xref: /netbsd-src/sys/arch/atari/vme/if_le_vme.c (revision 2a84159ada57dac1a3a322c289d36b976db1a473)
1 /*	$NetBSD: if_le_vme.c,v 1.35 2023/01/06 10:28:28 tsutsui Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998 maximum entropy.  All rights reserved.
5  * Copyright (c) 1997 Leo Weppelman.  All rights reserved.
6  * Copyright (c) 1992, 1993
7  *	The Regents of the University of California.  All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * Ralph Campbell and Rick Macklem.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)if_le.c	8.2 (Berkeley) 11/16/93
37  */
38 
39 /*-
40  * Copyright (c) 1995 Charles M. Hannum.  All rights reserved.
41  *
42  * This code is derived from software contributed to Berkeley by
43  * Ralph Campbell and Rick Macklem.
44  *
45  * Redistribution and use in source and binary forms, with or without
46  * modification, are permitted provided that the following conditions
47  * are met:
48  * 1. Redistributions of source code must retain the above copyright
49  *    notice, this list of conditions and the following disclaimer.
50  * 2. Redistributions in binary form must reproduce the above copyright
51  *    notice, this list of conditions and the following disclaimer in the
52  *    documentation and/or other materials provided with the distribution.
53  * 3. All advertising materials mentioning features or use of this software
54  *    must display the following acknowledgement:
55  *	This product includes software developed by the University of
56  *	California, Berkeley and its contributors.
57  * 4. Neither the name of the University nor the names of its contributors
58  *    may be used to endorse or promote products derived from this software
59  *    without specific prior written permission.
60  *
61  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
62  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
65  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71  * SUCH DAMAGE.
72  *
73  *	@(#)if_le.c	8.2 (Berkeley) 11/16/93
74  */
75 
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: if_le_vme.c,v 1.35 2023/01/06 10:28:28 tsutsui Exp $");
78 
79 #include "opt_inet.h"
80 
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/mbuf.h>
84 #include <sys/syslog.h>
85 #include <sys/socket.h>
86 #include <sys/device.h>
87 
88 #include <net/if.h>
89 #include <net/if_media.h>
90 #include <net/if_ether.h>
91 
92 #ifdef INET
93 #include <netinet/in.h>
94 #include <netinet/if_inarp.h>
95 #endif
96 
97 #include <machine/cpu.h>
98 #include <sys/bus.h>
99 #include <machine/iomap.h>
100 #include <machine/scu.h>
101 #include <machine/intr.h>
102 
103 #include <atari/atari/device.h>
104 
105 #include <dev/ic/lancereg.h>
106 #include <dev/ic/lancevar.h>
107 #include <dev/ic/am7990reg.h>
108 #include <dev/ic/am7990var.h>
109 
110 #include <atari/vme/vmevar.h>
111 #include <atari/vme/if_levar.h>
112 
113 /*
114  * All cards except BVME410 have 64KB RAM. However,
115  *  - On the Riebl cards the area between the offsets 0xee70-0xeec0 is used
116  *    to store config data.
117  *  - On PAM and ROTHRON, mem_addr cannot be mapped if reg_addr is already
118  *    mapped because they are overwrapped. Just use 32KB as Linux does.
119  */
120 static struct le_addresses {
121 	u_long	reg_addr;
122 	u_long	mem_addr;
123 	int	irq;
124 	int	reg_size;
125 	int	mem_size;
126 	int	type_hint;
127 } lestd[] = {
128 	{ 0xfe00fff0, 0xfe010000, IRQUNK, 16, 64*1024,
129 				LE_OLD_RIEBL|LE_NEW_RIEBL }, /* Riebl	*/
130 	{ 0xfecffff0, 0xfecf0000,      5, 16, 32*1024,
131 				LE_PAM },		     /* PAM	*/
132 	{ 0xfecffff0, 0xfecf0000,      5, 16, 32*1024,
133 				LE_ROTHRON },		     /* Rhotron	*/
134 	{ 0xfeff4100, 0xfe000000,      4,  8, VMECF_MEMSIZ_DEFAULT,
135 				LE_BVME410 }		     /* BVME410 */
136 };
137 
138 #define	NLESTD	__arraycount(lestd)
139 
140 /*
141  * Default mac for RIEBL cards without a (working) battery. The first 4 bytes
142  * are the manufacturer id.
143  */
144 static const uint8_t riebl_def_mac[] = {
145 	0x00, 0x00, 0x36, 0x04, 0x00, 0x00
146 };
147 
148 static int le_intr(struct le_softc *, int);
149 static void lepseudointr(struct le_softc *, void *);
150 static int le_vme_match(device_t, cfdata_t, void *);
151 static void le_vme_attach(device_t, device_t, void *);
152 static int probe_addresses(bus_space_tag_t *, bus_space_tag_t *,
153 			   bus_space_handle_t *, bus_space_handle_t *);
154 static void riebl_skip_reserved_area(struct lance_softc *);
155 static int nm93c06_read(bus_space_tag_t, bus_space_handle_t, int);
156 static int bvme410_probe(bus_space_tag_t, bus_space_handle_t);
157 static int bvme410_mem_size(bus_space_tag_t, u_long);
158 static void bvme410_copytobuf(struct lance_softc *, void *, int, int);
159 static void bvme410_zerobuf(struct lance_softc *, int, int);
160 
161 CFATTACH_DECL_NEW(le_vme, sizeof(struct le_softc),
162     le_vme_match, le_vme_attach, NULL, NULL);
163 
164 #if defined(_KERNEL_OPT)
165 #include "opt_ddb.h"
166 #endif
167 
168 static void lewrcsr(struct lance_softc *, uint16_t, uint16_t);
169 static uint16_t lerdcsr(struct lance_softc *, uint16_t);
170 
171 static void
lewrcsr(struct lance_softc * sc,uint16_t port,uint16_t val)172 lewrcsr(struct lance_softc *sc, uint16_t port, uint16_t val)
173 {
174 	struct le_softc *lesc = (struct le_softc *)sc;
175 	int s;
176 
177 	s = splhigh();
178 	bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RAP, port);
179 	bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RDP, val);
180 	splx(s);
181 }
182 
183 static uint16_t
lerdcsr(struct lance_softc * sc,uint16_t port)184 lerdcsr(struct lance_softc *sc, uint16_t port)
185 {
186 	struct le_softc *lesc = (struct le_softc *)sc;
187 	uint16_t val;
188 	int s;
189 
190 	s = splhigh();
191 	bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RAP, port);
192 	val = bus_space_read_2(lesc->sc_iot, lesc->sc_ioh, LER_RDP);
193 	splx(s);
194 
195 	return val;
196 }
197 
198 static int
le_vme_match(device_t parent,cfdata_t cfp,void * aux)199 le_vme_match(device_t parent, cfdata_t cfp, void *aux)
200 {
201 	struct vme_attach_args *va = aux;
202 	int i;
203 	bus_space_tag_t iot, memt;
204 	bus_space_handle_t ioh, memh;
205 
206 	iot  = va->va_iot;
207 	memt = va->va_memt;
208 
209 	for (i = 0; i < NLESTD; i++) {
210 		struct le_addresses *le_ap = &lestd[i];
211 		int found;
212 
213 		if ((va->va_iobase != IOBASEUNK)
214 		     && (va->va_iobase != le_ap->reg_addr))
215 			continue;
216 
217 		if ((va->va_maddr != MADDRUNK)
218 		     && (va->va_maddr != le_ap->mem_addr))
219 			continue;
220 
221 		if ((le_ap->irq != IRQUNK) && (va->va_irq != le_ap->irq))
222 			continue;
223 
224 		if (bus_space_map(iot, le_ap->reg_addr, le_ap->reg_size, 0,
225 		    &ioh)) {
226 			continue;
227 		}
228 		if (le_ap->mem_size == VMECF_MEMSIZ_DEFAULT) {
229 			if (bvme410_probe(iot, ioh)) {
230 				bus_space_write_2(iot, ioh,
231 				    BVME410_BAR, 0x1); /* XXX */
232 				le_ap->mem_size =
233 				    bvme410_mem_size(memt, le_ap->mem_addr);
234 			}
235 		}
236 		if (le_ap->mem_size == VMECF_MEMSIZ_DEFAULT) {
237 			bus_space_unmap(iot, ioh, le_ap->reg_size);
238 			continue;
239 		}
240 
241 		if (bus_space_map(memt, le_ap->mem_addr, le_ap->mem_size, 0,
242 		    &memh)) {
243 			bus_space_unmap(iot, ioh, le_ap->reg_size);
244 			continue;
245 		}
246 		found = probe_addresses(&iot, &memt, &ioh, &memh);
247 		bus_space_unmap(iot, ioh, le_ap->reg_size);
248 		bus_space_unmap(memt, memh, le_ap->mem_size);
249 
250 		if (found) {
251 			va->va_iobase = le_ap->reg_addr;
252 			va->va_iosize = le_ap->reg_size;
253 			va->va_maddr  = le_ap->mem_addr;
254 			va->va_msize  = le_ap->mem_size;
255 			va->va_aux    = le_ap;
256 			if (va->va_irq == IRQUNK)
257 				va->va_irq = le_ap->irq;
258 			return 1;
259 		}
260 	}
261 	return 0;
262 }
263 
264 static int
probe_addresses(bus_space_tag_t * iot,bus_space_tag_t * memt,bus_space_handle_t * ioh,bus_space_handle_t * memh)265 probe_addresses(bus_space_tag_t	*iot, bus_space_tag_t *memt,
266     bus_space_handle_t *ioh, bus_space_handle_t *memh)
267 {
268 
269 	/*
270 	 * Test accesibility of register and memory area
271 	 */
272 	if (!bus_space_peek_2(*iot, *ioh, LER_RDP))
273 		return 0;
274 	if (!bus_space_peek_1(*memt, *memh, 0))
275 		return 0;
276 
277 	/*
278 	 * Test for writable memory
279 	 */
280 	bus_space_write_2(*memt, *memh, 0, 0xa5a5);
281 	if (bus_space_read_2(*memt, *memh, 0) != 0xa5a5)
282 		return 0;
283 
284 	/*
285 	 * Test writability of selector port.
286 	 */
287 	bus_space_write_2(*iot, *ioh, LER_RAP, LE_CSR1);
288 	if (bus_space_read_2(*iot, *ioh, LER_RAP) != LE_CSR1)
289 		return 0;
290 
291 	/*
292 	 * Do a small register test
293 	 */
294 	bus_space_write_2(*iot, *ioh, LER_RAP, LE_CSR0);
295 	bus_space_write_2(*iot, *ioh, LER_RDP, LE_C0_INIT | LE_C0_STOP);
296 	if (bus_space_read_2(*iot, *ioh, LER_RDP) != LE_C0_STOP)
297 		return 0;
298 
299 	bus_space_write_2(*iot, *ioh, LER_RDP, LE_C0_STOP);
300 	if (bus_space_read_2(*iot, *ioh, LER_RDP) != LE_C0_STOP)
301 		return 0;
302 
303 	return 1;
304 }
305 
306 /*
307  * Interrupt mess. Because the card's interrupt is hardwired to either
308  * ipl5 or ipl3 (mostly on ipl5) and raising splnet to spl5() just won't do
309  * (it kills the serial at the least), we use a 2-level interrupt scheme. The
310  * card interrupt is routed to 'le_intr'. If the previous ipl was below
311  * splnet, just call the mi-function. If not, save the interrupt status,
312  * turn off card interrupts (the card is *very* persistent) and arrange
313  * for a softint 'callback' through 'lepseudointr'.
314  */
315 static int
le_intr(struct le_softc * lesc,int sr)316 le_intr(struct le_softc *lesc, int sr)
317 {
318 	struct lance_softc *sc = &lesc->sc_am7990.lsc;
319 	uint16_t csr0;
320 
321 	if ((sr & PSL_IPL) < (ipl2psl_table[IPL_NET] & PSL_IPL))
322 		am7990_intr(sc);
323 	else {
324 		sc->sc_saved_csr0 = csr0 = lerdcsr(sc, LE_CSR0);
325 		lewrcsr(sc, LE_CSR0, csr0 & ~LE_C0_INEA);
326 		add_sicallback((si_farg)lepseudointr, lesc, sc);
327 	}
328 	return 1;
329 }
330 
331 
332 static void
lepseudointr(struct le_softc * lesc,void * sc)333 lepseudointr(struct le_softc *lesc, void *sc)
334 {
335 	int s;
336 
337 	s = splx(lesc->sc_splval);
338 	am7990_intr(sc);
339 	splx(s);
340 }
341 
342 static void
le_vme_attach(device_t parent,device_t self,void * aux)343 le_vme_attach(device_t parent, device_t self, void *aux)
344 {
345 	struct le_softc *lesc = device_private(self);
346 	struct lance_softc *sc = &lesc->sc_am7990.lsc;
347 	struct vme_attach_args *va = aux;
348 	bus_space_tag_t iot, memt;
349 	bus_space_handle_t ioh, memh;
350 	struct le_addresses *le_ap;
351 	int i;
352 
353 	sc->sc_dev = self;
354 	aprint_normal("\n%s: ", device_xname(self));
355 
356 	iot  = va->va_iot;
357 	memt = va->va_memt;
358 	if (bus_space_map(iot, va->va_iobase, va->va_iosize, 0, &ioh))
359 		panic("%s: cannot map io-area", __func__);
360 	if (bus_space_map(memt, va->va_maddr, va->va_msize, 0, &memh))
361 		panic("%s: cannot map mem-area", __func__);
362 
363 	lesc->sc_iot    = iot;
364 	lesc->sc_ioh    = ioh;
365 	lesc->sc_memt   = memt;
366 	lesc->sc_memh   = memh;
367 	lesc->sc_splval = (va->va_irq << 8) | PSL_S; /* XXX */
368 	le_ap           = (struct le_addresses *)va->va_aux;
369 
370 	/*
371 	 * Go on to find board type
372 	 */
373 	if ((le_ap->type_hint & LE_PAM) != 0 &&
374 	    bus_space_peek_1(iot, ioh, LER_EEPROM)) {
375 		aprint_normal("PAM card");
376 		lesc->sc_type = LE_PAM;
377 		bus_space_read_1(iot, ioh, LER_MEME);
378 	} else if ((le_ap->type_hint & LE_BVME410) != 0 &&
379 	    bvme410_probe(iot, ioh)) {
380 		aprint_normal("BVME410");
381 		lesc->sc_type = LE_BVME410;
382 	} else if ((le_ap->type_hint & (LE_NEW_RIEBL|LE_OLD_RIEBL)) != 0) {
383 		aprint_normal("Riebl card");
384 		if (bus_space_read_4(memt, memh, RIEBL_MAGIC_ADDR) ==
385 		    RIEBL_MAGIC)
386 			lesc->sc_type = LE_NEW_RIEBL;
387 		else {
388 			aprint_normal("(without battery) ");
389 			lesc->sc_type = LE_OLD_RIEBL;
390 		}
391 	} else {
392 		aprint_error("Unsupported card!\n");
393 		return;
394 	}
395 
396 	switch (lesc->sc_type) {
397 	case LE_BVME410:
398 		sc->sc_copytodesc   = bvme410_copytobuf;
399 		sc->sc_copyfromdesc = lance_copyfrombuf_contig;
400 		sc->sc_copytobuf    = bvme410_copytobuf;
401 		sc->sc_copyfrombuf  = lance_copyfrombuf_contig;
402 		sc->sc_zerobuf      = bvme410_zerobuf;
403 		break;
404 	default:
405 		sc->sc_copytodesc   = lance_copytobuf_contig;
406 		sc->sc_copyfromdesc = lance_copyfrombuf_contig;
407 		sc->sc_copytobuf    = lance_copytobuf_contig;
408 		sc->sc_copyfrombuf  = lance_copyfrombuf_contig;
409 		sc->sc_zerobuf      = lance_zerobuf_contig;
410 		break;
411 	}
412 
413 	sc->sc_rdcsr   = lerdcsr;
414 	sc->sc_wrcsr   = lewrcsr;
415 	sc->sc_hwinit  = NULL;
416 	sc->sc_conf3   = LE_C3_BSWP;
417 	sc->sc_addr    = 0;
418 	sc->sc_memsize = va->va_msize;
419 	sc->sc_mem     = (void *)memh; /* XXX */
420 
421 	/*
422 	 * Get MAC address
423 	 */
424 	switch (lesc->sc_type) {
425 	case LE_OLD_RIEBL:
426 		memcpy(sc->sc_enaddr, riebl_def_mac, sizeof(sc->sc_enaddr));
427 		break;
428 	case LE_NEW_RIEBL:
429 		for (i = 0; i < sizeof(sc->sc_enaddr); i++)
430 			sc->sc_enaddr[i] =
431 			    bus_space_read_1(memt, memh, i + RIEBL_MAC_ADDR);
432 		break;
433 	case LE_PAM:
434 		i = bus_space_read_1(iot, ioh, LER_EEPROM);
435 		for (i = 0; i < sizeof(sc->sc_enaddr); i++) {
436 			sc->sc_enaddr[i] =
437 			    (bus_space_read_2(memt, memh, 2 * i) << 4) |
438 			    (bus_space_read_2(memt, memh, 2 * i + 1) & 0xf);
439 		}
440 		i = bus_space_read_1(iot, ioh, LER_MEME);
441 		break;
442 	case LE_BVME410:
443 		for (i = 0; i < (sizeof(sc->sc_enaddr) >> 1); i++) {
444 			uint16_t tmp;
445 
446 			tmp = nm93c06_read(iot, ioh, i);
447 			sc->sc_enaddr[2 * i] = (tmp >> 8) & 0xff;
448 			sc->sc_enaddr[2 * i + 1] = tmp & 0xff;
449 		}
450 		bus_space_write_2(iot, ioh, BVME410_BAR, 0x1); /* XXX */
451 	}
452 
453 	am7990_config(&lesc->sc_am7990);
454 
455 	if ((lesc->sc_type == LE_OLD_RIEBL) || (lesc->sc_type == LE_NEW_RIEBL))
456 		riebl_skip_reserved_area(sc);
457 
458 	/*
459 	 * XXX: We always use uservector 64....
460 	 */
461 	if ((lesc->sc_intr = intr_establish(64, USER_VEC, 0,
462 	    (hw_ifun_t)le_intr, lesc)) == NULL) {
463 		aprint_error("le_vme_attach: Can't establish interrupt\n");
464 		return;
465 	}
466 
467 	/*
468 	 * Notify the card of the vector
469 	 */
470 	switch (lesc->sc_type) {
471 	case LE_OLD_RIEBL:
472 	case LE_NEW_RIEBL:
473 		bus_space_write_2(memt, memh, RIEBL_IVEC_ADDR, 64 + 64);
474 		break;
475 	case LE_PAM:
476 		bus_space_write_1(iot, ioh, LER_IVEC, 64 + 64);
477 		break;
478 	case LE_BVME410:
479 		bus_space_write_2(iot, ioh, BVME410_IVEC, 64 + 64);
480 		break;
481 	}
482 
483 	/*
484 	 * Unmask the VME-interrupt we're on
485 	 */
486 	if ((machineid & ATARI_TT) != 0)
487 		SCU->vme_mask |= 1 << va->va_irq;
488 }
489 
490 /*
491  * True if 'addr' containe within [start,len]
492  */
493 #define WITHIN(start, len, addr)	\
494 		((addr >= start) && ((addr) <= ((start) + (len))))
495 static void
riebl_skip_reserved_area(struct lance_softc * sc)496 riebl_skip_reserved_area(struct lance_softc *sc)
497 {
498 	int offset = 0;
499 	int i;
500 
501 	for (i = 0; i < sc->sc_nrbuf; i++) {
502 		if (WITHIN(sc->sc_rbufaddr[i], LEBLEN, RIEBL_RES_START) ||
503 		    WITHIN(sc->sc_rbufaddr[i], LEBLEN, RIEBL_RES_END)) {
504 			offset = RIEBL_RES_END - sc->sc_rbufaddr[i];
505 		}
506 		sc->sc_rbufaddr[i] += offset;
507 	}
508 
509 	for (i = 0; i < sc->sc_ntbuf; i++) {
510 		if (WITHIN(sc->sc_tbufaddr[i], LEBLEN, RIEBL_RES_START) ||
511 		    WITHIN(sc->sc_tbufaddr[i], LEBLEN, RIEBL_RES_END)) {
512 			offset = RIEBL_RES_END - sc->sc_tbufaddr[i];
513 		}
514 		sc->sc_tbufaddr[i] += offset;
515 	}
516 }
517 
518 static int
nm93c06_read(bus_space_tag_t iot,bus_space_handle_t ioh,int nm93c06reg)519 nm93c06_read(bus_space_tag_t iot, bus_space_handle_t ioh, int nm93c06reg)
520 {
521 	int bar;
522 	int shift;
523 	int bits = 0x180 | (nm93c06reg & 0xf);
524 	int data = 0;
525 
526 	bar = 1 << BVME410_CS_SHIFT;
527 	bus_space_write_2(iot, ioh, BVME410_BAR, bar);
528 	delay(1); /* tCSS = 1 us */
529 	for (shift = 9; shift >= 0; shift--) {
530 		if (((bits >> shift) & 1) == 1)
531 			bar |= 1 << BVME410_DIN_SHIFT;
532 		else
533 			bar &= ~(1 << BVME410_DIN_SHIFT);
534 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
535 		delay(1); /* tDIS = 0.4 us */
536 		bar |= 1 << BVME410_CLK_SHIFT;
537 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
538 		delay(2); /* tSKH = 1 us, tSKH + tSKL >= 4 us */
539 		bar &= ~(1 << BVME410_CLK_SHIFT);
540 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
541 		delay(2); /* tSKL = 1 us, tSKH + tSKL >= 4 us */
542 	}
543 	bar &= ~(1 << BVME410_DIN_SHIFT);
544 	for (shift = 15; shift >= 0; shift--) {
545 		delay(1); /* tDIS = 100 ns, BVM manual says 0.4 us */
546 		bar |= 1 << BVME410_CLK_SHIFT;
547 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
548 		delay(2); /* tSKH = 1 us, tSKH + tSKL >= 4 us */
549 		data |= (bus_space_read_2(iot, ioh, BVME410_BAR) & 1) << shift;
550 		bar &= ~(1 << BVME410_CLK_SHIFT);
551 		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
552 		delay(2); /* tSKL = 1 us, tSKH + tSKL >= 4 us */
553 	}
554 	bar &= ~(1 << BVME410_CS_SHIFT);
555 	bus_space_write_2(iot, ioh, BVME410_BAR, bar);
556 	delay(1); /* tCS = 1 us */
557 	return data;
558 }
559 
560 static int
bvme410_probe(bus_space_tag_t iot,bus_space_handle_t ioh)561 bvme410_probe(bus_space_tag_t iot, bus_space_handle_t ioh)
562 {
563 
564 	if (!bus_space_peek_2(iot, ioh, BVME410_IVEC))
565 		return 0;
566 
567 	bus_space_write_2(iot, ioh, BVME410_IVEC, 0x0000);
568 	if (bus_space_read_2(iot, ioh, BVME410_IVEC) != 0xff00)
569 		return 0;
570 
571 	bus_space_write_2(iot, ioh, BVME410_IVEC, 0xffff);
572 	if (bus_space_read_2(iot, ioh, BVME410_IVEC) != 0xffff)
573 		return 0;
574 
575 	bus_space_write_2(iot, ioh, BVME410_IVEC, 0xa5a5);
576 	if (bus_space_read_2(iot, ioh, BVME410_IVEC) != 0xffa5)
577 		return 0;
578 
579 	return 1;
580 }
581 
582 static int
bvme410_mem_size(bus_space_tag_t memt,u_long mem_addr)583 bvme410_mem_size(bus_space_tag_t memt, u_long mem_addr)
584 {
585 	bus_space_handle_t memh;
586 	int r;
587 
588 	if (bus_space_map(memt, mem_addr, 256 * 1024, 0, &memh))
589 		return VMECF_MEMSIZ_DEFAULT;
590 	if (!bus_space_peek_1(memt, memh, 0)) {
591 		bus_space_unmap(memt, memh, 256 * 1024);
592 		return VMECF_MEMSIZ_DEFAULT;
593 	}
594 	bus_space_write_1(memt, memh, 0, 128);
595 	bus_space_write_1(memt, memh, 64 * 1024, 32);
596 	bus_space_write_1(memt, memh, 32 * 1024, 8);
597 	r = (int)(bus_space_read_1(memt, memh, 0) * 2048);
598 	bus_space_unmap(memt, memh, 256 * 1024);
599 	return r;
600 }
601 
602 /*
603  * Need to be careful when writing to the bvme410 dual port memory.
604  * Continue writing each byte until it reads back the same.
605  */
606 
607 static void
bvme410_copytobuf(struct lance_softc * sc,void * from,int boff,int len)608 bvme410_copytobuf(struct lance_softc *sc, void *from, int boff, int len)
609 {
610 	volatile uint8_t *buf = (volatile uint8_t *)sc->sc_mem;
611 	uint8_t *f = (uint8_t *)from;
612 
613 	for (buf += boff; len != 0; buf++, f++, len--) {
614 		do {
615 			*buf = *f;
616 		} while (*buf != *f);
617 	}
618 }
619 
620 static void
bvme410_zerobuf(struct lance_softc * sc,int boff,int len)621 bvme410_zerobuf(struct lance_softc *sc, int boff, int len)
622 {
623 	volatile uint8_t *buf = (volatile uint8_t *)sc->sc_mem;
624 
625 	for (buf += boff; len != 0; buf++, len--) {
626 		do {
627 			*buf = '\0';
628 		} while (*buf != '\0');
629 	}
630 }
631