build up in initarm().
449  *
450  * Since we map these registers into the bootstrap page table using
451  * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
452  * registers segment-aligned and segment-rounded in order to avoid
453  * using the 2nd page tables.
454  */
455 
456 #define	_A(a)	((a) & ~L1_S_OFFSET)
457 #define	_S(s)	(((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
458 
459 static const struct pmap_devmap devmap[] = {
460 	/* Global regs */
461 	{
462 		.pd_va = _A(GEMINI_GLOBAL_VBASE),
463 		.pd_pa = _A(GEMINI_GLOBAL_BASE),
464 		.pd_size = _S(L1_S_SIZE),
465 		.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
466 		.pd_cache = PTE_NOCACHE
467 	},
468 
469 	/* Watchdog */
470 	{
471 		.pd_va = _A(GEMINI_WATCHDOG_VBASE),
472 		.pd_pa = _A(GEMINI_WATCHDOG_BASE),
473 		.pd_size = _S(L1_S_SIZE),
474 		.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
475 		.pd_cache = PTE_NOCACHE
476 	},
477 
478 	/* UART */
479 	{
480 		.pd_va = _A(GEMINI_UART_VBASE),
481 		.pd_pa = _A(GEMINI_UART_BASE),
482 		.pd_size = _S(L1_S_SIZE),
483 		.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
484 		.pd_cache = PTE_NOCACHE
485 	},
486 
487 	/* LPCHC */
488 	{
489 		.pd_va = _A(GEMINI_LPCHC_VBASE),
490 		.pd_pa = _A(GEMINI_LPCHC_BASE),
491 		.pd_size = _S(L1_S_SIZE),
492 		.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
493 		.pd_cache = PTE_NOCACHE
494 	},
495 
496 	/* LPCIO */
497 	{
498 		.pd_va = _A(GEMINI_LPCIO_VBASE),
499 		.pd_pa = _A(GEMINI_LPCIO_BASE),
500 		.pd_size = _S(L1_S_SIZE),
501 		.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
502 		.pd_cache = PTE_NOCACHE
503 	},
504 
505 	/* Timers */
506 	{
507 		.pd_va = _A(GEMINI_TIMER_VBASE),
508 		.pd_pa = _A(GEMINI_TIMER_BASE),
509 		.pd_size = _S(L1_S_SIZE),
510 		.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
511 		.pd_cache = PTE_NOCACHE
512 	},
513 
514 	/* DRAM Controller */
515 	{
516 		.pd_va = _A(GEMINI_DRAMC_VBASE),
517 		.pd_pa = _A(GEMINI_DRAMC_BASE),
518 		.pd_size = _S(L1_S_SIZE),
519 		.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
520 		.pd_cache = PTE_NOCACHE
521 	},
522 
523 #if defined(MEMORY_DISK_DYNAMIC)
524 	/* Ramdisk */
525 	{
526 		.pd_va = _A(GEMINI_RAMDISK_VBASE),
527 		.pd_pa = _A(GEMINI_RAMDISK_PBASE),
528 		.pd_size = _S(GEMINI_RAMDISK_SIZE),
529 		.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
530 		.pd_cache = PTE_NOCACHE
531 	},
532 #endif
533 
534 	{0}	/* list terminator */
535 };
536 
537 #undef	_A
538 #undef	_S
539 
540 #ifdef DDB
541 static void gemini_db_trap(int where)
542 {
543 #if  NGEMINIWDT > 0
544 	static int oldwatchdogstate;
545 
546 	if (where) {
547 		oldwatchdogstate = geminiwdt_enable(0);
548 	} else {
549 		geminiwdt_enable(oldwatchdogstate);
550 	}
551 #endif
552 }
553 #endif
554 
555 #if defined(VERBOSE_INIT_ARM) || 1
556 void gemini_putchar(char c);
557 void
558 gemini_putchar(char c)
559 {
560 	unsigned char *com0addr = (unsigned char *)GEMINI_UART_VBASE;
561 	int timo = 150000;
562 
563 	while ((com0addr[COM_REG_LSR * 4] & LSR_TXRDY) == 0)
564 		if (--timo == 0)
565 			break;
566 
567 	com0addr[COM_REG_TXDATA] = c;
568 
569 	while ((com0addr[COM_REG_LSR * 4] & LSR_TSRE) == 0)
570 		if (--timo == 0)
571 			break;
572 }
573 
574 void gemini_puthex(unsigned int);
575 void
576 gemini_puthex(unsigned int val)
577 {
578 	char hexc[] = "0123456789abcdef";
579 
580 	gemini_putchar('0');
581 	gemini_putchar('x');
582 	gemini_putchar(hexc[(val >> 28) & 0xf]);
583 	gemini_putchar(hexc[(val >> 24) & 0xf]);
584 	gemini_putchar(hexc[(val >> 20) & 0xf]);
585 	gemini_putchar(hexc[(val >> 16) & 0xf]);
586 	gemini_putchar(hexc[(val >> 12) & 0xf]);
587 	gemini_putchar(hexc[(val >> 8) & 0xf]);
588 	gemini_putchar(hexc[(val >> 4) & 0xf]);
589 	gemini_putchar(hexc[(val >> 0) & 0xf]);
590 }
591 #endif	/* VERBOSE_INIT_ARM */
592 
593 /*
594  * u_int initarm(...)
595  *
596  * Initial entry point on startup. This gets called before main() is
597  * entered.
598  * It should be responsible for setting up everything that must be
599  * in place when main is called.
600  * This includes
601  *   Taking a copy of the boot configuration structure.
602  *   Initialising the physical console so characters can be printed.
603  *   Setting up page tables for the kernel
604  *   Relocating the kernel to the bottom of physical memory
605  */
606 u_int
607 initarm(void *arg)
608 {
609 	GEMINI_PUTCHAR('0');
610 
611 	/*
612 	 * start cpu#1 now
613 	 */
614 	gemini_cpu1_start();
615 
616 	/*
617 	 * When we enter here, we are using a temporary first level
618 	 * translation table with section entries in it to cover the OBIO
619 	 * peripherals and SDRAM.  The temporary first level translation table
620 	 * is at the end of SDRAM.
621 	 */
622 
623 	/* Heads up ... Setup the CPU / MMU / TLB functions. */
624 	GEMINI_PUTCHAR('1');
625 	if (set_cpufuncs())
626 		panic("cpu not recognized!");
627 
628 	GEMINI_PUTCHAR('2');
629 	init_clocks();
630 	GEMINI_PUTCHAR('3');
631 
632 	/* The console is going to try to map things.  Give pmap a devmap. */
633 	pmap_devmap_register(devmap);
634 	GEMINI_PUTCHAR('4');
635 	consinit();
636 	GEMINI_PUTCHAR('5');
637 #ifdef KGDB
638 	kgdb_port_init();
639 #endif
640 
641 	/* Talk to the user */
642 	printf("\nNetBSD/evbarm (gemini) booting ...\n");
643 
644 #ifdef BOOT_ARGS
645 	char mi_bootargs[] = BOOT_ARGS;
646 	parse_mi_bootargs(mi_bootargs);
647 #endif
648 
649 #ifdef VERBOSE_INIT_ARM
650 	printf("initarm: Configuring system ...\n");
651 #endif
652 
653 	/*
654 	 * Set up the variables that define the availability of physical
655 	 * memory.
656 	 */
657 	gemini_memchk();
658 	physical_start = GEMINI_DRAM_BASE;
659 #define	MEMSIZE_BYTES 	(MEMSIZE * 1024 * 1024)
660 	physical_end = (physical_start & ~(0x400000-1)) + MEMSIZE_BYTES;
661 	physmem = (physical_end - physical_start) / PAGE_SIZE;
662 
663 	/* Fake bootconfig structure for the benefit of pmap.c. */
664 	bootconfig.dramblocks = 1;
665 	bootconfig.dram[0].address = physical_start;
666 	bootconfig.dram[0].pages = physmem;
667 
668 	/*
669 	 * Our kernel is at the beginning of memory, so set our free space to
670 	 * all the memory after the kernel.
671 	 */
672 	physical_freestart = KERN_VTOPHYS(round_page((vaddr_t) _end));
673 	physical_freeend = physical_end;
674 	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
675 
676 	/*
677 	 * This is going to do all the hard work of setting up the first and
678 	 * and second level page tables.  Pages of memory will be allocated
679 	 * and mapped for other structures that are required for system
680 	 * operation.  When it returns, physical_freestart and free_pages will
681 	 * have been updated to reflect the allocations that were made.  In
682 	 * addition, kernel_l1pt, kernel_pt_table[], systempage, irqstack,
683 	 * abtstack, undstack, kernelstack, msgbufphys will be set to point to
684 	 * the memory that was allocated for them.
685 	 */
686 	setup_real_page_tables();
687 
688 	/*
689 	 * Moved from cpu_startup() as data_abort_handler() references
690 	 * this during uvm init.
691 	 */
692 	proc0paddr = (struct user *)kernelstack.pv_va;
693 	lwp0.l_addr = proc0paddr;
694 
695 #ifdef VERBOSE_INIT_ARM
696 	printf("bootstrap done.\n");
697 #endif
698 
699 	arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
700 
701 	/*
702 	 * Pages were allocated during the secondary bootstrap for the
703 	 * stacks for different CPU modes.
704 	 * We must now set the r13 registers in the different CPU modes to
705 	 * point to these stacks.
706 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
707 	 * of the stack memory.
708 	 */
709 #ifdef VERBOSE_INIT_ARM
710 	printf("init subsystems: stacks ");
711 #endif
712 
713 	set_stackptr(PSR_FIQ32_MODE, fiqstack.pv_va + FIQ_STACK_SIZE * PAGE_SIZE);
714 	set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
715 	set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
716 	set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
717 
718 	/*
719 	 * Well we should set a data abort handler.
720 	 * Once things get going this will change as we will need a proper
721 	 * handler.
722 	 * Until then we will use a handler that just panics but tells us
723 	 * why.
724 	 * Initialisation of the vectors will just panic on a data abort.
725 	 * This just fills in a slightly better one.
726 	 */
727 #ifdef VERBOSE_INIT_ARM
728 	printf("vectors ");
729 #endif
730 	data_abort_handler_address = (u_int)data_abort_handler;
731 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
732 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
733 
734 	/* Initialise the undefined instruction handlers */
735 #ifdef VERBOSE_INIT_ARM
736 	printf("undefined ");
737 #endif
738 	undefined_init();
739 
740 	/* Load memory into UVM. */
741 #ifdef VERBOSE_INIT_ARM
742 	printf("page ");
743 #endif
744 	uvm_setpagesize();        /* initialize PAGE_SIZE-dependent variables */
745 
746 #if (GEMINI_RAM_RESV_PBASE != 0)
747 	uvm_page_physload(atop(physical_freestart), atop(GEMINI_RAM_RESV_PBASE),
748 	    atop(physical_freestart), atop(GEMINI_RAM_RESV_PBASE),
749 	    VM_FREELIST_DEFAULT);
750 	uvm_page_physload(atop(GEMINI_RAM_RESV_PEND), atop(physical_freeend),
751 	    atop(GEMINI_RAM_RESV_PEND), atop(physical_freeend),
752 	    VM_FREELIST_DEFAULT);
753 #else
754 	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
755 	    atop(physical_freestart), atop(physical_freeend),
756 	    VM_FREELIST_DEFAULT);
757 #endif
758 	uvm_page_physload(atop(GEMINI_DRAM_BASE), atop(KERNEL_BASE_phys),
759 	    atop(GEMINI_DRAM_BASE), atop(KERNEL_BASE_phys),
760 	    VM_FREELIST_DEFAULT);
761 
762 	/* Boot strap pmap telling it where the kernel page table is */
763 #ifdef VERBOSE_INIT_ARM
764 	printf("pmap ");
765 #endif
766 	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
767 
768 #ifdef VERBOSE_INIT_ARM
769 	printf("done.\n");
770 #endif
771 
772 #ifdef IPKDB
773 	/* Initialise ipkdb */
774 	ipkdb_init();
775 	if (boothowto & RB_KDB)
776 		ipkdb_connect(0);
777 #endif
778 
779 #if defined(MEMORY_DISK_DYNAMIC)
780 	md_root_setconf((char *)GEMINI_RAMDISK_VBASE, GEMINI_RAMDISK_SIZE);
781 #endif
782 
783 #ifdef KGDB
784 	if (boothowto & RB_KDB) {
785 		kgdb_debug_init = 1;
786 		kgdb_connect(1);
787 	}
788 #endif
789 
790 #ifdef DDB
791 	db_trap_callback = gemini_db_trap;
792 	db_machine_init();
793 
794 	/* Firmware doesn't load symbols. */
795 	ddb_init(0, NULL, NULL);
796 
797 	if (boothowto & RB_KDB)
798 		Debugger();
799 #endif
800 	printf("initarm done.\n");
801 
802 	/* We return the new stack pointer address */
803 	return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
804 }
805 
806 static void
807 init_clocks(void)
808 {
809 }
810 
811 #ifndef CONSADDR
812 #error Specify the address of the console UART with the CONSADDR option.
813 #endif
814 #ifndef CONSPEED
815 #define CONSPEED 19200
816 #endif
817 #ifndef CONMODE
818 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
819 #endif
820 
821 static const bus_addr_t consaddr = CONSADDR;
822 static const int conspeed = CONSPEED;
823 static const int conmode = CONMODE;
824 
825 #if CONSADDR==0x42000000
826 /*
827  * console initialization for obio com console
828  */
829 void
830 consinit(void)
831 {
832 	static int consinit_called = 0;
833 
834 	if (consinit_called != 0)
835 		return;
836 	consinit_called = 1;
837 
838 	if (comcnattach(&gemini_a4x_bs_tag, consaddr, conspeed,
839 		GEMINI_COM_FREQ, COM_TYPE_16550_NOERS, conmode))
840 			panic("Serial console can not be initialized.");
841 }
842 
843 #elif CONSADDR==0x478003f8
844 # include <arm/gemini/gemini_lpcvar.h>
845 /*
846  * console initialization for lpc com console
847  */
848 void
849 consinit(void)
850 {
851 	static int consinit_called = 0;
852 	bus_space_tag_t iot = &gemini_bs_tag;
853 	bus_space_handle_t lpchc_ioh;
854 	bus_space_handle_t lpcio_ioh;
855 	bus_size_t sz = L1_S_SIZE;
856 	gemini_lpc_softc_t lpcsoftc;
857 	gemini_lpc_bus_ops_t *ops;
858 	void *lpctag = &lpcsoftc;
859 	uint32_t r;
860 	extern gemini_lpc_bus_ops_t gemini_lpc_bus_ops;
861 
862 	ops = &gemini_lpc_bus_ops;
863 
864 	if (consinit_called != 0)
865 		return;
866 	consinit_called = 1;
867 
868 	if (bus_space_map(iot, GEMINI_LPCHC_BASE, sz, 0, &lpchc_ioh))
869 		panic("consinit: LPCHC can not be mapped.");
870 
871 	if (bus_space_map(iot, GEMINI_LPCIO_BASE, sz, 0, &lpcio_ioh))
872 		panic("consinit: LPCIO can not be mapped.");
873 
874 	/* enable the LPC bus */
875 	r = bus_space_read_4(iot, lpchc_ioh, GEMINI_LPCHC_CSR);
876 	r |= LPCHC_CSR_BEN;
877 	bus_space_write_4(iot, lpchc_ioh, GEMINI_LPCHC_CSR, r);
878 
879 	memset(&lpcsoftc, 0, sizeof(lpcsoftc));
880 	lpcsoftc.sc_iot = iot;
881 	lpcsoftc.sc_ioh = lpcio_ioh;
882 
883 	/* activate Serial Port 1 */
884 	(*ops->lpc_pnp_enter)(lpctag);
885 	(*ops->lpc_pnp_write)(lpctag, 1, 0x30, 0x01);
886 	(*ops->lpc_pnp_exit)(lpctag);
887 
888 	if (comcnattach(iot, consaddr, conspeed,
889 		IT8712F_COM_FREQ, COM_TYPE_NORMAL, conmode)) {
890 			panic("Serial console can not be initialized.");
891 	}
892 
893 	bus_space_unmap(iot, lpcio_ioh, sz);
894 	bus_space_unmap(iot, lpchc_ioh, sz);
895 }
896 #else
897 # error unknown console
898 #endif
899 
900 #ifdef KGDB
901 #ifndef KGDB_DEVADDR
902 #error Specify the address of the kgdb UART with the KGDB_DEVADDR option.
903 #endif
904 #ifndef KGDB_DEVRATE
905 #define KGDB_DEVRATE 19200
906 #endif
907 
908 #ifndef KGDB_DEVMODE
909 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
910 #endif
911 static const vaddr_t comkgdbaddr = KGDB_DEVADDR;
912 static const int comkgdbspeed = KGDB_DEVRATE;
913 static const int comkgdbmode = KGDB_DEVMODE;
914 
915 void
916 static kgdb_port_init(void)
917 {
918 	static int kgdbsinit_called = 0;
919 
920 	if (kgdbsinit_called != 0)
921 		return;
922 
923 	kgdbsinit_called = 1;
924 
925 	bus_space_handle_t bh;
926 	if (bus_space_map(&gemini_a4x_bs_tag, comkgdbaddr,
927 		GEMINI_UART_SIZE, 0, &bh))
928 			panic("kgdb port can not be mapped.");
929 
930 	if (com_kgdb_attach(&gemini_a4x_bs_tag, comkgdbaddr, comkgdbspeed,
931 		GEMINI_UART_SIZE, COM_TYPE_16550_NOERS, comkgdbmode))
932 			panic("KGDB uart can not be initialized.");
933 
934 	bus_space_unmap(&gemini_a4x_bs_tag, bh, GEMINI_UART_SIZE);
935 }
936 #endif
937 
938 static void
939 setup_real_page_tables(void)
940 {
941 	/*
942 	 * We need to allocate some fixed page tables to get the kernel going.
943 	 *
944 	 * We are going to allocate our bootstrap pages from the beginning of
945 	 * the free space that we just calculated.  We allocate one page
946 	 * directory and a number of page tables and store the physical
947 	 * addresses in the kernel_pt_table array.
948 	 *
949 	 * The kernel page directory must be on a 16K boundary.  The page
950 	 * tables must be on 4K boundaries.  What we do is allocate the
951 	 * page directory on the first 16K boundary that we encounter, and
952 	 * the page tables on 4K boundaries otherwise.  Since we allocate
953 	 * at least 3 L2 page tables, we are guaranteed to encounter at
954 	 * least one 16K aligned region.
955 	 */
956 
957 #ifdef VERBOSE_INIT_ARM
958 	printf("Allocating page tables\n");
959 #endif
960 
961 	/*
962 	 * Define a macro to simplify memory allocation.  As we allocate the
963 	 * memory, make sure that we don't walk over our temporary first level
964 	 * translation table.
965 	 */
966 #define valloc_pages(var, np)						\
967 	(var).pv_pa = physical_freestart;				\
968 	physical_freestart += ((np) * PAGE_SIZE);			\
969 	if (physical_freestart > (physical_freeend - L1_TABLE_SIZE))	\
970 		panic("initarm: out of memory");			\
971 	free_pages -= (np);						\
972 	(var).pv_va = KERN_PHYSTOV((var).pv_pa);			\
973 	memset((char *)(var).pv_va, 0, ((np) * PAGE_SIZE));
974 
975 	int loop, pt_index;
976 
977 	pt_index = 0;
978 	kernel_l1pt.pv_pa = 0;
979 	kernel_l1pt.pv_va = 0;
980 #ifdef VERBOSE_INIT_ARM
981 	printf("%s: physical_freestart %#lx\n", __func__, physical_freestart);
982 #endif
983 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
984 		/* Are we 16KB aligned for an L1 ? */
985 		if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0
986 		    && kernel_l1pt.pv_pa == 0) {
987 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
988 		} else {
989 			valloc_pages(kernel_pt_table[pt_index],
990 			    L2_TABLE_SIZE / PAGE_SIZE);
991 			++pt_index;
992 		}
993 	}
994 
995 #if (NGEMINIIPM > 0)
996 	valloc_pages(ipmq_pt, L2_TABLE_SIZE / PAGE_SIZE);
997 #endif
998 
999 #ifdef VERBOSE_INIT_ARM
1000 	pt_index=0;
1001 	printf("%s: kernel_l1pt: %#lx:%#lx\n",
1002 		__func__, kernel_l1pt.pv_va, kernel_l1pt.pv_pa);
1003 	printf("%s: kernel_pt_table:\n", __func__);
1004 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
1005 		printf("\t%#lx:%#lx\n", kernel_pt_table[pt_index].pv_va,
1006 			kernel_pt_table[pt_index].pv_pa);
1007 		++pt_index;
1008 	}
1009 #if (NGEMINIIPM > 0)
1010 	printf("%s: ipmq_pt:\n", __func__);
1011 	printf("\t%#lx:%#lx\n", ipmq_pt.pv_va, ipmq_pt.pv_pa);
1012 #endif
1013 #endif
1014 
1015 	/* This should never be able to happen but better confirm that. */
1016 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
1017 		panic("initarm: Failed to align the kernel page directory");
1018 
1019 	/*
1020 	 * Allocate a page for the system page mapped to V0x00000000
1021 	 * This page will just contain the system vectors and can be
1022 	 * shared by all processes.
1023 	 */
1024 	valloc_pages(systempage, 1);
1025 	systempage.pv_va = ARM_VECTORS_HIGH;
1026 
1027 	/* Allocate stacks for all modes */
1028 	valloc_pages(fiqstack, FIQ_STACK_SIZE);
1029 	valloc_pages(irqstack, IRQ_STACK_SIZE);
1030 	valloc_pages(abtstack, ABT_STACK_SIZE);
1031 	valloc_pages(undstack, UND_STACK_SIZE);
1032 	valloc_pages(kernelstack, UPAGES);
1033 
1034 	/* Allocate the message buffer. */
1035 	pv_addr_t msgbuf;
1036 	int msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
1037 	valloc_pages(msgbuf, msgbuf_pgs);
1038 	msgbufphys = msgbuf.pv_pa;
1039 
1040 	/*
1041 	 * Ok we have allocated physical pages for the primary kernel
1042 	 * page tables
1043 	 */
1044 
1045 #ifdef VERBOSE_INIT_ARM
1046 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
1047 #endif
1048 
1049 	/*
1050 	 * Now we start construction of the L1 page table
1051 	 * We start by mapping the L2 page tables into the L1.
1052 	 * This means that we can replace L1 mappings later on if necessary
1053 	 */
1054 	vaddr_t l1_va = kernel_l1pt.pv_va;
1055 	paddr_t l1_pa = kernel_l1pt.pv_pa;
1056 
1057 	/* Map the L2 pages tables in the L1 page table */
1058 	pmap_link_l2pt(l1_va, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
1059 		       &kernel_pt_table[KERNEL_PT_SYS]);
1060 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
1061 		pmap_link_l2pt(l1_va, KERNEL_BASE + loop * 0x00400000,
1062 			       &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
1063 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
1064 		pmap_link_l2pt(l1_va, KERNEL_VM_BASE + loop * 0x00400000,
1065 			       &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
1066 
1067 	/* update the top of the kernel VM */
1068 	pmap_curmaxkvaddr =
1069 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
1070 
1071 #if (NGEMINIIPM > 0)
1072 printf("%s:%d: pmap_link_l2pt ipmq_pt\n", __FUNCTION__, __LINE__);
1073 	pmap_link_l2pt(l1_va, GEMINI_IPMQ_VBASE, &ipmq_pt);
1074 #endif
1075 
1076 #ifdef VERBOSE_INIT_ARM
1077 	printf("Mapping kernel\n");
1078 #endif
1079 
1080 	/* Now we fill in the L2 pagetable for the kernel static code/data */
1081 #define round_L_page(x) (((x) + L2_L_OFFSET) & L2_L_FRAME)
1082 	size_t textsize = round_L_page(etext - KERNEL_BASE_virt);
1083 	size_t totalsize = round_L_page(_end - KERNEL_BASE_virt);
1084 	/* offset of kernel in RAM */
1085 	u_int offset = (u_int)KERNEL_BASE_virt - KERNEL_BASE;
1086 
1087 #ifdef DDB
1088 	/* Map text section read-write. */
1089 	offset += pmap_map_chunk(l1_va,
1090 				(vaddr_t)KERNEL_BASE + offset,
1091 				 physical_start + offset, textsize,
1092 				 VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE,
1093 				 PTE_CACHE);
1094 #else
1095 	/* Map text section read-only. */
1096 	offset += pmap_map_chunk(l1_va,
1097 				(vaddr_t)KERNEL_BASE + offset,
1098 				 physical_start + offset, textsize,
1099 				 VM_PROT_READ|VM_PROT_EXECUTE, PTE_CACHE);
1100 #endif
1101 	/* Map data and bss sections read-write. */
1102 	offset += pmap_map_chunk(l1_va,
1103 				(vaddr_t)KERNEL_BASE + offset,
1104 				 physical_start + offset, totalsize - textsize,
1105 				 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1106 
1107 #ifdef VERBOSE_INIT_ARM
1108 	printf("Constructing L2 page tables\n");
1109 #endif
1110 
1111 	/* Map the stack pages */
1112 	pmap_map_chunk(l1_va, fiqstack.pv_va, fiqstack.pv_pa,
1113 	    FIQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1114 	pmap_map_chunk(l1_va, irqstack.pv_va, irqstack.pv_pa,
1115 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1116 	pmap_map_chunk(l1_va, abtstack.pv_va, abtstack.pv_pa,
1117 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1118 	pmap_map_chunk(l1_va, undstack.pv_va, undstack.pv_pa,
1119 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1120 	pmap_map_chunk(l1_va, kernelstack.pv_va, kernelstack.pv_pa,
1121 	    UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
1122 
1123 	pmap_map_chunk(l1_va, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
1124 	    L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
1125 
1126 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
1127 		pmap_map_chunk(l1_va, kernel_pt_table[loop].pv_va,
1128 			       kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
1129 			       VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
1130 	}
1131 
1132 	/* Map the vector page. */
1133 	pmap_map_entry(l1_va, ARM_VECTORS_HIGH, systempage.pv_pa,
1134 		       VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1135 
1136 #if (NGEMINIIPM > 0)
1137 	/* Map the IPM queue l2pt */
1138 	pmap_map_chunk(l1_va, ipmq_pt.pv_va, ipmq_pt.pv_pa,
1139 		L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
1140 
1141 	/* Map the IPM queue pages */
1142 	pmap_map_chunk(l1_va, GEMINI_IPMQ_VBASE, GEMINI_IPMQ_PBASE,
1143 	    GEMINI_IPMQ_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1144 
1145 #ifdef GEMINI_SLAVE
1146 	/*
1147 	 * Map all memory, incluuding that owned by other core
1148 	 * take into account the RAM remap, so view in this region
1149 	 * is consistent with MASTER
1150 	 */
1151 	pmap_map_chunk(l1_va,
1152 	    GEMINI_ALLMEM_VBASE,
1153 	    GEMINI_ALLMEM_PBASE + ((GEMINI_ALLMEM_SIZE - MEMSIZE) * 1024 * 1024),
1154 	    (GEMINI_ALLMEM_SIZE - MEMSIZE) * 1024 * 1024,
1155 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1156 	pmap_map_chunk(l1_va,
1157 	    GEMINI_ALLMEM_VBASE + GEMINI_BUSBASE * 1024 * 1024,
1158 	    GEMINI_ALLMEM_PBASE,
1159 	    (MEMSIZE * 1024 * 1024),
1160 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1161 #else
1162 	/* Map all memory, incluuding that owned by other core */
1163 	pmap_map_chunk(l1_va, GEMINI_ALLMEM_VBASE, GEMINI_ALLMEM_PBASE,
1164 	    GEMINI_ALLMEM_SIZE * 1024 * 1024, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1165 #endif	/* GEMINI_SLAVE */
1166 #endif	/* NGEMINIIPM */
1167 
1168 	/*
1169 	 * Map integrated peripherals at same address in first level page
1170 	 * table so that we can continue to use console.
1171 	 */
1172 	pmap_devmap_bootstrap(l1_va, devmap);
1173 
1174 
1175 #ifdef VERBOSE_INIT_ARM
1176 	/* Tell the user about where all the bits and pieces live. */
1177 	printf("%22s       Physical              Virtual        Num\n", " ");
1178 	printf("%22s Starting    Ending    Starting    Ending   Pages\n", " ");
1179 
1180 	static const char mem_fmt[] =
1181 	    "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %d\n";
1182 	static const char mem_fmt_nov[] =
1183 	    "%20s: 0x%08lx 0x%08lx                       %d\n";
1184 
1185 	printf(mem_fmt, "SDRAM", physical_start, physical_end-1,
1186 	    KERN_PHYSTOV(physical_start), KERN_PHYSTOV(physical_end-1),
1187 	    physmem);
1188 	printf(mem_fmt, "text section",
1189 	       KERN_VTOPHYS(KERNEL_BASE_virt), KERN_VTOPHYS(etext-1),
1190 	       (vaddr_t)KERNEL_BASE_virt, (vaddr_t)etext-1,
1191 	       (int)(textsize / PAGE_SIZE));
1192 	printf(mem_fmt, "data section",
1193 	       KERN_VTOPHYS(__data_start), KERN_VTOPHYS(_edata),
1194 	       (vaddr_t)__data_start, (vaddr_t)_edata,
1195 	       (int)((round_page((vaddr_t)_edata)
1196 		      - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
1197 	printf(mem_fmt, "bss section",
1198 	       KERN_VTOPHYS(__bss_start), KERN_VTOPHYS(__bss_end__),
1199 	       (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
1200 	       (int)((round_page((vaddr_t)__bss_end__)
1201 		      - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
1202 	printf(mem_fmt, "L1 page directory",
1203 	    kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
1204 	    kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
1205 	    L1_TABLE_SIZE / PAGE_SIZE);
1206 	printf(mem_fmt, "Exception Vectors",
1207 	    systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
1208 	    (vaddr_t)ARM_VECTORS_HIGH, (vaddr_t)ARM_VECTORS_HIGH + PAGE_SIZE - 1,
1209 	    1);
1210 	printf(mem_fmt, "FIQ stack",
1211 	    fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
1212 	    fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
1213 	    FIQ_STACK_SIZE);
1214 	printf(mem_fmt, "IRQ stack",
1215 	    irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
1216 	    irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
1217 	    IRQ_STACK_SIZE);
1218 	printf(mem_fmt, "ABT stack",
1219 	    abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
1220 	    abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
1221 	    ABT_STACK_SIZE);
1222 	printf(mem_fmt, "UND stack",
1223 	    undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
1224 	    undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
1225 	    UND_STACK_SIZE);
1226 	printf(mem_fmt, "SVC stack",
1227 	    kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
1228 	    kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
1229 	    UPAGES);
1230 	printf(mem_fmt_nov, "Message Buffer",
1231 	    msgbufphys, msgbufphys + msgbuf_pgs * PAGE_SIZE - 1, msgbuf_pgs);
1232 	printf(mem_fmt, "Free Memory", physical_freestart, physical_freeend-1,
1233 	    KERN_PHYSTOV(physical_freestart), KERN_PHYSTOV(physical_freeend-1),
1234 	    free_pages);
1235 #endif
1236 
1237 	/*
1238 	 * Now we have the real page tables in place so we can switch to them.
1239 	 * Once this is done we will be running with the REAL kernel page
1240 	 * tables.
1241 	 */
1242 
1243 	/* Switch tables */
1244 #ifdef VERBOSE_INIT_ARM
1245 	printf("switching to new L1 page table  @%#lx...", l1_pa);
1246 #endif
1247 
1248 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
1249 	setttb(l1_pa);
1250 	cpu_tlb_flushID();
1251 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
1252 
1253 #ifdef VERBOSE_INIT_ARM
1254 	printf("OK.\n");
1255 #endif
1256 }
1257